audit: implement all object interfield comparisons
[GitHub/MotorolaMobilityLLC/kernel-slsi.git] / kernel / auditsc.c
CommitLineData
85c8721f 1/* auditsc.c -- System-call auditing support
1da177e4
LT
2 * Handles all system-call specific auditing features.
3 *
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
73241ccc 5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
20ca73bc 6 * Copyright (C) 2005, 2006 IBM Corporation
1da177e4
LT
7 * All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24 *
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
27 *
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
31 *
20ca73bc
GW
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33 * 2006.
34 *
b63862f4
DK
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
37 *
73241ccc
AG
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
8c8570fb
DK
40 *
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
1da177e4
LT
43 */
44
45#include <linux/init.h>
1da177e4 46#include <asm/types.h>
60063497 47#include <linux/atomic.h>
73241ccc
AG
48#include <linux/fs.h>
49#include <linux/namei.h>
1da177e4 50#include <linux/mm.h>
9984de1a 51#include <linux/export.h>
5a0e3ad6 52#include <linux/slab.h>
01116105 53#include <linux/mount.h>
3ec3b2fb 54#include <linux/socket.h>
20ca73bc 55#include <linux/mqueue.h>
1da177e4
LT
56#include <linux/audit.h>
57#include <linux/personality.h>
58#include <linux/time.h>
5bb289b5 59#include <linux/netlink.h>
f5561964 60#include <linux/compiler.h>
1da177e4 61#include <asm/unistd.h>
8c8570fb 62#include <linux/security.h>
fe7752ba 63#include <linux/list.h>
a6c043a8 64#include <linux/tty.h>
473ae30b 65#include <linux/binfmts.h>
a1f8e7f7 66#include <linux/highmem.h>
f46038ff 67#include <linux/syscalls.h>
851f7ff5 68#include <linux/capability.h>
5ad4e53b 69#include <linux/fs_struct.h>
1da177e4 70
fe7752ba 71#include "audit.h"
1da177e4 72
d7e7528b
EP
73/* flags stating the success for a syscall */
74#define AUDITSC_INVALID 0
75#define AUDITSC_SUCCESS 1
76#define AUDITSC_FAILURE 2
77
1da177e4 78/* AUDIT_NAMES is the number of slots we reserve in the audit_context
5195d8e2
EP
79 * for saving names from getname(). If we get more names we will allocate
80 * a name dynamically and also add those to the list anchored by names_list. */
81#define AUDIT_NAMES 5
1da177e4 82
9c937dcc
AG
83/* Indicates that audit should log the full pathname. */
84#define AUDIT_NAME_FULL -1
85
de6bbd1d
EP
86/* no execve audit message should be longer than this (userspace limits) */
87#define MAX_EXECVE_AUDIT_LEN 7500
88
471a5c7c
AV
89/* number of audit rules */
90int audit_n_rules;
91
e54dc243
AG
92/* determines whether we collect data for signals sent */
93int audit_signals;
94
851f7ff5
EP
95struct audit_cap_data {
96 kernel_cap_t permitted;
97 kernel_cap_t inheritable;
98 union {
99 unsigned int fE; /* effective bit of a file capability */
100 kernel_cap_t effective; /* effective set of a process */
101 };
102};
103
1da177e4
LT
104/* When fs/namei.c:getname() is called, we store the pointer in name and
105 * we don't let putname() free it (instead we free all of the saved
106 * pointers at syscall exit time).
107 *
108 * Further, in fs/namei.c:path_lookup() we store the inode and device. */
109struct audit_names {
5195d8e2 110 struct list_head list; /* audit_context->names_list */
1da177e4
LT
111 const char *name;
112 unsigned long ino;
113 dev_t dev;
114 umode_t mode;
115 uid_t uid;
116 gid_t gid;
117 dev_t rdev;
1b50eed9 118 u32 osid;
851f7ff5
EP
119 struct audit_cap_data fcap;
120 unsigned int fcap_ver;
5195d8e2
EP
121 int name_len; /* number of name's characters to log */
122 bool name_put; /* call __putname() for this name */
123 /*
124 * This was an allocated audit_names and not from the array of
125 * names allocated in the task audit context. Thus this name
126 * should be freed on syscall exit
127 */
128 bool should_free;
1da177e4
LT
129};
130
131struct audit_aux_data {
132 struct audit_aux_data *next;
133 int type;
134};
135
136#define AUDIT_AUX_IPCPERM 0
137
e54dc243
AG
138/* Number of target pids per aux struct. */
139#define AUDIT_AUX_PIDS 16
140
473ae30b
AV
141struct audit_aux_data_execve {
142 struct audit_aux_data d;
143 int argc;
144 int envc;
bdf4c48a 145 struct mm_struct *mm;
473ae30b
AV
146};
147
e54dc243
AG
148struct audit_aux_data_pids {
149 struct audit_aux_data d;
150 pid_t target_pid[AUDIT_AUX_PIDS];
c2a7780e
EP
151 uid_t target_auid[AUDIT_AUX_PIDS];
152 uid_t target_uid[AUDIT_AUX_PIDS];
4746ec5b 153 unsigned int target_sessionid[AUDIT_AUX_PIDS];
e54dc243 154 u32 target_sid[AUDIT_AUX_PIDS];
c2a7780e 155 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
e54dc243
AG
156 int pid_count;
157};
158
3fc689e9
EP
159struct audit_aux_data_bprm_fcaps {
160 struct audit_aux_data d;
161 struct audit_cap_data fcap;
162 unsigned int fcap_ver;
163 struct audit_cap_data old_pcap;
164 struct audit_cap_data new_pcap;
165};
166
e68b75a0
EP
167struct audit_aux_data_capset {
168 struct audit_aux_data d;
169 pid_t pid;
170 struct audit_cap_data cap;
171};
172
74c3cbe3
AV
173struct audit_tree_refs {
174 struct audit_tree_refs *next;
175 struct audit_chunk *c[31];
176};
177
1da177e4
LT
178/* The per-task audit context. */
179struct audit_context {
d51374ad 180 int dummy; /* must be the first element */
1da177e4 181 int in_syscall; /* 1 if task is in a syscall */
0590b933 182 enum audit_state state, current_state;
1da177e4 183 unsigned int serial; /* serial number for record */
1da177e4 184 int major; /* syscall number */
44e51a1b 185 struct timespec ctime; /* time of syscall entry */
1da177e4 186 unsigned long argv[4]; /* syscall arguments */
2fd6f58b 187 long return_code;/* syscall return code */
0590b933 188 u64 prio;
44e51a1b 189 int return_valid; /* return code is valid */
5195d8e2
EP
190 /*
191 * The names_list is the list of all audit_names collected during this
192 * syscall. The first AUDIT_NAMES entries in the names_list will
193 * actually be from the preallocated_names array for performance
194 * reasons. Except during allocation they should never be referenced
195 * through the preallocated_names array and should only be found/used
196 * by running the names_list.
197 */
198 struct audit_names preallocated_names[AUDIT_NAMES];
199 int name_count; /* total records in names_list */
200 struct list_head names_list; /* anchor for struct audit_names->list */
5adc8a6a 201 char * filterkey; /* key for rule that triggered record */
44707fdf 202 struct path pwd;
1da177e4
LT
203 struct audit_context *previous; /* For nested syscalls */
204 struct audit_aux_data *aux;
e54dc243 205 struct audit_aux_data *aux_pids;
4f6b434f
AV
206 struct sockaddr_storage *sockaddr;
207 size_t sockaddr_len;
1da177e4 208 /* Save things to print about task_struct */
f46038ff 209 pid_t pid, ppid;
1da177e4
LT
210 uid_t uid, euid, suid, fsuid;
211 gid_t gid, egid, sgid, fsgid;
212 unsigned long personality;
2fd6f58b 213 int arch;
1da177e4 214
a5cb013d 215 pid_t target_pid;
c2a7780e
EP
216 uid_t target_auid;
217 uid_t target_uid;
4746ec5b 218 unsigned int target_sessionid;
a5cb013d 219 u32 target_sid;
c2a7780e 220 char target_comm[TASK_COMM_LEN];
a5cb013d 221
74c3cbe3 222 struct audit_tree_refs *trees, *first_trees;
916d7576 223 struct list_head killed_trees;
44e51a1b 224 int tree_count;
74c3cbe3 225
f3298dc4
AV
226 int type;
227 union {
228 struct {
229 int nargs;
230 long args[6];
231 } socketcall;
a33e6751
AV
232 struct {
233 uid_t uid;
234 gid_t gid;
2570ebbd 235 umode_t mode;
a33e6751 236 u32 osid;
e816f370
AV
237 int has_perm;
238 uid_t perm_uid;
239 gid_t perm_gid;
2570ebbd 240 umode_t perm_mode;
e816f370 241 unsigned long qbytes;
a33e6751 242 } ipc;
7392906e
AV
243 struct {
244 mqd_t mqdes;
245 struct mq_attr mqstat;
246 } mq_getsetattr;
20114f71
AV
247 struct {
248 mqd_t mqdes;
249 int sigev_signo;
250 } mq_notify;
c32c8af4
AV
251 struct {
252 mqd_t mqdes;
253 size_t msg_len;
254 unsigned int msg_prio;
255 struct timespec abs_timeout;
256 } mq_sendrecv;
564f6993
AV
257 struct {
258 int oflag;
df0a4283 259 umode_t mode;
564f6993
AV
260 struct mq_attr attr;
261 } mq_open;
57f71a0a
AV
262 struct {
263 pid_t pid;
264 struct audit_cap_data cap;
265 } capset;
120a795d
AV
266 struct {
267 int fd;
268 int flags;
269 } mmap;
f3298dc4 270 };
157cf649 271 int fds[2];
f3298dc4 272
1da177e4
LT
273#if AUDIT_DEBUG
274 int put_count;
275 int ino_count;
276#endif
277};
278
55669bfa
AV
279static inline int open_arg(int flags, int mask)
280{
281 int n = ACC_MODE(flags);
282 if (flags & (O_TRUNC | O_CREAT))
283 n |= AUDIT_PERM_WRITE;
284 return n & mask;
285}
286
287static int audit_match_perm(struct audit_context *ctx, int mask)
288{
c4bacefb 289 unsigned n;
1a61c88d 290 if (unlikely(!ctx))
291 return 0;
c4bacefb 292 n = ctx->major;
dbda4c0b 293
55669bfa
AV
294 switch (audit_classify_syscall(ctx->arch, n)) {
295 case 0: /* native */
296 if ((mask & AUDIT_PERM_WRITE) &&
297 audit_match_class(AUDIT_CLASS_WRITE, n))
298 return 1;
299 if ((mask & AUDIT_PERM_READ) &&
300 audit_match_class(AUDIT_CLASS_READ, n))
301 return 1;
302 if ((mask & AUDIT_PERM_ATTR) &&
303 audit_match_class(AUDIT_CLASS_CHATTR, n))
304 return 1;
305 return 0;
306 case 1: /* 32bit on biarch */
307 if ((mask & AUDIT_PERM_WRITE) &&
308 audit_match_class(AUDIT_CLASS_WRITE_32, n))
309 return 1;
310 if ((mask & AUDIT_PERM_READ) &&
311 audit_match_class(AUDIT_CLASS_READ_32, n))
312 return 1;
313 if ((mask & AUDIT_PERM_ATTR) &&
314 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
315 return 1;
316 return 0;
317 case 2: /* open */
318 return mask & ACC_MODE(ctx->argv[1]);
319 case 3: /* openat */
320 return mask & ACC_MODE(ctx->argv[2]);
321 case 4: /* socketcall */
322 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
323 case 5: /* execve */
324 return mask & AUDIT_PERM_EXEC;
325 default:
326 return 0;
327 }
328}
329
5ef30ee5 330static int audit_match_filetype(struct audit_context *ctx, int val)
8b67dca9 331{
5195d8e2 332 struct audit_names *n;
5ef30ee5 333 umode_t mode = (umode_t)val;
1a61c88d 334
335 if (unlikely(!ctx))
336 return 0;
337
5195d8e2
EP
338 list_for_each_entry(n, &ctx->names_list, list) {
339 if ((n->ino != -1) &&
340 ((n->mode & S_IFMT) == mode))
5ef30ee5
EP
341 return 1;
342 }
5195d8e2 343
5ef30ee5 344 return 0;
8b67dca9
AV
345}
346
74c3cbe3
AV
347/*
348 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
349 * ->first_trees points to its beginning, ->trees - to the current end of data.
350 * ->tree_count is the number of free entries in array pointed to by ->trees.
351 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
352 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
353 * it's going to remain 1-element for almost any setup) until we free context itself.
354 * References in it _are_ dropped - at the same time we free/drop aux stuff.
