Merge tag 'mips_fixes_4.14' of git://git.kernel.org/pub/scm/linux/kernel/git/jhogan...
[GitHub/moto-9609/android_kernel_motorola_exynos9610.git] / include / linux / skbuff.h
CommitLineData
1da177e4
LT
1/*
2 * Definitions for the 'struct sk_buff' memory handlers.
3 *
4 * Authors:
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 */
13
14#ifndef _LINUX_SKBUFF_H
15#define _LINUX_SKBUFF_H
16
1da177e4 17#include <linux/kernel.h>
fe55f6d5 18#include <linux/kmemcheck.h>
1da177e4
LT
19#include <linux/compiler.h>
20#include <linux/time.h>
187f1882 21#include <linux/bug.h>
1da177e4 22#include <linux/cache.h>
56b17425 23#include <linux/rbtree.h>
51f3d02b 24#include <linux/socket.h>
c1d1b437 25#include <linux/refcount.h>
1da177e4 26
60063497 27#include <linux/atomic.h>
1da177e4
LT
28#include <asm/types.h>
29#include <linux/spinlock.h>
1da177e4 30#include <linux/net.h>
3fc7e8a6 31#include <linux/textsearch.h>
1da177e4 32#include <net/checksum.h>
a80958f4 33#include <linux/rcupdate.h>
b7aa0bf7 34#include <linux/hrtimer.h>
131ea667 35#include <linux/dma-mapping.h>
c8f44aff 36#include <linux/netdev_features.h>
363ec392 37#include <linux/sched.h>
e6017571 38#include <linux/sched/clock.h>
1bd758eb 39#include <net/flow_dissector.h>
a60e3cc7 40#include <linux/splice.h>
72b31f72 41#include <linux/in6.h>
8b10cab6 42#include <linux/if_packet.h>
f70ea018 43#include <net/flow.h>
1da177e4 44
7a6ae71b
TH
45/* The interface for checksum offload between the stack and networking drivers
46 * is as follows...
47 *
48 * A. IP checksum related features
49 *
50 * Drivers advertise checksum offload capabilities in the features of a device.
51 * From the stack's point of view these are capabilities offered by the driver,
52 * a driver typically only advertises features that it is capable of offloading
53 * to its device.
54 *
55 * The checksum related features are:
56 *
57 * NETIF_F_HW_CSUM - The driver (or its device) is able to compute one
58 * IP (one's complement) checksum for any combination
59 * of protocols or protocol layering. The checksum is
60 * computed and set in a packet per the CHECKSUM_PARTIAL
61 * interface (see below).
62 *
63 * NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain
64 * TCP or UDP packets over IPv4. These are specifically
65 * unencapsulated packets of the form IPv4|TCP or
66 * IPv4|UDP where the Protocol field in the IPv4 header
67 * is TCP or UDP. The IPv4 header may contain IP options
68 * This feature cannot be set in features for a device
69 * with NETIF_F_HW_CSUM also set. This feature is being
70 * DEPRECATED (see below).
71 *
72 * NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain
73 * TCP or UDP packets over IPv6. These are specifically
74 * unencapsulated packets of the form IPv6|TCP or
75 * IPv4|UDP where the Next Header field in the IPv6
76 * header is either TCP or UDP. IPv6 extension headers
77 * are not supported with this feature. This feature
78 * cannot be set in features for a device with
79 * NETIF_F_HW_CSUM also set. This feature is being
80 * DEPRECATED (see below).
81 *
82 * NETIF_F_RXCSUM - Driver (device) performs receive checksum offload.
83 * This flag is used only used to disable the RX checksum
84 * feature for a device. The stack will accept receive
85 * checksum indication in packets received on a device
86 * regardless of whether NETIF_F_RXCSUM is set.
87 *
88 * B. Checksumming of received packets by device. Indication of checksum
89 * verification is in set skb->ip_summed. Possible values are:
78ea85f1
DB
90 *
91 * CHECKSUM_NONE:
92 *
7a6ae71b 93 * Device did not checksum this packet e.g. due to lack of capabilities.
78ea85f1
DB
94 * The packet contains full (though not verified) checksum in packet but
95 * not in skb->csum. Thus, skb->csum is undefined in this case.
96 *
97 * CHECKSUM_UNNECESSARY:
98 *
99 * The hardware you're dealing with doesn't calculate the full checksum
100 * (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
77cffe23
TH
101 * for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
102 * if their checksums are okay. skb->csum is still undefined in this case
7a6ae71b
TH
103 * though. A driver or device must never modify the checksum field in the
104 * packet even if checksum is verified.
77cffe23
TH
105 *
106 * CHECKSUM_UNNECESSARY is applicable to following protocols:
107 * TCP: IPv6 and IPv4.
108 * UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
109 * zero UDP checksum for either IPv4 or IPv6, the networking stack
110 * may perform further validation in this case.
111 * GRE: only if the checksum is present in the header.
112 * SCTP: indicates the CRC in SCTP header has been validated.
b4759dcd 113 * FCOE: indicates the CRC in FC frame has been validated.
77cffe23
TH
114 *
115 * skb->csum_level indicates the number of consecutive checksums found in
116 * the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
117 * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
118 * and a device is able to verify the checksums for UDP (possibly zero),
119 * GRE (checksum flag is set), and TCP-- skb->csum_level would be set to
120 * two. If the device were only able to verify the UDP checksum and not
121 * GRE, either because it doesn't support GRE checksum of because GRE
122 * checksum is bad, skb->csum_level would be set to zero (TCP checksum is
123 * not considered in this case).
78ea85f1
DB
124 *
125 * CHECKSUM_COMPLETE:
126 *
127 * This is the most generic way. The device supplied checksum of the _whole_
128 * packet as seen by netif_rx() and fills out in skb->csum. Meaning, the
129 * hardware doesn't need to parse L3/L4 headers to implement this.
130 *
b4759dcd
DC
131 * Notes:
132 * - Even if device supports only some protocols, but is able to produce
133 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
134 * - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
78ea85f1
DB
135 *
136 * CHECKSUM_PARTIAL:
137 *
6edec0e6
TH
138 * A checksum is set up to be offloaded to a device as described in the
139 * output description for CHECKSUM_PARTIAL. This may occur on a packet
78ea85f1 140 * received directly from another Linux OS, e.g., a virtualized Linux kernel
6edec0e6
TH
141 * on the same host, or it may be set in the input path in GRO or remote
142 * checksum offload. For the purposes of checksum verification, the checksum
143 * referred to by skb->csum_start + skb->csum_offset and any preceding
144 * checksums in the packet are considered verified. Any checksums in the
145 * packet that are after the checksum being offloaded are not considered to
146 * be verified.
78ea85f1 147 *
7a6ae71b
TH
148 * C. Checksumming on transmit for non-GSO. The stack requests checksum offload
149 * in the skb->ip_summed for a packet. Values are:
78ea85f1
DB
150 *
151 * CHECKSUM_PARTIAL:
152 *
7a6ae71b 153 * The driver is required to checksum the packet as seen by hard_start_xmit()
78ea85f1 154 * from skb->csum_start up to the end, and to record/write the checksum at
7a6ae71b
TH
155 * offset skb->csum_start + skb->csum_offset. A driver may verify that the
156 * csum_start and csum_offset values are valid values given the length and
157 * offset of the packet, however they should not attempt to validate that the
158 * checksum refers to a legitimate transport layer checksum-- it is the
159 * purview of the stack to validate that csum_start and csum_offset are set
160 * correctly.
161 *
162 * When the stack requests checksum offload for a packet, the driver MUST
163 * ensure that the checksum is set correctly. A driver can either offload the
164 * checksum calculation to the device, or call skb_checksum_help (in the case
165 * that the device does not support offload for a particular checksum).
166 *
167 * NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of
168 * NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate
43c26a1a
DC
169 * checksum offload capability.
170 * skb_csum_hwoffload_help() can be called to resolve CHECKSUM_PARTIAL based
171 * on network device checksumming capabilities: if a packet does not match
172 * them, skb_checksum_help or skb_crc32c_help (depending on the value of
173 * csum_not_inet, see item D.) is called to resolve the checksum.
78ea85f1 174 *
7a6ae71b 175 * CHECKSUM_NONE:
78ea85f1 176 *
7a6ae71b
TH
177 * The skb was already checksummed by the protocol, or a checksum is not
178 * required.
78ea85f1
DB
179 *
180 * CHECKSUM_UNNECESSARY:
181 *
7a6ae71b
TH
182 * This has the same meaning on as CHECKSUM_NONE for checksum offload on
183 * output.
78ea85f1 184 *
7a6ae71b
TH
185 * CHECKSUM_COMPLETE:
186 * Not used in checksum output. If a driver observes a packet with this value
187 * set in skbuff, if should treat as CHECKSUM_NONE being set.
188 *
189 * D. Non-IP checksum (CRC) offloads
190 *
191 * NETIF_F_SCTP_CRC - This feature indicates that a device is capable of
192 * offloading the SCTP CRC in a packet. To perform this offload the stack
dba00306
DC
193 * will set set csum_start and csum_offset accordingly, set ip_summed to
194 * CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication in
195 * the skbuff that the CHECKSUM_PARTIAL refers to CRC32c.
196 * A driver that supports both IP checksum offload and SCTP CRC32c offload
197 * must verify which offload is configured for a packet by testing the
198 * value of skb->csum_not_inet; skb_crc32c_csum_help is provided to resolve
199 * CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
7a6ae71b
TH
200 *
201 * NETIF_F_FCOE_CRC - This feature indicates that a device is capable of
202 * offloading the FCOE CRC in a packet. To perform this offload the stack
203 * will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
204 * accordingly. Note the there is no indication in the skbuff that the
205 * CHECKSUM_PARTIAL refers to an FCOE checksum, a driver that supports
206 * both IP checksum offload and FCOE CRC offload must verify which offload
207 * is configured for a packet presumably by inspecting packet headers.
208 *
209 * E. Checksumming on output with GSO.
210 *
211 * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload
212 * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
213 * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as
214 * part of the GSO operation is implied. If a checksum is being offloaded
215 * with GSO then ip_summed is CHECKSUM_PARTIAL, csum_start and csum_offset
216 * are set to refer to the outermost checksum being offload (two offloaded
217 * checksums are possible with UDP encapsulation).
78ea85f1
DB
218 */
219
60476372 220/* Don't change this without changing skb_csum_unnecessary! */
78ea85f1
DB
221#define CHECKSUM_NONE 0
222#define CHECKSUM_UNNECESSARY 1
223#define CHECKSUM_COMPLETE 2
224#define CHECKSUM_PARTIAL 3
1da177e4 225
77cffe23
TH
226/* Maximum value in skb->csum_level */
227#define SKB_MAX_CSUM_LEVEL 3
228
0bec8c88 229#define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES)
fc910a27 230#define SKB_WITH_OVERHEAD(X) \
deea84b0 231 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
fc910a27
DM
232#define SKB_MAX_ORDER(X, ORDER) \
233 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
1da177e4
LT
234#define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
235#define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
236
87fb4b7b
ED
237/* return minimum truesize of one skb containing X bytes of data */
238#define SKB_TRUESIZE(X) ((X) + \
239 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \
240 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
241
1da177e4 242struct net_device;
716ea3a7 243struct scatterlist;
9c55e01c 244struct pipe_inode_info;
a8f820aa 245struct iov_iter;
fd11a83d 246struct napi_struct;
1da177e4 247
5f79e0f9 248#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1da177e4
LT
249struct nf_conntrack {
250 atomic_t use;
1da177e4 251};
5f79e0f9 252#endif
1da177e4 253
34666d46 254#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
1da177e4 255struct nf_bridge_info {
53869ceb 256 refcount_t use;
3eaf4025
FW
257 enum {
258 BRNF_PROTO_UNCHANGED,
259 BRNF_PROTO_8021Q,
260 BRNF_PROTO_PPPOE
7fb48c5b 261 } orig_proto:8;
72b1e5e4
FW
262 u8 pkt_otherhost:1;
263 u8 in_prerouting:1;
264 u8 bridged_dnat:1;
411ffb4f 265 __u16 frag_max_size;
bf1ac5ca 266 struct net_device *physindev;
63cdbc06
FW
267
268 /* always valid & non-NULL from FORWARD on, for physdev match */
269 struct net_device *physoutdev;
7fb48c5b 270 union {
72b1e5e4 271 /* prerouting: detect dnat in orig/reply direction */
72b31f72
BT
272 __be32 ipv4_daddr;
273 struct in6_addr ipv6_daddr;
72b1e5e4
FW
274
275 /* after prerouting + nat detected: store original source
276 * mac since neigh resolution overwrites it, only used while
277 * skb is out in neigh layer.
278 */
279 char neigh_header[8];
72b31f72 280 };
1da177e4
LT
281};
282#endif
283
1da177e4
LT
284struct sk_buff_head {
285 /* These two members must be first. */
286 struct sk_buff *next;
287 struct sk_buff *prev;
288
289 __u32 qlen;
290 spinlock_t lock;
291};
292
293struct sk_buff;
294
9d4dde52
IC
295/* To allow 64K frame to be packed as single skb without frag_list we
296 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
297 * buffers which do not start on a page boundary.
298 *
299 * Since GRO uses frags we allocate at least 16 regardless of page
300 * size.
a715dea3 301 */
9d4dde52 302#if (65536/PAGE_SIZE + 1) < 16
eec00954 303#define MAX_SKB_FRAGS 16UL
a715dea3 304#else
9d4dde52 305#define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
a715dea3 306#endif
5f74f82e 307extern int sysctl_max_skb_frags;
1da177e4 308
3953c46c
MRL
309/* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
310 * segment using its current segmentation instead.
311 */
312#define GSO_BY_FRAGS 0xFFFF
313
1da177e4
LT
314typedef struct skb_frag_struct skb_frag_t;
315
316struct skb_frag_struct {
a8605c60
IC
317 struct {
318 struct page *p;
319 } page;
cb4dfe56 320#if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
a309bb07
DM
321 __u32 page_offset;
322 __u32 size;
cb4dfe56
ED
323#else
324 __u16 page_offset;
325 __u16 size;
326#endif
1da177e4
LT
327};
328
9e903e08
ED
329static inline unsigned int skb_frag_size(const skb_frag_t *frag)
330{
331 return frag->size;
332}
333
334static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
335{
336 frag->size = size;
337}
338
339static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
340{
341 frag->size += delta;
342}
343
344static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
345{
346 frag->size -= delta;
347}
348
c613c209
WB
349static inline bool skb_frag_must_loop(struct page *p)
350{
351#if defined(CONFIG_HIGHMEM)
352 if (PageHighMem(p))
353 return true;
354#endif
355 return false;
356}
357
358/**
359 * skb_frag_foreach_page - loop over pages in a fragment
360 *
361 * @f: skb frag to operate on
362 * @f_off: offset from start of f->page.p
363 * @f_len: length from f_off to loop over
364 * @p: (temp var) current page
365 * @p_off: (temp var) offset from start of current page,
366 * non-zero only on first page.
367 * @p_len: (temp var) length in current page,
368 * < PAGE_SIZE only on first and last page.
369 * @copied: (temp var) length so far, excluding current p_len.
370 *
371 * A fragment can hold a compound page, in which case per-page
372 * operations, notably kmap_atomic, must be called for each
373 * regular page.
374 */
375#define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied) \
376 for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT), \
377 p_off = (f_off) & (PAGE_SIZE - 1), \
378 p_len = skb_frag_must_loop(p) ? \
379 min_t(u32, f_len, PAGE_SIZE - p_off) : f_len, \
380 copied = 0; \
381 copied < f_len; \
382 copied += p_len, p++, p_off = 0, \
383 p_len = min_t(u32, f_len - copied, PAGE_SIZE)) \
384
ac45f602
PO
385#define HAVE_HW_TIME_STAMP
386
387/**
d3a21be8 388 * struct skb_shared_hwtstamps - hardware time stamps
ac45f602
PO
389 * @hwtstamp: hardware time stamp transformed into duration
390 * since arbitrary point in time
ac45f602
PO
391 *
392 * Software time stamps generated by ktime_get_real() are stored in
4d276eb6 393 * skb->tstamp.
ac45f602
PO
394 *
395 * hwtstamps can only be compared against other hwtstamps from
396 * the same device.
397 *
398 * This structure is attached to packets as part of the
399 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
400 */
401struct skb_shared_hwtstamps {
402 ktime_t hwtstamp;
ac45f602
PO
403};
404
2244d07b
OH
405/* Definitions for tx_flags in struct skb_shared_info */
406enum {
407 /* generate hardware time stamp */
408 SKBTX_HW_TSTAMP = 1 << 0,
409
e7fd2885 410 /* generate software time stamp when queueing packet to NIC */
2244d07b
OH
411 SKBTX_SW_TSTAMP = 1 << 1,
412
413 /* device driver is going to provide hardware time stamp */
414 SKBTX_IN_PROGRESS = 1 << 2,
415
a6686f2f 416 /* device driver supports TX zero-copy buffers */
62b1a8ab 417 SKBTX_DEV_ZEROCOPY = 1 << 3,
6e3e939f
JB
418
419 /* generate wifi status information (where possible) */
62b1a8ab 420 SKBTX_WIFI_STATUS = 1 << 4,
c9af6db4
PS
421
422 /* This indicates at least one fragment might be overwritten
423 * (as in vmsplice(), sendfile() ...)
424 * If we need to compute a TX checksum, we'll need to copy
425 * all frags to avoid possible bad checksum
426 */
427 SKBTX_SHARED_FRAG = 1 << 5,
e7fd2885
WB
428
429 /* generate software time stamp when entering packet scheduling */
430 SKBTX_SCHED_TSTAMP = 1 << 6,
a6686f2f
SM
431};
432
52267790 433#define SKBTX_ZEROCOPY_FRAG (SKBTX_DEV_ZEROCOPY | SKBTX_SHARED_FRAG)
e1c8a607 434#define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \
0a2cf20c 435 SKBTX_SCHED_TSTAMP)
f24b9be5
WB
436#define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
437
a6686f2f
SM
438/*
439 * The callback notifies userspace to release buffers when skb DMA is done in
440 * lower device, the skb last reference should be 0 when calling this.
e19d6763
MT
441 * The zerocopy_success argument is true if zero copy transmit occurred,
442 * false on data copy or out of memory error caused by data copy attempt.
ca8f4fb2
MT
443 * The ctx field is used to track device context.
