[PATCH] pgdat allocation for new node add (call pgdat allocation)
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / ipc / sem.c
CommitLineData
1da177e4
LT
1/*
2 * linux/ipc/sem.c
3 * Copyright (C) 1992 Krishna Balasubramanian
4 * Copyright (C) 1995 Eric Schenk, Bruno Haible
5 *
6 * IMPLEMENTATION NOTES ON CODE REWRITE (Eric Schenk, January 1995):
7 * This code underwent a massive rewrite in order to solve some problems
8 * with the original code. In particular the original code failed to
9 * wake up processes that were waiting for semval to go to 0 if the
10 * value went to 0 and was then incremented rapidly enough. In solving
11 * this problem I have also modified the implementation so that it
12 * processes pending operations in a FIFO manner, thus give a guarantee
13 * that processes waiting for a lock on the semaphore won't starve
14 * unless another locking process fails to unlock.
15 * In addition the following two changes in behavior have been introduced:
16 * - The original implementation of semop returned the value
17 * last semaphore element examined on success. This does not
18 * match the manual page specifications, and effectively
19 * allows the user to read the semaphore even if they do not
20 * have read permissions. The implementation now returns 0
21 * on success as stated in the manual page.
22 * - There is some confusion over whether the set of undo adjustments
23 * to be performed at exit should be done in an atomic manner.
24 * That is, if we are attempting to decrement the semval should we queue
25 * up and wait until we can do so legally?
26 * The original implementation attempted to do this.
27 * The current implementation does not do so. This is because I don't
28 * think it is the right thing (TM) to do, and because I couldn't
29 * see a clean way to get the old behavior with the new design.
30 * The POSIX standard and SVID should be consulted to determine
31 * what behavior is mandated.
32 *
33 * Further notes on refinement (Christoph Rohland, December 1998):
34 * - The POSIX standard says, that the undo adjustments simply should
35 * redo. So the current implementation is o.K.
36 * - The previous code had two flaws:
37 * 1) It actively gave the semaphore to the next waiting process
38 * sleeping on the semaphore. Since this process did not have the
39 * cpu this led to many unnecessary context switches and bad
40 * performance. Now we only check which process should be able to
41 * get the semaphore and if this process wants to reduce some
42 * semaphore value we simply wake it up without doing the
43 * operation. So it has to try to get it later. Thus e.g. the
44 * running process may reacquire the semaphore during the current
45 * time slice. If it only waits for zero or increases the semaphore,
46 * we do the operation in advance and wake it up.
47 * 2) It did not wake up all zero waiting processes. We try to do
48 * better but only get the semops right which only wait for zero or
49 * increase. If there are decrement operations in the operations
50 * array we do the same as before.
51 *
52 * With the incarnation of O(1) scheduler, it becomes unnecessary to perform
53 * check/retry algorithm for waking up blocked processes as the new scheduler
54 * is better at handling thread switch than the old one.
55 *
56 * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
57 *
58 * SMP-threaded, sysctl's added
624dffcb 59 * (c) 1999 Manfred Spraul <manfred@colorfullife.com>
1da177e4
LT
60 * Enforced range limit on SEM_UNDO
61 * (c) 2001 Red Hat Inc <alan@redhat.com>
62 * Lockless wakeup
63 * (c) 2003 Manfred Spraul <manfred@colorfullife.com>
073115d6
SG
64 *
65 * support for audit of ipc object properties and permission changes
66 * Dustin Kirkland <dustin.kirkland@us.ibm.com>
1da177e4
LT
67 */
68
69#include <linux/config.h>
70#include <linux/slab.h>
71#include <linux/spinlock.h>
72#include <linux/init.h>
73#include <linux/proc_fs.h>
74#include <linux/time.h>
75#include <linux/smp_lock.h>
76#include <linux/security.h>
77#include <linux/syscalls.h>
78#include <linux/audit.h>
c59ede7b 79#include <linux/capability.h>
19b4946c 80#include <linux/seq_file.h>
5f921ae9
IM
81#include <linux/mutex.h>
82
1da177e4
LT
83#include <asm/uaccess.h>
84#include "util.h"
85
86
87#define sem_lock(id) ((struct sem_array*)ipc_lock(&sem_ids,id))
88#define sem_unlock(sma) ipc_unlock(&(sma)->sem_perm)
89#define sem_rmid(id) ((struct sem_array*)ipc_rmid(&sem_ids,id))
90#define sem_checkid(sma, semid) \
91 ipc_checkid(&sem_ids,&sma->sem_perm,semid)
92#define sem_buildid(id, seq) \
93 ipc_buildid(&sem_ids, id, seq)
94static struct ipc_ids sem_ids;
95
96static int newary (key_t, int, int);
97static void freeary (struct sem_array *sma, int id);
98#ifdef CONFIG_PROC_FS
19b4946c 99static int sysvipc_sem_proc_show(struct seq_file *s, void *it);
1da177e4
LT
100#endif
101
102#define SEMMSL_FAST 256 /* 512 bytes on stack */
103#define SEMOPM_FAST 64 /* ~ 372 bytes on stack */
104
105/*
106 * linked list protection:
107 * sem_undo.id_next,
108 * sem_array.sem_pending{,last},
109 * sem_array.sem_undo: sem_lock() for read/write
110 * sem_undo.proc_next: only "current" is allowed to read/write that field.
111 *
112 */
113
114int sem_ctls[4] = {SEMMSL, SEMMNS, SEMOPM, SEMMNI};
115#define sc_semmsl (sem_ctls[0])
116#define sc_semmns (sem_ctls[1])
117#define sc_semopm (sem_ctls[2])
118#define sc_semmni (sem_ctls[3])
119
120static int used_sems;
121
122void __init sem_init (void)
123{
124 used_sems = 0;
125 ipc_init_ids(&sem_ids,sc_semmni);
19b4946c
MW
126 ipc_init_proc_interface("sysvipc/sem",
127 " key semid perms nsems uid gid cuid cgid otime ctime\n",
128 &sem_ids,
129 sysvipc_sem_proc_show);
1da177e4
LT
130}
131
132/*
133 * Lockless wakeup algorithm:
134 * Without the check/retry algorithm a lockless wakeup is possible:
135 * - queue.status is initialized to -EINTR before blocking.