355 */
356
357#ifdef CONFIG_AUDIT_TREE
679173b7
EP
358static void audit_set_auditable(struct audit_context *ctx)
359{
360 if (!ctx->prio) {
361 ctx->prio = 1;
362 ctx->current_state = AUDIT_RECORD_CONTEXT;
363 }
364}
365
74c3cbe3
AV
366static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
367{
368 struct audit_tree_refs *p = ctx->trees;
369 int left = ctx->tree_count;
370 if (likely(left)) {
371 p->c[--left] = chunk;
372 ctx->tree_count = left;
373 return 1;
374 }
375 if (!p)
376 return 0;
377 p = p->next;
378 if (p) {
379 p->c[30] = chunk;
380 ctx->trees = p;
381 ctx->tree_count = 30;
382 return 1;
383 }
384 return 0;
385}
386
387static int grow_tree_refs(struct audit_context *ctx)
388{
389 struct audit_tree_refs *p = ctx->trees;
390 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
391 if (!ctx->trees) {
392 ctx->trees = p;
393 return 0;
394 }
395 if (p)
396 p->next = ctx->trees;
397 else
398 ctx->first_trees = ctx->trees;
399 ctx->tree_count = 31;
400 return 1;
401}
402#endif
403
404static void unroll_tree_refs(struct audit_context *ctx,
405 struct audit_tree_refs *p, int count)
406{
407#ifdef CONFIG_AUDIT_TREE
408 struct audit_tree_refs *q;
409 int n;
410 if (!p) {
411 /* we started with empty chain */
412 p = ctx->first_trees;
413 count = 31;
414 /* if the very first allocation has failed, nothing to do */
415 if (!p)
416 return;
417 }
418 n = count;
419 for (q = p; q != ctx->trees; q = q->next, n = 31) {
420 while (n--) {
421 audit_put_chunk(q->c[n]);
422 q->c[n] = NULL;
423 }
424 }
425 while (n-- > ctx->tree_count) {
426 audit_put_chunk(q->c[n]);
427 q->c[n] = NULL;
428 }
429 ctx->trees = p;
430 ctx->tree_count = count;
431#endif
432}
433
434static void free_tree_refs(struct audit_context *ctx)
435{
436 struct audit_tree_refs *p, *q;
437 for (p = ctx->first_trees; p; p = q) {
438 q = p->next;
439 kfree(p);
440 }
441}
442
443static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
444{
445#ifdef CONFIG_AUDIT_TREE
446 struct audit_tree_refs *p;
447 int n;
448 if (!tree)
449 return 0;
450 /* full ones */
451 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
452 for (n = 0; n < 31; n++)
453 if (audit_tree_match(p->c[n], tree))
454 return 1;
455 }
456 /* partial */
457 if (p) {
458 for (n = ctx->tree_count; n < 31; n++)
459 if (audit_tree_match(p->c[n], tree))
460 return 1;
461 }
462#endif
463 return 0;
464}
465
b34b0393
EP
466static int audit_compare_id(uid_t uid1,
467 struct audit_names *name,
468 unsigned long name_offset,
469 struct audit_field *f,
470 struct audit_context *ctx)
471{
472 struct audit_names *n;
473 unsigned long addr;
474 uid_t uid2;
475 int rc;
476
c9fe685f
EP
477 BUILD_BUG_ON(sizeof(uid_t) != sizeof(gid_t));
478
b34b0393
EP
479 if (name) {
480 addr = (unsigned long)name;
481 addr += name_offset;
482
483 uid2 = *(uid_t *)addr;
484 rc = audit_comparator(uid1, f->op, uid2);
485 if (rc)
486 return rc;
487 }
488
489 if (ctx) {
490 list_for_each_entry(n, &ctx->names_list, list) {
491 addr = (unsigned long)n;
492 addr += name_offset;
493
494 uid2 = *(uid_t *)addr;
495
496 rc = audit_comparator(uid1, f->op, uid2);
497 if (rc)
498 return rc;
499 }
500 }
501 return 0;
502}
503
02d86a56
EP
504static int audit_field_compare(struct task_struct *tsk,
505 const struct cred *cred,
506 struct audit_field *f,
507 struct audit_context *ctx,
508 struct audit_names *name)
509{
02d86a56 510 switch (f->val) {
4a6633ed 511 /* process to file object comparisons */
02d86a56 512 case AUDIT_COMPARE_UID_TO_OBJ_UID:
b34b0393
EP
513 return audit_compare_id(cred->uid,
514 name, offsetof(struct audit_names, uid),
515 f, ctx);
c9fe685f
EP
516 case AUDIT_COMPARE_GID_TO_OBJ_GID:
517 return audit_compare_id(cred->gid,
518 name, offsetof(struct audit_names, gid),
519 f, ctx);
4a6633ed
PM
520 case AUDIT_COMPARE_EUID_TO_OBJ_UID:
521 return audit_compare_id(cred->euid,
522 name, offsetof(struct audit_names, uid),
523 f, ctx);
524 case AUDIT_COMPARE_EGID_TO_OBJ_GID:
525 return audit_compare_id(cred->egid,
526 name, offsetof(struct audit_names, gid),
527 f, ctx);
528 case AUDIT_COMPARE_AUID_TO_OBJ_UID:
529 return audit_compare_id(tsk->loginuid,
530 name, offsetof(struct audit_names, uid),
531 f, ctx);
532 case AUDIT_COMPARE_SUID_TO_OBJ_UID:
533 return audit_compare_id(cred->suid,
534 name, offsetof(struct audit_names, uid),
535 f, ctx);
536 case AUDIT_COMPARE_SGID_TO_OBJ_GID:
537 return audit_compare_id(cred->sgid,
538 name, offsetof(struct audit_names, gid),
539 f, ctx);
540 case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
541 return audit_compare_id(cred->fsuid,
542 name, offsetof(struct audit_names, uid),
543 f, ctx);
544 case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
545 return audit_compare_id(cred->fsgid,
546 name, offsetof(struct audit_names, gid),
547 f, ctx);
02d86a56
EP
548 default:
549 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n");
550 return 0;
551 }
552 return 0;
553}
554
f368c07d 555/* Determine if any context name data matches a rule's watch data */
1da177e4 556/* Compare a task_struct with an audit_rule. Return 1 on match, 0
f5629883
TJ
557 * otherwise.
558 *
559 * If task_creation is true, this is an explicit indication that we are
560 * filtering a task rule at task creation time. This and tsk == current are
561 * the only situations where tsk->cred may be accessed without an rcu read lock.
562 */
1da177e4 563static int audit_filter_rules(struct task_struct *tsk,
93315ed6 564 struct audit_krule *rule,
1da177e4 565 struct audit_context *ctx,
f368c07d 566 struct audit_names *name,
f5629883
TJ
567 enum audit_state *state,
568 bool task_creation)
1da177e4 569{
f5629883 570 const struct cred *cred;
5195d8e2 571 int i, need_sid = 1;
3dc7e315
DG
572 u32 sid;
573
f5629883
TJ
574 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
575
1da177e4 576 for (i = 0; i < rule->field_count; i++) {
93315ed6 577 struct audit_field *f = &rule->fields[i];
5195d8e2 578 struct audit_names *n;
1da177e4
LT
579 int result = 0;
580
93315ed6 581 switch (f->type) {
1da177e4 582 case AUDIT_PID:
93315ed6 583 result = audit_comparator(tsk->pid, f->op, f->val);
1da177e4 584 break;
3c66251e 585 case AUDIT_PPID:
419c58f1
AV
586 if (ctx) {
587 if (!ctx->ppid)
588 ctx->ppid = sys_getppid();
3c66251e 589 result = audit_comparator(ctx->ppid, f->op, f->val);
419c58f1 590 }
3c66251e 591 break;
1da177e4 592 case AUDIT_UID:
b6dff3ec 593 result = audit_comparator(cred->uid, f->op, f->val);
1da177e4
LT
594 break;
595 case AUDIT_EUID:
b6dff3ec 596 result = audit_comparator(cred->euid, f->op, f->val);
1da177e4
LT
597 break;
598 case AUDIT_SUID:
b6dff3ec 599 result = audit_comparator(cred->suid, f->op, f->val);
1da177e4
LT
600 break;
601 case AUDIT_FSUID:
b6dff3ec 602 result = audit_comparator(cred->fsuid, f->op, f->val);
1da177e4
LT
603 break;
604 case AUDIT_GID:
b6dff3ec 605 result = audit_comparator(cred->gid, f->op, f->val);
1da177e4
LT
606 break;
607 case AUDIT_EGID:
b6dff3ec 608 result = audit_comparator(cred->egid, f->op, f->val);
1da177e4
LT
609 break;
610 case AUDIT_SGID:
b6dff3ec 611 result = audit_comparator(cred->sgid, f->op, f->val);
1da177e4
LT
612 break;
613 case AUDIT_FSGID:
b6dff3ec 614 result = audit_comparator(cred->fsgid, f->op, f->val);
1da177e4
LT
615 break;
616 case AUDIT_PERS:
93315ed6 617 result = audit_comparator(tsk->personality, f->op, f->val);
1da177e4 618 break;
2fd6f58b 619 case AUDIT_ARCH:
9f8dbe9c 620 if (ctx)
93315ed6 621 result = audit_comparator(ctx->arch, f->op, f->val);
2fd6f58b 622 break;
1da177e4
LT
623
624 case AUDIT_EXIT:
625 if (ctx && ctx->return_valid)
93315ed6 626 result = audit_comparator(ctx->return_code, f->op, f->val);
1da177e4
LT
627 break;
628 case AUDIT_SUCCESS:
b01f2cc1 629 if (ctx && ctx->return_valid) {
93315ed6
AG
630 if (f->val)
631 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
b01f2cc1 632 else
93315ed6 633 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
b01f2cc1 634 }
1da177e4
LT
635 break;
636 case AUDIT_DEVMAJOR:
16c174bd
EP
637 if (name) {
638 if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
639 audit_comparator(MAJOR(name->rdev), f->op, f->val))
640 ++result;
641 } else if (ctx) {
5195d8e2 642 list_for_each_entry(n, &ctx->names_list, list) {
16c174bd
EP
643 if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
644 audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
1da177e4
LT
645 ++result;
646 break;
647 }
648 }
649 }
650 break;
651 case AUDIT_DEVMINOR:
16c174bd
EP
652 if (name) {
653 if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
654 audit_comparator(MINOR(name->rdev), f->op, f->val))
655 ++result;
656 } else if (ctx) {
5195d8e2 657 list_for_each_entry(n, &ctx->names_list, list) {
16c174bd
EP
658 if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
659 audit_comparator(MINOR(n->rdev), f->op, f->val)) {
1da177e4
LT
660 ++result;
661 break;
662 }
663 }
664 }
665 break;
666 case AUDIT_INODE:
f368c07d 667 if (name)
9c937dcc 668 result = (name->ino == f->val);
f368c07d 669 else if (ctx) {
5195d8e2
EP
670 list_for_each_entry(n, &ctx->names_list, list) {
671 if (audit_comparator(n->ino, f->op, f->val)) {
1da177e4
LT
672 ++result;
673 break;
674 }
675 }
676 }
677 break;
efaffd6e
EP
678 case AUDIT_OBJ_UID:
679 if (name) {
680 result = audit_comparator(name->uid, f->op, f->val);
681 } else if (ctx) {
682 list_for_each_entry(n, &ctx->names_list, list) {
683 if (audit_comparator(n->uid, f->op, f->val)) {
684 ++result;
685 break;
686 }
687 }
688 }
689 break;
54d3218b
EP
690 case AUDIT_OBJ_GID:
691 if (name) {
692 result = audit_comparator(name->gid, f->op, f->val);
693 } else if (ctx) {
694 list_for_each_entry(n, &ctx->names_list, list) {
695 if (audit_comparator(n->gid, f->op, f->val)) {
696 ++result;
697 break;
698 }
699 }
700 }
701 break;
f368c07d 702 case AUDIT_WATCH:
ae7b8f41
EP
703 if (name)
704 result = audit_watch_compare(rule->watch, name->ino, name->dev);
f368c07d 705 break;
74c3cbe3
AV
706 case AUDIT_DIR:
707 if (ctx)
708 result = match_tree_refs(ctx, rule->tree);
709 break;
1da177e4
LT
710 case AUDIT_LOGINUID:
711 result = 0;
712 if (ctx)
bfef93a5 713 result = audit_comparator(tsk->loginuid, f->op, f->val);
1da177e4 714 break;
3a6b9f85
DG
715 case AUDIT_SUBJ_USER:
716 case AUDIT_SUBJ_ROLE:
717 case AUDIT_SUBJ_TYPE:
718 case AUDIT_SUBJ_SEN:
719 case AUDIT_SUBJ_CLR:
3dc7e315
DG
720 /* NOTE: this may return negative values indicating
721 a temporary error. We simply treat this as a
722 match for now to avoid losing information that
723 may be wanted. An error message will also be
724 logged upon error */
04305e4a 725 if (f->lsm_rule) {
2ad312d2 726 if (need_sid) {
2a862b32 727 security_task_getsecid(tsk, &sid);
2ad312d2
SG
728 need_sid = 0;
729 }
d7a96f3a 730 result = security_audit_rule_match(sid, f->type,
3dc7e315 731 f->op,
04305e4a 732 f->lsm_rule,
3dc7e315 733 ctx);
2ad312d2 734 }
3dc7e315 735 break;
6e5a2d1d
DG
736 case AUDIT_OBJ_USER:
737 case AUDIT_OBJ_ROLE:
738 case AUDIT_OBJ_TYPE:
739 case AUDIT_OBJ_LEV_LOW:
740 case AUDIT_OBJ_LEV_HIGH:
741 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
742 also applies here */
04305e4a 743 if (f->lsm_rule) {
6e5a2d1d
DG
744 /* Find files that match */
745 if (name) {
d7a96f3a 746 result = security_audit_rule_match(
6e5a2d1d 747 name->osid, f->type, f->op,
04305e4a 748 f->lsm_rule, ctx);
6e5a2d1d 749 } else if (ctx) {
5195d8e2
EP
750 list_for_each_entry(n, &ctx->names_list, list) {
751 if (security_audit_rule_match(n->osid, f->type,
752 f->op, f->lsm_rule,
753 ctx)) {
6e5a2d1d
DG
754 ++result;
755 break;
756 }
757 }
758 }
759 /* Find ipc objects that match */
a33e6751
AV
760 if (!ctx || ctx->type != AUDIT_IPC)
761 break;
762 if (security_audit_rule_match(ctx->ipc.osid,
763 f->type, f->op,
764 f->lsm_rule, ctx))
765 ++result;
6e5a2d1d
DG
766 }
767 break;
1da177e4
LT
768 case AUDIT_ARG0:
769 case AUDIT_ARG1:
770 case AUDIT_ARG2:
771 case AUDIT_ARG3:
772 if (ctx)
93315ed6 773 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
1da177e4 774 break;
5adc8a6a
AG
775 case AUDIT_FILTERKEY:
776 /* ignore this field for filtering */
777 result = 1;
778 break;
55669bfa
AV
779 case AUDIT_PERM:
780 result = audit_match_perm(ctx, f->val);
781 break;
8b67dca9
AV
782 case AUDIT_FILETYPE:
783 result = audit_match_filetype(ctx, f->val);
784 break;
02d86a56
EP
785 case AUDIT_FIELD_COMPARE:
786 result = audit_field_compare(tsk, cred, f, ctx, name);
787 break;
1da177e4 788 }
f5629883 789 if (!result)
1da177e4
LT
790 return 0;
791 }
0590b933
AV
792
793 if (ctx) {
794 if (rule->prio <= ctx->prio)
795 return 0;
796 if (rule->filterkey) {
797 kfree(ctx->filterkey);
798 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
799 }
800 ctx->prio = rule->prio;
801 }
1da177e4
LT
802 switch (rule->action) {
803 case AUDIT_NEVER: *state = AUDIT_DISABLED; break;
1da177e4
LT
804 case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break;
805 }
806 return 1;
807}
808
809/* At process creation time, we can determine if system-call auditing is
810 * completely disabled for this task. Since we only have the task
811 * structure at this point, we can only check uid and gid.