444 * The desc field is used to track userspace buffer index.
a6686f2f
SM
445 */
446struct ubuf_info {
e19d6763 447 void (*callback)(struct ubuf_info *, bool zerocopy_success);
4ab6c99d
WB
448 union {
449 struct {
450 unsigned long desc;
451 void *ctx;
452 };
453 struct {
454 u32 id;
455 u16 len;
456 u16 zerocopy:1;
457 u32 bytelen;
458 };
459 };
c1d1b437 460 refcount_t refcnt;
a91dbff5
WB
461
462 struct mmpin {
463 struct user_struct *user;
464 unsigned int num_pg;
465 } mmp;
ac45f602
PO
466};
467
52267790
WB
468#define skb_uarg(SKB) ((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
469
470struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size);
4ab6c99d
WB
471struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
472 struct ubuf_info *uarg);
52267790
WB
473
474static inline void sock_zerocopy_get(struct ubuf_info *uarg)
475{
c1d1b437 476 refcount_inc(&uarg->refcnt);
52267790
WB
477}
478
479void sock_zerocopy_put(struct ubuf_info *uarg);
480void sock_zerocopy_put_abort(struct ubuf_info *uarg);
481
482void sock_zerocopy_callback(struct ubuf_info *uarg, bool success);
483
484int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
485 struct msghdr *msg, int len,
486 struct ubuf_info *uarg);
487
1da177e4
LT
488/* This data is invariant across clones and lives at
489 * the end of the header data, ie. at skb->end.
490 */
491struct skb_shared_info {
7f564528 492 unsigned short _unused;
9f42f126
IC
493 unsigned char nr_frags;
494 __u8 tx_flags;
7967168c
HX
495 unsigned short gso_size;
496 /* Warning: this field is not always filled in (UFO)! */
497 unsigned short gso_segs;
1da177e4 498 struct sk_buff *frag_list;
ac45f602 499 struct skb_shared_hwtstamps hwtstamps;
7f564528 500 unsigned int gso_type;
09c2d251 501 u32 tskey;
9f42f126 502 __be32 ip6_frag_id;
ec7d2f2c
ED
503
504 /*
505 * Warning : all fields before dataref are cleared in __alloc_skb()
506 */
507 atomic_t dataref;
508
69e3c75f
JB
509 /* Intermediate layers must ensure that destructor_arg
510 * remains valid until skb destructor */
511 void * destructor_arg;
a6686f2f 512
fed66381
ED
513 /* must be last field, see pskb_expand_head() */
514 skb_frag_t frags[MAX_SKB_FRAGS];
1da177e4
LT
515};
516
517/* We divide dataref into two halves. The higher 16 bits hold references
518 * to the payload part of skb->data. The lower 16 bits hold references to
334a8132
PM
519 * the entire skb->data. A clone of a headerless skb holds the length of
520 * the header in skb->hdr_len.
1da177e4
LT
521 *
522 * All users must obey the rule that the skb->data reference count must be
523 * greater than or equal to the payload reference count.
524 *
525 * Holding a reference to the payload part means that the user does not
526 * care about modifications to the header part of skb->data.
527 */
528#define SKB_DATAREF_SHIFT 16
529#define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
530
d179cd12
DM
531
532enum {
c8753d55
VS
533 SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */
534 SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */
535 SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */
d179cd12
DM
536};
537
7967168c
HX
538enum {
539 SKB_GSO_TCPV4 = 1 << 0,
576a30eb
HX
540
541 /* This indicates the skb is from an untrusted source. */
d9d30adf 542 SKB_GSO_DODGY = 1 << 1,
b0da8537
MC
543
544 /* This indicates the tcp segment has CWR set. */
d9d30adf 545 SKB_GSO_TCP_ECN = 1 << 2,
f83ef8c0 546
d9d30adf 547 SKB_GSO_TCP_FIXEDID = 1 << 3,
01d5b2fc 548
d9d30adf 549 SKB_GSO_TCPV6 = 1 << 4,
68c33163 550
d9d30adf 551 SKB_GSO_FCOE = 1 << 5,
73136267 552
d9d30adf 553 SKB_GSO_GRE = 1 << 6,
0d89d203 554
d9d30adf 555 SKB_GSO_GRE_CSUM = 1 << 7,
cb32f511 556
d9d30adf 557 SKB_GSO_IPXIP4 = 1 << 8,
61c1db7f 558
d9d30adf 559 SKB_GSO_IPXIP6 = 1 << 9,
0f4f4ffa 560
d9d30adf 561 SKB_GSO_UDP_TUNNEL = 1 << 10,
4749c09c 562
d9d30adf 563 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
cbc53e08 564
d9d30adf 565 SKB_GSO_PARTIAL = 1 << 12,
802ab55a 566
d9d30adf 567 SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
90017acc 568
d9d30adf 569 SKB_GSO_SCTP = 1 << 14,
c7ef8f0c 570
d9d30adf 571 SKB_GSO_ESP = 1 << 15,
7967168c
HX
572};
573
2e07fa9c
ACM
574#if BITS_PER_LONG > 32
575#define NET_SKBUFF_DATA_USES_OFFSET 1
576#endif
577
578#ifdef NET_SKBUFF_DATA_USES_OFFSET
579typedef unsigned int sk_buff_data_t;
580#else
581typedef unsigned char *sk_buff_data_t;
582#endif
583
1da177e4
LT
584/**
585 * struct sk_buff - socket buffer
586 * @next: Next buffer in list
587 * @prev: Previous buffer in list
363ec392 588 * @tstamp: Time we arrived/left
56b17425 589 * @rbnode: RB tree node, alternative to next/prev for netem/tcp
d84e0bd7 590 * @sk: Socket we are owned by
1da177e4 591 * @dev: Device we arrived on/are leaving by
d84e0bd7 592 * @cb: Control buffer. Free for use by every layer. Put private vars here
7fee226a 593 * @_skb_refdst: destination entry (with norefcount bit)
67be2dd1 594 * @sp: the security path, used for xfrm
1da177e4
LT
595 * @len: Length of actual data
596 * @data_len: Data length
597 * @mac_len: Length of link layer header
334a8132 598 * @hdr_len: writable header length of cloned skb
663ead3b
HX
599 * @csum: Checksum (must include start/offset pair)
600 * @csum_start: Offset from skb->head where checksumming should start
601 * @csum_offset: Offset from csum_start where checksum should be stored
d84e0bd7 602 * @priority: Packet queueing priority
60ff7467 603 * @ignore_df: allow local fragmentation
1da177e4 604 * @cloned: Head may be cloned (check refcnt to be sure)
d84e0bd7 605 * @ip_summed: Driver fed us an IP checksum
1da177e4
LT
606 * @nohdr: Payload reference only, must not modify header
607 * @pkt_type: Packet class
c83c2486 608 * @fclone: skbuff clone status
c83c2486 609 * @ipvs_property: skbuff is owned by ipvs
e7246e12 610 * @tc_skip_classify: do not classify packet. set by IFB device
8dc07fdb 611 * @tc_at_ingress: used within tc_classify to distinguish in/egress
bc31c905
WB
612 * @tc_redirected: packet was redirected by a tc action
613 * @tc_from_ingress: if tc_redirected, tc_at_ingress at time of redirect
31729363
RD
614 * @peeked: this packet has been seen already, so stats have been
615 * done for it, don't do them again
ba9dda3a 616 * @nf_trace: netfilter packet trace flag
d84e0bd7
DB
617 * @protocol: Packet protocol from driver
618 * @destructor: Destruct function
a9e419dc 619 * @_nfct: Associated connection, if any (with nfctinfo bits)
1da177e4 620 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
8964be4a 621 * @skb_iif: ifindex of device we arrived on
1da177e4 622 * @tc_index: Traffic control index
61b905da 623 * @hash: the packet hash
d84e0bd7 624 * @queue_mapping: Queue mapping for multiqueue devices
0b725a2c 625 * @xmit_more: More SKBs are pending for this queue
553a5672 626 * @ndisc_nodetype: router type (from link layer)
d84e0bd7 627 * @ooo_okay: allow the mapping of a socket to a queue to be changed
61b905da 628 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport
4ca2462e 629 * ports.
a3b18ddb 630 * @sw_hash: indicates hash was computed in software stack
6e3e939f
JB
631 * @wifi_acked_valid: wifi_acked was set
632 * @wifi_acked: whether frame was acked on wifi or not
3bdc0eba 633 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS
dba00306 634 * @csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
4ff06203 635 * @dst_pending_confirm: need to confirm neighbour
06021292 636 * @napi_id: id of the NAPI struct this skb came from
984bc16c 637 * @secmark: security marking
d84e0bd7 638 * @mark: Generic packet mark
86a9bad3 639 * @vlan_proto: vlan encapsulation protocol
6aa895b0 640 * @vlan_tci: vlan tag control information
0d89d203 641 * @inner_protocol: Protocol (encapsulation)
6a674e9c
JG
642 * @inner_transport_header: Inner transport layer header (encapsulation)
643 * @inner_network_header: Network layer header (encapsulation)
aefbd2b3 644 * @inner_mac_header: Link layer header (encapsulation)
d84e0bd7
DB
645 * @transport_header: Transport layer header
646 * @network_header: Network layer header
647 * @mac_header: Link layer header
648 * @tail: Tail pointer
649 * @end: End pointer
650 * @head: Head of buffer
651 * @data: Data head pointer
652 * @truesize: Buffer size
653 * @users: User count - see {datagram,tcp}.c
1da177e4
LT
654 */
655
656struct sk_buff {
363ec392 657 union {
56b17425
ED
658 struct {
659 /* These two members must be first. */
660 struct sk_buff *next;
661 struct sk_buff *prev;
662
663 union {
664 ktime_t tstamp;
9a568de4 665 u64 skb_mstamp;
56b17425
ED
666 };
667 };
668 struct rb_node rbnode; /* used in netem & tcp stack */
363ec392 669 };
da3f5cf1 670 struct sock *sk;
1da177e4 671
c84d9490
ED
672 union {
673 struct net_device *dev;
674 /* Some protocols might use this space to store information,
675 * while device pointer would be NULL.
676 * UDP receive path is one user.
677 */
678 unsigned long dev_scratch;
679 };
1da177e4
LT
680 /*
681 * This is the control buffer. It is free to use for every
682 * layer. Please put your private variables there. If you
683 * want to keep them across layers you have to do a skb_clone()
684 * first. This is owned by whoever has the skb queued ATM.
685 */
da3f5cf1 686 char cb[48] __aligned(8);
1da177e4 687
7fee226a 688 unsigned long _skb_refdst;
b1937227 689 void (*destructor)(struct sk_buff *skb);
da3f5cf1
FF
690#ifdef CONFIG_XFRM
691 struct sec_path *sp;
b1937227
ED
692#endif
693#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
a9e419dc 694 unsigned long _nfct;
b1937227 695#endif
85224844 696#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
b1937227 697 struct nf_bridge_info *nf_bridge;
da3f5cf1 698#endif
1da177e4 699 unsigned int len,
334a8132
PM
700 data_len;
701 __u16 mac_len,
702 hdr_len;
b1937227
ED
703
704 /* Following fields are _not_ copied in __copy_skb_header()
705 * Note that queue_mapping is here mostly to fill a hole.
706 */
fe55f6d5 707 kmemcheck_bitfield_begin(flags1);
b1937227 708 __u16 queue_mapping;
36bbef52
DB
709
710/* if you move cloned around you also must adapt those constants */
711#ifdef __BIG_ENDIAN_BITFIELD
712#define CLONED_MASK (1 << 7)
713#else
714#define CLONED_MASK 1
715#endif
716#define CLONED_OFFSET() offsetof(struct sk_buff, __cloned_offset)
717
718 __u8 __cloned_offset[0];
b1937227 719 __u8 cloned:1,
6869c4d8 720 nohdr:1,
b84f4cc9 721 fclone:2,
a59322be 722 peeked:1,
b1937227 723 head_frag:1,
36bbef52
DB
724 xmit_more:1,
725 __unused:1; /* one bit hole */
fe55f6d5 726 kmemcheck_bitfield_end(flags1);
4031ae6e 727
b1937227
ED
728 /* fields enclosed in headers_start/headers_end are copied
729 * using a single memcpy() in __copy_skb_header()
730 */
ebcf34f3 731 /* private: */
b1937227 732 __u32 headers_start[0];
ebcf34f3 733 /* public: */
4031ae6e 734
233577a2
HFS
735/* if you move pkt_type around you also must adapt those constants */
736#ifdef __BIG_ENDIAN_BITFIELD
737#define PKT_TYPE_MAX (7 << 5)
738#else
739#define PKT_TYPE_MAX 7
1da177e4 740#endif
233577a2 741#define PKT_TYPE_OFFSET() offsetof(struct sk_buff, __pkt_type_offset)
fe55f6d5 742
233577a2 743 __u8 __pkt_type_offset[0];
b1937227 744 __u8 pkt_type:3;
c93bdd0e 745 __u8 pfmemalloc:1;
b1937227 746 __u8 ignore_df:1;
b1937227
ED
747
748 __u8 nf_trace:1;
749 __u8 ip_summed:2;
3853b584 750 __u8 ooo_okay:1;
61b905da 751 __u8 l4_hash:1;
a3b18ddb 752 __u8 sw_hash:1;
6e3e939f
JB
753 __u8 wifi_acked_valid:1;
754 __u8 wifi_acked:1;
b1937227 755
3bdc0eba 756 __u8 no_fcs:1;
77cffe23 757 /* Indicates the inner headers are valid in the skbuff. */
6a674e9c 758 __u8 encapsulation:1;
7e2b10c1 759 __u8 encap_hdr_csum:1;
5d0c2b95 760 __u8 csum_valid:1;
7e3cead5 761 __u8 csum_complete_sw:1;
b1937227 762 __u8 csum_level:2;
dba00306 763 __u8 csum_not_inet:1;
fe55f6d5 764
4ff06203 765 __u8 dst_pending_confirm:1;
b1937227
ED
766#ifdef CONFIG_IPV6_NDISC_NODETYPE
767 __u8 ndisc_nodetype:2;
768#endif
769 __u8 ipvs_property:1;
8bce6d7d 770 __u8 inner_protocol_type:1;
e585f236 771 __u8 remcsum_offload:1;
6bc506b4
IS
772#ifdef CONFIG_NET_SWITCHDEV
773 __u8 offload_fwd_mark:1;
774#endif
e7246e12
WB
775#ifdef CONFIG_NET_CLS_ACT
776 __u8 tc_skip_classify:1;
8dc07fdb 777 __u8 tc_at_ingress:1;
bc31c905
WB
778 __u8 tc_redirected:1;
779 __u8 tc_from_ingress:1;
e7246e12 780#endif
b1937227
ED
781
782#ifdef CONFIG_NET_SCHED
783 __u16 tc_index; /* traffic control index */
b1937227 784#endif
fe55f6d5 785
b1937227
ED
786 union {
787 __wsum csum;
788 struct {
789 __u16 csum_start;
790 __u16 csum_offset;
791 };
792 };
793 __u32 priority;
794 int skb_iif;
795 __u32 hash;
796 __be16 vlan_proto;
797 __u16 vlan_tci;
2bd82484
ED
798#if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
799 union {
800 unsigned int napi_id;
801 unsigned int sender_cpu;
802 };
97fc2f08 803#endif
984bc16c 804#ifdef CONFIG_NETWORK_SECMARK
6bc506b4 805 __u32 secmark;
0c4f691f 806#endif
0c4f691f 807
3b885787
NH
808 union {
809 __u32 mark;
16fad69c 810 __u32 reserved_tailroom;
3b885787 811 };
1da177e4 812
8bce6d7d
TH
813 union {
814 __be16 inner_protocol;
815 __u8 inner_ipproto;
816 };
817
1a37e412
SH
818 __u16 inner_transport_header;
819 __u16 inner_network_header;
820 __u16 inner_mac_header;
b1937227
ED
821
822 __be16 protocol;
1a37e412
SH
823 __u16 transport_header;
824 __u16 network_header;
825 __u16 mac_header;
b1937227 826
ebcf34f3 827 /* private: */
b1937227 828 __u32 headers_end[0];
ebcf34f3 829 /* public: */
b1937227 830
1da177e4 831 /* These elements must be at the end, see alloc_skb() for details. */
27a884dc 832 sk_buff_data_t tail;
4305b541 833 sk_buff_data_t end;
1da177e4 834 unsigned char *head,
4305b541 835 *data;
27a884dc 836 unsigned int truesize;
63354797 837 refcount_t users;
1da177e4
LT
838};
839
840#ifdef __KERNEL__
841/*
842 * Handling routines are only of interest to the kernel
843 */
844#include <linux/slab.h>
845
1da177e4 846
c93bdd0e
MG
847#define SKB_ALLOC_FCLONE 0x01
848#define SKB_ALLOC_RX 0x02
fd11a83d 849#define SKB_ALLOC_NAPI 0x04
c93bdd0e
MG
850
851/* Returns true if the skb was allocated from PFMEMALLOC reserves */
852static inline bool skb_pfmemalloc(const struct sk_buff *skb)
853{
854 return unlikely(skb->pfmemalloc);
855}
856
7fee226a
ED
857/*
858 * skb might have a dst pointer attached, refcounted or not.
859 * _skb_refdst low order bit is set if refcount was _not_ taken
860 */
861#define SKB_DST_NOREF 1UL
862#define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
863
a9e419dc 864#define SKB_NFCT_PTRMASK ~(7UL)
7fee226a
ED
865/**
866 * skb_dst - returns skb dst_entry
867 * @skb: buffer
868 *
869 * Returns skb dst_entry, regardless of reference taken or not.