136 * - wakeup is performed by
137 * * unlinking the queue entry from sma->sem_pending
138 * * setting queue.status to IN_WAKEUP
139 * This is the notification for the blocked thread that a
140 * result value is imminent.
141 * * call wake_up_process
142 * * set queue.status to the final value.
143 * - the previously blocked thread checks queue.status:
144 * * if it's IN_WAKEUP, then it must wait until the value changes
145 * * if it's not -EINTR, then the operation was completed by
146 * update_queue. semtimedop can return queue.status without
5f921ae9 147 * performing any operation on the sem array.
1da177e4
LT
148 * * otherwise it must acquire the spinlock and check what's up.
149 *
150 * The two-stage algorithm is necessary to protect against the following
151 * races:
152 * - if queue.status is set after wake_up_process, then the woken up idle
153 * thread could race forward and try (and fail) to acquire sma->lock
154 * before update_queue had a chance to set queue.status
155 * - if queue.status is written before wake_up_process and if the
156 * blocked process is woken up by a signal between writing
157 * queue.status and the wake_up_process, then the woken up
158 * process could return from semtimedop and die by calling
159 * sys_exit before wake_up_process is called. Then wake_up_process
160 * will oops, because the task structure is already invalid.
161 * (yes, this happened on s390 with sysv msg).
162 *
163 */
164#define IN_WAKEUP 1
165
166static int newary (key_t key, int nsems, int semflg)
167{
168 int id;
169 int retval;
170 struct sem_array *sma;
171 int size;
172
173 if (!nsems)
174 return -EINVAL;
175 if (used_sems + nsems > sc_semmns)
176 return -ENOSPC;
177
178 size = sizeof (*sma) + nsems * sizeof (struct sem);
179 sma = ipc_rcu_alloc(size);
180 if (!sma) {
181 return -ENOMEM;
182 }
183 memset (sma, 0, size);
184
185 sma->sem_perm.mode = (semflg & S_IRWXUGO);
186 sma->sem_perm.key = key;
187
188 sma->sem_perm.security = NULL;
189 retval = security_sem_alloc(sma);
190 if (retval) {
191 ipc_rcu_putref(sma);
192 return retval;
193 }
194
195 id = ipc_addid(&sem_ids, &sma->sem_perm, sc_semmni);
196 if(id == -1) {
197 security_sem_free(sma);
198 ipc_rcu_putref(sma);
199 return -ENOSPC;
200 }
201 used_sems += nsems;
202
19b4946c 203 sma->sem_id = sem_buildid(id, sma->sem_perm.seq);
1da177e4
LT
204 sma->sem_base = (struct sem *) &sma[1];
205 /* sma->sem_pending = NULL; */
206 sma->sem_pending_last = &sma->sem_pending;
207 /* sma->undo = NULL; */
208 sma->sem_nsems = nsems;
209 sma->sem_ctime = get_seconds();
210 sem_unlock(sma);
211
19b4946c 212 return sma->sem_id;
1da177e4
LT
213}
214
215asmlinkage long sys_semget (key_t key, int nsems, int semflg)
216{
217 int id, err = -EINVAL;
218 struct sem_array *sma;
219
220 if (nsems < 0 || nsems > sc_semmsl)
221 return -EINVAL;
5f921ae9 222 mutex_lock(&sem_ids.mutex);
1da177e4
LT
223
224 if (key == IPC_PRIVATE) {
225 err = newary(key, nsems, semflg);
226 } else if ((id = ipc_findkey(&sem_ids, key)) == -1) { /* key not used */
227 if (!(semflg & IPC_CREAT))
228 err = -ENOENT;
229 else
230 err = newary(key, nsems, semflg);
231 } else if (semflg & IPC_CREAT && semflg & IPC_EXCL) {
232 err = -EEXIST;
233 } else {
234 sma = sem_lock(id);
27315c96 235 BUG_ON(sma==NULL);
1da177e4
LT
236 if (nsems > sma->sem_nsems)
237 err = -EINVAL;
238 else if (ipcperms(&sma->sem_perm, semflg))
239 err = -EACCES;
240 else {
241 int semid = sem_buildid(id, sma->sem_perm.seq);
242 err = security_sem_associate(sma, semflg);
243 if (!err)
244 err = semid;
245 }
246 sem_unlock(sma);
247 }
248
5f921ae9 249 mutex_unlock(&sem_ids.mutex);
1da177e4
LT
250 return err;
251}
252
253/* Manage the doubly linked list sma->sem_pending as a FIFO:
254 * insert new queue elements at the tail sma->sem_pending_last.
255 */
256static inline void append_to_queue (struct sem_array * sma,
257 struct sem_queue * q)
258{
259 *(q->prev = sma->sem_pending_last) = q;
260 *(sma->sem_pending_last = &q->next) = NULL;
261}
262
263static inline void prepend_to_queue (struct sem_array * sma,
264 struct sem_queue * q)
265{
266 q->next = sma->sem_pending;
267 *(q->prev = &sma->sem_pending) = q;
268 if (q->next)
269 q->next->prev = &q->next;
270 else /* sma->sem_pending_last == &sma->sem_pending */
271 sma->sem_pending_last = &q->next;
272}
273
274static inline void remove_from_queue (struct sem_array * sma,
275 struct sem_queue * q)
276{
277 *(q->prev) = q->next;
278 if (q->next)
279 q->next->prev = q->prev;
280 else /* sma->sem_pending_last == &q->next */
281 sma->sem_pending_last = q->prev;
282 q->prev = NULL; /* mark as removed */
283}
284
285/*
286 * Determine whether a sequence of semaphore operations would succeed
287 * all at once. Return 0 if yes, 1 if need to sleep, else return error code.