812 */
e048e02c 813static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
1da177e4
LT
814{
815 struct audit_entry *e;
816 enum audit_state state;
817
818 rcu_read_lock();
0f45aa18 819 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
f5629883
TJ
820 if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
821 &state, true)) {
e048e02c
AV
822 if (state == AUDIT_RECORD_CONTEXT)
823 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
1da177e4
LT
824 rcu_read_unlock();
825 return state;
826 }
827 }
828 rcu_read_unlock();
829 return AUDIT_BUILD_CONTEXT;
830}
831
832/* At syscall entry and exit time, this filter is called if the
833 * audit_state is not low enough that auditing cannot take place, but is
23f32d18 834 * also not high enough that we already know we have to write an audit
b0dd25a8 835 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
1da177e4
LT
836 */
837static enum audit_state audit_filter_syscall(struct task_struct *tsk,
838 struct audit_context *ctx,
839 struct list_head *list)
840{
841 struct audit_entry *e;
c3896495 842 enum audit_state state;
1da177e4 843
351bb722 844 if (audit_pid && tsk->tgid == audit_pid)
f7056d64
DW
845 return AUDIT_DISABLED;
846
1da177e4 847 rcu_read_lock();
c3896495 848 if (!list_empty(list)) {
b63862f4
DK
849 int word = AUDIT_WORD(ctx->major);
850 int bit = AUDIT_BIT(ctx->major);
851
852 list_for_each_entry_rcu(e, list, list) {
f368c07d
AG
853 if ((e->rule.mask[word] & bit) == bit &&
854 audit_filter_rules(tsk, &e->rule, ctx, NULL,
f5629883 855 &state, false)) {
f368c07d 856 rcu_read_unlock();
0590b933 857 ctx->current_state = state;
f368c07d
AG
858 return state;
859 }
860 }
861 }
862 rcu_read_unlock();
863 return AUDIT_BUILD_CONTEXT;
864}
865
5195d8e2
EP
866/*
867 * Given an audit_name check the inode hash table to see if they match.
868 * Called holding the rcu read lock to protect the use of audit_inode_hash
869 */
870static int audit_filter_inode_name(struct task_struct *tsk,
871 struct audit_names *n,
872 struct audit_context *ctx) {
873 int word, bit;
874 int h = audit_hash_ino((u32)n->ino);
875 struct list_head *list = &audit_inode_hash[h];
876 struct audit_entry *e;
877 enum audit_state state;
878
879 word = AUDIT_WORD(ctx->major);
880 bit = AUDIT_BIT(ctx->major);
881
882 if (list_empty(list))
883 return 0;
884
885 list_for_each_entry_rcu(e, list, list) {
886 if ((e->rule.mask[word] & bit) == bit &&
887 audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
888 ctx->current_state = state;
889 return 1;
890 }
891 }
892
893 return 0;
894}
895
896/* At syscall exit time, this filter is called if any audit_names have been
f368c07d 897 * collected during syscall processing. We only check rules in sublists at hash
5195d8e2 898 * buckets applicable to the inode numbers in audit_names.
f368c07d
AG
899 * Regarding audit_state, same rules apply as for audit_filter_syscall().
900 */
0590b933 901void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
f368c07d 902{
5195d8e2 903 struct audit_names *n;
f368c07d
AG
904
905 if (audit_pid && tsk->tgid == audit_pid)
0590b933 906 return;
f368c07d
AG
907
908 rcu_read_lock();
f368c07d 909
5195d8e2
EP
910 list_for_each_entry(n, &ctx->names_list, list) {
911 if (audit_filter_inode_name(tsk, n, ctx))
912 break;
0f45aa18
DW
913 }
914 rcu_read_unlock();
0f45aa18
DW
915}
916
1da177e4
LT
917static inline struct audit_context *audit_get_context(struct task_struct *tsk,
918 int return_valid,
6d208da8 919 long return_code)
1da177e4
LT
920{
921 struct audit_context *context = tsk->audit_context;
922
56179a6e 923 if (!context)
1da177e4
LT
924 return NULL;
925 context->return_valid = return_valid;
f701b75e
EP
926
927 /*
928 * we need to fix up the return code in the audit logs if the actual
929 * return codes are later going to be fixed up by the arch specific
930 * signal handlers
931 *
932 * This is actually a test for:
933 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
934 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
935 *
936 * but is faster than a bunch of ||
937 */
938 if (unlikely(return_code <= -ERESTARTSYS) &&
939 (return_code >= -ERESTART_RESTARTBLOCK) &&
940 (return_code != -ENOIOCTLCMD))
941 context->return_code = -EINTR;
942 else
943 context->return_code = return_code;
1da177e4 944
0590b933
AV
945 if (context->in_syscall && !context->dummy) {
946 audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
947 audit_filter_inodes(tsk, context);
1da177e4
LT
948 }
949
1da177e4
LT
950 tsk->audit_context = NULL;
951 return context;
952}
953
954static inline void audit_free_names(struct audit_context *context)
955{
5195d8e2 956 struct audit_names *n, *next;
1da177e4
LT
957
958#if AUDIT_DEBUG == 2
0590b933 959 if (context->put_count + context->ino_count != context->name_count) {
73241ccc 960 printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d"
1da177e4
LT
961 " name_count=%d put_count=%d"
962 " ino_count=%d [NOT freeing]\n",
73241ccc 963 __FILE__, __LINE__,
1da177e4
LT
964 context->serial, context->major, context->in_syscall,
965 context->name_count, context->put_count,
966 context->ino_count);
5195d8e2 967 list_for_each_entry(n, &context->names_list, list) {
1da177e4 968 printk(KERN_ERR "names[%d] = %p = %s\n", i,
5195d8e2 969 n->name, n->name ?: "(null)");
8c8570fb 970 }
1da177e4
LT
971 dump_stack();
972 return;
973 }
974#endif
975#if AUDIT_DEBUG
976 context->put_count = 0;
977 context->ino_count = 0;
978#endif
979
5195d8e2
EP
980 list_for_each_entry_safe(n, next, &context->names_list, list) {
981 list_del(&n->list);
982 if (n->name && n->name_put)
983 __putname(n->name);
984 if (n->should_free)
985 kfree(n);
8c8570fb 986 }
1da177e4 987 context->name_count = 0;
44707fdf
JB
988 path_put(&context->pwd);
989 context->pwd.dentry = NULL;
990 context->pwd.mnt = NULL;
1da177e4
LT
991}
992
993static inline void audit_free_aux(struct audit_context *context)
994{
995 struct audit_aux_data *aux;
996
997 while ((aux = context->aux)) {
998 context->aux = aux->next;
999 kfree(aux);
1000 }
e54dc243
AG
1001 while ((aux = context->aux_pids)) {
1002 context->aux_pids = aux->next;
1003 kfree(aux);
1004 }
1da177e4
LT
1005}
1006
1007static inline void audit_zero_context(struct audit_context *context,
1008 enum audit_state state)
1009{
1da177e4
LT
1010 memset(context, 0, sizeof(*context));
1011 context->state = state;
0590b933 1012 context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1da177e4
LT
1013}
1014
1015static inline struct audit_context *audit_alloc_context(enum audit_state state)
1016{
1017 struct audit_context *context;
1018
1019 if (!(context = kmalloc(sizeof(*context), GFP_KERNEL)))
1020 return NULL;
1021 audit_zero_context(context, state);
916d7576 1022 INIT_LIST_HEAD(&context->killed_trees);
5195d8e2 1023 INIT_LIST_HEAD(&context->names_list);
1da177e4
LT
1024 return context;
1025}
1026
b0dd25a8
RD
1027/**
1028 * audit_alloc - allocate an audit context block for a task
1029 * @tsk: task
1030 *
1031 * Filter on the task information and allocate a per-task audit context
1da177e4
LT
1032 * if necessary. Doing so turns on system call auditing for the
1033 * specified task. This is called from copy_process, so no lock is
b0dd25a8
RD
1034 * needed.
