Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/btrfs...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / init / calibrate.c
CommitLineData
1da177e4
LT
1/* calibrate.c: default delay calibration
2 *
3 * Excised from init/main.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
cd354f1a 7#include <linux/jiffies.h>
1da177e4
LT
8#include <linux/delay.h>
9#include <linux/init.h>
941e492b 10#include <linux/timex.h>
3da757da 11#include <linux/smp.h>
8a9e1b0f 12
f3f3149f 13unsigned long lpj_fine;
bfe8df3d 14unsigned long preset_lpj;
1da177e4
LT
15static int __init lpj_setup(char *str)
16{
17 preset_lpj = simple_strtoul(str,NULL,0);
18 return 1;
19}
20
21__setup("lpj=", lpj_setup);
22
8a9e1b0f
VP
23#ifdef ARCH_HAS_READ_CURRENT_TIMER
24
25/* This routine uses the read_current_timer() routine and gets the
26 * loops per jiffy directly, instead of guessing it using delay().
27 * Also, this code tries to handle non-maskable asynchronous events
28 * (like SMIs)
29 */
30#define DELAY_CALIBRATION_TICKS ((HZ < 100) ? 1 : (HZ/100))
31#define MAX_DIRECT_CALIBRATION_RETRIES 5
32
6c81c32f 33static unsigned long __cpuinit calibrate_delay_direct(void)
8a9e1b0f
VP
34{
35 unsigned long pre_start, start, post_start;
36 unsigned long pre_end, end, post_end;
37 unsigned long start_jiffies;
f3f3149f
AK
38 unsigned long timer_rate_min, timer_rate_max;
39 unsigned long good_timer_sum = 0;
40 unsigned long good_timer_count = 0;
d2b46313
AW
41 unsigned long measured_times[MAX_DIRECT_CALIBRATION_RETRIES];
42 int max = -1; /* index of measured_times with max/min values or not set */
43 int min = -1;
8a9e1b0f
VP
44 int i;
45
46 if (read_current_timer(&pre_start) < 0 )
47 return 0;
48
49 /*
50 * A simple loop like
51 * while ( jiffies < start_jiffies+1)
52 * start = read_current_timer();
53 * will not do. As we don't really know whether jiffy switch
54 * happened first or timer_value was read first. And some asynchronous
55 * event can happen between these two events introducing errors in lpj.
56 *
57 * So, we do
58 * 1. pre_start <- When we are sure that jiffy switch hasn't happened
59 * 2. check jiffy switch
60 * 3. start <- timer value before or after jiffy switch
61 * 4. post_start <- When we are sure that jiffy switch has happened
62 *
63 * Note, we don't know anything about order of 2 and 3.
64 * Now, by looking at post_start and pre_start difference, we can
65 * check whether any asynchronous event happened or not
66 */
67
68 for (i = 0; i < MAX_DIRECT_CALIBRATION_RETRIES; i++) {
69 pre_start = 0;
70 read_current_timer(&start);
71 start_jiffies = jiffies;
70a06228 72 while (time_before_eq(jiffies, start_jiffies + 1)) {
8a9e1b0f
VP
73 pre_start = start;
74 read_current_timer(&start);
75 }
76 read_current_timer(&post_start);
77
78 pre_end = 0;
79 end = post_start;
70a06228
TD
80 while (time_before_eq(jiffies, start_jiffies + 1 +
81 DELAY_CALIBRATION_TICKS)) {
8a9e1b0f
VP
82 pre_end = end;
83 read_current_timer(&end);
84 }
85 read_current_timer(&post_end);
86
f3f3149f
AK
87 timer_rate_max = (post_end - pre_start) /
88 DELAY_CALIBRATION_TICKS;
89 timer_rate_min = (pre_end - post_start) /
90 DELAY_CALIBRATION_TICKS;
8a9e1b0f
VP
91
92 /*
f3f3149f 93 * If the upper limit and lower limit of the timer_rate is
8a9e1b0f
VP
94 * >= 12.5% apart, redo calibration.
