mm: dump page when hitting a VM_BUG_ON using VM_BUG_ON_PAGE
[GitHub/exynos8895/android_kernel_samsung_universal8895.git] / include / linux / percpu.h
CommitLineData
1da177e4
LT
1#ifndef __LINUX_PERCPU_H
2#define __LINUX_PERCPU_H
7ff6f082 3
309381fe 4#include <linux/mmdebug.h>
0a3021f4 5#include <linux/preempt.h>
1da177e4 6#include <linux/smp.h>
7ff6f082 7#include <linux/cpumask.h>
6a242909 8#include <linux/pfn.h>
de380b55 9#include <linux/init.h>
7ff6f082 10
1da177e4
LT
11#include <asm/percpu.h>
12
6a242909 13/* enough to cover all DEFINE_PER_CPUs in modules */
b00742d3 14#ifdef CONFIG_MODULES
6a242909 15#define PERCPU_MODULE_RESERVE (8 << 10)
b00742d3 16#else
6a242909 17#define PERCPU_MODULE_RESERVE 0
1da177e4
LT
18#endif
19
6a242909 20#ifndef PERCPU_ENOUGH_ROOM
b00742d3 21#define PERCPU_ENOUGH_ROOM \
6a242909
TH
22 (ALIGN(__per_cpu_end - __per_cpu_start, SMP_CACHE_BYTES) + \
23 PERCPU_MODULE_RESERVE)
24#endif
b00742d3 25
632bbfee
JB
26/*
27 * Must be an lvalue. Since @var must be a simple identifier,
28 * we force a syntax error here if it isn't.
29 */
30#define get_cpu_var(var) (*({ \
632bbfee
JB
31 preempt_disable(); \
32 &__get_cpu_var(var); }))
f7b64fe8 33
e0fdb0e0
RR
34/*
35 * The weird & is necessary because sparse considers (void)(var) to be
36 * a direct dereference of percpu variable (var).
37 */
f7b64fe8 38#define put_cpu_var(var) do { \
e0fdb0e0 39 (void)&(var); \
f7b64fe8
TH
40 preempt_enable(); \
41} while (0)
1da177e4 42
8b8e2ec1
PZ
43#define get_cpu_ptr(var) ({ \
44 preempt_disable(); \
45 this_cpu_ptr(var); })
46
47#define put_cpu_ptr(var) do { \
48 (void)(var); \
49 preempt_enable(); \
50} while (0)
51
8d408b4b 52/* minimum unit size, also is the maximum supported allocation size */
6abad5ac 53#define PCPU_MIN_UNIT_SIZE PFN_ALIGN(32 << 10)
8d408b4b 54
099a19d9
TH
55/*
56 * Percpu allocator can serve percpu allocations before slab is
57 * initialized which allows slab to depend on the percpu allocator.
58 * The following two parameters decide how much resource to
59 * preallocate for this. Keep PERCPU_DYNAMIC_RESERVE equal to or
60 * larger than PERCPU_DYNAMIC_EARLY_SIZE.
61 */
62#define PERCPU_DYNAMIC_EARLY_SLOTS 128
63#define PERCPU_DYNAMIC_EARLY_SIZE (12 << 10)
64
8d408b4b
TH
65/*
66 * PERCPU_DYNAMIC_RESERVE indicates the amount of free area to piggy
6b19b0c2
TH
67 * back on the first chunk for dynamic percpu allocation if arch is
68 * manually allocating and mapping it for faster access (as a part of
69 * large page mapping for example).
8d408b4b 70 *
6b19b0c2
TH
71 * The following values give between one and two pages of free space
72 * after typical minimal boot (2-way SMP, single disk and NIC) with
73 * both defconfig and a distro config on x86_64 and 32. More
74 * intelligent way to determine this would be nice.