1035 */
1da177e4
LT
1036int audit_alloc(struct task_struct *tsk)
1037{
1038 struct audit_context *context;
1039 enum audit_state state;
e048e02c 1040 char *key = NULL;
1da177e4 1041
b593d384 1042 if (likely(!audit_ever_enabled))
1da177e4
LT
1043 return 0; /* Return if not auditing. */
1044
e048e02c 1045 state = audit_filter_task(tsk, &key);
56179a6e 1046 if (state == AUDIT_DISABLED)
1da177e4
LT
1047 return 0;
1048
1049 if (!(context = audit_alloc_context(state))) {
e048e02c 1050 kfree(key);
1da177e4
LT
1051 audit_log_lost("out of memory in audit_alloc");
1052 return -ENOMEM;
1053 }
e048e02c 1054 context->filterkey = key;
1da177e4 1055
1da177e4
LT
1056 tsk->audit_context = context;
1057 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
1058 return 0;
1059}
1060
1061static inline void audit_free_context(struct audit_context *context)
1062{
1063 struct audit_context *previous;
1064 int count = 0;
1065
1066 do {
1067 previous = context->previous;
1068 if (previous || (count && count < 10)) {
1069 ++count;
1070 printk(KERN_ERR "audit(:%d): major=%d name_count=%d:"
1071 " freeing multiple contexts (%d)\n",
1072 context->serial, context->major,
1073 context->name_count, count);
1074 }
1075 audit_free_names(context);
74c3cbe3
AV
1076 unroll_tree_refs(context, NULL, 0);
1077 free_tree_refs(context);
1da177e4 1078 audit_free_aux(context);
5adc8a6a 1079 kfree(context->filterkey);
4f6b434f 1080 kfree(context->sockaddr);
1da177e4
LT
1081 kfree(context);
1082 context = previous;
1083 } while (context);
1084 if (count >= 10)
1085 printk(KERN_ERR "audit: freed %d contexts\n", count);
1086}
1087
161a09e7 1088void audit_log_task_context(struct audit_buffer *ab)
8c8570fb
DK
1089{
1090 char *ctx = NULL;
c4823bce
AV
1091 unsigned len;
1092 int error;
1093 u32 sid;
1094
2a862b32 1095 security_task_getsecid(current, &sid);
c4823bce
AV
1096 if (!sid)
1097 return;
8c8570fb 1098
2a862b32 1099 error = security_secid_to_secctx(sid, &ctx, &len);
c4823bce
AV
1100 if (error) {
1101 if (error != -EINVAL)
8c8570fb
DK
1102 goto error_path;
1103 return;
1104 }
1105
8c8570fb 1106 audit_log_format(ab, " subj=%s", ctx);
2a862b32 1107 security_release_secctx(ctx, len);
7306a0b9 1108 return;
8c8570fb
DK
1109
1110error_path:
7306a0b9 1111 audit_panic("error in audit_log_task_context");
8c8570fb
DK
1112 return;
1113}
1114
161a09e7
JL
1115EXPORT_SYMBOL(audit_log_task_context);
1116
e495149b 1117static void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
219f0817 1118{
45d9bb0e
AV
1119 char name[sizeof(tsk->comm)];
1120 struct mm_struct *mm = tsk->mm;
219f0817
SS
1121 struct vm_area_struct *vma;
1122
e495149b
AV
1123 /* tsk == current */
1124
45d9bb0e 1125 get_task_comm(name, tsk);
99e45eea
DW
1126 audit_log_format(ab, " comm=");
1127 audit_log_untrustedstring(ab, name);
219f0817 1128
e495149b
AV
1129 if (mm) {
1130 down_read(&mm->mmap_sem);
1131 vma = mm->mmap;
1132 while (vma) {
1133 if ((vma->vm_flags & VM_EXECUTABLE) &&
1134 vma->vm_file) {
1135 audit_log_d_path(ab, "exe=",
44707fdf 1136 &vma->vm_file->f_path);
e495149b
AV
1137 break;
1138 }
1139 vma = vma->vm_next;
219f0817 1140 }
e495149b 1141 up_read(&mm->mmap_sem);
219f0817 1142 }
e495149b 1143 audit_log_task_context(ab);
219f0817
SS
1144}
1145
e54dc243 1146static int audit_log_pid_context(struct audit_context *context, pid_t pid,
4746ec5b
EP
1147 uid_t auid, uid_t uid, unsigned int sessionid,
1148 u32 sid, char *comm)
e54dc243
AG
1149{
1150 struct audit_buffer *ab;
2a862b32 1151 char *ctx = NULL;
e54dc243
AG
1152 u32 len;
1153 int rc = 0;
1154
1155 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
1156 if (!ab)
6246ccab 1157 return rc;
e54dc243 1158
4746ec5b
EP
1159 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid, auid,
1160 uid, sessionid);
2a862b32 1161 if (security_secid_to_secctx(sid, &ctx, &len)) {
c2a7780e 1162 audit_log_format(ab, " obj=(none)");
e54dc243 1163 rc = 1;
2a862b32
AD
1164 } else {
1165 audit_log_format(ab, " obj=%s", ctx);
1166 security_release_secctx(ctx, len);
1167 }
c2a7780e
EP
1168 audit_log_format(ab, " ocomm=");
1169 audit_log_untrustedstring(ab, comm);
e54dc243 1170 audit_log_end(ab);
e54dc243
AG
1171
1172 return rc;
1173}
1174
de6bbd1d
EP
1175/*
1176 * to_send and len_sent accounting are very loose estimates. We aren't
1177 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
25985edc 1178 * within about 500 bytes (next page boundary)
de6bbd1d
EP
1179 *
1180 * why snprintf? an int is up to 12 digits long. if we just assumed when
1181 * logging that a[%d]= was going to be 16 characters long we would be wasting
1182 * space in every audit message. In one 7500 byte message we can log up to
1183 * about 1000 min size arguments. That comes down to about 50% waste of space
1184 * if we didn't do the snprintf to find out how long arg_num_len was.
1185 */
1186static int audit_log_single_execve_arg(struct audit_context *context,
1187 struct audit_buffer **ab,
1188 int arg_num,
1189 size_t *len_sent,
1190 const char __user *p,
1191 char *buf)
bdf4c48a 1192{
de6bbd1d
EP
1193 char arg_num_len_buf[12];
1194 const char __user *tmp_p = p;
b87ce6e4
EP
1195 /* how many digits are in arg_num? 5 is the length of ' a=""' */
1196 size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 5;
de6bbd1d
EP
1197 size_t len, len_left, to_send;
1198 size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN;
1199 unsigned int i, has_cntl = 0, too_long = 0;
1200 int ret;
1201
1202 /* strnlen_user includes the null we don't want to send */
1203 len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1;
bdf4c48a 1204
de6bbd1d
EP
1205 /*
1206 * We just created this mm, if we can't find the strings
1207 * we just copied into it something is _very_ wrong. Similar
1208 * for strings that are too long, we should not have created
1209 * any.
1210 */
b0abcfc1 1211 if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) {
de6bbd1d
EP
1212 WARN_ON(1);
1213 send_sig(SIGKILL, current, 0);
b0abcfc1 1214 return -1;
de6bbd1d 1215 }
040b3a2d 1216
de6bbd1d
EP
1217 /* walk the whole argument looking for non-ascii chars */
1218 do {
1219 if (len_left > MAX_EXECVE_AUDIT_LEN)
1220 to_send = MAX_EXECVE_AUDIT_LEN;
1221 else
1222 to_send = len_left;
1223 ret = copy_from_user(buf, tmp_p, to_send);
bdf4c48a 1224 /*
de6bbd1d
EP
1225 * There is no reason for this copy to be short. We just
1226 * copied them here, and the mm hasn't been exposed to user-
1227 * space yet.
bdf4c48a 1228 */
de6bbd1d 1229 if (ret) {
bdf4c48a
PZ
1230 WARN_ON(1);
1231 send_sig(SIGKILL, current, 0);
b0abcfc1 1232 return -1;
bdf4c48a 1233 }
de6bbd1d
EP
1234 buf[to_send] = '\0';
1235 has_cntl = audit_string_contains_control(buf, to_send);
1236 if (has_cntl) {
1237 /*
1238 * hex messages get logged as 2 bytes, so we can only
1239 * send half as much in each message
1240 */
1241 max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2;
bdf4c48a
PZ
1242 break;
1243 }
de6bbd1d
EP
1244 len_left -= to_send;
1245 tmp_p += to_send;
1246 } while (len_left > 0);
1247
1248 len_left = len;
1249
1250 if (len > max_execve_audit_len)
1251 too_long = 1;
1252
1253 /* rewalk the argument actually logging the message */
1254 for (i = 0; len_left > 0; i++) {
1255 int room_left;
1256
1257 if (len_left > max_execve_audit_len)
1258 to_send = max_execve_audit_len;
1259 else
1260 to_send = len_left;
1261
1262 /* do we have space left to send this argument in this ab? */
1263 room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent;
1264 if (has_cntl)
1265 room_left -= (to_send * 2);
1266 else
1267 room_left -= to_send;
1268 if (room_left < 0) {
1269 *len_sent = 0;
1270 audit_log_end(*ab);
1271 *ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE);
1272 if (!*ab)
1273 return 0;
1274 }
bdf4c48a 1275
bdf4c48a 1276 /*
de6bbd1d
EP
1277 * first record needs to say how long the original string was
1278 * so we can be sure nothing was lost.
1279 */
1280 if ((i == 0) && (too_long))
ca96a895 1281 audit_log_format(*ab, " a%d_len=%zu", arg_num,
de6bbd1d
EP
1282 has_cntl ? 2*len : len);
1283
1284 /*
1285 * normally arguments are small enough to fit and we already
1286 * filled buf above when we checked for control characters
1287 * so don't bother with another copy_from_user
bdf4c48a 1288 */
de6bbd1d
EP
1289 if (len >= max_execve_audit_len)
1290 ret = copy_from_user(buf, p, to_send);
1291 else
1292 ret = 0;
040b3a2d 1293 if (ret) {
bdf4c48a
PZ
1294 WARN_ON(1);
1295 send_sig(SIGKILL, current, 0);
b0abcfc1 1296 return -1;
bdf4c48a 1297 }
de6bbd1d
EP
1298 buf[to_send] = '\0';
1299
1300 /* actually log it */
ca96a895 1301 audit_log_format(*ab, " a%d", arg_num);
de6bbd1d
EP
1302 if (too_long)
1303 audit_log_format(*ab, "[%d]", i);
1304 audit_log_format(*ab, "=");
1305 if (has_cntl)
b556f8ad 1306 audit_log_n_hex(*ab, buf, to_send);
de6bbd1d 1307 else
9d960985 1308 audit_log_string(*ab, buf);
de6bbd1d
EP
1309
1310 p += to_send;
1311 len_left -= to_send;
1312 *len_sent += arg_num_len;
1313 if (has_cntl)
1314 *len_sent += to_send * 2;
1315 else
1316 *len_sent += to_send;
1317 }
1318 /* include the null we didn't log */
1319 return len + 1;
1320}
1321
1322static void audit_log_execve_info(struct audit_context *context,
1323 struct audit_buffer **ab,
1324 struct audit_aux_data_execve *axi)
1325{
1326 int i;
1327 size_t len, len_sent = 0;
1328 const char __user *p;
1329 char *buf;
bdf4c48a 1330
de6bbd1d
EP
1331 if (axi->mm != current->mm)
1332 return; /* execve failed, no additional info */
1333
1334 p = (const char __user *)axi->mm->arg_start;
bdf4c48a 1335
ca96a895 1336 audit_log_format(*ab, "argc=%d", axi->argc);
de6bbd1d
EP
1337
1338 /*
1339 * we need some kernel buffer to hold the userspace args. Just
1340 * allocate one big one rather than allocating one of the right size
1341 * for every single argument inside audit_log_single_execve_arg()
1342 * should be <8k allocation so should be pretty safe.