870 */
adf30907
ED
871static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
872{
7fee226a
ED
873 /* If refdst was not refcounted, check we still are in a
874 * rcu_read_lock section
875 */
876 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
877 !rcu_read_lock_held() &&
878 !rcu_read_lock_bh_held());
879 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
adf30907
ED
880}
881
7fee226a
ED
882/**
883 * skb_dst_set - sets skb dst
884 * @skb: buffer
885 * @dst: dst entry
886 *
887 * Sets skb dst, assuming a reference was taken on dst and should
888 * be released by skb_dst_drop()
889 */
adf30907
ED
890static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
891{
7fee226a
ED
892 skb->_skb_refdst = (unsigned long)dst;
893}
894
932bc4d7
JA
895/**
896 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
897 * @skb: buffer
898 * @dst: dst entry
899 *
900 * Sets skb dst, assuming a reference was not taken on dst.
901 * If dst entry is cached, we do not take reference and dst_release
902 * will be avoided by refdst_drop. If dst entry is not cached, we take
903 * reference, so that last dst_release can destroy the dst immediately.
904 */
905static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
906{
dbfc4fb7
HFS
907 WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
908 skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
932bc4d7 909}
7fee226a
ED
910
911/**
25985edc 912 * skb_dst_is_noref - Test if skb dst isn't refcounted
7fee226a
ED
913 * @skb: buffer
914 */
915static inline bool skb_dst_is_noref(const struct sk_buff *skb)
916{
917 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
adf30907
ED
918}
919
511c3f92
ED
920static inline struct rtable *skb_rtable(const struct sk_buff *skb)
921{
adf30907 922 return (struct rtable *)skb_dst(skb);
511c3f92
ED
923}
924
8b10cab6
JHS
925/* For mangling skb->pkt_type from user space side from applications
926 * such as nft, tc, etc, we only allow a conservative subset of
927 * possible pkt_types to be set.
928*/
929static inline bool skb_pkt_type_ok(u32 ptype)
930{
931 return ptype <= PACKET_OTHERHOST;
932}
933
90b602f8
ML
934static inline unsigned int skb_napi_id(const struct sk_buff *skb)
935{
936#ifdef CONFIG_NET_RX_BUSY_POLL
937 return skb->napi_id;
938#else
939 return 0;
940#endif
941}
942
3889a803
PA
943/* decrement the reference count and return true if we can free the skb */
944static inline bool skb_unref(struct sk_buff *skb)
945{
946 if (unlikely(!skb))
947 return false;
63354797 948 if (likely(refcount_read(&skb->users) == 1))
3889a803 949 smp_rmb();
63354797 950 else if (likely(!refcount_dec_and_test(&skb->users)))
3889a803
PA
951 return false;
952
953 return true;
954}
955
0a463c78 956void skb_release_head_state(struct sk_buff *skb);
7965bd4d
JP
957void kfree_skb(struct sk_buff *skb);
958void kfree_skb_list(struct sk_buff *segs);
959void skb_tx_error(struct sk_buff *skb);
960void consume_skb(struct sk_buff *skb);
ca2c1418 961void __consume_stateless_skb(struct sk_buff *skb);
7965bd4d 962void __kfree_skb(struct sk_buff *skb);
d7e8883c 963extern struct kmem_cache *skbuff_head_cache;
bad43ca8 964
7965bd4d
JP
965void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
966bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
967 bool *fragstolen, int *delta_truesize);
bad43ca8 968
7965bd4d
JP
969struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
970 int node);
2ea2f62c 971struct sk_buff *__build_skb(void *data, unsigned int frag_size);
7965bd4d 972struct sk_buff *build_skb(void *data, unsigned int frag_size);
d179cd12 973static inline struct sk_buff *alloc_skb(unsigned int size,
dd0fc66f 974 gfp_t priority)
d179cd12 975{
564824b0 976 return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
d179cd12
DM
977}
978
2e4e4410
ED
979struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
980 unsigned long data_len,
981 int max_page_order,
982 int *errcode,
983 gfp_t gfp_mask);
984
d0bf4a9e
ED
985/* Layout of fast clones : [skb1][skb2][fclone_ref] */
986struct sk_buff_fclones {
987 struct sk_buff skb1;
988
989 struct sk_buff skb2;
990
2638595a 991 refcount_t fclone_ref;
d0bf4a9e
ED
992};
993
994/**
995 * skb_fclone_busy - check if fclone is busy
293de7de 996 * @sk: socket
d0bf4a9e
ED
997 * @skb: buffer
998 *
bda13fed 999 * Returns true if skb is a fast clone, and its clone is not freed.
39bb5e62
ED
1000 * Some drivers call skb_orphan() in their ndo_start_xmit(),
1001 * so we also check that this didnt happen.
d0bf4a9e 1002 */
39bb5e62
ED
1003static inline bool skb_fclone_busy(const struct sock *sk,
1004 const struct sk_buff *skb)
d0bf4a9e
ED
1005{
1006 const struct sk_buff_fclones *fclones;
1007
1008 fclones = container_of(skb, struct sk_buff_fclones, skb1);
1009
1010 return skb->fclone == SKB_FCLONE_ORIG &&
2638595a 1011 refcount_read(&fclones->fclone_ref) > 1 &&
39bb5e62 1012 fclones->skb2.sk == sk;
d0bf4a9e
ED
1013}
1014
d179cd12 1015static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
dd0fc66f 1016 gfp_t priority)
d179cd12 1017{
c93bdd0e 1018 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
d179cd12
DM
1019}
1020
7965bd4d
JP
1021struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1022int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1023struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1024struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
bad93e9d
OP
1025struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1026 gfp_t gfp_mask, bool fclone);
1027static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1028 gfp_t gfp_mask)
1029{
1030 return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1031}
7965bd4d
JP
1032
1033int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1034struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1035 unsigned int headroom);
1036struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1037 int newtailroom, gfp_t priority);
48a1df65
JD
1038int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1039 int offset, int len);
1040int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1041 int offset, int len);
7965bd4d 1042int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
cd0a137a
FF
1043int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1044
1045/**
1046 * skb_pad - zero pad the tail of an skb
1047 * @skb: buffer to pad
1048 * @pad: space to pad
1049 *
1050 * Ensure that a buffer is followed by a padding area that is zero
1051 * filled. Used by network drivers which may DMA or transfer data
1052 * beyond the buffer end onto the wire.
1053 *
1054 * May return error in out of memory cases. The skb is freed on error.
1055 */
1056static inline int skb_pad(struct sk_buff *skb, int pad)
1057{
1058 return __skb_pad(skb, pad, true);
1059}
ead2ceb0 1060#define dev_kfree_skb(a) consume_skb(a)
1da177e4 1061
7965bd4d
JP
1062int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
1063 int getfrag(void *from, char *to, int offset,
1064 int len, int odd, struct sk_buff *skb),
1065 void *from, int length);
e89e9cf5 1066
be12a1fe
HFS
1067int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1068 int offset, size_t size);
1069
d94d9fee 1070struct skb_seq_state {
677e90ed
TG
1071 __u32 lower_offset;
1072 __u32 upper_offset;
1073 __u32 frag_idx;
1074 __u32 stepped_offset;
1075 struct sk_buff *root_skb;
1076 struct sk_buff *cur_skb;
1077 __u8 *frag_data;
1078};
1079
7965bd4d
JP
1080void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1081 unsigned int to, struct skb_seq_state *st);
1082unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1083 struct skb_seq_state *st);
1084void skb_abort_seq_read(struct skb_seq_state *st);
677e90ed 1085
7965bd4d 1086unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
059a2440 1087 unsigned int to, struct ts_config *config);
3fc7e8a6 1088
09323cc4
TH
1089/*
1090 * Packet hash types specify the type of hash in skb_set_hash.
1091 *
1092 * Hash types refer to the protocol layer addresses which are used to
1093 * construct a packet's hash. The hashes are used to differentiate or identify
1094 * flows of the protocol layer for the hash type. Hash types are either
1095 * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1096 *
1097 * Properties of hashes:
1098 *
1099 * 1) Two packets in different flows have different hash values
1100 * 2) Two packets in the same flow should have the same hash value
1101 *
1102 * A hash at a higher layer is considered to be more specific. A driver should
1103 * set the most specific hash possible.
1104 *
1105 * A driver cannot indicate a more specific hash than the layer at which a hash
1106 * was computed. For instance an L3 hash cannot be set as an L4 hash.
1107 *
1108 * A driver may indicate a hash level which is less specific than the
1109 * actual layer the hash was computed on. For instance, a hash computed
1110 * at L4 may be considered an L3 hash. This should only be done if the
1111 * driver can't unambiguously determine that the HW computed the hash at
1112 * the higher layer. Note that the "should" in the second property above
1113 * permits this.
1114 */
1115enum pkt_hash_types {
1116 PKT_HASH_TYPE_NONE, /* Undefined type */
1117 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */
1118 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */
1119 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */
1120};
1121
bcc83839 1122static inline void skb_clear_hash(struct sk_buff *skb)
09323cc4 1123{
bcc83839 1124 skb->hash = 0;
a3b18ddb 1125 skb->sw_hash = 0;
bcc83839
TH
1126 skb->l4_hash = 0;
1127}
1128
1129static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1130{
1131 if (!skb->l4_hash)
1132 skb_clear_hash(skb);
1133}
1134
1135static inline void
1136__skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1137{
1138 skb->l4_hash = is_l4;
1139 skb->sw_hash = is_sw;
61b905da 1140 skb->hash = hash;
09323cc4
TH
1141}
1142
bcc83839
TH
1143static inline void
1144skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1145{
1146 /* Used by drivers to set hash from HW */
1147 __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1148}
1149
1150static inline void
1151__skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1152{
1153 __skb_set_hash(skb, hash, true, is_l4);
1154}
1155
e5276937 1156void __skb_get_hash(struct sk_buff *skb);
b917783c 1157u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
e5276937
TH
1158u32 skb_get_poff(const struct sk_buff *skb);
1159u32 __skb_get_poff(const struct sk_buff *skb, void *data,
1160 const struct flow_keys *keys, int hlen);
1161__be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1162 void *data, int hlen_proto);
1163
1164static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1165 int thoff, u8 ip_proto)
1166{
1167 return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1168}
1169
1170void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1171 const struct flow_dissector_key *key,
1172 unsigned int key_count);
1173
1174bool __skb_flow_dissect(const struct sk_buff *skb,
1175 struct flow_dissector *flow_dissector,
1176 void *target_container,
cd79a238
TH
1177 void *data, __be16 proto, int nhoff, int hlen,
1178 unsigned int flags);
e5276937
TH
1179
1180static inline bool skb_flow_dissect(const struct sk_buff *skb,
1181 struct flow_dissector *flow_dissector,
cd79a238 1182 void *target_container, unsigned int flags)
e5276937
TH
1183{
1184 return __skb_flow_dissect(skb, flow_dissector, target_container,
cd79a238 1185 NULL, 0, 0, 0, flags);
e5276937
TH
1186}
1187
1188static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
cd79a238
TH
1189 struct flow_keys *flow,
1190 unsigned int flags)
e5276937
TH
1191{
1192 memset(flow, 0, sizeof(*flow));
1193 return __skb_flow_dissect(skb, &flow_keys_dissector, flow,
cd79a238 1194 NULL, 0, 0, 0, flags);
e5276937
TH
1195}
1196
1197static inline bool skb_flow_dissect_flow_keys_buf(struct flow_keys *flow,
1198 void *data, __be16 proto,
cd79a238
TH
1199 int nhoff, int hlen,
1200 unsigned int flags)
e5276937
TH
1201{
1202 memset(flow, 0, sizeof(*flow));
1203 return __skb_flow_dissect(NULL, &flow_keys_buf_dissector, flow,
cd79a238 1204 data, proto, nhoff, hlen, flags);
e5276937
TH
1205}
1206
3958afa1 1207static inline __u32 skb_get_hash(struct sk_buff *skb)
bfb564e7 1208{
a3b18ddb 1209 if (!skb->l4_hash && !skb->sw_hash)
3958afa1 1210 __skb_get_hash(skb);
bfb564e7 1211
61b905da 1212 return skb->hash;
bfb564e7
KK
1213}
1214
20a17bf6 1215static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
f70ea018 1216{
c6cc1ca7
TH
1217 if (!skb->l4_hash && !skb->sw_hash) {
1218 struct flow_keys keys;
de4c1f8b 1219 __u32 hash = __get_hash_from_flowi6(fl6, &keys);
c6cc1ca7 1220
de4c1f8b 1221 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
c6cc1ca7 1222 }
f70ea018
TH
1223
1224 return skb->hash;
1225}
1226
50fb7992
TH
1227__u32 skb_get_hash_perturb(const struct sk_buff *skb, u32 perturb);
1228
57bdf7f4
TH
1229static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1230{
61b905da 1231 return skb->hash;
57bdf7f4
TH
1232}
1233
3df7a74e
TH
1234static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1235{
61b905da 1236 to->hash = from->hash;
a3b18ddb 1237 to->sw_hash = from->sw_hash;
61b905da 1238 to->l4_hash = from->l4_hash;
3df7a74e
TH
1239};
1240
4305b541
ACM
1241#ifdef NET_SKBUFF_DATA_USES_OFFSET
1242static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1243{
1244 return skb->head + skb->end;
1245}
ec47ea82
AD
1246
1247static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1248{
1249 return skb->end;
1250}
4305b541
ACM
1251#else
1252static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1253{
1254 return skb->end;
1255}
ec47ea82
AD
1256
1257static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1258{
1259 return skb->end - skb->head;
1260}
4305b541
ACM
1261#endif
1262
1da177e4 1263/* Internal */
4305b541 1264#define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
1da177e4 1265
ac45f602
PO
1266static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1267{
1268 return &skb_shinfo(skb)->hwtstamps;
1269}
1270
52267790
WB
1271static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1272{
1273 bool is_zcopy = skb && skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY;
1274
1275 return is_zcopy ? skb_uarg(skb) : NULL;
1276}
1277
1278static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg)
1279{
1280 if (skb && uarg && !skb_zcopy(skb)) {
1281 sock_zerocopy_get(uarg);
1282 skb_shinfo(skb)->destructor_arg = uarg;
1283 skb_shinfo(skb)->tx_flags |= SKBTX_ZEROCOPY_FRAG;
1284 }
1285}
1286
1287/* Release a reference on a zerocopy structure */
1288static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy)
1289{
1290 struct ubuf_info *uarg = skb_zcopy(skb);
1291
1292 if (uarg) {
0a4a060b
WB
1293 if (uarg->callback == sock_zerocopy_callback) {
1294 uarg->zerocopy = uarg->zerocopy && zerocopy;
1295 sock_zerocopy_put(uarg);
1296 } else {
1297 uarg->callback(uarg, zerocopy);
1298 }
1299
52267790
WB
1300 skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1301 }
1302}
1303
1304/* Abort a zerocopy operation and revert zckey on error in send syscall */
1305static inline void skb_zcopy_abort(struct sk_buff *skb)
1306{
1307 struct ubuf_info *uarg = skb_zcopy(skb);
1308
1309 if (uarg) {
1310 sock_zerocopy_put_abort(uarg);
1311 skb_shinfo(skb)->tx_flags &= ~SKBTX_ZEROCOPY_FRAG;
1312 }
1313}
1314
1da177e4
LT
1315/**
1316 * skb_queue_empty - check if a queue is empty
1317 * @list: queue head
1318 *
1319 * Returns true if the queue is empty, false otherwise.
1320 */
1321static inline int skb_queue_empty(const struct sk_buff_head *list)
1322{
fd44b93c 1323 return list->next == (const struct sk_buff *) list;
1da177e4
LT
1324}
1325
fc7ebb21
DM
1326/**
1327 * skb_queue_is_last - check if skb is the last entry in the queue
1328 * @list: queue head
1329 * @skb: buffer
1330 *
1331 * Returns true if @skb is the last buffer on the list.
1332 */
1333static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1334 const struct sk_buff *skb)
1335{
fd44b93c 1336 return skb->next == (const struct sk_buff *) list;
fc7ebb21
DM
1337}
1338
832d11c5
IJ
1339/**
1340 * skb_queue_is_first - check if skb is the first entry in the queue
1341 * @list: queue head
1342 * @skb: buffer
1343 *
1344 * Returns true if @skb is the first buffer on the list.
1345 */
1346static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1347 const struct sk_buff *skb)
1348{
fd44b93c 1349 return skb->prev == (const struct sk_buff *) list;
832d11c5
IJ
1350}
1351
249c8b42
DM
1352/**
1353 * skb_queue_next - return the next packet in the queue
1354 * @list: queue head
1355 * @skb: current buffer
1356 *
1357 * Return the next packet in @list after @skb. It is only valid to
1358 * call this if skb_queue_is_last() evaluates to false.
1359 */
1360static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1361 const struct sk_buff *skb)
1362{
1363 /* This BUG_ON may seem severe, but if we just return then we
1364 * are going to dereference garbage.
1365 */
1366 BUG_ON(skb_queue_is_last(list, skb));
1367 return skb->next;
1368}
1369
832d11c5
IJ
1370/**
1371 * skb_queue_prev - return the prev packet in the queue
1372 * @list: queue head
1373 * @skb: current buffer
1374 *
1375 * Return the prev packet in @list before @skb. It is only valid to
1376 * call this if skb_queue_is_first() evaluates to false.
1377 */
1378static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1379 const struct sk_buff *skb)
1380{
1381 /* This BUG_ON may seem severe, but if we just return then we
1382 * are going to dereference garbage.
1383 */
1384 BUG_ON(skb_queue_is_first(list, skb));
1385 return skb->prev;
1386}
1387
1da177e4
LT
1388/**
1389 * skb_get - reference buffer
1390 * @skb: buffer to reference
1391 *
1392 * Makes another reference to a socket buffer and returns a pointer
1393 * to the buffer.
1394 */
1395static inline struct sk_buff *skb_get(struct sk_buff *skb)
1396{
63354797 1397 refcount_inc(&skb->users);
1da177e4
LT
1398 return skb;
1399}
1400
1401/*
1402 * If users == 1, we are the only owner and are can avoid redundant
1403 * atomic change.