288 */
289
290static int try_atomic_semop (struct sem_array * sma, struct sembuf * sops,
291 int nsops, struct sem_undo *un, int pid)
292{
293 int result, sem_op;
294 struct sembuf *sop;
295 struct sem * curr;
296
297 for (sop = sops; sop < sops + nsops; sop++) {
298 curr = sma->sem_base + sop->sem_num;
299 sem_op = sop->sem_op;
300 result = curr->semval;
301
302 if (!sem_op && result)
303 goto would_block;
304
305 result += sem_op;
306 if (result < 0)
307 goto would_block;
308 if (result > SEMVMX)
309 goto out_of_range;
310 if (sop->sem_flg & SEM_UNDO) {
311 int undo = un->semadj[sop->sem_num] - sem_op;
312 /*
313 * Exceeding the undo range is an error.
314 */
315 if (undo < (-SEMAEM - 1) || undo > SEMAEM)
316 goto out_of_range;
317 }
318 curr->semval = result;
319 }
320
321 sop--;
322 while (sop >= sops) {
323 sma->sem_base[sop->sem_num].sempid = pid;
324 if (sop->sem_flg & SEM_UNDO)
325 un->semadj[sop->sem_num] -= sop->sem_op;
326 sop--;
327 }
328
329 sma->sem_otime = get_seconds();
330 return 0;
331
332out_of_range:
333 result = -ERANGE;
334 goto undo;
335
336would_block:
337 if (sop->sem_flg & IPC_NOWAIT)
338 result = -EAGAIN;
339 else
340 result = 1;
341
342undo:
343 sop--;
344 while (sop >= sops) {
345 sma->sem_base[sop->sem_num].semval -= sop->sem_op;
346 sop--;
347 }
348
349 return result;
350}
351
352/* Go through the pending queue for the indicated semaphore
353 * looking for tasks that can be completed.
354 */
355static void update_queue (struct sem_array * sma)
356{
357 int error;
358 struct sem_queue * q;
359
360 q = sma->sem_pending;
361 while(q) {
362 error = try_atomic_semop(sma, q->sops, q->nsops,
363 q->undo, q->pid);
364
365 /* Does q->sleeper still need to sleep? */
366 if (error <= 0) {
367 struct sem_queue *n;
368 remove_from_queue(sma,q);
369 q->status = IN_WAKEUP;
370 /*
371 * Continue scanning. The next operation
372 * that must be checked depends on the type of the
373 * completed operation:
374 * - if the operation modified the array, then
375 * restart from the head of the queue and
376 * check for threads that might be waiting
377 * for semaphore values to become 0.
378 * - if the operation didn't modify the array,
379 * then just continue.
380 */
381 if (q->alter)
382 n = sma->sem_pending;
383 else
384 n = q->next;
385 wake_up_process(q->sleeper);
386 /* hands-off: q will disappear immediately after
387 * writing q->status.
388 */
1224b375 389 smp_wmb();
1da177e4
LT
390 q->status = error;
391 q = n;
392 } else {
393 q = q->next;
394 }
395 }
396}
397
398/* The following counts are associated to each semaphore:
399 * semncnt number of tasks waiting on semval being nonzero
400 * semzcnt number of tasks waiting on semval being zero
401 * This model assumes that a task waits on exactly one semaphore.
402 * Since semaphore operations are to be performed atomically, tasks actually
403 * wait on a whole sequence of semaphores simultaneously.
404 * The counts we return here are a rough approximation, but still
405 * warrant that semncnt+semzcnt>0 if the task is on the pending queue.
406 */
407static int count_semncnt (struct sem_array * sma, ushort semnum)
408{
409 int semncnt;
410 struct sem_queue * q;
411
412 semncnt = 0;
413 for (q = sma->sem_pending; q; q = q->next) {
414 struct sembuf * sops = q->sops;
415 int nsops = q->nsops;
416 int i;
417 for (i = 0; i < nsops; i++)
418 if (sops[i].sem_num == semnum
419 && (sops[i].sem_op < 0)
420 && !(sops[i].sem_flg & IPC_NOWAIT))
421 semncnt++;
422 }
423 return semncnt;
424}
425static int count_semzcnt (struct sem_array * sma, ushort semnum)
426{
427 int semzcnt;
428 struct sem_queue * q;
429
430 semzcnt = 0;
431 for (q = sma->sem_pending; q; q = q->next) {
432 struct sembuf * sops = q->sops;
433 int nsops = q->nsops;
434 int i;
435 for (i = 0; i < nsops; i++)
436 if (sops[i].sem_num == semnum
437 && (sops[i].sem_op == 0)
438 && !(sops[i].sem_flg & IPC_NOWAIT))
439 semzcnt++;
440 }
441 return semzcnt;
442}
443
5f921ae9
IM
444/* Free a semaphore set. freeary() is called with sem_ids.mutex locked and
445 * the spinlock for this semaphore set hold. sem_ids.mutex remains locked
1da177e4
LT
446 * on exit.
447 */
448static void freeary (struct sem_array *sma, int id)
449{
450 struct sem_undo *un;
451 struct sem_queue *q;
452 int size;
453
454 /* Invalidate the existing undo structures for this semaphore set.
455 * (They will be freed without any further action in exit_sem()
456 * or during the next semop.)