1343 */
1344 buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1345 if (!buf) {
1346 audit_panic("out of memory for argv string\n");
1347 return;
bdf4c48a 1348 }
de6bbd1d
EP
1349
1350 for (i = 0; i < axi->argc; i++) {
1351 len = audit_log_single_execve_arg(context, ab, i,
1352 &len_sent, p, buf);
1353 if (len <= 0)
1354 break;
1355 p += len;
1356 }
1357 kfree(buf);
bdf4c48a
PZ
1358}
1359
851f7ff5
EP
1360static void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1361{
1362 int i;
1363
1364 audit_log_format(ab, " %s=", prefix);
1365 CAP_FOR_EACH_U32(i) {
1366 audit_log_format(ab, "%08x", cap->cap[(_KERNEL_CAPABILITY_U32S-1) - i]);
1367 }
1368}
1369
1370static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1371{
1372 kernel_cap_t *perm = &name->fcap.permitted;
1373 kernel_cap_t *inh = &name->fcap.inheritable;
1374 int log = 0;
1375
1376 if (!cap_isclear(*perm)) {
1377 audit_log_cap(ab, "cap_fp", perm);
1378 log = 1;
1379 }
1380 if (!cap_isclear(*inh)) {
1381 audit_log_cap(ab, "cap_fi", inh);
1382 log = 1;
1383 }
1384
1385 if (log)
1386 audit_log_format(ab, " cap_fe=%d cap_fver=%x", name->fcap.fE, name->fcap_ver);
1387}
1388
a33e6751 1389static void show_special(struct audit_context *context, int *call_panic)
f3298dc4
AV
1390{
1391 struct audit_buffer *ab;
1392 int i;
1393
1394 ab = audit_log_start(context, GFP_KERNEL, context->type);
1395 if (!ab)
1396 return;
1397
1398 switch (context->type) {
1399 case AUDIT_SOCKETCALL: {
1400 int nargs = context->socketcall.nargs;
1401 audit_log_format(ab, "nargs=%d", nargs);
1402 for (i = 0; i < nargs; i++)
1403 audit_log_format(ab, " a%d=%lx", i,
1404 context->socketcall.args[i]);
1405 break; }
a33e6751
AV
1406 case AUDIT_IPC: {
1407 u32 osid = context->ipc.osid;
1408
2570ebbd 1409 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
a33e6751
AV
1410 context->ipc.uid, context->ipc.gid, context->ipc.mode);
1411 if (osid) {
1412 char *ctx = NULL;
1413 u32 len;
1414 if (security_secid_to_secctx(osid, &ctx, &len)) {
1415 audit_log_format(ab, " osid=%u", osid);
1416 *call_panic = 1;
1417 } else {
1418 audit_log_format(ab, " obj=%s", ctx);
1419 security_release_secctx(ctx, len);
1420 }
1421 }
e816f370
AV
1422 if (context->ipc.has_perm) {
1423 audit_log_end(ab);
1424 ab = audit_log_start(context, GFP_KERNEL,
1425 AUDIT_IPC_SET_PERM);
1426 audit_log_format(ab,
2570ebbd 1427 "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
e816f370
AV
1428 context->ipc.qbytes,
1429 context->ipc.perm_uid,
1430 context->ipc.perm_gid,
1431 context->ipc.perm_mode);
1432 if (!ab)
1433 return;
1434 }
a33e6751 1435 break; }
564f6993
AV
1436 case AUDIT_MQ_OPEN: {
1437 audit_log_format(ab,
df0a4283 1438 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
564f6993
AV
1439 "mq_msgsize=%ld mq_curmsgs=%ld",
1440 context->mq_open.oflag, context->mq_open.mode,
1441 context->mq_open.attr.mq_flags,
1442 context->mq_open.attr.mq_maxmsg,
1443 context->mq_open.attr.mq_msgsize,
1444 context->mq_open.attr.mq_curmsgs);
1445 break; }
c32c8af4
AV
1446 case AUDIT_MQ_SENDRECV: {
1447 audit_log_format(ab,
1448 "mqdes=%d msg_len=%zd msg_prio=%u "
1449 "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1450 context->mq_sendrecv.mqdes,
1451 context->mq_sendrecv.msg_len,
1452 context->mq_sendrecv.msg_prio,
1453 context->mq_sendrecv.abs_timeout.tv_sec,
1454 context->mq_sendrecv.abs_timeout.tv_nsec);
1455 break; }
20114f71
AV
1456 case AUDIT_MQ_NOTIFY: {
1457 audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1458 context->mq_notify.mqdes,
1459 context->mq_notify.sigev_signo);
1460 break; }
7392906e
AV
1461 case AUDIT_MQ_GETSETATTR: {
1462 struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1463 audit_log_format(ab,
1464 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1465 "mq_curmsgs=%ld ",
1466 context->mq_getsetattr.mqdes,
1467 attr->mq_flags, attr->mq_maxmsg,
1468 attr->mq_msgsize, attr->mq_curmsgs);
1469 break; }
57f71a0a
AV
1470 case AUDIT_CAPSET: {
1471 audit_log_format(ab, "pid=%d", context->capset.pid);
1472 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1473 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1474 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1475 break; }
120a795d
AV
1476 case AUDIT_MMAP: {
1477 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1478 context->mmap.flags);
1479 break; }
f3298dc4
AV
1480 }
1481 audit_log_end(ab);
1482}
1483
5195d8e2
EP
1484static void audit_log_name(struct audit_context *context, struct audit_names *n,
1485 int record_num, int *call_panic)
1486{
1487 struct audit_buffer *ab;
1488 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1489 if (!ab)
1490 return; /* audit_panic has been called */
1491
1492 audit_log_format(ab, "item=%d", record_num);
1493
1494 if (n->name) {
1495 switch (n->name_len) {
1496 case AUDIT_NAME_FULL:
1497 /* log the full path */
1498 audit_log_format(ab, " name=");
1499 audit_log_untrustedstring(ab, n->name);
1500 break;
1501 case 0:
1502 /* name was specified as a relative path and the
1503 * directory component is the cwd */
1504 audit_log_d_path(ab, "name=", &context->pwd);
1505 break;
1506 default:
1507 /* log the name's directory component */
1508 audit_log_format(ab, " name=");
1509 audit_log_n_untrustedstring(ab, n->name,
1510 n->name_len);
1511 }
1512 } else
1513 audit_log_format(ab, " name=(null)");
1514
1515 if (n->ino != (unsigned long)-1) {
1516 audit_log_format(ab, " inode=%lu"
1517 " dev=%02x:%02x mode=%#ho"
1518 " ouid=%u ogid=%u rdev=%02x:%02x",
1519 n->ino,
1520 MAJOR(n->dev),
1521 MINOR(n->dev),
1522 n->mode,
1523 n->uid,
1524 n->gid,
1525 MAJOR(n->rdev),
1526 MINOR(n->rdev));
1527 }
1528 if (n->osid != 0) {
1529 char *ctx = NULL;
1530 u32 len;
1531 if (security_secid_to_secctx(
1532 n->osid, &ctx, &len)) {
1533 audit_log_format(ab, " osid=%u", n->osid);
1534 *call_panic = 2;
1535 } else {
1536 audit_log_format(ab, " obj=%s", ctx);
1537 security_release_secctx(ctx, len);
1538 }
1539 }
1540
1541 audit_log_fcaps(ab, n);
1542
1543 audit_log_end(ab);
1544}
1545
e495149b 1546static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1da177e4 1547{
c69e8d9c 1548 const struct cred *cred;
9c7aa6aa 1549 int i, call_panic = 0;
1da177e4 1550 struct audit_buffer *ab;
7551ced3 1551 struct audit_aux_data *aux;
a6c043a8 1552 const char *tty;
5195d8e2 1553 struct audit_names *n;
1da177e4 1554
e495149b 1555 /* tsk == current */
3f2792ff 1556 context->pid = tsk->pid;
419c58f1
AV
1557 if (!context->ppid)
1558 context->ppid = sys_getppid();
c69e8d9c
DH
1559 cred = current_cred();
1560 context->uid = cred->uid;
1561 context->gid = cred->gid;
1562 context->euid = cred->euid;
1563 context->suid = cred->suid;
b6dff3ec 1564 context->fsuid = cred->fsuid;
c69e8d9c
DH
1565 context->egid = cred->egid;
1566 context->sgid = cred->sgid;
b6dff3ec 1567 context->fsgid = cred->fsgid;
3f2792ff 1568 context->personality = tsk->personality;
e495149b
AV
1569
1570 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1da177e4
LT
1571 if (!ab)
1572 return; /* audit_panic has been called */
bccf6ae0
DW
1573 audit_log_format(ab, "arch=%x syscall=%d",
1574 context->arch, context->major);
1da177e4
LT
1575 if (context->personality != PER_LINUX)
1576 audit_log_format(ab, " per=%lx", context->personality);
1577 if (context->return_valid)
9f8dbe9c 1578 audit_log_format(ab, " success=%s exit=%ld",
2fd6f58b 1579 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1580 context->return_code);
eb84a20e 1581
dbda4c0b 1582 spin_lock_irq(&tsk->sighand->siglock);
45d9bb0e
AV
1583 if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
1584 tty = tsk->signal->tty->name;
a6c043a8
SG
1585 else
1586 tty = "(none)";
dbda4c0b
AC
1587 spin_unlock_irq(&tsk->sighand->siglock);
1588
1da177e4
LT
1589 audit_log_format(ab,
1590 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d"
f46038ff 1591 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
326e9c8b 1592 " euid=%u suid=%u fsuid=%u"
4746ec5b 1593 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
1da177e4
LT
1594 context->argv[0],
1595 context->argv[1],
1596 context->argv[2],
1597 context->argv[3],
1598 context->name_count,
f46038ff 1599 context->ppid,
1da177e4 1600 context->pid,
bfef93a5 1601 tsk->loginuid,
1da177e4
LT
1602 context->uid,
1603 context->gid,
1604 context->euid, context->suid, context->fsuid,
4746ec5b
EP
1605 context->egid, context->sgid, context->fsgid, tty,
1606 tsk->sessionid);
eb84a20e 1607
eb84a20e 1608
e495149b 1609 audit_log_task_info(ab, tsk);
9d960985 1610 audit_log_key(ab, context->filterkey);
1da177e4 1611 audit_log_end(ab);
1da177e4 1612
7551ced3 1613 for (aux = context->aux; aux; aux = aux->next) {
c0404993 1614
e495149b 1615 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1da177e4
LT
1616 if (!ab)
1617 continue; /* audit_panic has been called */
1618
1da177e4 1619 switch (aux->type) {
20ca73bc 1620
473ae30b
AV
1621 case AUDIT_EXECVE: {
1622 struct audit_aux_data_execve *axi = (void *)aux;
de6bbd1d 1623 audit_log_execve_info(context, &ab, axi);
473ae30b 1624 break; }
073115d6 1625
3fc689e9
EP
1626 case AUDIT_BPRM_FCAPS: {
1627 struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1628 audit_log_format(ab, "fver=%x", axs->fcap_ver);
1629 audit_log_cap(ab, "fp", &axs->fcap.permitted);
1630 audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1631 audit_log_format(ab, " fe=%d", axs->fcap.fE);
1632 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1633 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1634 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1635 audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted);
1636 audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable);
1637 audit_log_cap(ab, "new_pe", &axs->new_pcap.effective);
1638 break; }
1639
1da177e4
LT
1640 }
1641 audit_log_end(ab);
1da177e4
LT
1642 }
1643
f3298dc4 1644 if (context->type)
a33e6751 1645 show_special(context, &call_panic);
f3298dc4 1646
157cf649
AV
1647 if (context->fds[0] >= 0) {
1648 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1649 if (ab) {
1650 audit_log_format(ab, "fd0=%d fd1=%d",
1651 context->fds[0], context->fds[1]);
1652 audit_log_end(ab);
1653 }
1654 }
1655
4f6b434f
AV
1656 if (context->sockaddr_len) {
1657 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1658 if (ab) {
1659 audit_log_format(ab, "saddr=");
1660 audit_log_n_hex(ab, (void *)context->sockaddr,
1661 context->sockaddr_len);
1662 audit_log_end(ab);
1663 }
1664 }
1665
e54dc243
AG
1666 for (aux = context->aux_pids; aux; aux = aux->next) {
1667 struct audit_aux_data_pids *axs = (void *)aux;
e54dc243
AG
1668
1669 for (i = 0; i < axs->pid_count; i++)
1670 if (audit_log_pid_context(context, axs->target_pid[i],
c2a7780e
EP
1671 axs->target_auid[i],
1672 axs->target_uid[i],
4746ec5b 1673 axs->target_sessionid[i],
c2a7780e
EP
1674 axs->target_sid[i],
1675 axs->target_comm[i]))
e54dc243 1676 call_panic = 1;
a5cb013d
AV
1677 }
1678
e54dc243
AG
1679 if (context->target_pid &&
1680 audit_log_pid_context(context, context->target_pid,
c2a7780e 1681 context->target_auid, context->target_uid,
4746ec5b 1682 context->target_sessionid,
c2a7780e 1683 context->target_sid, context->target_comm))
e54dc243
AG
1684 call_panic = 1;
1685
44707fdf 1686 if (context->pwd.dentry && context->pwd.mnt) {
e495149b 1687 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
8f37d47c 1688 if (ab) {
44707fdf 1689 audit_log_d_path(ab, "cwd=", &context->pwd);
8f37d47c
DW
1690 audit_log_end(ab);
1691 }
1692 }
73241ccc 1693
5195d8e2
EP
1694 i = 0;
1695 list_for_each_entry(n, &context->names_list, list)
1696 audit_log_name(context, n, i++, &call_panic);
c0641f28
EP
1697
1698 /* Send end of event record to help user space know we are finished */
1699 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1700 if (ab)
1701 audit_log_end(ab);
9c7aa6aa
SG
1702 if (call_panic)
1703 audit_panic("error converting sid to string");
1da177e4
LT
1704}
1705
b0dd25a8
RD
1706/**
1707 * audit_free - free a per-task audit context
1708 * @tsk: task whose audit context block to free
1709 *
fa84cb93 1710 * Called from copy_process and do_exit
b0dd25a8 1711 */
a4ff8dba 1712void __audit_free(struct task_struct *tsk)
1da177e4
LT
1713{
1714 struct audit_context *context;
1715
1da177e4 1716 context = audit_get_context(tsk, 0, 0);
56179a6e 1717 if (!context)
1da177e4
LT
1718 return;
1719
1720 /* Check for system calls that do not go through the exit
9f8dbe9c
DW
1721 * function (e.g., exit_group), then free context block.