1404 */
1405
1da177e4
LT
1406/**
1407 * skb_cloned - is the buffer a clone
1408 * @skb: buffer to check
1409 *
1410 * Returns true if the buffer was generated with skb_clone() and is
1411 * one of multiple shared copies of the buffer. Cloned buffers are
1412 * shared data so must not be written to under normal circumstances.
1413 */
1414static inline int skb_cloned(const struct sk_buff *skb)
1415{
1416 return skb->cloned &&
1417 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1418}
1419
14bbd6a5
PS
1420static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1421{
d0164adc 1422 might_sleep_if(gfpflags_allow_blocking(pri));
14bbd6a5
PS
1423
1424 if (skb_cloned(skb))
1425 return pskb_expand_head(skb, 0, 0, pri);
1426
1427 return 0;
1428}
1429
1da177e4
LT
1430/**
1431 * skb_header_cloned - is the header a clone
1432 * @skb: buffer to check
1433 *
1434 * Returns true if modifying the header part of the buffer requires
1435 * the data to be copied.
1436 */
1437static inline int skb_header_cloned(const struct sk_buff *skb)
1438{
1439 int dataref;
1440
1441 if (!skb->cloned)
1442 return 0;
1443
1444 dataref = atomic_read(&skb_shinfo(skb)->dataref);
1445 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1446 return dataref != 1;
1447}
1448
9580bf2e
ED
1449static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1450{
1451 might_sleep_if(gfpflags_allow_blocking(pri));
1452
1453 if (skb_header_cloned(skb))
1454 return pskb_expand_head(skb, 0, 0, pri);
1455
1456 return 0;
1457}
1458
1da177e4
LT
1459/**
1460 * skb_header_release - release reference to header
1461 * @skb: buffer to operate on
1462 *
1463 * Drop a reference to the header part of the buffer. This is done
1464 * by acquiring a payload reference. You must not read from the header
1465 * part of skb->data after this.
f4a775d1 1466 * Note : Check if you can use __skb_header_release() instead.
1da177e4
LT
1467 */
1468static inline void skb_header_release(struct sk_buff *skb)
1469{
1470 BUG_ON(skb->nohdr);
1471 skb->nohdr = 1;
1472 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
1473}
1474
f4a775d1
ED
1475/**
1476 * __skb_header_release - release reference to header
1477 * @skb: buffer to operate on
1478 *
1479 * Variant of skb_header_release() assuming skb is private to caller.
1480 * We can avoid one atomic operation.
1481 */
1482static inline void __skb_header_release(struct sk_buff *skb)
1483{
1484 skb->nohdr = 1;
1485 atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1486}
1487
1488
1da177e4
LT
1489/**
1490 * skb_shared - is the buffer shared
1491 * @skb: buffer to check
1492 *
1493 * Returns true if more than one person has a reference to this
1494 * buffer.
1495 */
1496static inline int skb_shared(const struct sk_buff *skb)
1497{
63354797 1498 return refcount_read(&skb->users) != 1;
1da177e4
LT
1499}
1500
1501/**
1502 * skb_share_check - check if buffer is shared and if so clone it
1503 * @skb: buffer to check
1504 * @pri: priority for memory allocation
1505 *
1506 * If the buffer is shared the buffer is cloned and the old copy
1507 * drops a reference. A new clone with a single reference is returned.
1508 * If the buffer is not shared the original buffer is returned. When
1509 * being called from interrupt status or with spinlocks held pri must
1510 * be GFP_ATOMIC.
1511 *
1512 * NULL is returned on a memory allocation failure.
1513 */
47061bc4 1514static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1da177e4 1515{
d0164adc 1516 might_sleep_if(gfpflags_allow_blocking(pri));
1da177e4
LT
1517 if (skb_shared(skb)) {
1518 struct sk_buff *nskb = skb_clone(skb, pri);
47061bc4
ED
1519
1520 if (likely(nskb))
1521 consume_skb(skb);
1522 else
1523 kfree_skb(skb);
1da177e4
LT
1524 skb = nskb;
1525 }
1526 return skb;
1527}
1528
1529/*
1530 * Copy shared buffers into a new sk_buff. We effectively do COW on
1531 * packets to handle cases where we have a local reader and forward
1532 * and a couple of other messy ones. The normal one is tcpdumping
1533 * a packet thats being forwarded.
1534 */
1535
1536/**
1537 * skb_unshare - make a copy of a shared buffer
1538 * @skb: buffer to check
1539 * @pri: priority for memory allocation
1540 *
1541 * If the socket buffer is a clone then this function creates a new
1542 * copy of the data, drops a reference count on the old copy and returns
1543 * the new copy with the reference count at 1. If the buffer is not a clone
1544 * the original buffer is returned. When called with a spinlock held or
1545 * from interrupt state @pri must be %GFP_ATOMIC
1546 *
1547 * %NULL is returned on a memory allocation failure.
1548 */
e2bf521d 1549static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
dd0fc66f 1550 gfp_t pri)
1da177e4 1551{
d0164adc 1552 might_sleep_if(gfpflags_allow_blocking(pri));
1da177e4
LT
1553 if (skb_cloned(skb)) {
1554 struct sk_buff *nskb = skb_copy(skb, pri);
31eff81e
AA
1555
1556 /* Free our shared copy */
1557 if (likely(nskb))
1558 consume_skb(skb);
1559 else
1560 kfree_skb(skb);
1da177e4
LT
1561 skb = nskb;
1562 }
1563 return skb;
1564}
1565
1566/**
1a5778aa 1567 * skb_peek - peek at the head of an &sk_buff_head
1da177e4
LT
1568 * @list_: list to peek at
1569 *
1570 * Peek an &sk_buff. Unlike most other operations you _MUST_
1571 * be careful with this one. A peek leaves the buffer on the
1572 * list and someone else may run off with it. You must hold
1573 * the appropriate locks or have a private queue to do this.
1574 *
1575 * Returns %NULL for an empty list or a pointer to the head element.
1576 * The reference count is not incremented and the reference is therefore
1577 * volatile. Use with caution.
1578 */
05bdd2f1 1579static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1da177e4 1580{
18d07000
ED
1581 struct sk_buff *skb = list_->next;
1582
1583 if (skb == (struct sk_buff *)list_)
1584 skb = NULL;
1585 return skb;
1da177e4
LT
1586}
1587
da5ef6e5
PE
1588/**
1589 * skb_peek_next - peek skb following the given one from a queue
1590 * @skb: skb to start from
1591 * @list_: list to peek at
1592 *
1593 * Returns %NULL when the end of the list is met or a pointer to the
1594 * next element. The reference count is not incremented and the
1595 * reference is therefore volatile. Use with caution.
1596 */
1597static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1598 const struct sk_buff_head *list_)
1599{
1600 struct sk_buff *next = skb->next;
18d07000 1601
da5ef6e5
PE
1602 if (next == (struct sk_buff *)list_)
1603 next = NULL;
1604 return next;
1605}
1606
1da177e4 1607/**
1a5778aa 1608 * skb_peek_tail - peek at the tail of an &sk_buff_head
1da177e4
LT
1609 * @list_: list to peek at
1610 *
1611 * Peek an &sk_buff. Unlike most other operations you _MUST_
1612 * be careful with this one. A peek leaves the buffer on the
1613 * list and someone else may run off with it. You must hold
1614 * the appropriate locks or have a private queue to do this.
1615 *
1616 * Returns %NULL for an empty list or a pointer to the tail element.
1617 * The reference count is not incremented and the reference is therefore
1618 * volatile. Use with caution.
1619 */
05bdd2f1 1620static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1da177e4 1621{
18d07000
ED
1622 struct sk_buff *skb = list_->prev;
1623
1624 if (skb == (struct sk_buff *)list_)
1625 skb = NULL;
1626 return skb;
1627
1da177e4
LT
1628}
1629
1630/**
1631 * skb_queue_len - get queue length
1632 * @list_: list to measure
1633 *
1634 * Return the length of an &sk_buff queue.
1635 */
1636static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1637{
1638 return list_->qlen;
1639}
1640
67fed459
DM
1641/**
1642 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1643 * @list: queue to initialize
1644 *
1645 * This initializes only the list and queue length aspects of
1646 * an sk_buff_head object. This allows to initialize the list
1647 * aspects of an sk_buff_head without reinitializing things like
1648 * the spinlock. It can also be used for on-stack sk_buff_head
1649 * objects where the spinlock is known to not be used.
1650 */
1651static inline void __skb_queue_head_init(struct sk_buff_head *list)
1652{
1653 list->prev = list->next = (struct sk_buff *)list;
1654 list->qlen = 0;
1655}
1656
76f10ad0
AV
1657/*
1658 * This function creates a split out lock class for each invocation;
1659 * this is needed for now since a whole lot of users of the skb-queue
1660 * infrastructure in drivers have different locking usage (in hardirq)
1661 * than the networking core (in softirq only). In the long run either the
1662 * network layer or drivers should need annotation to consolidate the
1663 * main types of usage into 3 classes.
1664 */
1da177e4
LT
1665static inline void skb_queue_head_init(struct sk_buff_head *list)
1666{
1667 spin_lock_init(&list->lock);
67fed459 1668 __skb_queue_head_init(list);
1da177e4
LT
1669}
1670
c2ecba71
PE
1671static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1672 struct lock_class_key *class)
1673{
1674 skb_queue_head_init(list);
1675 lockdep_set_class(&list->lock, class);
1676}
1677
1da177e4 1678/*
bf299275 1679 * Insert an sk_buff on a list.
1da177e4
LT
1680 *
1681 * The "__skb_xxxx()" functions are the non-atomic ones that
1682 * can only be called with interrupts disabled.
1683 */
7965bd4d
JP
1684void skb_insert(struct sk_buff *old, struct sk_buff *newsk,
1685 struct sk_buff_head *list);
bf299275
GR
1686static inline void __skb_insert(struct sk_buff *newsk,
1687 struct sk_buff *prev, struct sk_buff *next,
1688 struct sk_buff_head *list)
1689{
1690 newsk->next = next;
1691 newsk->prev = prev;
1692 next->prev = prev->next = newsk;
1693 list->qlen++;
1694}
1da177e4 1695
67fed459
DM
1696static inline void __skb_queue_splice(const struct sk_buff_head *list,
1697 struct sk_buff *prev,
1698 struct sk_buff *next)
1699{
1700 struct sk_buff *first = list->next;
1701 struct sk_buff *last = list->prev;
1702
1703 first->prev = prev;
1704 prev->next = first;
1705
1706 last->next = next;
1707 next->prev = last;
1708}
1709
1710/**
1711 * skb_queue_splice - join two skb lists, this is designed for stacks
1712 * @list: the new list to add
1713 * @head: the place to add it in the first list
1714 */
1715static inline void skb_queue_splice(const struct sk_buff_head *list,
1716 struct sk_buff_head *head)
1717{
1718 if (!skb_queue_empty(list)) {
1719 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1d4a31dd 1720 head->qlen += list->qlen;
67fed459
DM
1721 }
1722}
1723
1724/**
d9619496 1725 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list
67fed459
DM
1726 * @list: the new list to add
1727 * @head: the place to add it in the first list
1728 *
1729 * The list at @list is reinitialised
1730 */
1731static inline void skb_queue_splice_init(struct sk_buff_head *list,
1732 struct sk_buff_head *head)
1733{
1734 if (!skb_queue_empty(list)) {
1735 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
1d4a31dd 1736 head->qlen += list->qlen;
67fed459
DM
1737 __skb_queue_head_init(list);
1738 }
1739}
1740
1741/**
1742 * skb_queue_splice_tail - join two skb lists, each list being a queue
1743 * @list: the new list to add
1744 * @head: the place to add it in the first list
1745 */
1746static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1747 struct sk_buff_head *head)
1748{
1749 if (!skb_queue_empty(list)) {
1750 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1d4a31dd 1751 head->qlen += list->qlen;
67fed459
DM
1752 }
1753}
1754
1755/**
d9619496 1756 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
67fed459
DM
1757 * @list: the new list to add
1758 * @head: the place to add it in the first list
1759 *
1760 * Each of the lists is a queue.
1761 * The list at @list is reinitialised
1762 */
1763static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
1764 struct sk_buff_head *head)
1765{
1766 if (!skb_queue_empty(list)) {
1767 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
1d4a31dd 1768 head->qlen += list->qlen;
67fed459
DM
1769 __skb_queue_head_init(list);
1770 }
1771}
1772
1da177e4 1773/**
300ce174 1774 * __skb_queue_after - queue a buffer at the list head
1da177e4 1775 * @list: list to use
300ce174 1776 * @prev: place after this buffer
1da177e4
LT
1777 * @newsk: buffer to queue
1778 *
300ce174 1779 * Queue a buffer int the middle of a list. This function takes no locks
1da177e4
LT
1780 * and you must therefore hold required locks before calling it.
1781 *
1782 * A buffer cannot be placed on two lists at the same time.
1783 */
300ce174
SH
1784static inline void __skb_queue_after(struct sk_buff_head *list,
1785 struct sk_buff *prev,
1786 struct sk_buff *newsk)
1da177e4 1787{
bf299275 1788 __skb_insert(newsk, prev, prev->next, list);
1da177e4
LT
1789}
1790
7965bd4d
JP
1791void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1792 struct sk_buff_head *list);
7de6c033 1793
f5572855
GR
1794static inline void __skb_queue_before(struct sk_buff_head *list,
1795 struct sk_buff *next,
1796 struct sk_buff *newsk)
1797{
1798 __skb_insert(newsk, next->prev, next, list);
1799}
1800
300ce174
SH
1801/**
1802 * __skb_queue_head - queue a buffer at the list head
1803 * @list: list to use
1804 * @newsk: buffer to queue
1805 *
1806 * Queue a buffer at the start of a list. This function takes no locks
1807 * and you must therefore hold required locks before calling it.
1808 *
1809 * A buffer cannot be placed on two lists at the same time.
1810 */
7965bd4d 1811void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
300ce174
SH
1812static inline void __skb_queue_head(struct sk_buff_head *list,
1813 struct sk_buff *newsk)
1814{
1815 __skb_queue_after(list, (struct sk_buff *)list, newsk);
1816}
1817
1da177e4
LT
1818/**
1819 * __skb_queue_tail - queue a buffer at the list tail
1820 * @list: list to use
1821 * @newsk: buffer to queue
1822 *
1823 * Queue a buffer at the end of a list. This function takes no locks
1824 * and you must therefore hold required locks before calling it.
1825 *
1826 * A buffer cannot be placed on two lists at the same time.
1827 */
7965bd4d 1828void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1da177e4
LT
1829static inline void __skb_queue_tail(struct sk_buff_head *list,
1830 struct sk_buff *newsk)
1831{
f5572855 1832 __skb_queue_before(list, (struct sk_buff *)list, newsk);
1da177e4
LT
1833}
1834
1da177e4
LT
1835/*
1836 * remove sk_buff from list. _Must_ be called atomically, and with
1837 * the list known..
1838 */
7965bd4d 1839void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1da177e4
LT
1840static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1841{
1842 struct sk_buff *next, *prev;
1843
1844 list->qlen--;
1845 next = skb->next;
1846 prev = skb->prev;
1847 skb->next = skb->prev = NULL;
1da177e4
LT
1848 next->prev = prev;
1849 prev->next = next;
1850}
1851
f525c06d
GR
1852/**
1853 * __skb_dequeue - remove from the head of the queue
1854 * @list: list to dequeue from
1855 *
1856 * Remove the head of the list. This function does not take any locks
1857 * so must be used with appropriate locks held only. The head item is
1858 * returned or %NULL if the list is empty.
1859 */
7965bd4d 1860struct sk_buff *skb_dequeue(struct sk_buff_head *list);
f525c06d
GR
1861static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1862{
1863 struct sk_buff *skb = skb_peek(list);
1864 if (skb)
1865 __skb_unlink(skb, list);
1866 return skb;
1867}
1da177e4
LT
1868
1869/**
1870 * __skb_dequeue_tail - remove from the tail of the queue
1871 * @list: list to dequeue from
1872 *
1873 * Remove the tail of the list. This function does not take any locks
1874 * so must be used with appropriate locks held only. The tail item is
1875 * returned or %NULL if the list is empty.
1876 */
7965bd4d 1877struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1da177e4
LT
1878static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1879{
1880 struct sk_buff *skb = skb_peek_tail(list);
1881 if (skb)
1882 __skb_unlink(skb, list);
1883 return skb;
1884}
1885
1886
bdcc0924 1887static inline bool skb_is_nonlinear(const struct sk_buff *skb)
1da177e4
LT
1888{
1889 return skb->data_len;
1890}
1891
1892static inline unsigned int skb_headlen(const struct sk_buff *skb)
1893{
1894 return skb->len - skb->data_len;
1895}
1896
3ece7826 1897static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
1da177e4 1898{
c72d8cda 1899 unsigned int i, len = 0;
1da177e4 1900
c72d8cda 1901 for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
9e903e08 1902 len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
3ece7826
WB
1903 return len;
1904}
1905
1906static inline unsigned int skb_pagelen(const struct sk_buff *skb)
1907{
1908 return skb_headlen(skb) + __skb_pagelen(skb);
1da177e4
LT
1909}
1910
131ea667
IC
1911/**
1912 * __skb_fill_page_desc - initialise a paged fragment in an skb
1913 * @skb: buffer containing fragment to be initialised
1914 * @i: paged fragment index to initialise
1915 * @page: the page to use for this fragment
1916 * @off: the offset to the data with @page
1917 * @size: the length of the data
1918 *
1919 * Initialises the @i'th fragment of @skb to point to &size bytes at
1920 * offset @off within @page.
1921 *
1922 * Does not take any additional reference on the fragment.