95 */
d2b46313
AW
96 printk(KERN_DEBUG "calibrate_delay_direct() timer_rate_max=%lu "
97 "timer_rate_min=%lu pre_start=%lu pre_end=%lu\n",
98 timer_rate_max, timer_rate_min, pre_start, pre_end);
99 if (start >= post_end)
100 printk(KERN_NOTICE "calibrate_delay_direct() ignoring "
101 "timer_rate as we had a TSC wrap around"
102 " start=%lu >=post_end=%lu\n",
103 start, post_end);
104 if (start < post_end && pre_start != 0 && pre_end != 0 &&
f3f3149f
AK
105 (timer_rate_max - timer_rate_min) < (timer_rate_max >> 3)) {
106 good_timer_count++;
107 good_timer_sum += timer_rate_max;
d2b46313
AW
108 measured_times[i] = timer_rate_max;
109 if (max < 0 || timer_rate_max > measured_times[max])
110 max = i;
111 if (min < 0 || timer_rate_max < measured_times[min])
112 min = i;
113 } else
114 measured_times[i] = 0;
115
8a9e1b0f
VP
116 }
117
d2b46313
AW
118 /*
119 * Find the maximum & minimum - if they differ too much throw out the
120 * one with the largest difference from the mean and try again...
121 */
122 while (good_timer_count > 1) {
123 unsigned long estimate;
124 unsigned long maxdiff;
125
126 /* compute the estimate */
127 estimate = (good_timer_sum/good_timer_count);
128 maxdiff = estimate >> 3;
129
130 /* if range is within 12% let's take it */
131 if ((measured_times[max] - measured_times[min]) < maxdiff)
132 return estimate;
133
134 /* ok - drop the worse value and try again... */
135 good_timer_sum = 0;
136 good_timer_count = 0;
137 if ((measured_times[max] - estimate) <
138 (estimate - measured_times[min])) {
139 printk(KERN_NOTICE "calibrate_delay_direct() dropping "
140 "min bogoMips estimate %d = %lu\n",
141 min, measured_times[min]);
142 measured_times[min] = 0;
143 min = max;
144 } else {
145 printk(KERN_NOTICE "calibrate_delay_direct() dropping "
146 "max bogoMips estimate %d = %lu\n",
147 max, measured_times[max]);
148 measured_times[max] = 0;
149 max = min;
150 }
151
152 for (i = 0; i < MAX_DIRECT_CALIBRATION_RETRIES; i++) {
153 if (measured_times[i] == 0)
154 continue;
155 good_timer_count++;
156 good_timer_sum += measured_times[i];
157 if (measured_times[i] < measured_times[min])
158 min = i;
159 if (measured_times[i] > measured_times[max])
160 max = i;
161 }
162
163 }
8a9e1b0f 164
d2b46313
AW
165 printk(KERN_NOTICE "calibrate_delay_direct() failed to get a good "
166 "estimate for loops_per_jiffy.\nProbably due to long platform "
167 "interrupts. Consider using \"lpj=\" boot option.\n");
8a9e1b0f
VP
168 return 0;
169}
170#else
6c81c32f 171static unsigned long __cpuinit calibrate_delay_direct(void) {return 0;}
8a9e1b0f
VP
172#endif
173
1da177e4
LT
174/*
175 * This is the number of bits of precision for the loops_per_jiffy. Each
191e5688
PC
176 * time we refine our estimate after the first takes 1.5/HZ seconds, so try
177 * to start with a good estimate.
3da757da 178 * For the boot cpu we can skip the delay calibration and assign it a value
f3f3149f
AK
179 * calculated based on the timer frequency.
180 * For the rest of the CPUs we cannot assume that the timer frequency is same as
3da757da 181 * the cpu frequency, hence do the calibration for those.