1722 * We use GFP_ATOMIC here because we might be doing this
f5561964 1723 * in the context of the idle thread */
e495149b 1724 /* that can happen only if we are called from do_exit() */
0590b933 1725 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
e495149b 1726 audit_log_exit(context, tsk);
916d7576
AV
1727 if (!list_empty(&context->killed_trees))
1728 audit_kill_trees(&context->killed_trees);
1da177e4
LT
1729
1730 audit_free_context(context);
1731}
1732
b0dd25a8
RD
1733/**
1734 * audit_syscall_entry - fill in an audit record at syscall entry
b0dd25a8
RD
1735 * @arch: architecture type
1736 * @major: major syscall type (function)
1737 * @a1: additional syscall register 1
1738 * @a2: additional syscall register 2
1739 * @a3: additional syscall register 3
1740 * @a4: additional syscall register 4
1741 *
1742 * Fill in audit context at syscall entry. This only happens if the
1da177e4
LT
1743 * audit context was created when the task was created and the state or
1744 * filters demand the audit context be built. If the state from the
1745 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1746 * then the record will be written at syscall exit time (otherwise, it
1747 * will only be written if another part of the kernel requests that it
b0dd25a8
RD
1748 * be written).
1749 */
b05d8447 1750void __audit_syscall_entry(int arch, int major,
1da177e4
LT
1751 unsigned long a1, unsigned long a2,
1752 unsigned long a3, unsigned long a4)
1753{
5411be59 1754 struct task_struct *tsk = current;
1da177e4
LT
1755 struct audit_context *context = tsk->audit_context;
1756 enum audit_state state;
1757
56179a6e 1758 if (!context)
86a1c34a 1759 return;
1da177e4 1760
b0dd25a8
RD
1761 /*
1762 * This happens only on certain architectures that make system
1da177e4
LT
1763 * calls in kernel_thread via the entry.S interface, instead of
1764 * with direct calls. (If you are porting to a new
1765 * architecture, hitting this condition can indicate that you
1766 * got the _exit/_leave calls backward in entry.S.)
1767 *
1768 * i386 no
1769 * x86_64 no
2ef9481e 1770 * ppc64 yes (see arch/powerpc/platforms/iseries/misc.S)
1da177e4
LT
1771 *
1772 * This also happens with vm86 emulation in a non-nested manner
1773 * (entries without exits), so this case must be caught.
1774 */
1775 if (context->in_syscall) {
1776 struct audit_context *newctx;
1777
1da177e4
LT
1778#if AUDIT_DEBUG
1779 printk(KERN_ERR
1780 "audit(:%d) pid=%d in syscall=%d;"
1781 " entering syscall=%d\n",
1782 context->serial, tsk->pid, context->major, major);
1783#endif
1784 newctx = audit_alloc_context(context->state);
1785 if (newctx) {
1786 newctx->previous = context;
1787 context = newctx;
1788 tsk->audit_context = newctx;
1789 } else {
1790 /* If we can't alloc a new context, the best we
1791 * can do is to leak memory (any pending putname
1792 * will be lost). The only other alternative is
1793 * to abandon auditing. */
1794 audit_zero_context(context, context->state);
1795 }
1796 }
1797 BUG_ON(context->in_syscall || context->name_count);
1798
1799 if (!audit_enabled)
1800 return;
1801
2fd6f58b 1802 context->arch = arch;
1da177e4
LT
1803 context->major = major;
1804 context->argv[0] = a1;
1805 context->argv[1] = a2;
1806 context->argv[2] = a3;
1807 context->argv[3] = a4;
1808
1809 state = context->state;
d51374ad 1810 context->dummy = !audit_n_rules;
0590b933
AV
1811 if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1812 context->prio = 0;
0f45aa18 1813 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
0590b933 1814 }
56179a6e 1815 if (state == AUDIT_DISABLED)
1da177e4
LT
1816 return;
1817
ce625a80 1818 context->serial = 0;
1da177e4
LT
1819 context->ctime = CURRENT_TIME;
1820 context->in_syscall = 1;
0590b933 1821 context->current_state = state;
419c58f1 1822 context->ppid = 0;
1da177e4
LT
1823}
1824
b0dd25a8
RD
1825/**
1826 * audit_syscall_exit - deallocate audit context after a system call
d7e7528b 1827 * @pt_regs: syscall registers
b0dd25a8
RD
1828 *
1829 * Tear down after system call. If the audit context has been marked as
1da177e4
LT
1830 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1831 * filtering, or because some other part of the kernel write an audit
1832 * message), then write out the syscall information. In call cases,
b0dd25a8
RD
1833 * free the names stored from getname().
1834 */
d7e7528b 1835void __audit_syscall_exit(int success, long return_code)
1da177e4 1836{
5411be59 1837 struct task_struct *tsk = current;
1da177e4
LT
1838 struct audit_context *context;
1839
d7e7528b
EP
1840 if (success)
1841 success = AUDITSC_SUCCESS;
1842 else
1843 success = AUDITSC_FAILURE;
1da177e4 1844
d7e7528b 1845 context = audit_get_context(tsk, success, return_code);
56179a6e 1846 if (!context)
97e94c45 1847 return;
1da177e4 1848
0590b933 1849 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
e495149b 1850 audit_log_exit(context, tsk);
1da177e4
LT
1851
1852 context->in_syscall = 0;
0590b933 1853 context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
2fd6f58b 1854
916d7576
AV
1855 if (!list_empty(&context->killed_trees))
1856 audit_kill_trees(&context->killed_trees);
1857
1da177e4
LT
1858 if (context->previous) {
1859 struct audit_context *new_context = context->previous;
1860 context->previous = NULL;
1861 audit_free_context(context);
1862 tsk->audit_context = new_context;
1863 } else {
1864 audit_free_names(context);
74c3cbe3 1865 unroll_tree_refs(context, NULL, 0);
1da177e4 1866 audit_free_aux(context);
e54dc243
AG
1867 context->aux = NULL;
1868 context->aux_pids = NULL;
a5cb013d 1869 context->target_pid = 0;
e54dc243 1870 context->target_sid = 0;
4f6b434f 1871 context->sockaddr_len = 0;
f3298dc4 1872 context->type = 0;
157cf649 1873 context->fds[0] = -1;
e048e02c
AV
1874 if (context->state != AUDIT_RECORD_CONTEXT) {
1875 kfree(context->filterkey);
1876 context->filterkey = NULL;
1877 }
1da177e4
LT
1878 tsk->audit_context = context;
1879 }
1da177e4
LT
1880}
1881
74c3cbe3
AV
1882static inline void handle_one(const struct inode *inode)
1883{
1884#ifdef CONFIG_AUDIT_TREE
1885 struct audit_context *context;
1886 struct audit_tree_refs *p;
1887 struct audit_chunk *chunk;
1888 int count;
e61ce867 1889 if (likely(hlist_empty(&inode->i_fsnotify_marks)))
74c3cbe3
AV
1890 return;
1891 context = current->audit_context;
1892 p = context->trees;
1893 count = context->tree_count;
1894 rcu_read_lock();
1895 chunk = audit_tree_lookup(inode);
1896 rcu_read_unlock();
1897 if (!chunk)
1898 return;
1899 if (likely(put_tree_ref(context, chunk)))
1900 return;
1901 if (unlikely(!grow_tree_refs(context))) {
436c405c 1902 printk(KERN_WARNING "out of memory, audit has lost a tree reference\n");
74c3cbe3
AV
1903 audit_set_auditable(context);
1904 audit_put_chunk(chunk);
1905 unroll_tree_refs(context, p, count);
1906 return;
1907 }
1908 put_tree_ref(context, chunk);
1909#endif
1910}
1911
1912static void handle_path(const struct dentry *dentry)
1913{
1914#ifdef CONFIG_AUDIT_TREE
1915 struct audit_context *context;
1916 struct audit_tree_refs *p;
1917 const struct dentry *d, *parent;
1918 struct audit_chunk *drop;
1919 unsigned long seq;
1920 int count;
1921
1922 context = current->audit_context;
1923 p = context->trees;
1924 count = context->tree_count;
1925retry:
1926 drop = NULL;
1927 d = dentry;
1928 rcu_read_lock();
1929 seq = read_seqbegin(&rename_lock);
1930 for(;;) {
1931 struct inode *inode = d->d_inode;
e61ce867 1932 if (inode && unlikely(!hlist_empty(&inode->i_fsnotify_marks))) {
74c3cbe3
AV
1933 struct audit_chunk *chunk;
1934 chunk = audit_tree_lookup(inode);
1935 if (chunk) {
1936 if (unlikely(!put_tree_ref(context, chunk))) {
1937 drop = chunk;
1938 break;
1939 }
1940 }
1941 }
1942 parent = d->d_parent;
1943 if (parent == d)
1944 break;
1945 d = parent;
1946 }
1947 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
1948 rcu_read_unlock();
1949 if (!drop) {
1950 /* just a race with rename */
1951 unroll_tree_refs(context, p, count);
1952 goto retry;
1953 }
1954 audit_put_chunk(drop);
1955 if (grow_tree_refs(context)) {
1956 /* OK, got more space */
1957 unroll_tree_refs(context, p, count);
1958 goto retry;
1959 }
1960 /* too bad */
1961 printk(KERN_WARNING
436c405c 1962 "out of memory, audit has lost a tree reference\n");
74c3cbe3
AV
1963 unroll_tree_refs(context, p, count);
1964 audit_set_auditable(context);
1965 return;
1966 }
1967 rcu_read_unlock();
1968#endif
1969}
1970
5195d8e2
EP
1971static struct audit_names *audit_alloc_name(struct audit_context *context)
1972{
1973 struct audit_names *aname;
1974
1975 if (context->name_count < AUDIT_NAMES) {
1976 aname = &context->preallocated_names[context->name_count];
1977 memset(aname, 0, sizeof(*aname));
1978 } else {
1979 aname = kzalloc(sizeof(*aname), GFP_NOFS);
1980 if (!aname)
1981 return NULL;
1982 aname->should_free = true;
1983 }
1984
1985 aname->ino = (unsigned long)-1;
1986 list_add_tail(&aname->list, &context->names_list);
1987
1988 context->name_count++;
1989#if AUDIT_DEBUG
1990 context->ino_count++;
1991#endif
1992 return aname;
1993}
1994
b0dd25a8
RD
1995/**
1996 * audit_getname - add a name to the list
1997 * @name: name to add
1998 *
1999 * Add a name to the list of audit names for this context.
2000 * Called from fs/namei.c:getname().
2001 */
d8945bb5 2002void __audit_getname(const char *name)
1da177e4
LT
2003{
2004 struct audit_context *context = current->audit_context;
5195d8e2 2005 struct audit_names *n;
1da177e4 2006
1da177e4
LT
2007 if (!context->in_syscall) {
2008#if AUDIT_DEBUG == 2
2009 printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n",
2010 __FILE__, __LINE__, context->serial, name);
2011 dump_stack();
2012#endif
2013 return;
2014 }
5195d8e2
EP
2015
2016 n = audit_alloc_name(context);
2017 if (!n)
2018 return;
2019
2020 n->name = name;
2021 n->name_len = AUDIT_NAME_FULL;
2022 n->name_put = true;
2023
f7ad3c6b
MS
2024 if (!context->pwd.dentry)
2025 get_fs_pwd(current->fs, &context->pwd);
1da177e4
LT
2026}
2027
b0dd25a8
RD
2028/* audit_putname - intercept a putname request
2029 * @name: name to intercept and delay for putname
2030 *
2031 * If we have stored the name from getname in the audit context,
2032 * then we delay the putname until syscall exit.
2033 * Called from include/linux/fs.h:putname().