457 */
458 for (un = sma->undo; un; un = un->id_next)
459 un->semid = -1;
460
461 /* Wake up all pending processes and let them fail with EIDRM. */
462 q = sma->sem_pending;
463 while(q) {
464 struct sem_queue *n;
465 /* lazy remove_from_queue: we are killing the whole queue */
466 q->prev = NULL;
467 n = q->next;
468 q->status = IN_WAKEUP;
469 wake_up_process(q->sleeper); /* doesn't sleep */
6003a93e 470 smp_wmb();
1da177e4
LT
471 q->status = -EIDRM; /* hands-off q */
472 q = n;
473 }
474
475 /* Remove the semaphore set from the ID array*/
476 sma = sem_rmid(id);
477 sem_unlock(sma);
478
479 used_sems -= sma->sem_nsems;
480 size = sizeof (*sma) + sma->sem_nsems * sizeof (struct sem);
481 security_sem_free(sma);
482 ipc_rcu_putref(sma);
483}
484
485static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version)
486{
487 switch(version) {
488 case IPC_64:
489 return copy_to_user(buf, in, sizeof(*in));
490 case IPC_OLD:
491 {
492 struct semid_ds out;
493
494 ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm);
495
496 out.sem_otime = in->sem_otime;
497 out.sem_ctime = in->sem_ctime;
498 out.sem_nsems = in->sem_nsems;
499
500 return copy_to_user(buf, &out, sizeof(out));
501 }
502 default:
503 return -EINVAL;
504 }
505}
506
507static int semctl_nolock(int semid, int semnum, int cmd, int version, union semun arg)
508{
509 int err = -EINVAL;
510 struct sem_array *sma;
511
512 switch(cmd) {
513 case IPC_INFO:
514 case SEM_INFO:
515 {
516 struct seminfo seminfo;
517 int max_id;
518
519 err = security_sem_semctl(NULL, cmd);
520 if (err)
521 return err;
522
523 memset(&seminfo,0,sizeof(seminfo));
524 seminfo.semmni = sc_semmni;
525 seminfo.semmns = sc_semmns;
526 seminfo.semmsl = sc_semmsl;
527 seminfo.semopm = sc_semopm;
528 seminfo.semvmx = SEMVMX;
529 seminfo.semmnu = SEMMNU;
530 seminfo.semmap = SEMMAP;
531 seminfo.semume = SEMUME;
5f921ae9 532 mutex_lock(&sem_ids.mutex);
1da177e4
LT
533 if (cmd == SEM_INFO) {
534 seminfo.semusz = sem_ids.in_use;
535 seminfo.semaem = used_sems;
536 } else {
537 seminfo.semusz = SEMUSZ;
538 seminfo.semaem = SEMAEM;
539 }
540 max_id = sem_ids.max_id;
5f921ae9 541 mutex_unlock(&sem_ids.mutex);
1da177e4
LT
542 if (copy_to_user (arg.__buf, &seminfo, sizeof(struct seminfo)))
543 return -EFAULT;
544 return (max_id < 0) ? 0: max_id;
545 }
546 case SEM_STAT:
547 {
548 struct semid64_ds tbuf;
549 int id;
550
551 if(semid >= sem_ids.entries->size)
552 return -EINVAL;
553
554 memset(&tbuf,0,sizeof(tbuf));
555
556 sma = sem_lock(semid);
557 if(sma == NULL)
558 return -EINVAL;
559
560 err = -EACCES;
561 if (ipcperms (&sma->sem_perm, S_IRUGO))
562 goto out_unlock;
563
564 err = security_sem_semctl(sma, cmd);
565 if (err)
566 goto out_unlock;
567
568 id = sem_buildid(semid, sma->sem_perm.seq);
569
570 kernel_to_ipc64_perm(&sma->sem_perm, &tbuf.sem_perm);
571 tbuf.sem_otime = sma->sem_otime;
572 tbuf.sem_ctime = sma->sem_ctime;
573 tbuf.sem_nsems = sma->sem_nsems;
574 sem_unlock(sma);
575 if (copy_semid_to_user (arg.buf, &tbuf, version))
576 return -EFAULT;
577 return id;
578 }
579 default:
580 return -EINVAL;
581 }
582 return err;
583out_unlock:
584 sem_unlock(sma);
585 return err;
586}
587
588static int semctl_main(int semid, int semnum, int cmd, int version, union semun arg)
589{
590 struct sem_array *sma;
591 struct sem* curr;
592 int err;
593 ushort fast_sem_io[SEMMSL_FAST];
594 ushort* sem_io = fast_sem_io;
595 int nsems;
596
597 sma = sem_lock(semid);
598 if(sma==NULL)
599 return -EINVAL;
600
601 nsems = sma->sem_nsems;
602
603 err=-EIDRM;
604 if (sem_checkid(sma,semid))
605 goto out_unlock;
606
607 err = -EACCES;
608 if (ipcperms (&sma->sem_perm, (cmd==SETVAL||cmd==SETALL)?S_IWUGO:S_IRUGO))
609 goto out_unlock;
610
611 err = security_sem_semctl(sma, cmd);
612 if (err)
613 goto out_unlock;
614
615 err = -EACCES;
616 switch (cmd) {
617 case GETALL:
618 {
619 ushort __user *array = arg.array;
620 int i;
621
622 if(nsems > SEMMSL_FAST) {
623 ipc_rcu_getref(sma);
624 sem_unlock(sma);
625
626 sem_io = ipc_alloc(sizeof(ushort)*nsems);
627 if(sem_io == NULL) {
628 ipc_lock_by_ptr(&sma->sem_perm);
629 ipc_rcu_putref(sma);
630 sem_unlock(sma);
631 return -ENOMEM;
632 }
633
634 ipc_lock_by_ptr(&sma->sem_perm);
635 ipc_rcu_putref(sma);
636 if (sma->sem_perm.deleted) {
637 sem_unlock(sma);
638 err = -EIDRM;
639 goto out_free;
640 }
641 }
642
643 for (i = 0; i < sma->sem_nsems; i++)
644 sem_io[i] = sma->sem_base[i].semval;
645 sem_unlock(sma);
646 err = 0;
647 if(copy_to_user(array, sem_io, nsems*sizeof(ushort)))
648 err = -EFAULT;
649 goto out_free;
650 }
651 case SETALL:
652 {
653 int i;
654 struct sem_undo *un;
655
656 ipc_rcu_getref(sma);
657 sem_unlock(sma);
658
659 if(nsems > SEMMSL_FAST) {
660 sem_io = ipc_alloc(sizeof(ushort)*nsems);