1da177e4
LT
182 */
183#define LPS_PREC 8
184
71c696b1 185static unsigned long __cpuinit calibrate_delay_converge(void)
1da177e4 186{
191e5688 187 /* First stage - slowly accelerate to find initial bounds */
b1b5f65e 188 unsigned long lpj, lpj_base, ticks, loopadd, loopadd_base, chop_limit;
191e5688 189 int trials = 0, band = 0, trial_in_band = 0;
71c696b1
PC
190
191 lpj = (1<<12);
191e5688
PC
192
193 /* wait for "start of" clock tick */
194 ticks = jiffies;
195 while (ticks == jiffies)
196 ; /* nothing */
197 /* Go .. */
198 ticks = jiffies;
199 do {
200 if (++trial_in_band == (1<<band)) {
201 ++band;
202 trial_in_band = 0;
203 }
204 __delay(lpj * band);
205 trials += band;
206 } while (ticks == jiffies);
207 /*
208 * We overshot, so retreat to a clear underestimate. Then estimate
209 * the largest likely undershoot. This defines our chop bounds.
210 */
211 trials -= band;
b1b5f65e
PC
212 loopadd_base = lpj * band;
213 lpj_base = lpj * trials;
214
215recalibrate:
216 lpj = lpj_base;
217 loopadd = loopadd_base;
71c696b1
PC
218
219 /*
220 * Do a binary approximation to get lpj set to
191e5688 221 * equal one clock (up to LPS_PREC bits)
71c696b1 222 */
b1b5f65e 223 chop_limit = lpj >> LPS_PREC;
191e5688
PC
224 while (loopadd > chop_limit) {
225 lpj += loopadd;
71c696b1
PC
226 ticks = jiffies;
227 while (ticks == jiffies)
191e5688 228 ; /* nothing */
71c696b1
PC
229 ticks = jiffies;
230 __delay(lpj);
231 if (jiffies != ticks) /* longer than 1 tick */
191e5688
PC
232 lpj -= loopadd;
233 loopadd >>= 1;
71c696b1 234 }
b1b5f65e
PC
235 /*
236 * If we incremented every single time possible, presume we've
237 * massively underestimated initially, and retry with a higher
238 * start, and larger range. (Only seen on x86_64, due to SMIs)
239 */
240 if (lpj + loopadd * 2 == lpj_base + loopadd_base * 2) {
241 lpj_base = lpj;
242 loopadd_base <<= 2;
243 goto recalibrate;
244 }
71c696b1
PC
245
246 return lpj;
247}
248
249void __cpuinit calibrate_delay(void)
250{
feae3203 251 static bool printed;
1da177e4
LT
252
253 if (preset_lpj) {
254 loops_per_jiffy = preset_lpj;
feae3203
MT
255 if (!printed)
256 pr_info("Calibrating delay loop (skipped) "
257 "preset value.. ");
258 } else if ((!printed) && lpj_fine) {
f3f3149f 259 loops_per_jiffy = lpj_fine;
feae3203 260 pr_info("Calibrating delay loop (skipped), "
f3f3149f 261 "value calculated using timer frequency.. ");
8a9e1b0f 262 } else if ((loops_per_jiffy = calibrate_delay_direct()) != 0) {
feae3203
MT
263 if (!printed)
264 pr_info("Calibrating delay using timer "
265 "specific routine.. ");
1da177e4 266 } else {
feae3203
MT
267 if (!printed)
268 pr_info("Calibrating delay loop... ");
71c696b1 269 loops_per_jiffy = calibrate_delay_converge();
1da177e4 270 }
feae3203
MT
271 if (!printed)
272 pr_cont("%lu.%02lu BogoMIPS (lpj=%lu)\n",
3da757da
AK
273 loops_per_jiffy/(500000/HZ),
274 (loops_per_jiffy/(5000/HZ)) % 100, loops_per_jiffy);
feae3203
MT
275
276 printed = true;
1da177e4 277}