2034 */
1da177e4
LT
2035void audit_putname(const char *name)
2036{
2037 struct audit_context *context = current->audit_context;
2038
2039 BUG_ON(!context);
2040 if (!context->in_syscall) {
2041#if AUDIT_DEBUG == 2
2042 printk(KERN_ERR "%s:%d(:%d): __putname(%p)\n",
2043 __FILE__, __LINE__, context->serial, name);
2044 if (context->name_count) {
5195d8e2 2045 struct audit_names *n;
1da177e4 2046 int i;
5195d8e2
EP
2047
2048 list_for_each_entry(n, &context->names_list, list)
1da177e4 2049 printk(KERN_ERR "name[%d] = %p = %s\n", i,
5195d8e2
EP
2050 n->name, n->name ?: "(null)");
2051 }
1da177e4
LT
2052#endif
2053 __putname(name);
2054 }
2055#if AUDIT_DEBUG
2056 else {
2057 ++context->put_count;
2058 if (context->put_count > context->name_count) {
2059 printk(KERN_ERR "%s:%d(:%d): major=%d"
2060 " in_syscall=%d putname(%p) name_count=%d"
2061 " put_count=%d\n",
2062 __FILE__, __LINE__,
2063 context->serial, context->major,
2064 context->in_syscall, name, context->name_count,
2065 context->put_count);
2066 dump_stack();
2067 }
2068 }
2069#endif
2070}
2071
851f7ff5
EP
2072static inline int audit_copy_fcaps(struct audit_names *name, const struct dentry *dentry)
2073{
2074 struct cpu_vfs_cap_data caps;
2075 int rc;
2076
851f7ff5
EP
2077 if (!dentry)
2078 return 0;
2079
2080 rc = get_vfs_caps_from_disk(dentry, &caps);
2081 if (rc)
2082 return rc;
2083
2084 name->fcap.permitted = caps.permitted;
2085 name->fcap.inheritable = caps.inheritable;
2086 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2087 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2088
2089 return 0;
2090}
2091
2092
3e2efce0 2093/* Copy inode data into an audit_names. */
851f7ff5
EP
2094static void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
2095 const struct inode *inode)
8c8570fb 2096{
3e2efce0
AG
2097 name->ino = inode->i_ino;
2098 name->dev = inode->i_sb->s_dev;
2099 name->mode = inode->i_mode;
2100 name->uid = inode->i_uid;
2101 name->gid = inode->i_gid;
2102 name->rdev = inode->i_rdev;
2a862b32 2103 security_inode_getsecid(inode, &name->osid);
851f7ff5 2104 audit_copy_fcaps(name, dentry);
8c8570fb
DK
2105}
2106
b0dd25a8
RD
2107/**
2108 * audit_inode - store the inode and device from a lookup
2109 * @name: name being audited
481968f4 2110 * @dentry: dentry being audited
b0dd25a8
RD
2111 *
2112 * Called from fs/namei.c:path_lookup().
2113 */
5a190ae6 2114void __audit_inode(const char *name, const struct dentry *dentry)
1da177e4 2115{
1da177e4 2116 struct audit_context *context = current->audit_context;
74c3cbe3 2117 const struct inode *inode = dentry->d_inode;
5195d8e2 2118 struct audit_names *n;
1da177e4
LT
2119
2120 if (!context->in_syscall)
2121 return;
5195d8e2
EP
2122
2123 list_for_each_entry_reverse(n, &context->names_list, list) {
2124 if (n->name && (n->name == name))
2125 goto out;
1da177e4 2126 }
5195d8e2
EP
2127
2128 /* unable to find the name from a previous getname() */
2129 n = audit_alloc_name(context);
2130 if (!n)
2131 return;
2132out:
74c3cbe3 2133 handle_path(dentry);
5195d8e2 2134 audit_copy_inode(n, dentry, inode);
73241ccc
AG
2135}
2136
2137/**
2138 * audit_inode_child - collect inode info for created/removed objects
481968f4 2139 * @dentry: dentry being audited
73d3ec5a 2140 * @parent: inode of dentry parent
73241ccc
AG
2141 *
2142 * For syscalls that create or remove filesystem objects, audit_inode
2143 * can only collect information for the filesystem object's parent.
2144 * This call updates the audit context with the child's information.
2145 * Syscalls that create a new filesystem object must be hooked after
2146 * the object is created. Syscalls that remove a filesystem object
2147 * must be hooked prior, in order to capture the target inode during
2148 * unsuccessful attempts.
2149 */
cccc6bba 2150void __audit_inode_child(const struct dentry *dentry,
73d3ec5a 2151 const struct inode *parent)
73241ccc 2152{
73241ccc 2153 struct audit_context *context = current->audit_context;
5712e88f 2154 const char *found_parent = NULL, *found_child = NULL;
5a190ae6 2155 const struct inode *inode = dentry->d_inode;
cccc6bba 2156 const char *dname = dentry->d_name.name;
5195d8e2 2157 struct audit_names *n;
9c937dcc 2158 int dirlen = 0;
73241ccc
AG
2159
2160 if (!context->in_syscall)
2161 return;
2162
74c3cbe3
AV
2163 if (inode)
2164 handle_one(inode);
73241ccc 2165
5712e88f 2166 /* parent is more likely, look for it first */
5195d8e2 2167 list_for_each_entry(n, &context->names_list, list) {
5712e88f
AG
2168 if (!n->name)
2169 continue;
2170
2171 if (n->ino == parent->i_ino &&
2172 !audit_compare_dname_path(dname, n->name, &dirlen)) {
2173 n->name_len = dirlen; /* update parent data in place */
2174 found_parent = n->name;
2175 goto add_names;
f368c07d 2176 }
5712e88f 2177 }
73241ccc 2178
5712e88f 2179 /* no matching parent, look for matching child */
5195d8e2 2180 list_for_each_entry(n, &context->names_list, list) {
5712e88f
AG
2181 if (!n->name)
2182 continue;
2183
2184 /* strcmp() is the more likely scenario */
2185 if (!strcmp(dname, n->name) ||
2186 !audit_compare_dname_path(dname, n->name, &dirlen)) {
2187 if (inode)
851f7ff5 2188 audit_copy_inode(n, NULL, inode);
5712e88f
AG
2189 else
2190 n->ino = (unsigned long)-1;
2191 found_child = n->name;
2192 goto add_names;
2193 }
ac9910ce 2194 }
5712e88f
AG
2195
2196add_names:
2197 if (!found_parent) {
5195d8e2
EP
2198 n = audit_alloc_name(context);
2199 if (!n)
ac9910ce 2200 return;
5195d8e2 2201 audit_copy_inode(n, NULL, parent);
73d3ec5a 2202 }
5712e88f
AG
2203
2204 if (!found_child) {
5195d8e2
EP
2205 n = audit_alloc_name(context);
2206 if (!n)
5712e88f 2207 return;
5712e88f
AG
2208
2209 /* Re-use the name belonging to the slot for a matching parent
2210 * directory. All names for this context are relinquished in
2211 * audit_free_names() */
2212 if (found_parent) {
5195d8e2
EP
2213 n->name = found_parent;
2214 n->name_len = AUDIT_NAME_FULL;
5712e88f 2215 /* don't call __putname() */
5195d8e2 2216 n->name_put = false;
5712e88f
AG
2217 }
2218
2219 if (inode)
5195d8e2 2220 audit_copy_inode(n, NULL, inode);
5712e88f 2221 }
3e2efce0 2222}
50e437d5 2223EXPORT_SYMBOL_GPL(__audit_inode_child);
3e2efce0 2224
b0dd25a8
RD
2225/**
2226 * auditsc_get_stamp - get local copies of audit_context values
2227 * @ctx: audit_context for the task
2228 * @t: timespec to store time recorded in the audit_context
2229 * @serial: serial value that is recorded in the audit_context
2230 *
2231 * Also sets the context as auditable.
2232 */
48887e63 2233int auditsc_get_stamp(struct audit_context *ctx,
bfb4496e 2234 struct timespec *t, unsigned int *serial)
1da177e4 2235{
48887e63
AV
2236 if (!ctx->in_syscall)
2237 return 0;
ce625a80
DW
2238 if (!ctx->serial)
2239 ctx->serial = audit_serial();
bfb4496e
DW
2240 t->tv_sec = ctx->ctime.tv_sec;
2241 t->tv_nsec = ctx->ctime.tv_nsec;
2242 *serial = ctx->serial;
0590b933
AV
2243 if (!ctx->prio) {
2244 ctx->prio = 1;
2245 ctx->current_state = AUDIT_RECORD_CONTEXT;
2246 }
48887e63 2247 return 1;
1da177e4
LT
2248}
2249
4746ec5b
EP
2250/* global counter which is incremented every time something logs in */
2251static atomic_t session_id = ATOMIC_INIT(0);
2252
b0dd25a8 2253/**
0a300be6 2254 * audit_set_loginuid - set current task's audit_context loginuid
b0dd25a8
RD
2255 * @loginuid: loginuid value
2256 *
2257 * Returns 0.
2258 *
2259 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2260 */
0a300be6 2261int audit_set_loginuid(uid_t loginuid)
1da177e4 2262{
0a300be6 2263 struct task_struct *task = current;
41757106 2264 struct audit_context *context = task->audit_context;
633b4545 2265 unsigned int sessionid;
41757106 2266
633b4545
EP
2267#ifdef CONFIG_AUDIT_LOGINUID_IMMUTABLE
2268 if (task->loginuid != -1)
2269 return -EPERM;
2270#else /* CONFIG_AUDIT_LOGINUID_IMMUTABLE */
2271 if (!capable(CAP_AUDIT_CONTROL))
2272 return -EPERM;
2273#endif /* CONFIG_AUDIT_LOGINUID_IMMUTABLE */
2274
2275 sessionid = atomic_inc_return(&session_id);
bfef93a5
AV
2276 if (context && context->in_syscall) {
2277 struct audit_buffer *ab;
2278
2279 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
2280 if (ab) {
2281 audit_log_format(ab, "login pid=%d uid=%u "
4746ec5b
EP
2282 "old auid=%u new auid=%u"
2283 " old ses=%u new ses=%u",
c69e8d9c 2284 task->pid, task_uid(task),
4746ec5b
EP
2285 task->loginuid, loginuid,
2286 task->sessionid, sessionid);
bfef93a5 2287 audit_log_end(ab);
c0404993 2288 }
1da177e4 2289 }
4746ec5b 2290 task->sessionid = sessionid;
bfef93a5 2291 task->loginuid = loginuid;
1da177e4
LT
2292 return 0;
2293}
2294
20ca73bc
GW
2295/**
2296 * __audit_mq_open - record audit data for a POSIX MQ open
2297 * @oflag: open flag
2298 * @mode: mode bits
6b962559 2299 * @attr: queue attributes
20ca73bc 2300 *
20ca73bc 2301 */
df0a4283 2302void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
20ca73bc 2303{
20ca73bc
GW
2304 struct audit_context *context = current->audit_context;
2305
564f6993
AV
2306 if (attr)
2307 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2308 else
2309 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
20ca73bc 2310
564f6993
AV
2311 context->mq_open.oflag = oflag;
2312 context->mq_open.mode = mode;
20ca73bc 2313
564f6993 2314 context->type = AUDIT_MQ_OPEN;
20ca73bc
GW
2315}
2316
2317/**
c32c8af4 2318 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
20ca73bc
GW
2319 * @mqdes: MQ descriptor
2320 * @msg_len: Message length
2321 * @msg_prio: Message priority
c32c8af4 2322 * @abs_timeout: Message timeout in absolute time
20ca73bc 2323 *
20ca73bc 2324 */
c32c8af4
AV
2325void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2326 const struct timespec *abs_timeout)
20ca73bc 2327{
20ca73bc 2328 struct audit_context *context = current->audit_context;
c32c8af4 2329 struct timespec *p = &context->mq_sendrecv.abs_timeout;
20ca73bc 2330
c32c8af4
AV
2331 if (abs_timeout)
2332 memcpy(p, abs_timeout, sizeof(struct timespec));
2333 else
2334 memset(p, 0, sizeof(struct timespec));
20ca73bc 2335
c32c8af4
AV
2336 context->mq_sendrecv.mqdes = mqdes;
2337 context->mq_sendrecv.msg_len = msg_len;
2338 context->mq_sendrecv.msg_prio = msg_prio;
20ca73bc 2339
c32c8af4 2340 context->type = AUDIT_MQ_SENDRECV;
20ca73bc
GW
2341}
2342
2343/**
2344 * __audit_mq_notify - record audit data for a POSIX MQ notify
2345 * @mqdes: MQ descriptor
6b962559 2346 * @notification: Notification event
20ca73bc 2347 *
20ca73bc
GW
2348 */
2349
20114f71 2350void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
20ca73bc 2351{
20ca73bc
GW
2352 struct audit_context *context = current->audit_context;
2353
20114f71
AV
2354 if (notification)
2355 context->mq_notify.sigev_signo = notification->sigev_signo;
2356 else
2357 context->mq_notify.sigev_signo = 0;
20ca73bc 2358
20114f71
AV
2359 context->mq_notify.mqdes = mqdes;
2360 context->type = AUDIT_MQ_NOTIFY;
20ca73bc
GW
2361}
2362
2363/**
2364 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2365 * @mqdes: MQ descriptor
2366 * @mqstat: MQ flags
2367 *
20ca73bc 2368 */
7392906e 2369void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
20ca73bc 2370{
20ca73bc 2371 struct audit_context *context = current->audit_context;
7392906e
AV
2372 context->mq_getsetattr.mqdes = mqdes;
2373 context->mq_getsetattr.mqstat = *mqstat;
2374 context->type = AUDIT_MQ_GETSETATTR;
20ca73bc
GW
2375}
2376
b0dd25a8 2377/**
073115d6
SG
2378 * audit_ipc_obj - record audit data for ipc object
2379 * @ipcp: ipc permissions
2380 *
073115d6 2381 */
a33e6751 2382void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
073115d6 2383{
073115d6 2384 struct audit_context *context = current->audit_context;
a33e6751
AV
2385 context->ipc.uid = ipcp->uid;
2386 context->ipc.gid = ipcp->gid;
2387 context->ipc.mode = ipcp->mode;
e816f370 2388 context->ipc.has_perm = 0;
a33e6751
AV
2389 security_ipc_getsecid(ipcp, &context->ipc.osid);
2390 context->type = AUDIT_IPC;
073115d6
SG
2391}
2392
2393/**
2394 * audit_ipc_set_perm - record audit data for new ipc permissions
b0dd25a8
RD
2395 * @qbytes: msgq bytes
2396 * @uid: msgq user id
2397 * @gid: msgq group id
2398 * @mode: msgq mode (permissions)
2399 *
e816f370 2400 * Called only after audit_ipc_obj().