1923 */
1924static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
1925 struct page *page, int off, int size)
1da177e4
LT
1926{
1927 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1928
c48a11c7 1929 /*
2f064f34
MH
1930 * Propagate page pfmemalloc to the skb if we can. The problem is
1931 * that not all callers have unique ownership of the page but rely
1932 * on page_is_pfmemalloc doing the right thing(tm).
c48a11c7 1933 */
a8605c60 1934 frag->page.p = page;
1da177e4 1935 frag->page_offset = off;
9e903e08 1936 skb_frag_size_set(frag, size);
cca7af38
PE
1937
1938 page = compound_head(page);
2f064f34 1939 if (page_is_pfmemalloc(page))
cca7af38 1940 skb->pfmemalloc = true;
131ea667
IC
1941}
1942
1943/**
1944 * skb_fill_page_desc - initialise a paged fragment in an skb
1945 * @skb: buffer containing fragment to be initialised
1946 * @i: paged fragment index to initialise
1947 * @page: the page to use for this fragment
1948 * @off: the offset to the data with @page
1949 * @size: the length of the data
1950 *
1951 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
bc32383c 1952 * @skb to point to @size bytes at offset @off within @page. In
131ea667
IC
1953 * addition updates @skb such that @i is the last fragment.
1954 *
1955 * Does not take any additional reference on the fragment.
1956 */
1957static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1958 struct page *page, int off, int size)
1959{
1960 __skb_fill_page_desc(skb, i, page, off, size);
1da177e4
LT
1961 skb_shinfo(skb)->nr_frags = i + 1;
1962}
1963
7965bd4d
JP
1964void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
1965 int size, unsigned int truesize);
654bed16 1966
f8e617e1
JW
1967void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
1968 unsigned int truesize);
1969
1da177e4 1970#define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
21dc3301 1971#define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb))
1da177e4
LT
1972#define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
1973
27a884dc
ACM
1974#ifdef NET_SKBUFF_DATA_USES_OFFSET
1975static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1976{
1977 return skb->head + skb->tail;
1978}
1979
1980static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1981{
1982 skb->tail = skb->data - skb->head;
1983}
1984
1985static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1986{
1987 skb_reset_tail_pointer(skb);
1988 skb->tail += offset;
1989}
7cc46190 1990
27a884dc
ACM
1991#else /* NET_SKBUFF_DATA_USES_OFFSET */
1992static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1993{
1994 return skb->tail;
1995}
1996
1997static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1998{
1999 skb->tail = skb->data;
2000}
2001
2002static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2003{
2004 skb->tail = skb->data + offset;
2005}
4305b541 2006
27a884dc
ACM
2007#endif /* NET_SKBUFF_DATA_USES_OFFSET */
2008
1da177e4
LT
2009/*
2010 * Add data to an sk_buff
2011 */
4df864c1
JB
2012void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2013void *skb_put(struct sk_buff *skb, unsigned int len);
2014static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
1da177e4 2015{
4df864c1 2016 void *tmp = skb_tail_pointer(skb);
1da177e4
LT
2017 SKB_LINEAR_ASSERT(skb);
2018 skb->tail += len;
2019 skb->len += len;
2020 return tmp;
2021}
2022
de77b966 2023static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2024{
2025 void *tmp = __skb_put(skb, len);
2026
2027 memset(tmp, 0, len);
2028 return tmp;
2029}
2030
2031static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2032 unsigned int len)
2033{
2034 void *tmp = __skb_put(skb, len);
2035
2036 memcpy(tmp, data, len);
2037 return tmp;
2038}
2039
2040static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2041{
2042 *(u8 *)__skb_put(skb, 1) = val;
2043}
2044
83ad357d 2045static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
e45a79da 2046{
83ad357d 2047 void *tmp = skb_put(skb, len);
e45a79da
JB
2048
2049 memset(tmp, 0, len);
2050
2051 return tmp;
2052}
2053
59ae1d12
JB
2054static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2055 unsigned int len)
2056{
2057 void *tmp = skb_put(skb, len);
2058
2059 memcpy(tmp, data, len);
2060
2061 return tmp;
2062}
2063
634fef61
JB
2064static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2065{
2066 *(u8 *)skb_put(skb, 1) = val;
2067}
2068
d58ff351
JB
2069void *skb_push(struct sk_buff *skb, unsigned int len);
2070static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
1da177e4
LT
2071{
2072 skb->data -= len;
2073 skb->len += len;
2074 return skb->data;
2075}
2076
af72868b
JB
2077void *skb_pull(struct sk_buff *skb, unsigned int len);
2078static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
1da177e4
LT
2079{
2080 skb->len -= len;
2081 BUG_ON(skb->len < skb->data_len);
2082 return skb->data += len;
2083}
2084
af72868b 2085static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
47d29646
DM
2086{
2087 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2088}
2089
af72868b 2090void *__pskb_pull_tail(struct sk_buff *skb, int delta);
1da177e4 2091
af72868b 2092static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len)
1da177e4
LT
2093{
2094 if (len > skb_headlen(skb) &&
987c402a 2095 !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1da177e4
LT
2096 return NULL;
2097 skb->len -= len;
2098 return skb->data += len;
2099}
2100
af72868b 2101static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
1da177e4
LT
2102{
2103 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
2104}
2105
2106static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
2107{
2108 if (likely(len <= skb_headlen(skb)))
2109 return 1;
2110 if (unlikely(len > skb->len))
2111 return 0;
987c402a 2112 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1da177e4
LT
2113}
2114
c8c8b127
ED
2115void skb_condense(struct sk_buff *skb);
2116
1da177e4
LT
2117/**
2118 * skb_headroom - bytes at buffer head
2119 * @skb: buffer to check
2120 *
2121 * Return the number of bytes of free space at the head of an &sk_buff.
2122 */
c2636b4d 2123static inline unsigned int skb_headroom(const struct sk_buff *skb)
1da177e4
LT
2124{
2125 return skb->data - skb->head;
2126}
2127
2128/**
2129 * skb_tailroom - bytes at buffer end
2130 * @skb: buffer to check
2131 *
2132 * Return the number of bytes of free space at the tail of an sk_buff
2133 */
2134static inline int skb_tailroom(const struct sk_buff *skb)
2135{
4305b541 2136 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1da177e4
LT
2137}
2138
a21d4572
ED
2139/**
2140 * skb_availroom - bytes at buffer end
2141 * @skb: buffer to check
2142 *
2143 * Return the number of bytes of free space at the tail of an sk_buff
2144 * allocated by sk_stream_alloc()
2145 */
2146static inline int skb_availroom(const struct sk_buff *skb)
2147{
16fad69c
ED
2148 if (skb_is_nonlinear(skb))
2149 return 0;
2150
2151 return skb->end - skb->tail - skb->reserved_tailroom;
a21d4572
ED
2152}
2153
1da177e4
LT
2154/**
2155 * skb_reserve - adjust headroom
2156 * @skb: buffer to alter
2157 * @len: bytes to move
2158 *
2159 * Increase the headroom of an empty &sk_buff by reducing the tail
2160 * room. This is only allowed for an empty buffer.
2161 */
8243126c 2162static inline void skb_reserve(struct sk_buff *skb, int len)
1da177e4
LT
2163{
2164 skb->data += len;
2165 skb->tail += len;
2166}
2167
1837b2e2
BP
2168/**
2169 * skb_tailroom_reserve - adjust reserved_tailroom
2170 * @skb: buffer to alter
2171 * @mtu: maximum amount of headlen permitted
2172 * @needed_tailroom: minimum amount of reserved_tailroom
2173 *
2174 * Set reserved_tailroom so that headlen can be as large as possible but
2175 * not larger than mtu and tailroom cannot be smaller than
2176 * needed_tailroom.
2177 * The required headroom should already have been reserved before using
2178 * this function.
2179 */
2180static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2181 unsigned int needed_tailroom)
2182{
2183 SKB_LINEAR_ASSERT(skb);
2184 if (mtu < skb_tailroom(skb) - needed_tailroom)
2185 /* use at most mtu */
2186 skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2187 else
2188 /* use up to all available space */
2189 skb->reserved_tailroom = needed_tailroom;
2190}
2191
8bce6d7d
TH
2192#define ENCAP_TYPE_ETHER 0
2193#define ENCAP_TYPE_IPPROTO 1
2194
2195static inline void skb_set_inner_protocol(struct sk_buff *skb,
2196 __be16 protocol)
2197{
2198 skb->inner_protocol = protocol;
2199 skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2200}
2201
2202static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2203 __u8 ipproto)
2204{
2205 skb->inner_ipproto = ipproto;
2206 skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2207}
2208
6a674e9c
JG
2209static inline void skb_reset_inner_headers(struct sk_buff *skb)
2210{
aefbd2b3 2211 skb->inner_mac_header = skb->mac_header;
6a674e9c
JG
2212 skb->inner_network_header = skb->network_header;
2213 skb->inner_transport_header = skb->transport_header;
2214}
2215
0b5c9db1
JP
2216static inline void skb_reset_mac_len(struct sk_buff *skb)
2217{
2218 skb->mac_len = skb->network_header - skb->mac_header;
2219}
2220
6a674e9c
JG
2221static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2222 *skb)
2223{
2224 return skb->head + skb->inner_transport_header;
2225}
2226
55dc5a9f
TH
2227static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2228{
2229 return skb_inner_transport_header(skb) - skb->data;
2230}
2231
6a674e9c
JG
2232static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2233{
2234 skb->inner_transport_header = skb->data - skb->head;
2235}
2236
2237static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2238 const int offset)
2239{
2240 skb_reset_inner_transport_header(skb);
2241 skb->inner_transport_header += offset;
2242}
2243
2244static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2245{
2246 return skb->head + skb->inner_network_header;
2247}
2248
2249static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2250{
2251 skb->inner_network_header = skb->data - skb->head;
2252}
2253
2254static inline void skb_set_inner_network_header(struct sk_buff *skb,
2255 const int offset)
2256{
2257 skb_reset_inner_network_header(skb);
2258 skb->inner_network_header += offset;
2259}
2260
aefbd2b3
PS
2261static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2262{
2263 return skb->head + skb->inner_mac_header;
2264}
2265
2266static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2267{
2268 skb->inner_mac_header = skb->data - skb->head;
2269}
2270
2271static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2272 const int offset)
2273{
2274 skb_reset_inner_mac_header(skb);
2275 skb->inner_mac_header += offset;
2276}
fda55eca
ED
2277static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2278{
35d04610 2279 return skb->transport_header != (typeof(skb->transport_header))~0U;
fda55eca
ED
2280}
2281
9c70220b
ACM
2282static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2283{
2e07fa9c 2284 return skb->head + skb->transport_header;
9c70220b
ACM
2285}
2286
badff6d0
ACM
2287static inline void skb_reset_transport_header(struct sk_buff *skb)
2288{
2e07fa9c 2289 skb->transport_header = skb->data - skb->head;
badff6d0
ACM
2290}
2291
967b05f6
ACM
2292static inline void skb_set_transport_header(struct sk_buff *skb,
2293 const int offset)
2294{
2e07fa9c
ACM
2295 skb_reset_transport_header(skb);
2296 skb->transport_header += offset;
ea2ae17d
ACM
2297}
2298
d56f90a7
ACM
2299static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2300{
2e07fa9c 2301 return skb->head + skb->network_header;
d56f90a7
ACM
2302}
2303
c1d2bbe1
ACM
2304static inline void skb_reset_network_header(struct sk_buff *skb)
2305{
2e07fa9c 2306 skb->network_header = skb->data - skb->head;
c1d2bbe1
ACM
2307}
2308
c14d2450
ACM
2309static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2310{
2e07fa9c
ACM
2311 skb_reset_network_header(skb);
2312 skb->network_header += offset;
c14d2450
ACM
2313}
2314
2e07fa9c 2315static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
bbe735e4 2316{
2e07fa9c 2317 return skb->head + skb->mac_header;
bbe735e4
ACM
2318}
2319
ea6da4fd
AV
2320static inline int skb_mac_offset(const struct sk_buff *skb)
2321{
2322 return skb_mac_header(skb) - skb->data;
2323}
2324
0daf4349
DB
2325static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2326{
2327 return skb->network_header - skb->mac_header;
2328}
2329
2e07fa9c 2330static inline int skb_mac_header_was_set(const struct sk_buff *skb)
cfe1fc77 2331{
35d04610 2332 return skb->mac_header != (typeof(skb->mac_header))~0U;
2e07fa9c
ACM
2333}
2334
2335static inline void skb_reset_mac_header(struct sk_buff *skb)
2336{
2337 skb->mac_header = skb->data - skb->head;
2338}
2339
2340static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2341{
2342 skb_reset_mac_header(skb);
2343 skb->mac_header += offset;
2344}
2345
0e3da5bb
TT
2346static inline void skb_pop_mac_header(struct sk_buff *skb)
2347{
2348 skb->mac_header = skb->network_header;
2349}
2350
fbbdb8f0
YX
2351static inline void skb_probe_transport_header(struct sk_buff *skb,
2352 const int offset_hint)
2353{
2354 struct flow_keys keys;
2355
2356 if (skb_transport_header_was_set(skb))
2357 return;
cd79a238 2358 else if (skb_flow_dissect_flow_keys(skb, &keys, 0))
42aecaa9 2359 skb_set_transport_header(skb, keys.control.thoff);
fbbdb8f0
YX
2360 else
2361 skb_set_transport_header(skb, offset_hint);
2362}
2363
03606895
ED
2364static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2365{
2366 if (skb_mac_header_was_set(skb)) {
2367 const unsigned char *old_mac = skb_mac_header(skb);
2368
2369 skb_set_mac_header(skb, -skb->mac_len);
2370 memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2371 }
2372}
2373
04fb451e
MM
2374static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2375{
2376 return skb->csum_start - skb_headroom(skb);
2377}
2378
08b64fcc
AD
2379static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2380{
2381 return skb->head + skb->csum_start;
2382}
2383
2e07fa9c
ACM
2384static inline int skb_transport_offset(const struct sk_buff *skb)
2385{
2386 return skb_transport_header(skb) - skb->data;
2387}
2388
2389static inline u32 skb_network_header_len(const struct sk_buff *skb)
2390{
2391 return skb->transport_header - skb->network_header;
2392}
2393
6a674e9c
JG
2394static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2395{
2396 return skb->inner_transport_header - skb->inner_network_header;
2397}
2398
2e07fa9c
ACM
2399static inline int skb_network_offset(const struct sk_buff *skb)
2400{
2401 return skb_network_header(skb) - skb->data;
2402}
48d49d0c 2403
6a674e9c
JG
2404static inline int skb_inner_network_offset(const struct sk_buff *skb)
2405{
2406 return skb_inner_network_header(skb) - skb->data;
2407}
2408
f9599ce1
CG
2409static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2410{
2411 return pskb_may_pull(skb, skb_network_offset(skb) + len);
2412}
2413
1da177e4
LT
2414/*
2415 * CPUs often take a performance hit when accessing unaligned memory
2416 * locations. The actual performance hit varies, it can be small if the
2417 * hardware handles it or large if we have to take an exception and fix it
2418 * in software.
2419 *
2420 * Since an ethernet header is 14 bytes network drivers often end up with
2421 * the IP header at an unaligned offset. The IP header can be aligned by
2422 * shifting the start of the packet by 2 bytes. Drivers should do this
2423 * with:
2424 *
8660c124 2425 * skb_reserve(skb, NET_IP_ALIGN);
1da177e4
LT
2426 *
2427 * The downside to this alignment of the IP header is that the DMA is now
2428 * unaligned. On some architectures the cost of an unaligned DMA is high
2429 * and this cost outweighs the gains made by aligning the IP header.
8660c124 2430 *
1da177e4
LT
2431 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2432 * to be overridden.
2433 */
2434#ifndef NET_IP_ALIGN
2435#define NET_IP_ALIGN 2
2436#endif
2437
025be81e
AB
2438/*
2439 * The networking layer reserves some headroom in skb data (via
2440 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2441 * the header has to grow. In the default case, if the header has to grow
d6301d3d 2442 * 32 bytes or less we avoid the reallocation.
025be81e
AB
2443 *
2444 * Unfortunately this headroom changes the DMA alignment of the resulting
2445 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2446 * on some architectures. An architecture can override this value,
2447 * perhaps setting it to a cacheline in size (since that will maintain
2448 * cacheline alignment of the DMA). It must be a power of 2.
2449 *
d6301d3d 2450 * Various parts of the networking layer expect at least 32 bytes of
025be81e 2451 * headroom, you should not reduce this.
5933dd2f
ED
2452 *
2453 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2454 * to reduce average number of cache lines per packet.
2455 * get_rps_cpus() for example only access one 64 bytes aligned block :
18e8c134 2456 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
025be81e
AB
2457 */
2458#ifndef NET_SKB_PAD
5933dd2f 2459#define NET_SKB_PAD max(32, L1_CACHE_BYTES)
025be81e
AB
2460#endif
2461
7965bd4d 2462int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1da177e4 2463
5293efe6 2464static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
1da177e4 2465{
c4264f27 2466 if (unlikely(skb_is_nonlinear(skb))) {
3cc0e873
HX
2467 WARN_ON(1);
2468 return;
2469 }
27a884dc
ACM
2470 skb->len = len;
2471 skb_set_tail_pointer(skb, len);
1da177e4
LT
2472}
2473
5293efe6
DB
2474static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2475{
2476 __skb_set_length(skb, len);
2477}
2478
7965bd4d 2479void skb_trim(struct sk_buff *skb, unsigned int len);
1da177e4
LT
2480
2481static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2482{
3cc0e873
HX
2483 if (skb->data_len)
2484 return ___pskb_trim(skb, len);
2485 __skb_trim(skb, len);
2486 return 0;
1da177e4
LT
2487}
2488
2489static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2490{
2491 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2492}
2493
e9fa4f7b
HX
2494/**
2495 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2496 * @skb: buffer to alter
2497 * @len: new length
2498 *
2499 * This is identical to pskb_trim except that the caller knows that
2500 * the skb is not cloned so we should never get an error due to out-
2501 * of-memory.
2502 */
2503static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2504{
2505 int err = pskb_trim(skb, len);
2506 BUG_ON(err);
2507}
2508
5293efe6
DB
2509static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
2510{
2511 unsigned int diff = len - skb->len;
2512
2513 if (skb_tailroom(skb) < diff) {
2514 int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
2515 GFP_ATOMIC);
2516 if (ret)
2517 return ret;
2518 }
2519 __skb_set_length(skb, len);
2520 return 0;
2521}
2522
1da177e4
LT
2523/**
2524 * skb_orphan - orphan a buffer
2525 * @skb: buffer to orphan
2526 *
2527 * If a buffer currently has an owner then we call the owner's
2528 * destructor function and make the @skb unowned. The buffer continues
2529 * to exist but is no longer charged to its former owner.