661 if(sem_io == NULL) {
662 ipc_lock_by_ptr(&sma->sem_perm);
663 ipc_rcu_putref(sma);
664 sem_unlock(sma);
665 return -ENOMEM;
666 }
667 }
668
669 if (copy_from_user (sem_io, arg.array, nsems*sizeof(ushort))) {
670 ipc_lock_by_ptr(&sma->sem_perm);
671 ipc_rcu_putref(sma);
672 sem_unlock(sma);
673 err = -EFAULT;
674 goto out_free;
675 }
676
677 for (i = 0; i < nsems; i++) {
678 if (sem_io[i] > SEMVMX) {
679 ipc_lock_by_ptr(&sma->sem_perm);
680 ipc_rcu_putref(sma);
681 sem_unlock(sma);
682 err = -ERANGE;
683 goto out_free;
684 }
685 }
686 ipc_lock_by_ptr(&sma->sem_perm);
687 ipc_rcu_putref(sma);
688 if (sma->sem_perm.deleted) {
689 sem_unlock(sma);
690 err = -EIDRM;
691 goto out_free;
692 }
693
694 for (i = 0; i < nsems; i++)
695 sma->sem_base[i].semval = sem_io[i];
696 for (un = sma->undo; un; un = un->id_next)
697 for (i = 0; i < nsems; i++)
698 un->semadj[i] = 0;
699 sma->sem_ctime = get_seconds();
700 /* maybe some queued-up processes were waiting for this */
701 update_queue(sma);
702 err = 0;
703 goto out_unlock;
704 }
705 case IPC_STAT:
706 {
707 struct semid64_ds tbuf;
708 memset(&tbuf,0,sizeof(tbuf));
709 kernel_to_ipc64_perm(&sma->sem_perm, &tbuf.sem_perm);
710 tbuf.sem_otime = sma->sem_otime;
711 tbuf.sem_ctime = sma->sem_ctime;
712 tbuf.sem_nsems = sma->sem_nsems;
713 sem_unlock(sma);
714 if (copy_semid_to_user (arg.buf, &tbuf, version))
715 return -EFAULT;
716 return 0;
717 }
718 /* GETVAL, GETPID, GETNCTN, GETZCNT, SETVAL: fall-through */
719 }
720 err = -EINVAL;
721 if(semnum < 0 || semnum >= nsems)
722 goto out_unlock;
723
724 curr = &sma->sem_base[semnum];
725
726 switch (cmd) {
727 case GETVAL:
728 err = curr->semval;
729 goto out_unlock;
730 case GETPID:
731 err = curr->sempid;
732 goto out_unlock;
733 case GETNCNT:
734 err = count_semncnt(sma,semnum);
735 goto out_unlock;
736 case GETZCNT:
737 err = count_semzcnt(sma,semnum);
738 goto out_unlock;
739 case SETVAL:
740 {
741 int val = arg.val;
742 struct sem_undo *un;
743 err = -ERANGE;
744 if (val > SEMVMX || val < 0)
745 goto out_unlock;
746
747 for (un = sma->undo; un; un = un->id_next)
748 un->semadj[semnum] = 0;
749 curr->semval = val;
750 curr->sempid = current->tgid;
751 sma->sem_ctime = get_seconds();
752 /* maybe some queued-up processes were waiting for this */
753 update_queue(sma);
754 err = 0;
755 goto out_unlock;
756 }
757 }
758out_unlock:
759 sem_unlock(sma);
760out_free:
761 if(sem_io != fast_sem_io)
762 ipc_free(sem_io, sizeof(ushort)*nsems);
763 return err;
764}
765
766struct sem_setbuf {
767 uid_t uid;
768 gid_t gid;
769 mode_t mode;
770};
771
772static inline unsigned long copy_semid_from_user(struct sem_setbuf *out, void __user *buf, int version)
773{
774 switch(version) {
775 case IPC_64:
776 {
777 struct semid64_ds tbuf;
778
779 if(copy_from_user(&tbuf, buf, sizeof(tbuf)))
780 return -EFAULT;
781
782 out->uid = tbuf.sem_perm.uid;
783 out->gid = tbuf.sem_perm.gid;
784 out->mode = tbuf.sem_perm.mode;
785
786 return 0;
787 }
788 case IPC_OLD:
789 {
790 struct semid_ds tbuf_old;
791
792 if(copy_from_user(&tbuf_old, buf, sizeof(tbuf_old)))
793 return -EFAULT;
794
795 out->uid = tbuf_old.sem_perm.uid;
796 out->gid = tbuf_old.sem_perm.gid;
797 out->mode = tbuf_old.sem_perm.mode;
798
799 return 0;
800 }
801 default:
802 return -EINVAL;
803 }
804}
805
806static int semctl_down(int semid, int semnum, int cmd, int version, union semun arg)
807{
808 struct sem_array *sma;
809 int err;
810 struct sem_setbuf setbuf;
811 struct kern_ipc_perm *ipcp;
812
813 if(cmd == IPC_SET) {
814 if(copy_semid_from_user (&setbuf, arg.buf, version))
815 return -EFAULT;
1da177e4
LT
816 }
817 sma = sem_lock(semid);
818 if(sma==NULL)
819 return -EINVAL;
820
821 if (sem_checkid(sma,semid)) {
822 err=-EIDRM;
823 goto out_unlock;
824 }
825 ipcp = &sma->sem_perm;
073115d6
SG
826
827 err = audit_ipc_obj(ipcp);
828 if (err)
829 goto out_unlock;
830
ac03221a
LK
831 if (cmd == IPC_SET) {
832 err = audit_ipc_set_perm(0, setbuf.uid, setbuf.gid, setbuf.mode);
833 if (err)
834 goto out_unlock;
835 }
1da177e4
LT
836 if (current->euid != ipcp->cuid &&
837 current->euid != ipcp->uid && !capable(CAP_SYS_ADMIN)) {
838 err=-EPERM;
839 goto out_unlock;
840 }
841
842 err = security_sem_semctl(sma, cmd);
843 if (err)
844 goto out_unlock;
845
846 switch(cmd){
847 case IPC_RMID:
848 freeary(sma, semid);
849 err = 0;
850 break;
851 case IPC_SET:
852 ipcp->uid = setbuf.uid;
853 ipcp->gid = setbuf.gid;
854 ipcp->mode = (ipcp->mode & ~S_IRWXUGO)
855 | (setbuf.mode & S_IRWXUGO);
856 sma->sem_ctime = get_seconds();
857 sem_unlock(sma);
858 err = 0;
859 break;
860 default:
861 sem_unlock(sma);
862 err = -EINVAL;
863 break;
864 }
865 return err;
866
867out_unlock:
868 sem_unlock(sma);
869 return err;