b0dd25a8 2401 */
2570ebbd 2402void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
1da177e4 2403{
1da177e4
LT
2404 struct audit_context *context = current->audit_context;
2405
e816f370
AV
2406 context->ipc.qbytes = qbytes;
2407 context->ipc.perm_uid = uid;
2408 context->ipc.perm_gid = gid;
2409 context->ipc.perm_mode = mode;
2410 context->ipc.has_perm = 1;
1da177e4 2411}
c2f0c7c3 2412
07c49417 2413int __audit_bprm(struct linux_binprm *bprm)
473ae30b
AV
2414{
2415 struct audit_aux_data_execve *ax;
2416 struct audit_context *context = current->audit_context;
473ae30b 2417
bdf4c48a 2418 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
473ae30b
AV
2419 if (!ax)
2420 return -ENOMEM;
2421
2422 ax->argc = bprm->argc;
2423 ax->envc = bprm->envc;
bdf4c48a 2424 ax->mm = bprm->mm;
473ae30b
AV
2425 ax->d.type = AUDIT_EXECVE;
2426 ax->d.next = context->aux;
2427 context->aux = (void *)ax;
2428 return 0;
2429}
2430
2431
b0dd25a8
RD
2432/**
2433 * audit_socketcall - record audit data for sys_socketcall
2434 * @nargs: number of args
2435 * @args: args array
2436 *
b0dd25a8 2437 */
07c49417 2438void __audit_socketcall(int nargs, unsigned long *args)
3ec3b2fb 2439{
3ec3b2fb
DW
2440 struct audit_context *context = current->audit_context;
2441
f3298dc4
AV
2442 context->type = AUDIT_SOCKETCALL;
2443 context->socketcall.nargs = nargs;
2444 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
3ec3b2fb
DW
2445}
2446
db349509
AV
2447/**
2448 * __audit_fd_pair - record audit data for pipe and socketpair
2449 * @fd1: the first file descriptor
2450 * @fd2: the second file descriptor
2451 *
db349509 2452 */
157cf649 2453void __audit_fd_pair(int fd1, int fd2)
db349509
AV
2454{
2455 struct audit_context *context = current->audit_context;
157cf649
AV
2456 context->fds[0] = fd1;
2457 context->fds[1] = fd2;
db349509
AV
2458}
2459
b0dd25a8
RD
2460/**
2461 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2462 * @len: data length in user space
2463 * @a: data address in kernel space
2464 *
2465 * Returns 0 for success or NULL context or < 0 on error.
2466 */
07c49417 2467int __audit_sockaddr(int len, void *a)
3ec3b2fb 2468{
3ec3b2fb
DW
2469 struct audit_context *context = current->audit_context;
2470
4f6b434f
AV
2471 if (!context->sockaddr) {
2472 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2473 if (!p)
2474 return -ENOMEM;
2475 context->sockaddr = p;
2476 }
3ec3b2fb 2477
4f6b434f
AV
2478 context->sockaddr_len = len;
2479 memcpy(context->sockaddr, a, len);
3ec3b2fb
DW
2480 return 0;
2481}
2482
a5cb013d
AV
2483void __audit_ptrace(struct task_struct *t)
2484{
2485 struct audit_context *context = current->audit_context;
2486
2487 context->target_pid = t->pid;
c2a7780e 2488 context->target_auid = audit_get_loginuid(t);
c69e8d9c 2489 context->target_uid = task_uid(t);
4746ec5b 2490 context->target_sessionid = audit_get_sessionid(t);
2a862b32 2491 security_task_getsecid(t, &context->target_sid);
c2a7780e 2492 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
a5cb013d
AV
2493}
2494
b0dd25a8
RD
2495/**
2496 * audit_signal_info - record signal info for shutting down audit subsystem
2497 * @sig: signal value
2498 * @t: task being signaled
2499 *
2500 * If the audit subsystem is being terminated, record the task (pid)
2501 * and uid that is doing that.
2502 */
e54dc243 2503int __audit_signal_info(int sig, struct task_struct *t)
c2f0c7c3 2504{
e54dc243
AG
2505 struct audit_aux_data_pids *axp;
2506 struct task_struct *tsk = current;
2507 struct audit_context *ctx = tsk->audit_context;
c69e8d9c 2508 uid_t uid = current_uid(), t_uid = task_uid(t);
e1396065 2509
175fc484 2510 if (audit_pid && t->tgid == audit_pid) {
ee1d3156 2511 if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
175fc484 2512 audit_sig_pid = tsk->pid;
bfef93a5
AV
2513 if (tsk->loginuid != -1)
2514 audit_sig_uid = tsk->loginuid;
175fc484 2515 else
c69e8d9c 2516 audit_sig_uid = uid;
2a862b32 2517 security_task_getsecid(tsk, &audit_sig_sid);
175fc484
AV
2518 }
2519 if (!audit_signals || audit_dummy_context())
2520 return 0;
c2f0c7c3 2521 }
e54dc243 2522
e54dc243
AG
2523 /* optimize the common case by putting first signal recipient directly
2524 * in audit_context */
2525 if (!ctx->target_pid) {
2526 ctx->target_pid = t->tgid;
c2a7780e 2527 ctx->target_auid = audit_get_loginuid(t);
c69e8d9c 2528 ctx->target_uid = t_uid;
4746ec5b 2529 ctx->target_sessionid = audit_get_sessionid(t);
2a862b32 2530 security_task_getsecid(t, &ctx->target_sid);
c2a7780e 2531 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
e54dc243
AG
2532 return 0;
2533 }
2534
2535 axp = (void *)ctx->aux_pids;
2536 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2537 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2538 if (!axp)
2539 return -ENOMEM;
2540
2541 axp->d.type = AUDIT_OBJ_PID;
2542 axp->d.next = ctx->aux_pids;
2543 ctx->aux_pids = (void *)axp;
2544 }
88ae704c 2545 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
e54dc243
AG
2546
2547 axp->target_pid[axp->pid_count] = t->tgid;
c2a7780e 2548 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
c69e8d9c 2549 axp->target_uid[axp->pid_count] = t_uid;
4746ec5b 2550 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2a862b32 2551 security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
c2a7780e 2552 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
e54dc243
AG
2553 axp->pid_count++;
2554
2555 return 0;
c2f0c7c3 2556}
0a4ff8c2 2557
3fc689e9
EP
2558/**
2559 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
d84f4f99
DH
2560 * @bprm: pointer to the bprm being processed
2561 * @new: the proposed new credentials
2562 * @old: the old credentials
3fc689e9
EP
2563 *
2564 * Simply check if the proc already has the caps given by the file and if not
2565 * store the priv escalation info for later auditing at the end of the syscall
2566 *
3fc689e9
EP
2567 * -Eric
2568 */
d84f4f99
DH
2569int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2570 const struct cred *new, const struct cred *old)
3fc689e9
EP
2571{
2572 struct audit_aux_data_bprm_fcaps *ax;
2573 struct audit_context *context = current->audit_context;
2574 struct cpu_vfs_cap_data vcaps;
2575 struct dentry *dentry;
2576
2577 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2578 if (!ax)
d84f4f99 2579 return -ENOMEM;
3fc689e9
EP
2580
2581 ax->d.type = AUDIT_BPRM_FCAPS;
2582 ax->d.next = context->aux;
2583 context->aux = (void *)ax;
2584
2585 dentry = dget(bprm->file->f_dentry);
2586 get_vfs_caps_from_disk(dentry, &vcaps);
2587 dput(dentry);
2588
2589 ax->fcap.permitted = vcaps.permitted;
2590 ax->fcap.inheritable = vcaps.inheritable;
2591 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2592 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2593
d84f4f99
DH
2594 ax->old_pcap.permitted = old->cap_permitted;
2595 ax->old_pcap.inheritable = old->cap_inheritable;
2596 ax->old_pcap.effective = old->cap_effective;
3fc689e9 2597
d84f4f99
DH
2598 ax->new_pcap.permitted = new->cap_permitted;
2599 ax->new_pcap.inheritable = new->cap_inheritable;
2600 ax->new_pcap.effective = new->cap_effective;
2601 return 0;
3fc689e9
EP
2602}
2603
e68b75a0
EP
2604/**
2605 * __audit_log_capset - store information about the arguments to the capset syscall
d84f4f99
DH
2606 * @pid: target pid of the capset call
2607 * @new: the new credentials
2608 * @old: the old (current) credentials
e68b75a0
EP
2609 *
2610 * Record the aguments userspace sent to sys_capset for later printing by the
2611 * audit system if applicable
2612 */
57f71a0a 2613void __audit_log_capset(pid_t pid,
d84f4f99 2614 const struct cred *new, const struct cred *old)
e68b75a0 2615{
e68b75a0 2616 struct audit_context *context = current->audit_context;
57f71a0a
AV
2617 context->capset.pid = pid;
2618 context->capset.cap.effective = new->cap_effective;
2619 context->capset.cap.inheritable = new->cap_effective;
2620 context->capset.cap.permitted = new->cap_permitted;
2621 context->type = AUDIT_CAPSET;
e68b75a0
EP
2622}
2623
120a795d
AV
2624void __audit_mmap_fd(int fd, int flags)
2625{
2626 struct audit_context *context = current->audit_context;
2627 context->mmap.fd = fd;
2628 context->mmap.flags = flags;
2629 context->type = AUDIT_MMAP;
2630}
2631
85e7bac3
EP
2632static void audit_log_abend(struct audit_buffer *ab, char *reason, long signr)
2633{
2634 uid_t auid, uid;
2635 gid_t gid;
2636 unsigned int sessionid;
2637
2638 auid = audit_get_loginuid(current);
2639 sessionid = audit_get_sessionid(current);
2640 current_uid_gid(&uid, &gid);
2641
2642 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2643 auid, uid, gid, sessionid);
2644 audit_log_task_context(ab);
2645 audit_log_format(ab, " pid=%d comm=", current->pid);
2646 audit_log_untrustedstring(ab, current->comm);
2647 audit_log_format(ab, " reason=");
2648 audit_log_string(ab, reason);
2649 audit_log_format(ab, " sig=%ld", signr);
2650}
0a4ff8c2
SG
2651/**
2652 * audit_core_dumps - record information about processes that end abnormally
6d9525b5 2653 * @signr: signal value
0a4ff8c2
SG
2654 *
2655 * If a process ends with a core dump, something fishy is going on and we
2656 * should record the event for investigation.
2657 */
2658void audit_core_dumps(long signr)
2659{
2660 struct audit_buffer *ab;
0a4ff8c2
SG
2661
2662 if (!audit_enabled)
2663 return;
2664
2665 if (signr == SIGQUIT) /* don't care for those */
2666 return;
2667
2668 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
85e7bac3
EP
2669 audit_log_abend(ab, "memory violation", signr);
2670 audit_log_end(ab);
2671}
0a4ff8c2 2672
85e7bac3
EP
2673void __audit_seccomp(unsigned long syscall)
2674{
2675 struct audit_buffer *ab;
2676
2677 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2678 audit_log_abend(ab, "seccomp", SIGKILL);
2679 audit_log_format(ab, " syscall=%ld", syscall);
0a4ff8c2
SG
2680 audit_log_end(ab);
2681}
916d7576
AV
2682
2683struct list_head *audit_killed_trees(void)
2684{
2685 struct audit_context *ctx = current->audit_context;
2686 if (likely(!ctx || !ctx->in_syscall))
2687 return NULL;
2688 return &ctx->killed_trees;
2689}