2530 */
2531static inline void skb_orphan(struct sk_buff *skb)
2532{
c34a7612 2533 if (skb->destructor) {
1da177e4 2534 skb->destructor(skb);
c34a7612
ED
2535 skb->destructor = NULL;
2536 skb->sk = NULL;
376c7311
ED
2537 } else {
2538 BUG_ON(skb->sk);
c34a7612 2539 }
1da177e4
LT
2540}
2541
a353e0ce
MT
2542/**
2543 * skb_orphan_frags - orphan the frags contained in a buffer
2544 * @skb: buffer to orphan frags from
2545 * @gfp_mask: allocation mask for replacement pages
2546 *
2547 * For each frag in the SKB which needs a destructor (i.e. has an
2548 * owner) create a copy of that frag and release the original
2549 * page by calling the destructor.
2550 */
2551static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2552{
1f8b977a
WB
2553 if (likely(!skb_zcopy(skb)))
2554 return 0;
2555 if (skb_uarg(skb)->callback == sock_zerocopy_callback)
2556 return 0;
2557 return skb_copy_ubufs(skb, gfp_mask);
2558}
2559
2560/* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
2561static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
2562{
2563 if (likely(!skb_zcopy(skb)))
a353e0ce
MT
2564 return 0;
2565 return skb_copy_ubufs(skb, gfp_mask);
2566}
2567
1da177e4
LT
2568/**
2569 * __skb_queue_purge - empty a list
2570 * @list: list to empty
2571 *
2572 * Delete all buffers on an &sk_buff list. Each buffer is removed from
2573 * the list and one reference dropped. This function does not take the
2574 * list lock and the caller must hold the relevant locks to use it.
2575 */
7965bd4d 2576void skb_queue_purge(struct sk_buff_head *list);
1da177e4
LT
2577static inline void __skb_queue_purge(struct sk_buff_head *list)
2578{
2579 struct sk_buff *skb;
2580 while ((skb = __skb_dequeue(list)) != NULL)
2581 kfree_skb(skb);
2582}
2583
9f5afeae
YW
2584void skb_rbtree_purge(struct rb_root *root);
2585
7965bd4d 2586void *netdev_alloc_frag(unsigned int fragsz);
1da177e4 2587
7965bd4d
JP
2588struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2589 gfp_t gfp_mask);
8af27456
CH
2590
2591/**
2592 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
2593 * @dev: network device to receive on
2594 * @length: length to allocate
2595 *
2596 * Allocate a new &sk_buff and assign it a usage count of one. The
2597 * buffer has unspecified headroom built in. Users should allocate
2598 * the headroom they think they need without accounting for the
2599 * built in space. The built in space is used for optimisations.
2600 *
2601 * %NULL is returned if there is no free memory. Although this function
2602 * allocates memory it can be called from an interrupt.
2603 */
2604static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
6f532612 2605 unsigned int length)
8af27456
CH
2606{
2607 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2608}
2609
6f532612
ED
2610/* legacy helper around __netdev_alloc_skb() */
2611static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2612 gfp_t gfp_mask)
2613{
2614 return __netdev_alloc_skb(NULL, length, gfp_mask);
2615}
2616
2617/* legacy helper around netdev_alloc_skb() */
2618static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2619{
2620 return netdev_alloc_skb(NULL, length);
2621}
2622
2623
4915a0de
ED
2624static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2625 unsigned int length, gfp_t gfp)
61321bbd 2626{
4915a0de 2627 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
61321bbd
ED
2628
2629 if (NET_IP_ALIGN && skb)
2630 skb_reserve(skb, NET_IP_ALIGN);
2631 return skb;
2632}
2633
4915a0de
ED
2634static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2635 unsigned int length)
2636{
2637 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2638}
2639
181edb2b
AD
2640static inline void skb_free_frag(void *addr)
2641{
8c2dd3e4 2642 page_frag_free(addr);
181edb2b
AD
2643}
2644
ffde7328 2645void *napi_alloc_frag(unsigned int fragsz);
fd11a83d
AD
2646struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
2647 unsigned int length, gfp_t gfp_mask);
2648static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
2649 unsigned int length)
2650{
2651 return __napi_alloc_skb(napi, length, GFP_ATOMIC);
2652}
795bb1c0
JDB
2653void napi_consume_skb(struct sk_buff *skb, int budget);
2654
2655void __kfree_skb_flush(void);
15fad714 2656void __kfree_skb_defer(struct sk_buff *skb);
ffde7328 2657
71dfda58
AD
2658/**
2659 * __dev_alloc_pages - allocate page for network Rx
2660 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2661 * @order: size of the allocation
2662 *
2663 * Allocate a new page.
2664 *
2665 * %NULL is returned if there is no free memory.
2666*/
2667static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
2668 unsigned int order)
2669{
2670 /* This piece of code contains several assumptions.
2671 * 1. This is for device Rx, therefor a cold page is preferred.
2672 * 2. The expectation is the user wants a compound page.
2673 * 3. If requesting a order 0 page it will not be compound
2674 * due to the check to see if order has a value in prep_new_page
2675 * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
2676 * code in gfp_to_alloc_flags that should be enforcing this.
2677 */
2678 gfp_mask |= __GFP_COLD | __GFP_COMP | __GFP_MEMALLOC;
2679
2680 return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2681}
2682
2683static inline struct page *dev_alloc_pages(unsigned int order)
2684{
95829b3a 2685 return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
71dfda58
AD
2686}
2687
2688/**
2689 * __dev_alloc_page - allocate a page for network Rx
2690 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2691 *
2692 * Allocate a new page.
2693 *
2694 * %NULL is returned if there is no free memory.
2695 */
2696static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
2697{
2698 return __dev_alloc_pages(gfp_mask, 0);
2699}
2700
2701static inline struct page *dev_alloc_page(void)
2702{
95829b3a 2703 return dev_alloc_pages(0);
71dfda58
AD
2704}
2705
0614002b
MG
2706/**
2707 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
2708 * @page: The page that was allocated from skb_alloc_page
2709 * @skb: The skb that may need pfmemalloc set
2710 */
2711static inline void skb_propagate_pfmemalloc(struct page *page,
2712 struct sk_buff *skb)
2713{
2f064f34 2714 if (page_is_pfmemalloc(page))
0614002b
MG
2715 skb->pfmemalloc = true;
2716}
2717
131ea667 2718/**
e227867f 2719 * skb_frag_page - retrieve the page referred to by a paged fragment
131ea667
IC
2720 * @frag: the paged fragment
2721 *
2722 * Returns the &struct page associated with @frag.
2723 */
2724static inline struct page *skb_frag_page(const skb_frag_t *frag)
2725{
a8605c60 2726 return frag->page.p;
131ea667
IC
2727}
2728
2729/**
2730 * __skb_frag_ref - take an addition reference on a paged fragment.
2731 * @frag: the paged fragment
2732 *
2733 * Takes an additional reference on the paged fragment @frag.
2734 */
2735static inline void __skb_frag_ref(skb_frag_t *frag)
2736{
2737 get_page(skb_frag_page(frag));
2738}
2739
2740/**
2741 * skb_frag_ref - take an addition reference on a paged fragment of an skb.
2742 * @skb: the buffer
2743 * @f: the fragment offset.
2744 *
2745 * Takes an additional reference on the @f'th paged fragment of @skb.
2746 */
2747static inline void skb_frag_ref(struct sk_buff *skb, int f)
2748{
2749 __skb_frag_ref(&skb_shinfo(skb)->frags[f]);
2750}
2751
2752/**
2753 * __skb_frag_unref - release a reference on a paged fragment.
2754 * @frag: the paged fragment
2755 *
2756 * Releases a reference on the paged fragment @frag.
2757 */
2758static inline void __skb_frag_unref(skb_frag_t *frag)
2759{
2760 put_page(skb_frag_page(frag));
2761}
2762
2763/**
2764 * skb_frag_unref - release a reference on a paged fragment of an skb.
2765 * @skb: the buffer
2766 * @f: the fragment offset
2767 *
2768 * Releases a reference on the @f'th paged fragment of @skb.
2769 */
2770static inline void skb_frag_unref(struct sk_buff *skb, int f)
2771{
2772 __skb_frag_unref(&skb_shinfo(skb)->frags[f]);
2773}
2774
2775/**
2776 * skb_frag_address - gets the address of the data contained in a paged fragment
2777 * @frag: the paged fragment buffer
2778 *
2779 * Returns the address of the data within @frag. The page must already
2780 * be mapped.
2781 */
2782static inline void *skb_frag_address(const skb_frag_t *frag)
2783{
2784 return page_address(skb_frag_page(frag)) + frag->page_offset;
2785}
2786
2787/**
2788 * skb_frag_address_safe - gets the address of the data contained in a paged fragment
2789 * @frag: the paged fragment buffer
2790 *
2791 * Returns the address of the data within @frag. Checks that the page
2792 * is mapped and returns %NULL otherwise.
2793 */
2794static inline void *skb_frag_address_safe(const skb_frag_t *frag)
2795{
2796 void *ptr = page_address(skb_frag_page(frag));
2797 if (unlikely(!ptr))
2798 return NULL;
2799
2800 return ptr + frag->page_offset;
2801}
2802
2803/**
2804 * __skb_frag_set_page - sets the page contained in a paged fragment
2805 * @frag: the paged fragment
2806 * @page: the page to set
2807 *
2808 * Sets the fragment @frag to contain @page.
2809 */
2810static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
2811{
a8605c60 2812 frag->page.p = page;
131ea667
IC
2813}
2814
2815/**
2816 * skb_frag_set_page - sets the page contained in a paged fragment of an skb
2817 * @skb: the buffer
2818 * @f: the fragment offset
2819 * @page: the page to set
2820 *
2821 * Sets the @f'th fragment of @skb to contain @page.
2822 */
2823static inline void skb_frag_set_page(struct sk_buff *skb, int f,
2824 struct page *page)
2825{
2826 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
2827}
2828
400dfd3a
ED
2829bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
2830
131ea667
IC
2831/**
2832 * skb_frag_dma_map - maps a paged fragment via the DMA API
f83347df 2833 * @dev: the device to map the fragment to
131ea667
IC
2834 * @frag: the paged fragment to map
2835 * @offset: the offset within the fragment (starting at the
2836 * fragment's own offset)
2837 * @size: the number of bytes to map
771b00a8 2838 * @dir: the direction of the mapping (``PCI_DMA_*``)
131ea667
IC
2839 *
2840 * Maps the page associated with @frag to @device.
2841 */
2842static inline dma_addr_t skb_frag_dma_map(struct device *dev,
2843 const skb_frag_t *frag,
2844 size_t offset, size_t size,
2845 enum dma_data_direction dir)
2846{
2847 return dma_map_page(dev, skb_frag_page(frag),
2848 frag->page_offset + offset, size, dir);
2849}
2850
117632e6
ED
2851static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
2852 gfp_t gfp_mask)
2853{
2854 return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
2855}
2856
bad93e9d
OP
2857
2858static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
2859 gfp_t gfp_mask)
2860{
2861 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
2862}
2863
2864
334a8132
PM
2865/**
2866 * skb_clone_writable - is the header of a clone writable
2867 * @skb: buffer to check
2868 * @len: length up to which to write
2869 *
2870 * Returns true if modifying the header part of the cloned buffer
2871 * does not requires the data to be copied.
2872 */
05bdd2f1 2873static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
334a8132
PM
2874{
2875 return !skb_header_cloned(skb) &&
2876 skb_headroom(skb) + len <= skb->hdr_len;
2877}
2878
3697649f
DB
2879static inline int skb_try_make_writable(struct sk_buff *skb,
2880 unsigned int write_len)
2881{
2882 return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
2883 pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2884}
2885
d9cc2048
HX
2886static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
2887 int cloned)
2888{
2889 int delta = 0;
2890
d9cc2048
HX
2891 if (headroom > skb_headroom(skb))
2892 delta = headroom - skb_headroom(skb);
2893
2894 if (delta || cloned)
2895 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
2896 GFP_ATOMIC);
2897 return 0;
2898}
2899
1da177e4
LT
2900/**
2901 * skb_cow - copy header of skb when it is required
2902 * @skb: buffer to cow
2903 * @headroom: needed headroom
2904 *
2905 * If the skb passed lacks sufficient headroom or its data part
2906 * is shared, data is reallocated. If reallocation fails, an error
2907 * is returned and original skb is not changed.
2908 *
2909 * The result is skb with writable area skb->head...skb->tail
2910 * and at least @headroom of space at head.
2911 */
2912static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
2913{
d9cc2048
HX
2914 return __skb_cow(skb, headroom, skb_cloned(skb));
2915}
1da177e4 2916
d9cc2048
HX
2917/**
2918 * skb_cow_head - skb_cow but only making the head writable
2919 * @skb: buffer to cow
2920 * @headroom: needed headroom
2921 *
2922 * This function is identical to skb_cow except that we replace the
2923 * skb_cloned check by skb_header_cloned. It should be used when
2924 * you only need to push on some header and do not need to modify
2925 * the data.
2926 */
2927static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
2928{
2929 return __skb_cow(skb, headroom, skb_header_cloned(skb));
1da177e4
LT
2930}
2931
2932/**
2933 * skb_padto - pad an skbuff up to a minimal size
2934 * @skb: buffer to pad
2935 * @len: minimal length
2936 *
2937 * Pads up a buffer to ensure the trailing bytes exist and are
2938 * blanked. If the buffer already contains sufficient data it
5b057c6b
HX
2939 * is untouched. Otherwise it is extended. Returns zero on
2940 * success. The skb is freed on error.
1da177e4 2941 */
5b057c6b 2942static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1da177e4
LT
2943{
2944 unsigned int size = skb->len;
2945 if (likely(size >= len))
5b057c6b 2946 return 0;
987c402a 2947 return skb_pad(skb, len - size);
1da177e4
LT
2948}
2949
9c0c1124
AD
2950/**
2951 * skb_put_padto - increase size and pad an skbuff up to a minimal size
2952 * @skb: buffer to pad
2953 * @len: minimal length
cd0a137a 2954 * @free_on_error: free buffer on error
9c0c1124
AD
2955 *
2956 * Pads up a buffer to ensure the trailing bytes exist and are
2957 * blanked. If the buffer already contains sufficient data it
2958 * is untouched. Otherwise it is extended. Returns zero on
cd0a137a 2959 * success. The skb is freed on error if @free_on_error is true.
9c0c1124 2960 */
cd0a137a
FF
2961static inline int __skb_put_padto(struct sk_buff *skb, unsigned int len,
2962 bool free_on_error)
9c0c1124
AD
2963{
2964 unsigned int size = skb->len;
2965
2966 if (unlikely(size < len)) {
2967 len -= size;
cd0a137a 2968 if (__skb_pad(skb, len, free_on_error))
9c0c1124
AD
2969 return -ENOMEM;
2970 __skb_put(skb, len);
2971 }
2972 return 0;
2973}
2974
cd0a137a
FF
2975/**
2976 * skb_put_padto - increase size and pad an skbuff up to a minimal size
2977 * @skb: buffer to pad
2978 * @len: minimal length
2979 *
2980 * Pads up a buffer to ensure the trailing bytes exist and are
2981 * blanked. If the buffer already contains sufficient data it
2982 * is untouched. Otherwise it is extended. Returns zero on
2983 * success. The skb is freed on error.
2984 */
2985static inline int skb_put_padto(struct sk_buff *skb, unsigned int len)
2986{
2987 return __skb_put_padto(skb, len, true);
2988}
2989
1da177e4 2990static inline int skb_add_data(struct sk_buff *skb,
af2b040e 2991 struct iov_iter *from, int copy)
1da177e4
LT
2992{
2993 const int off = skb->len;
2994
2995 if (skb->ip_summed == CHECKSUM_NONE) {
af2b040e 2996 __wsum csum = 0;
15e6cb46
AV
2997 if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
2998 &csum, from)) {
1da177e4
LT
2999 skb->csum = csum_block_add(skb->csum, csum, off);
3000 return 0;
3001 }
15e6cb46 3002 } else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
1da177e4
LT
3003 return 0;
3004
3005 __skb_trim(skb, off);
3006 return -EFAULT;
3007}
3008
38ba0a65
ED
3009static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3010 const struct page *page, int off)
1da177e4 3011{
1f8b977a
WB
3012 if (skb_zcopy(skb))
3013 return false;
1da177e4 3014 if (i) {
9e903e08 3015 const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1da177e4 3016
ea2ab693 3017 return page == skb_frag_page(frag) &&
9e903e08 3018 off == frag->page_offset + skb_frag_size(frag);
1da177e4 3019 }
38ba0a65 3020 return false;
1da177e4
LT
3021}
3022
364c6bad
HX
3023static inline int __skb_linearize(struct sk_buff *skb)
3024{
3025 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3026}
3027
1da177e4
LT
3028/**
3029 * skb_linearize - convert paged skb to linear one
3030 * @skb: buffer to linarize
1da177e4
LT
3031 *
3032 * If there is no free memory -ENOMEM is returned, otherwise zero
3033 * is returned and the old skb data released.
3034 */
364c6bad
HX
3035static inline int skb_linearize(struct sk_buff *skb)
3036{
3037 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3038}
3039
cef401de
ED
3040/**
3041 * skb_has_shared_frag - can any frag be overwritten
3042 * @skb: buffer to test
3043 *
3044 * Return true if the skb has at least one frag that might be modified
3045 * by an external entity (as in vmsplice()/sendfile())
3046 */
3047static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3048{
c9af6db4
PS
3049 return skb_is_nonlinear(skb) &&
3050 skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
cef401de
ED
3051}
3052
364c6bad
HX
3053/**
3054 * skb_linearize_cow - make sure skb is linear and writable
3055 * @skb: buffer to process
3056 *
3057 * If there is no free memory -ENOMEM is returned, otherwise zero
3058 * is returned and the old skb data released.