870}
871
872asmlinkage long sys_semctl (int semid, int semnum, int cmd, union semun arg)
873{
874 int err = -EINVAL;
875 int version;
876
877 if (semid < 0)
878 return -EINVAL;
879
880 version = ipc_parse_version(&cmd);
881
882 switch(cmd) {
883 case IPC_INFO:
884 case SEM_INFO:
885 case SEM_STAT:
886 err = semctl_nolock(semid,semnum,cmd,version,arg);
887 return err;
888 case GETALL:
889 case GETVAL:
890 case GETPID:
891 case GETNCNT:
892 case GETZCNT:
893 case IPC_STAT:
894 case SETVAL:
895 case SETALL:
896 err = semctl_main(semid,semnum,cmd,version,arg);
897 return err;
898 case IPC_RMID:
899 case IPC_SET:
5f921ae9 900 mutex_lock(&sem_ids.mutex);
1da177e4 901 err = semctl_down(semid,semnum,cmd,version,arg);
5f921ae9 902 mutex_unlock(&sem_ids.mutex);
1da177e4
LT
903 return err;
904 default:
905 return -EINVAL;
906 }
907}
908
909static inline void lock_semundo(void)
910{
911 struct sem_undo_list *undo_list;
912
913 undo_list = current->sysvsem.undo_list;
00a5dfdb 914 if (undo_list)
1da177e4
LT
915 spin_lock(&undo_list->lock);
916}
917
918/* This code has an interaction with copy_semundo().
919 * Consider; two tasks are sharing the undo_list. task1
920 * acquires the undo_list lock in lock_semundo(). If task2 now
921 * exits before task1 releases the lock (by calling
922 * unlock_semundo()), then task1 will never call spin_unlock().
923 * This leave the sem_undo_list in a locked state. If task1 now creats task3
924 * and once again shares the sem_undo_list, the sem_undo_list will still be
925 * locked, and future SEM_UNDO operations will deadlock. This case is
926 * dealt with in copy_semundo() by having it reinitialize the spin lock when
927 * the refcnt goes from 1 to 2.
928 */
929static inline void unlock_semundo(void)
930{
931 struct sem_undo_list *undo_list;
932
933 undo_list = current->sysvsem.undo_list;
00a5dfdb 934 if (undo_list)
1da177e4
LT
935 spin_unlock(&undo_list->lock);
936}
937
938
939/* If the task doesn't already have a undo_list, then allocate one
940 * here. We guarantee there is only one thread using this undo list,
941 * and current is THE ONE
942 *
943 * If this allocation and assignment succeeds, but later
944 * portions of this code fail, there is no need to free the sem_undo_list.
945 * Just let it stay associated with the task, and it'll be freed later
946 * at exit time.
947 *
948 * This can block, so callers must hold no locks.
949 */
950static inline int get_undo_list(struct sem_undo_list **undo_listp)
951{
952 struct sem_undo_list *undo_list;
953 int size;
954
955 undo_list = current->sysvsem.undo_list;
956 if (!undo_list) {
957 size = sizeof(struct sem_undo_list);
958 undo_list = (struct sem_undo_list *) kmalloc(size, GFP_KERNEL);
959 if (undo_list == NULL)
960 return -ENOMEM;
961 memset(undo_list, 0, size);
00a5dfdb 962 spin_lock_init(&undo_list->lock);
1da177e4
LT
963 atomic_set(&undo_list->refcnt, 1);
964 current->sysvsem.undo_list = undo_list;
965 }
966 *undo_listp = undo_list;
967 return 0;
968}
969
970static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid)
971{
972 struct sem_undo **last, *un;
973
974 last = &ulp->proc_list;
975 un = *last;
976 while(un != NULL) {
977 if(un->semid==semid)
978 break;
979 if(un->semid==-1) {
980 *last=un->proc_next;
981 kfree(un);
982 } else {
983 last=&un->proc_next;
984 }
985 un=*last;
986 }
987 return un;
988}
989
990static struct sem_undo *find_undo(int semid)
991{
992 struct sem_array *sma;
993 struct sem_undo_list *ulp;
994 struct sem_undo *un, *new;
995 int nsems;
996 int error;
997
998 error = get_undo_list(&ulp);
999 if (error)
1000 return ERR_PTR(error);
1001
1002 lock_semundo();
1003 un = lookup_undo(ulp, semid);
1004 unlock_semundo();
1005 if (likely(un!=NULL))
1006 goto out;
1007
1008 /* no undo structure around - allocate one. */
1009 sma = sem_lock(semid);
1010 un = ERR_PTR(-EINVAL);
1011 if(sma==NULL)
1012 goto out;
1013 un = ERR_PTR(-EIDRM);
1014 if (sem_checkid(sma,semid)) {
1015 sem_unlock(sma);
1016 goto out;
1017 }
1018 nsems = sma->sem_nsems;
1019 ipc_rcu_getref(sma);
1020 sem_unlock(sma);
1021
1022 new = (struct sem_undo *) kmalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL);
1023 if (!new) {
1024 ipc_lock_by_ptr(&sma->sem_perm);
1025 ipc_rcu_putref(sma);
1026 sem_unlock(sma);
1027 return ERR_PTR(-ENOMEM);
1028 }
1029 memset(new, 0, sizeof(struct sem_undo) + sizeof(short)*nsems);
1030 new->semadj = (short *) &new[1];
1031 new->semid = semid;
1032
1033 lock_semundo();
1034 un = lookup_undo(ulp, semid);
1035 if (un) {
1036 unlock_semundo();
1037 kfree(new);
1038 ipc_lock_by_ptr(&sma->sem_perm);
1039 ipc_rcu_putref(sma);
1040 sem_unlock(sma);
1041 goto out;
1042 }
1043 ipc_lock_by_ptr(&sma->sem_perm);
1044 ipc_rcu_putref(sma);