8d408b4b 75 */
6b19b0c2
TH
76#if BITS_PER_LONG > 32
77#define PERCPU_DYNAMIC_RESERVE (20 << 10)
78#else
79#define PERCPU_DYNAMIC_RESERVE (12 << 10)
80#endif
8d408b4b 81
fbf59bc9 82extern void *pcpu_base_addr;
fb435d52 83extern const unsigned long *pcpu_unit_offsets;
1da177e4 84
fd1e8a1f
TH
85struct pcpu_group_info {
86 int nr_units; /* aligned # of units */
87 unsigned long base_offset; /* base address offset */
88 unsigned int *cpu_map; /* unit->cpu map, empty
89 * entries contain NR_CPUS */
90};
91
92struct pcpu_alloc_info {
93 size_t static_size;
94 size_t reserved_size;
95 size_t dyn_size;
96 size_t unit_size;
97 size_t atom_size;
98 size_t alloc_size;
99 size_t __ai_size; /* internal, don't use */
100 int nr_groups; /* 0 if grouping unnecessary */
101 struct pcpu_group_info groups[];
102};
103
f58dc01b
TH
104enum pcpu_fc {
105 PCPU_FC_AUTO,
106 PCPU_FC_EMBED,
107 PCPU_FC_PAGE,
f58dc01b
TH
108
109 PCPU_FC_NR,
110};
17f3609c 111extern const char * const pcpu_fc_names[PCPU_FC_NR];
f58dc01b
TH
112
113extern enum pcpu_fc pcpu_chosen_fc;
114
3cbc8565
TH
115typedef void * (*pcpu_fc_alloc_fn_t)(unsigned int cpu, size_t size,
116 size_t align);
d4b95f80
TH
117typedef void (*pcpu_fc_free_fn_t)(void *ptr, size_t size);
118typedef void (*pcpu_fc_populate_pte_fn_t)(unsigned long addr);
a530b795 119typedef int (pcpu_fc_cpu_distance_fn_t)(unsigned int from, unsigned int to);
fbf59bc9 120
fd1e8a1f
TH
121extern struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
122 int nr_units);
123extern void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai);
124
fb435d52
TH
125extern int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
126 void *base_addr);
8d408b4b 127
08fc4580 128#ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
4ba6ce25 129extern int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
c8826dd5
TH
130 size_t atom_size,
131 pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
132 pcpu_fc_alloc_fn_t alloc_fn,
133 pcpu_fc_free_fn_t free_fn);
08fc4580 134#endif
66c3a757 135
08fc4580 136#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
fb435d52 137extern int __init pcpu_page_first_chunk(size_t reserved_size,
d4b95f80
TH
138 pcpu_fc_alloc_fn_t alloc_fn,
139 pcpu_fc_free_fn_t free_fn,
140 pcpu_fc_populate_pte_fn_t populate_pte_fn);
08fc4580 141#endif
d4b95f80 142
f2a8205c
TH
143/*
144 * Use this to get to a cpu's version of the per-cpu object
145 * dynamically allocated. Non-atomic access to the current CPU's
146 * version should probably be combined with get_cpu()/put_cpu().
147 */
bbddff05 148#ifdef CONFIG_SMP
fbf59bc9 149#define per_cpu_ptr(ptr, cpu) SHIFT_PERCPU_PTR((ptr), per_cpu_offset((cpu)))
bbddff05
TH
150#else
151#define per_cpu_ptr(ptr, cpu) ({ (void)(cpu); VERIFY_PERCPU_PTR((ptr)); })
152#endif
fbf59bc9 153
e0fdb0e0 154extern void __percpu *__alloc_reserved_percpu(size_t size, size_t align);
10fad5e4 155extern bool is_kernel_percpu_address(unsigned long addr);
1da177e4 156
bbddff05 157#if !defined(CONFIG_SMP) || !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
e74e3962
TH
158extern void __init setup_per_cpu_areas(void);
159#endif
099a19d9 160extern void __init percpu_init_late(void);
e74e3962 161
de380b55
TH
162extern void __percpu *__alloc_percpu(size_t size, size_t align);
163extern void free_percpu(void __percpu *__pdata);
164extern phys_addr_t per_cpu_ptr_to_phys(void *addr);
165
64ef291f 166#define alloc_percpu(type) \
e0fdb0e0 167 (typeof(type) __percpu *)__alloc_percpu(sizeof(type), __alignof__(type))
1da177e4 168
7340a0b1
CL
169/*
170 * Branching function to split up a function into a set of functions that
171 * are called for different scalar sizes of the objects handled.