3059 */
3060static inline int skb_linearize_cow(struct sk_buff *skb)
1da177e4 3061{
364c6bad
HX
3062 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3063 __skb_linearize(skb) : 0;
1da177e4
LT
3064}
3065
479ffccc
DB
3066static __always_inline void
3067__skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3068 unsigned int off)
3069{
3070 if (skb->ip_summed == CHECKSUM_COMPLETE)
3071 skb->csum = csum_block_sub(skb->csum,
3072 csum_partial(start, len, 0), off);
3073 else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3074 skb_checksum_start_offset(skb) < 0)
3075 skb->ip_summed = CHECKSUM_NONE;
3076}
3077
1da177e4
LT
3078/**
3079 * skb_postpull_rcsum - update checksum for received skb after pull
3080 * @skb: buffer to update
3081 * @start: start of data before pull
3082 * @len: length of data pulled
3083 *
3084 * After doing a pull on a received packet, you need to call this to
84fa7933
PM
3085 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3086 * CHECKSUM_NONE so that it can be recomputed from scratch.
1da177e4 3087 */
1da177e4 3088static inline void skb_postpull_rcsum(struct sk_buff *skb,
cbb042f9 3089 const void *start, unsigned int len)
1da177e4 3090{
479ffccc 3091 __skb_postpull_rcsum(skb, start, len, 0);
1da177e4
LT
3092}
3093
479ffccc
DB
3094static __always_inline void
3095__skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3096 unsigned int off)
3097{
3098 if (skb->ip_summed == CHECKSUM_COMPLETE)
3099 skb->csum = csum_block_add(skb->csum,
3100 csum_partial(start, len, 0), off);
3101}
cbb042f9 3102
479ffccc
DB
3103/**
3104 * skb_postpush_rcsum - update checksum for received skb after push
3105 * @skb: buffer to update
3106 * @start: start of data after push
3107 * @len: length of data pushed
3108 *
3109 * After doing a push on a received packet, you need to call this to
3110 * update the CHECKSUM_COMPLETE checksum.
3111 */
f8ffad69
DB
3112static inline void skb_postpush_rcsum(struct sk_buff *skb,
3113 const void *start, unsigned int len)
3114{
479ffccc 3115 __skb_postpush_rcsum(skb, start, len, 0);
f8ffad69
DB
3116}
3117
af72868b 3118void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
479ffccc 3119
82a31b92
WC
3120/**
3121 * skb_push_rcsum - push skb and update receive checksum
3122 * @skb: buffer to update
3123 * @len: length of data pulled
3124 *
3125 * This function performs an skb_push on the packet and updates
3126 * the CHECKSUM_COMPLETE checksum. It should be used on
3127 * receive path processing instead of skb_push unless you know
3128 * that the checksum difference is zero (e.g., a valid IP header)
3129 * or you are setting ip_summed to CHECKSUM_NONE.
3130 */
d58ff351 3131static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
82a31b92
WC
3132{
3133 skb_push(skb, len);
3134 skb_postpush_rcsum(skb, skb->data, len);
3135 return skb->data;
3136}
3137
7ce5a27f
DM
3138/**
3139 * pskb_trim_rcsum - trim received skb and update checksum
3140 * @skb: buffer to trim
3141 * @len: new length
3142 *
3143 * This is exactly the same as pskb_trim except that it ensures the
3144 * checksum of received packets are still valid after the operation.
3145 */
3146
3147static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3148{
3149 if (likely(len >= skb->len))
3150 return 0;
3151 if (skb->ip_summed == CHECKSUM_COMPLETE)
3152 skb->ip_summed = CHECKSUM_NONE;
3153 return __pskb_trim(skb, len);
3154}
3155
5293efe6
DB
3156static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3157{
3158 if (skb->ip_summed == CHECKSUM_COMPLETE)
3159 skb->ip_summed = CHECKSUM_NONE;
3160 __skb_trim(skb, len);
3161 return 0;
3162}
3163
3164static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3165{
3166 if (skb->ip_summed == CHECKSUM_COMPLETE)
3167 skb->ip_summed = CHECKSUM_NONE;
3168 return __skb_grow(skb, len);
3169}
3170
1da177e4
LT
3171#define skb_queue_walk(queue, skb) \
3172 for (skb = (queue)->next; \
a1e4891f 3173 skb != (struct sk_buff *)(queue); \
1da177e4
LT
3174 skb = skb->next)
3175
46f8914e
JC
3176#define skb_queue_walk_safe(queue, skb, tmp) \
3177 for (skb = (queue)->next, tmp = skb->next; \
3178 skb != (struct sk_buff *)(queue); \
3179 skb = tmp, tmp = skb->next)
3180
1164f52a 3181#define skb_queue_walk_from(queue, skb) \
a1e4891f 3182 for (; skb != (struct sk_buff *)(queue); \
1164f52a
DM
3183 skb = skb->next)
3184
3185#define skb_queue_walk_from_safe(queue, skb, tmp) \
3186 for (tmp = skb->next; \
3187 skb != (struct sk_buff *)(queue); \
3188 skb = tmp, tmp = skb->next)
3189
300ce174
SH
3190#define skb_queue_reverse_walk(queue, skb) \
3191 for (skb = (queue)->prev; \
a1e4891f 3192 skb != (struct sk_buff *)(queue); \
300ce174
SH
3193 skb = skb->prev)
3194
686a2955
DM
3195#define skb_queue_reverse_walk_safe(queue, skb, tmp) \
3196 for (skb = (queue)->prev, tmp = skb->prev; \
3197 skb != (struct sk_buff *)(queue); \
3198 skb = tmp, tmp = skb->prev)
3199
3200#define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \
3201 for (tmp = skb->prev; \
3202 skb != (struct sk_buff *)(queue); \
3203 skb = tmp, tmp = skb->prev)
1da177e4 3204
21dc3301 3205static inline bool skb_has_frag_list(const struct sk_buff *skb)
ee039871
DM
3206{
3207 return skb_shinfo(skb)->frag_list != NULL;
3208}
3209
3210static inline void skb_frag_list_init(struct sk_buff *skb)
3211{
3212 skb_shinfo(skb)->frag_list = NULL;
3213}
3214
ee039871
DM
3215#define skb_walk_frags(skb, iter) \
3216 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3217
ea3793ee
RW
3218
3219int __skb_wait_for_more_packets(struct sock *sk, int *err, long *timeo_p,
3220 const struct sk_buff *skb);
65101aec
PA
3221struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3222 struct sk_buff_head *queue,
3223 unsigned int flags,
3224 void (*destructor)(struct sock *sk,
3225 struct sk_buff *skb),
3226 int *peeked, int *off, int *err,
3227 struct sk_buff **last);
ea3793ee 3228struct sk_buff *__skb_try_recv_datagram(struct sock *sk, unsigned flags,
7c13f97f
PA
3229 void (*destructor)(struct sock *sk,
3230 struct sk_buff *skb),
ea3793ee
RW
3231 int *peeked, int *off, int *err,
3232 struct sk_buff **last);
7965bd4d 3233struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
7c13f97f
PA
3234 void (*destructor)(struct sock *sk,
3235 struct sk_buff *skb),
7965bd4d
JP
3236 int *peeked, int *off, int *err);
3237struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
3238 int *err);
3239unsigned int datagram_poll(struct file *file, struct socket *sock,
3240 struct poll_table_struct *wait);
c0371da6
AV
3241int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3242 struct iov_iter *to, int size);
51f3d02b
DM
3243static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3244 struct msghdr *msg, int size)
3245{
e5a4b0bb 3246 return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
227158db 3247}
e5a4b0bb
AV
3248int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3249 struct msghdr *msg);
3a654f97
AV
3250int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3251 struct iov_iter *from, int len);
3a654f97 3252int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
7965bd4d 3253void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
627d2d6b 3254void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
3255static inline void skb_free_datagram_locked(struct sock *sk,
3256 struct sk_buff *skb)
3257{
3258 __skb_free_datagram_locked(sk, skb, 0);
3259}
7965bd4d 3260int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
7965bd4d
JP
3261int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3262int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3263__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3264 int len, __wsum csum);
a60e3cc7 3265int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
7965bd4d 3266 struct pipe_inode_info *pipe, unsigned int len,
25869262 3267 unsigned int flags);
20bf50de
TH
3268int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3269 int len);
3270int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len);
7965bd4d 3271void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
af2806f8 3272unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
36d5fe6a
ZK
3273int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
3274 int len, int hlen);
7965bd4d
JP
3275void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
3276int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
3277void skb_scrub_packet(struct sk_buff *skb, bool xnet);
de960aa9 3278unsigned int skb_gso_transport_seglen(const struct sk_buff *skb);
ae7ef81e 3279bool skb_gso_validate_mtu(const struct sk_buff *skb, unsigned int mtu);
7965bd4d 3280struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
0d5501c1 3281struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
e2195121 3282int skb_ensure_writable(struct sk_buff *skb, int write_len);
bfca4c52 3283int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
93515d53
JP
3284int skb_vlan_pop(struct sk_buff *skb);
3285int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
6fa01ccd
SV
3286struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
3287 gfp_t gfp);
20380731 3288
6ce8e9ce
AV
3289static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
3290{
3073f070 3291 return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
6ce8e9ce
AV
3292}
3293
7eab8d9e
AV
3294static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
3295{
e5a4b0bb 3296 return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
7eab8d9e
AV
3297}
3298
2817a336
DB
3299struct skb_checksum_ops {
3300 __wsum (*update)(const void *mem, int len, __wsum wsum);
3301 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
3302};
3303
9617813d
DC
3304extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
3305
2817a336
DB
3306__wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3307 __wsum csum, const struct skb_checksum_ops *ops);
3308__wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
3309 __wsum csum);
3310
1e98a0f0
ED
3311static inline void * __must_check
3312__skb_header_pointer(const struct sk_buff *skb, int offset,
3313 int len, void *data, int hlen, void *buffer)
1da177e4 3314{
55820ee2 3315 if (hlen - offset >= len)
690e36e7 3316 return data + offset;
1da177e4 3317
690e36e7
DM
3318 if (!skb ||
3319 skb_copy_bits(skb, offset, buffer, len) < 0)
1da177e4
LT
3320 return NULL;
3321
3322 return buffer;
3323}
3324
1e98a0f0
ED
3325static inline void * __must_check
3326skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
690e36e7
DM
3327{
3328 return __skb_header_pointer(skb, offset, len, skb->data,
3329 skb_headlen(skb), buffer);
3330}
3331
4262e5cc
DB
3332/**
3333 * skb_needs_linearize - check if we need to linearize a given skb
3334 * depending on the given device features.
3335 * @skb: socket buffer to check
3336 * @features: net device features
3337 *
3338 * Returns true if either:
3339 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
3340 * 2. skb is fragmented and the device does not support SG.
3341 */
3342static inline bool skb_needs_linearize(struct sk_buff *skb,
3343 netdev_features_t features)
3344{
3345 return skb_is_nonlinear(skb) &&
3346 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
3347 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
3348}
3349
d626f62b
ACM
3350static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
3351 void *to,
3352 const unsigned int len)
3353{
3354 memcpy(to, skb->data, len);
3355}
3356
3357static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
3358 const int offset, void *to,
3359 const unsigned int len)
3360{
3361 memcpy(to, skb->data + offset, len);
3362}
3363
27d7ff46
ACM
3364static inline void skb_copy_to_linear_data(struct sk_buff *skb,
3365 const void *from,
3366 const unsigned int len)
3367{
3368 memcpy(skb->data, from, len);
3369}
3370
3371static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
3372 const int offset,
3373 const void *from,
3374 const unsigned int len)
3375{
3376 memcpy(skb->data + offset, from, len);
3377}
3378
7965bd4d 3379void skb_init(void);
1da177e4 3380
ac45f602
PO
3381static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
3382{
3383 return skb->tstamp;
3384}
3385
a61bbcf2
PM
3386/**
3387 * skb_get_timestamp - get timestamp from a skb
3388 * @skb: skb to get stamp from
3389 * @stamp: pointer to struct timeval to store stamp in
3390 *
3391 * Timestamps are stored in the skb as offsets to a base timestamp.
3392 * This function converts the offset back to a struct timeval and stores
3393 * it in stamp.
3394 */
ac45f602
PO
3395static inline void skb_get_timestamp(const struct sk_buff *skb,
3396 struct timeval *stamp)
a61bbcf2 3397{
b7aa0bf7 3398 *stamp = ktime_to_timeval(skb->tstamp);
a61bbcf2
PM
3399}
3400
ac45f602
PO
3401static inline void skb_get_timestampns(const struct sk_buff *skb,
3402 struct timespec *stamp)
3403{
3404 *stamp = ktime_to_timespec(skb->tstamp);
3405}
3406
b7aa0bf7 3407static inline void __net_timestamp(struct sk_buff *skb)
a61bbcf2 3408{
b7aa0bf7 3409 skb->tstamp = ktime_get_real();
a61bbcf2
PM
3410}
3411
164891aa
SH
3412static inline ktime_t net_timedelta(ktime_t t)
3413{
3414 return ktime_sub(ktime_get_real(), t);
3415}
3416
b9ce204f
IJ
3417static inline ktime_t net_invalid_timestamp(void)
3418{
8b0e1953 3419 return 0;
b9ce204f 3420}
a61bbcf2 3421
62bccb8c
AD
3422struct sk_buff *skb_clone_sk(struct sk_buff *skb);
3423
c1f19b51
RC
3424#ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
3425
7965bd4d
JP
3426void skb_clone_tx_timestamp(struct sk_buff *skb);
3427bool skb_defer_rx_timestamp(struct sk_buff *skb);
c1f19b51
RC
3428
3429#else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
3430
3431static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
3432{
3433}
3434
3435static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
3436{
3437 return false;
3438}
3439
3440#endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
3441
3442/**
3443 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
3444 *
da92b194
RC
3445 * PHY drivers may accept clones of transmitted packets for
3446 * timestamping via their phy_driver.txtstamp method. These drivers
7a76a021
BP
3447 * must call this function to return the skb back to the stack with a
3448 * timestamp.
da92b194 3449 *
c1f19b51 3450 * @skb: clone of the the original outgoing packet
7a76a021 3451 * @hwtstamps: hardware time stamps
c1f19b51
RC
3452 *
3453 */
3454void skb_complete_tx_timestamp(struct sk_buff *skb,
3455 struct skb_shared_hwtstamps *hwtstamps);
3456
e7fd2885
WB
3457void __skb_tstamp_tx(struct sk_buff *orig_skb,
3458 struct skb_shared_hwtstamps *hwtstamps,
3459 struct sock *sk, int tstype);
3460
ac45f602
PO
3461/**
3462 * skb_tstamp_tx - queue clone of skb with send time stamps
3463 * @orig_skb: the original outgoing packet
3464 * @hwtstamps: hardware time stamps, may be NULL if not available
3465 *
3466 * If the skb has a socket associated, then this function clones the
3467 * skb (thus sharing the actual data and optional structures), stores
3468 * the optional hardware time stamping information (if non NULL) or
3469 * generates a software time stamp (otherwise), then queues the clone
3470 * to the error queue of the socket. Errors are silently ignored.
3471 */
7965bd4d
JP
3472void skb_tstamp_tx(struct sk_buff *orig_skb,
3473 struct skb_shared_hwtstamps *hwtstamps);
ac45f602 3474
4507a715
RC
3475/**
3476 * skb_tx_timestamp() - Driver hook for transmit timestamping
3477 *
3478 * Ethernet MAC Drivers should call this function in their hard_xmit()
4ff75b7c 3479 * function immediately before giving the sk_buff to the MAC hardware.
4507a715 3480 *
73409f3b
DM
3481 * Specifically, one should make absolutely sure that this function is
3482 * called before TX completion of this packet can trigger. Otherwise
3483 * the packet could potentially already be freed.
3484 *
4507a715
RC
3485 * @skb: A socket buffer.
3486 */
3487static inline void skb_tx_timestamp(struct sk_buff *skb)
3488{
c1f19b51 3489 skb_clone_tx_timestamp(skb);
b50a5c70
ML
3490 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
3491 skb_tstamp_tx(skb, NULL);
4507a715
RC
3492}
3493
6e3e939f
JB
3494/**
3495 * skb_complete_wifi_ack - deliver skb with wifi status
3496 *
3497 * @skb: the original outgoing packet
3498 * @acked: ack status
3499 *
3500 */
3501void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
3502
7965bd4d
JP
3503__sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
3504__sum16 __skb_checksum_complete(struct sk_buff *skb);
fb286bb2 3505
60476372
HX
3506static inline int skb_csum_unnecessary(const struct sk_buff *skb)
3507{
6edec0e6
TH
3508 return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
3509 skb->csum_valid ||
3510 (skb->ip_summed == CHECKSUM_PARTIAL &&
3511 skb_checksum_start_offset(skb) >= 0));
60476372
HX
3512}
3513
fb286bb2
HX
3514/**
3515 * skb_checksum_complete - Calculate checksum of an entire packet
3516 * @skb: packet to process
3517 *
3518 * This function calculates the checksum over the entire packet plus
3519 * the value of skb->csum. The latter can be used to supply the
3520 * checksum of a pseudo header as used by TCP/UDP. It returns the
3521 * checksum.
3522 *
3523 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
3524 * this function can be used to verify that checksum on received
3525 * packets. In that case the function should return zero if the
3526 * checksum is correct. In particular, this function will return zero
3527 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
3528 * hardware has already verified the correctness of the checksum.
3529 */
4381ca3c 3530static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
fb286bb2 3531{
60476372
HX
3532 return skb_csum_unnecessary(skb) ?
3533 0 : __skb_checksum_complete(skb);
fb286bb2
HX
3534}
3535
77cffe23
TH
3536static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
3537{
3538 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3539 if (skb->csum_level == 0)
3540 skb->ip_summed = CHECKSUM_NONE;
3541 else
3542 skb->csum_level--;
3543 }
3544}
3545
3546static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
3547{
3548 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
3549 if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
3550 skb->csum_level++;
3551 } else if (skb->ip_summed == CHECKSUM_NONE) {
3552 skb->ip_summed = CHECKSUM_UNNECESSARY;
3553 skb->csum_level = 0;
3554 }
3555}
3556
76ba0aae
TH
3557/* Check if we need to perform checksum complete validation.