1045 if (sma->sem_perm.deleted) {
1046 sem_unlock(sma);
1047 unlock_semundo();
1048 kfree(new);
1049 un = ERR_PTR(-EIDRM);
1050 goto out;
1051 }
1052 new->proc_next = ulp->proc_list;
1053 ulp->proc_list = new;
1054 new->id_next = sma->undo;
1055 sma->undo = new;
1056 sem_unlock(sma);
1057 un = new;
1058 unlock_semundo();
1059out:
1060 return un;
1061}
1062
1063asmlinkage long sys_semtimedop(int semid, struct sembuf __user *tsops,
1064 unsigned nsops, const struct timespec __user *timeout)
1065{
1066 int error = -EINVAL;
1067 struct sem_array *sma;
1068 struct sembuf fast_sops[SEMOPM_FAST];
1069 struct sembuf* sops = fast_sops, *sop;
1070 struct sem_undo *un;
b78755ab 1071 int undos = 0, alter = 0, max;
1da177e4
LT
1072 struct sem_queue queue;
1073 unsigned long jiffies_left = 0;
1074
1075 if (nsops < 1 || semid < 0)
1076 return -EINVAL;
1077 if (nsops > sc_semopm)
1078 return -E2BIG;
1079 if(nsops > SEMOPM_FAST) {
1080 sops = kmalloc(sizeof(*sops)*nsops,GFP_KERNEL);
1081 if(sops==NULL)
1082 return -ENOMEM;
1083 }
1084 if (copy_from_user (sops, tsops, nsops * sizeof(*tsops))) {
1085 error=-EFAULT;
1086 goto out_free;
1087 }
1088 if (timeout) {
1089 struct timespec _timeout;
1090 if (copy_from_user(&_timeout, timeout, sizeof(*timeout))) {
1091 error = -EFAULT;
1092 goto out_free;
1093 }
1094 if (_timeout.tv_sec < 0 || _timeout.tv_nsec < 0 ||
1095 _timeout.tv_nsec >= 1000000000L) {
1096 error = -EINVAL;
1097 goto out_free;
1098 }
1099 jiffies_left = timespec_to_jiffies(&_timeout);
1100 }
1101 max = 0;
1102 for (sop = sops; sop < sops + nsops; sop++) {
1103 if (sop->sem_num >= max)
1104 max = sop->sem_num;
1105 if (sop->sem_flg & SEM_UNDO)
b78755ab
MS
1106 undos = 1;
1107 if (sop->sem_op != 0)
1da177e4
LT
1108 alter = 1;
1109 }
1da177e4
LT
1110
1111retry_undos:
1112 if (undos) {
1113 un = find_undo(semid);
1114 if (IS_ERR(un)) {
1115 error = PTR_ERR(un);
1116 goto out_free;
1117 }
1118 } else
1119 un = NULL;
1120
1121 sma = sem_lock(semid);
1122 error=-EINVAL;
1123 if(sma==NULL)
1124 goto out_free;
1125 error = -EIDRM;
1126 if (sem_checkid(sma,semid))
1127 goto out_unlock_free;
1128 /*
1129 * semid identifies are not unique - find_undo may have
1130 * allocated an undo structure, it was invalidated by an RMID
1131 * and now a new array with received the same id. Check and retry.
1132 */
1133 if (un && un->semid == -1) {
1134 sem_unlock(sma);
1135 goto retry_undos;
1136 }
1137 error = -EFBIG;
1138 if (max >= sma->sem_nsems)
1139 goto out_unlock_free;
1140
1141 error = -EACCES;
1142 if (ipcperms(&sma->sem_perm, alter ? S_IWUGO : S_IRUGO))
1143 goto out_unlock_free;
1144
1145 error = security_sem_semop(sma, sops, nsops, alter);
1146 if (error)
1147 goto out_unlock_free;
1148
1149 error = try_atomic_semop (sma, sops, nsops, un, current->tgid);
1150 if (error <= 0) {
1151 if (alter && error == 0)
1152 update_queue (sma);
1153 goto out_unlock_free;
1154 }
1155
1156 /* We need to sleep on this operation, so we put the current
1157 * task into the pending queue and go to sleep.
1158 */
1159
1160 queue.sma = sma;
1161 queue.sops = sops;
1162 queue.nsops = nsops;
1163 queue.undo = un;
1164 queue.pid = current->tgid;
1165 queue.id = semid;
1166 queue.alter = alter;
1167 if (alter)
1168 append_to_queue(sma ,&queue);
1169 else
1170 prepend_to_queue(sma ,&queue);
1171
1172 queue.status = -EINTR;
1173 queue.sleeper = current;
1174 current->state = TASK_INTERRUPTIBLE;
1175 sem_unlock(sma);
1176
1177 if (timeout)
1178 jiffies_left = schedule_timeout(jiffies_left);
1179 else
1180 schedule();
1181
1182 error = queue.status;
1183 while(unlikely(error == IN_WAKEUP)) {
1184 cpu_relax();
1185 error = queue.status;
1186 }
1187
1188 if (error != -EINTR) {
1189 /* fast path: update_queue already obtained all requested
1190 * resources */
1191 goto out_free;
1192 }
1193
1194 sma = sem_lock(semid);
1195 if(sma==NULL) {
27315c96 1196 BUG_ON(queue.prev != NULL);
1da177e4
LT
1197 error = -EIDRM;
1198 goto out_free;
1199 }
1200
1201 /*
1202 * If queue.status != -EINTR we are woken up by another process
1203 */
1204 error = queue.status;
1205 if (error != -EINTR) {
1206 goto out_unlock_free;
1207 }
1208
1209 /*
1210 * If an interrupt occurred we have to clean up the queue
1211 */
1212 if (timeout && jiffies_left == 0)
1213 error = -EAGAIN;
1214 remove_from_queue(sma,&queue);
1215 goto out_unlock_free;
1216
1217out_unlock_free:
1218 sem_unlock(sma);
1219out_free:
1220 if(sops != fast_sops)
1221 kfree(sops);
1222 return error;
1223}
1224
1225asmlinkage long sys_semop (int semid, struct sembuf __user *tsops, unsigned nsops)
1226{
1227 return sys_semtimedop(semid, tsops, nsops, NULL);
1228}
1229
1230/* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
1231 * parent and child tasks.