3558 *
3559 * Returns true if checksum complete is needed, false otherwise
3560 * (either checksum is unnecessary or zero checksum is allowed).
3561 */
3562static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
3563 bool zero_okay,
3564 __sum16 check)
3565{
5d0c2b95
TH
3566 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
3567 skb->csum_valid = 1;
77cffe23 3568 __skb_decr_checksum_unnecessary(skb);
76ba0aae
TH
3569 return false;
3570 }
3571
3572 return true;
3573}
3574
3575/* For small packets <= CHECKSUM_BREAK peform checksum complete directly
3576 * in checksum_init.
3577 */
3578#define CHECKSUM_BREAK 76
3579
4e18b9ad
TH
3580/* Unset checksum-complete
3581 *
3582 * Unset checksum complete can be done when packet is being modified
3583 * (uncompressed for instance) and checksum-complete value is
3584 * invalidated.
3585 */
3586static inline void skb_checksum_complete_unset(struct sk_buff *skb)
3587{
3588 if (skb->ip_summed == CHECKSUM_COMPLETE)
3589 skb->ip_summed = CHECKSUM_NONE;
3590}
3591
76ba0aae
TH
3592/* Validate (init) checksum based on checksum complete.
3593 *
3594 * Return values:
3595 * 0: checksum is validated or try to in skb_checksum_complete. In the latter
3596 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
3597 * checksum is stored in skb->csum for use in __skb_checksum_complete
3598 * non-zero: value of invalid checksum
3599 *
3600 */
3601static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
3602 bool complete,
3603 __wsum psum)
3604{
3605 if (skb->ip_summed == CHECKSUM_COMPLETE) {
3606 if (!csum_fold(csum_add(psum, skb->csum))) {
5d0c2b95 3607 skb->csum_valid = 1;
76ba0aae
TH
3608 return 0;
3609 }
3610 }
3611
3612 skb->csum = psum;
3613
5d0c2b95
TH
3614 if (complete || skb->len <= CHECKSUM_BREAK) {
3615 __sum16 csum;
3616
3617 csum = __skb_checksum_complete(skb);
3618 skb->csum_valid = !csum;
3619 return csum;
3620 }
76ba0aae
TH
3621
3622 return 0;
3623}
3624
3625static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
3626{
3627 return 0;
3628}
3629
3630/* Perform checksum validate (init). Note that this is a macro since we only
3631 * want to calculate the pseudo header which is an input function if necessary.
3632 * First we try to validate without any computation (checksum unnecessary) and
3633 * then calculate based on checksum complete calling the function to compute
3634 * pseudo header.
3635 *
3636 * Return values:
3637 * 0: checksum is validated or try to in skb_checksum_complete
3638 * non-zero: value of invalid checksum
3639 */
3640#define __skb_checksum_validate(skb, proto, complete, \
3641 zero_okay, check, compute_pseudo) \
3642({ \
3643 __sum16 __ret = 0; \
5d0c2b95 3644 skb->csum_valid = 0; \
76ba0aae
TH
3645 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \
3646 __ret = __skb_checksum_validate_complete(skb, \
3647 complete, compute_pseudo(skb, proto)); \
3648 __ret; \
3649})
3650
3651#define skb_checksum_init(skb, proto, compute_pseudo) \
3652 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
3653
3654#define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \
3655 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
3656
3657#define skb_checksum_validate(skb, proto, compute_pseudo) \
3658 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
3659
3660#define skb_checksum_validate_zero_check(skb, proto, check, \
3661 compute_pseudo) \
096a4cfa 3662 __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
76ba0aae
TH
3663
3664#define skb_checksum_simple_validate(skb) \
3665 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
3666
d96535a1
TH
3667static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
3668{
219f1d79 3669 return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
d96535a1
TH
3670}
3671
3672static inline void __skb_checksum_convert(struct sk_buff *skb,
3673 __sum16 check, __wsum pseudo)
3674{
3675 skb->csum = ~pseudo;
3676 skb->ip_summed = CHECKSUM_COMPLETE;
3677}
3678
3679#define skb_checksum_try_convert(skb, proto, check, compute_pseudo) \
3680do { \
3681 if (__skb_checksum_convert_check(skb)) \
3682 __skb_checksum_convert(skb, check, \
3683 compute_pseudo(skb, proto)); \
3684} while (0)
3685
15e2396d
TH
3686static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
3687 u16 start, u16 offset)
3688{
3689 skb->ip_summed = CHECKSUM_PARTIAL;
3690 skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
3691 skb->csum_offset = offset - start;
3692}
3693
dcdc8994
TH
3694/* Update skbuf and packet to reflect the remote checksum offload operation.
3695 * When called, ptr indicates the starting point for skb->csum when
3696 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
3697 * here, skb_postpull_rcsum is done so skb->csum start is ptr.
3698 */
3699static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
15e2396d 3700 int start, int offset, bool nopartial)
dcdc8994
TH
3701{
3702 __wsum delta;
3703
15e2396d
TH
3704 if (!nopartial) {
3705 skb_remcsum_adjust_partial(skb, ptr, start, offset);
3706 return;
3707 }
3708
dcdc8994
TH
3709 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
3710 __skb_checksum_complete(skb);
3711 skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
3712 }
3713
3714 delta = remcsum_adjust(ptr, skb->csum, start, offset);
3715
3716 /* Adjust skb->csum since we changed the packet */
3717 skb->csum = csum_add(skb->csum, delta);
3718}
3719
cb9c6836
FW
3720static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
3721{
3722#if IS_ENABLED(CONFIG_NF_CONNTRACK)
a9e419dc 3723 return (void *)(skb->_nfct & SKB_NFCT_PTRMASK);
cb9c6836
FW
3724#else
3725 return NULL;
3726#endif
3727}
3728
5f79e0f9 3729#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
7965bd4d 3730void nf_conntrack_destroy(struct nf_conntrack *nfct);
1da177e4
LT
3731static inline void nf_conntrack_put(struct nf_conntrack *nfct)
3732{
3733 if (nfct && atomic_dec_and_test(&nfct->use))
de6e05c4 3734 nf_conntrack_destroy(nfct);
1da177e4
LT
3735}
3736static inline void nf_conntrack_get(struct nf_conntrack *nfct)
3737{
3738 if (nfct)
3739 atomic_inc(&nfct->use);
3740}
2fc72c7b 3741#endif
34666d46 3742#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
1da177e4
LT
3743static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
3744{
53869ceb 3745 if (nf_bridge && refcount_dec_and_test(&nf_bridge->use))
1da177e4
LT
3746 kfree(nf_bridge);
3747}
3748static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
3749{
3750 if (nf_bridge)
53869ceb 3751 refcount_inc(&nf_bridge->use);
1da177e4
LT
3752}
3753#endif /* CONFIG_BRIDGE_NETFILTER */
a193a4ab
PM
3754static inline void nf_reset(struct sk_buff *skb)
3755{
5f79e0f9 3756#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
a9e419dc
FW
3757 nf_conntrack_put(skb_nfct(skb));
3758 skb->_nfct = 0;
2fc72c7b 3759#endif
34666d46 3760#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
a193a4ab
PM
3761 nf_bridge_put(skb->nf_bridge);
3762 skb->nf_bridge = NULL;
3763#endif
3764}
3765
124dff01
PM
3766static inline void nf_reset_trace(struct sk_buff *skb)
3767{
478b360a 3768#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
130549fe
G
3769 skb->nf_trace = 0;
3770#endif
a193a4ab
PM
3771}
3772
edda553c 3773/* Note: This doesn't put any conntrack and bridge info in dst. */
b1937227
ED
3774static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
3775 bool copy)
edda553c 3776{
5f79e0f9 3777#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
a9e419dc
FW
3778 dst->_nfct = src->_nfct;
3779 nf_conntrack_get(skb_nfct(src));
2fc72c7b 3780#endif
34666d46 3781#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
edda553c
YK
3782 dst->nf_bridge = src->nf_bridge;
3783 nf_bridge_get(src->nf_bridge);
3784#endif
478b360a 3785#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
b1937227
ED
3786 if (copy)
3787 dst->nf_trace = src->nf_trace;
478b360a 3788#endif
edda553c
YK
3789}
3790
e7ac05f3
YK
3791static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
3792{
e7ac05f3 3793#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
a9e419dc 3794 nf_conntrack_put(skb_nfct(dst));
2fc72c7b 3795#endif
34666d46 3796#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
e7ac05f3
YK
3797 nf_bridge_put(dst->nf_bridge);
3798#endif
b1937227 3799 __nf_copy(dst, src, true);
e7ac05f3
YK
3800}
3801
984bc16c
JM
3802#ifdef CONFIG_NETWORK_SECMARK
3803static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3804{
3805 to->secmark = from->secmark;
3806}
3807
3808static inline void skb_init_secmark(struct sk_buff *skb)
3809{
3810 skb->secmark = 0;
3811}
3812#else
3813static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
3814{ }
3815
3816static inline void skb_init_secmark(struct sk_buff *skb)
3817{ }
3818#endif
3819
574f7194
EB
3820static inline bool skb_irq_freeable(const struct sk_buff *skb)
3821{
3822 return !skb->destructor &&
3823#if IS_ENABLED(CONFIG_XFRM)
3824 !skb->sp &&
3825#endif
cb9c6836 3826 !skb_nfct(skb) &&
574f7194
EB
3827 !skb->_skb_refdst &&
3828 !skb_has_frag_list(skb);
3829}
3830
f25f4e44
PWJ
3831static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
3832{
f25f4e44 3833 skb->queue_mapping = queue_mapping;
f25f4e44
PWJ
3834}
3835
9247744e 3836static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
4e3ab47a 3837{
4e3ab47a 3838 return skb->queue_mapping;
4e3ab47a
PE
3839}
3840
f25f4e44
PWJ
3841static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
3842{
f25f4e44 3843 to->queue_mapping = from->queue_mapping;
f25f4e44
PWJ
3844}
3845
d5a9e24a
DM
3846static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
3847{
3848 skb->queue_mapping = rx_queue + 1;
3849}
3850
9247744e 3851static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
d5a9e24a
DM
3852{
3853 return skb->queue_mapping - 1;
3854}
3855
9247744e 3856static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
d5a9e24a 3857{
a02cec21 3858 return skb->queue_mapping != 0;
d5a9e24a
DM
3859}
3860
4ff06203
JA
3861static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
3862{
3863 skb->dst_pending_confirm = val;
3864}
3865
3866static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
3867{
3868 return skb->dst_pending_confirm != 0;
3869}
3870
def8b4fa
AD
3871static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
3872{
0b3d8e08 3873#ifdef CONFIG_XFRM
def8b4fa 3874 return skb->sp;
def8b4fa 3875#else
def8b4fa 3876 return NULL;
def8b4fa 3877#endif
0b3d8e08 3878}
def8b4fa 3879
68c33163
PS
3880/* Keeps track of mac header offset relative to skb->head.
3881 * It is useful for TSO of Tunneling protocol. e.g. GRE.
3882 * For non-tunnel skb it points to skb_mac_header() and for
3347c960
ED
3883 * tunnel skb it points to outer mac header.
3884 * Keeps track of level of encapsulation of network headers.
3885 */
68c33163 3886struct skb_gso_cb {
802ab55a
AD
3887 union {
3888 int mac_offset;
3889 int data_offset;
3890 };
3347c960 3891 int encap_level;
76443456 3892 __wsum csum;
7e2b10c1 3893 __u16 csum_start;
68c33163 3894};
9207f9d4
KK
3895#define SKB_SGO_CB_OFFSET 32
3896#define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_SGO_CB_OFFSET))
68c33163
PS
3897
3898static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
3899{
3900 return (skb_mac_header(inner_skb) - inner_skb->head) -
3901 SKB_GSO_CB(inner_skb)->mac_offset;
3902}
3903
1e2bd517
PS
3904static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
3905{
3906 int new_headroom, headroom;
3907 int ret;
3908
3909 headroom = skb_headroom(skb);
3910 ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
3911 if (ret)
3912 return ret;
3913
3914 new_headroom = skb_headroom(skb);
3915 SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
3916 return 0;
3917}
3918
08b64fcc
AD
3919static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
3920{
3921 /* Do not update partial checksums if remote checksum is enabled. */
3922 if (skb->remcsum_offload)
3923 return;
3924
3925 SKB_GSO_CB(skb)->csum = res;
3926 SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
3927}
3928
7e2b10c1
TH
3929/* Compute the checksum for a gso segment. First compute the checksum value
3930 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
3931 * then add in skb->csum (checksum from csum_start to end of packet).
3932 * skb->csum and csum_start are then updated to reflect the checksum of the
3933 * resultant packet starting from the transport header-- the resultant checksum
3934 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
3935 * header.
3936 */
3937static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
3938{
76443456
AD
3939 unsigned char *csum_start = skb_transport_header(skb);
3940 int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
3941 __wsum partial = SKB_GSO_CB(skb)->csum;
7e2b10c1 3942
76443456
AD
3943 SKB_GSO_CB(skb)->csum = res;
3944 SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
7e2b10c1 3945
76443456 3946 return csum_fold(csum_partial(csum_start, plen, partial));
7e2b10c1
TH
3947}
3948
bdcc0924 3949static inline bool skb_is_gso(const struct sk_buff *skb)
89114afd
HX
3950{
3951 return skb_shinfo(skb)->gso_size;
3952}
3953
36a8f39e 3954/* Note: Should be called only if skb_is_gso(skb) is true */
bdcc0924 3955static inline bool skb_is_gso_v6(const struct sk_buff *skb)
eabd7e35
BG
3956{
3957 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
3958}
3959
5293efe6
DB
3960static inline void skb_gso_reset(struct sk_buff *skb)
3961{
3962 skb_shinfo(skb)->gso_size = 0;
3963 skb_shinfo(skb)->gso_segs = 0;
3964 skb_shinfo(skb)->gso_type = 0;
3965}
3966
7965bd4d 3967void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4497b076
BH
3968
3969static inline bool skb_warn_if_lro(const struct sk_buff *skb)
3970{
3971 /* LRO sets gso_size but not gso_type, whereas if GSO is really
3972 * wanted then gso_type will be set. */
05bdd2f1
ED
3973 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3974
b78462eb
AD
3975 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
3976 unlikely(shinfo->gso_type == 0)) {
4497b076
BH
3977 __skb_warn_lro_forwarding(skb);
3978 return true;
3979 }
3980 return false;
3981}
3982
35fc92a9
HX
3983static inline void skb_forward_csum(struct sk_buff *skb)
3984{
3985 /* Unfortunately we don't support this one. Any brave souls? */
3986 if (skb->ip_summed == CHECKSUM_COMPLETE)
3987 skb->ip_summed = CHECKSUM_NONE;
3988}
3989
bc8acf2c
ED
3990/**
3991 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
3992 * @skb: skb to check
3993 *
3994 * fresh skbs have their ip_summed set to CHECKSUM_NONE.
3995 * Instead of forcing ip_summed to CHECKSUM_NONE, we can
3996 * use this helper, to document places where we make this assertion.
3997 */
05bdd2f1 3998static inline void skb_checksum_none_assert(const struct sk_buff *skb)
bc8acf2c
ED
3999{
4000#ifdef DEBUG
4001 BUG_ON(skb->ip_summed != CHECKSUM_NONE);
4002#endif
4003}
4004
f35d9d8a 4005bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
a6686f2f 4006
ed1f50c3 4007int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
9afd85c9
LL
4008struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4009 unsigned int transport_len,
4010 __sum16(*skb_chkf)(struct sk_buff *skb));
ed1f50c3 4011
3a7c1ee4
AD
4012/**
4013 * skb_head_is_locked - Determine if the skb->head is locked down
4014 * @skb: skb to check
4015 *
4016 * The head on skbs build around a head frag can be removed if they are
4017 * not cloned. This function returns true if the skb head is locked down
4018 * due to either being allocated via kmalloc, or by being a clone with
4019 * multiple references to the head.
4020 */
4021static inline bool skb_head_is_locked(const struct sk_buff *skb)
4022{
4023 return !skb->head_frag || skb_cloned(skb);
4024}
fe6cc55f
FW
4025
4026/**
4027 * skb_gso_network_seglen - Return length of individual segments of a gso packet
4028 *
4029 * @skb: GSO skb
4030 *
4031 * skb_gso_network_seglen is used to determine the real size of the
4032 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
4033 *
4034 * The MAC/L2 header is not accounted for.
4035 */
4036static inline unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
4037{
4038 unsigned int hdr_len = skb_transport_header(skb) -
4039 skb_network_header(skb);
4040 return hdr_len + skb_gso_transport_seglen(skb);
4041}
ee122c79 4042
179bc67f
EC
4043/* Local Checksum Offload.
4044 * Compute outer checksum based on the assumption that the
4045 * inner checksum will be offloaded later.
e8ae7b00
EC
4046 * See Documentation/networking/checksum-offloads.txt for
4047 * explanation of how this works.
179bc67f
EC
4048 * Fill in outer checksum adjustment (e.g. with sum of outer
4049 * pseudo-header) before calling.
4050 * Also ensure that inner checksum is in linear data area.
4051 */
4052static inline __wsum lco_csum(struct sk_buff *skb)
4053{
9e74a6da
AD
4054 unsigned char *csum_start = skb_checksum_start(skb);
4055 unsigned char *l4_hdr = skb_transport_header(skb);
4056 __wsum partial;
179bc67f
EC
4057
4058 /* Start with complement of inner checksum adjustment */
9e74a6da
AD
4059 partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
4060 skb->csum_offset));
4061
179bc67f 4062 /* Add in checksum of our headers (incl. outer checksum
9e74a6da 4063 * adjustment filled in by caller) and return result.
179bc67f 4064 */
9e74a6da 4065 return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
179bc67f
EC
4066}
4067
1da177e4
LT
4068#endif /* __KERNEL__ */
4069#endif /* _LINUX_SKBUFF_H */