1232 *
1233 * See the notes above unlock_semundo() regarding the spin_lock_init()
1234 * in this code. Initialize the undo_list->lock here instead of get_undo_list()
1235 * because of the reasoning in the comment above unlock_semundo.
1236 */
1237
1238int copy_semundo(unsigned long clone_flags, struct task_struct *tsk)
1239{
1240 struct sem_undo_list *undo_list;
1241 int error;
1242
1243 if (clone_flags & CLONE_SYSVSEM) {
1244 error = get_undo_list(&undo_list);
1245 if (error)
1246 return error;
1da177e4
LT
1247 atomic_inc(&undo_list->refcnt);
1248 tsk->sysvsem.undo_list = undo_list;
1249 } else
1250 tsk->sysvsem.undo_list = NULL;
1251
1252 return 0;
1253}
1254
1255/*
1256 * add semadj values to semaphores, free undo structures.
1257 * undo structures are not freed when semaphore arrays are destroyed
1258 * so some of them may be out of date.
1259 * IMPLEMENTATION NOTE: There is some confusion over whether the
1260 * set of adjustments that needs to be done should be done in an atomic
1261 * manner or not. That is, if we are attempting to decrement the semval
1262 * should we queue up and wait until we can do so legally?
1263 * The original implementation attempted to do this (queue and wait).
1264 * The current implementation does not do so. The POSIX standard
1265 * and SVID should be consulted to determine what behavior is mandated.
1266 */
1267void exit_sem(struct task_struct *tsk)
1268{
1269 struct sem_undo_list *undo_list;
1270 struct sem_undo *u, **up;
1271
1272 undo_list = tsk->sysvsem.undo_list;
1273 if (!undo_list)
1274 return;
1275
1276 if (!atomic_dec_and_test(&undo_list->refcnt))
1277 return;
1278
1279 /* There's no need to hold the semundo list lock, as current
1280 * is the last task exiting for this undo list.
1281 */
1282 for (up = &undo_list->proc_list; (u = *up); *up = u->proc_next, kfree(u)) {
1283 struct sem_array *sma;
1284 int nsems, i;
1285 struct sem_undo *un, **unp;
1286 int semid;
1287
1288 semid = u->semid;
1289
1290 if(semid == -1)
1291 continue;
1292 sma = sem_lock(semid);
1293 if (sma == NULL)
1294 continue;
1295
1296 if (u->semid == -1)
1297 goto next_entry;
1298
1299 BUG_ON(sem_checkid(sma,u->semid));
1300
1301 /* remove u from the sma->undo list */
1302 for (unp = &sma->undo; (un = *unp); unp = &un->id_next) {
1303 if (u == un)
1304 goto found;
1305 }
1306 printk ("exit_sem undo list error id=%d\n", u->semid);
1307 goto next_entry;
1308found:
1309 *unp = un->id_next;
1310 /* perform adjustments registered in u */
1311 nsems = sma->sem_nsems;
1312 for (i = 0; i < nsems; i++) {
5f921ae9 1313 struct sem * semaphore = &sma->sem_base[i];
1da177e4 1314 if (u->semadj[i]) {
5f921ae9 1315 semaphore->semval += u->semadj[i];
1da177e4
LT
1316 /*
1317 * Range checks of the new semaphore value,
1318 * not defined by sus:
1319 * - Some unices ignore the undo entirely
1320 * (e.g. HP UX 11i 11.22, Tru64 V5.1)
1321 * - some cap the value (e.g. FreeBSD caps
1322 * at 0, but doesn't enforce SEMVMX)
1323 *
1324 * Linux caps the semaphore value, both at 0
1325 * and at SEMVMX.
1326 *
1327 * Manfred <manfred@colorfullife.com>
1328 */
5f921ae9
IM
1329 if (semaphore->semval < 0)
1330 semaphore->semval = 0;
1331 if (semaphore->semval > SEMVMX)
1332 semaphore->semval = SEMVMX;
1333 semaphore->sempid = current->tgid;
1da177e4
LT
1334 }
1335 }
1336 sma->sem_otime = get_seconds();
1337 /* maybe some queued-up processes were waiting for this */
1338 update_queue(sma);
1339next_entry:
1340 sem_unlock(sma);
1341 }
1342 kfree(undo_list);
1343}
1344
1345#ifdef CONFIG_PROC_FS
19b4946c 1346static int sysvipc_sem_proc_show(struct seq_file *s, void *it)
1da177e4 1347{
19b4946c
MW
1348 struct sem_array *sma = it;
1349
1350 return seq_printf(s,
1351 "%10d %10d %4o %10lu %5u %5u %5u %5u %10lu %10lu\n",
1352 sma->sem_perm.key,
1353 sma->sem_id,
1354 sma->sem_perm.mode,
1355 sma->sem_nsems,
1356 sma->sem_perm.uid,
1357 sma->sem_perm.gid,
1358 sma->sem_perm.cuid,
1359 sma->sem_perm.cgid,
1360 sma->sem_otime,
1361 sma->sem_ctime);
1da177e4
LT
1362}
1363#endif