172 */
173
174extern void __bad_size_call_parameter(void);
175
0f5e4816
TH
176#define __pcpu_size_call_return(stem, variable) \
177({ typeof(variable) pscr_ret__; \
545695fb 178 __verify_pcpu_ptr(&(variable)); \
7340a0b1 179 switch(sizeof(variable)) { \
0f5e4816
TH
180 case 1: pscr_ret__ = stem##1(variable);break; \
181 case 2: pscr_ret__ = stem##2(variable);break; \
182 case 4: pscr_ret__ = stem##4(variable);break; \
183 case 8: pscr_ret__ = stem##8(variable);break; \
7340a0b1
CL
184 default: \
185 __bad_size_call_parameter();break; \
186 } \
0f5e4816 187 pscr_ret__; \
7340a0b1
CL
188})
189
a663ffff
CL
190#define __pcpu_size_call_return2(stem, variable, ...) \
191({ \
192 typeof(variable) pscr2_ret__; \
193 __verify_pcpu_ptr(&(variable)); \
194 switch(sizeof(variable)) { \
195 case 1: pscr2_ret__ = stem##1(variable, __VA_ARGS__); break; \
196 case 2: pscr2_ret__ = stem##2(variable, __VA_ARGS__); break; \
197 case 4: pscr2_ret__ = stem##4(variable, __VA_ARGS__); break; \
198 case 8: pscr2_ret__ = stem##8(variable, __VA_ARGS__); break; \
199 default: \
200 __bad_size_call_parameter(); break; \
201 } \
202 pscr2_ret__; \
203})
204
7c334339
CL
205/*
206 * Special handling for cmpxchg_double. cmpxchg_double is passed two
207 * percpu variables. The first has to be aligned to a double word
208 * boundary and the second has to follow directly thereafter.
d4d84fef
CM
209 * We enforce this on all architectures even if they don't support
210 * a double cmpxchg instruction, since it's a cheap requirement, and it
211 * avoids breaking the requirement for architectures with the instruction.
7c334339
CL
212 */
213#define __pcpu_double_call_return_bool(stem, pcp1, pcp2, ...) \
214({ \
215 bool pdcrb_ret__; \
216 __verify_pcpu_ptr(&pcp1); \
217 BUILD_BUG_ON(sizeof(pcp1) != sizeof(pcp2)); \
218 VM_BUG_ON((unsigned long)(&pcp1) % (2 * sizeof(pcp1))); \
219 VM_BUG_ON((unsigned long)(&pcp2) != \
220 (unsigned long)(&pcp1) + sizeof(pcp1)); \
221 switch(sizeof(pcp1)) { \
222 case 1: pdcrb_ret__ = stem##1(pcp1, pcp2, __VA_ARGS__); break; \
223 case 2: pdcrb_ret__ = stem##2(pcp1, pcp2, __VA_ARGS__); break; \
224 case 4: pdcrb_ret__ = stem##4(pcp1, pcp2, __VA_ARGS__); break; \
225 case 8: pdcrb_ret__ = stem##8(pcp1, pcp2, __VA_ARGS__); break; \
226 default: \
227 __bad_size_call_parameter(); break; \
228 } \
229 pdcrb_ret__; \
230})
231
0f5e4816 232#define __pcpu_size_call(stem, variable, ...) \
7340a0b1 233do { \
545695fb 234 __verify_pcpu_ptr(&(variable)); \
7340a0b1
CL
235 switch(sizeof(variable)) { \
236 case 1: stem##1(variable, __VA_ARGS__);break; \
237 case 2: stem##2(variable, __VA_ARGS__);break; \
238 case 4: stem##4(variable, __VA_ARGS__);break; \
239 case 8: stem##8(variable, __VA_ARGS__);break; \
240 default: \
241 __bad_size_call_parameter();break; \
242 } \
243} while (0)
244
245/*
246 * Optimized manipulation for memory allocated through the per cpu
dd17c8f7 247 * allocator or for addresses of per cpu variables.
7340a0b1
CL
248 *
249 * These operation guarantee exclusivity of access for other operations
250 * on the *same* processor. The assumption is that per cpu data is only
251 * accessed by a single processor instance (the current one).
252 *
253 * The first group is used for accesses that must be done in a
254 * preemption safe way since we know that the context is not preempt
255 * safe. Interrupts may occur. If the interrupt modifies the variable
256 * too then RMW actions will not be reliable.
257 *
258 * The arch code can provide optimized functions in two ways:
259 *
260 * 1. Override the function completely. F.e. define this_cpu_add().
261 * The arch must then ensure that the various scalar format passed
262 * are handled correctly.
263 *
264 * 2. Provide functions for certain scalar sizes. F.e. provide
265 * this_cpu_add_2() to provide per cpu atomic operations for 2 byte
266 * sized RMW actions. If arch code does not provide operations for
267 * a scalar size then the fallback in the generic code will be
268 * used.
269 */
270
271#define _this_cpu_generic_read(pcp) \
272({ typeof(pcp) ret__; \
273 preempt_disable(); \
274 ret__ = *this_cpu_ptr(&(pcp)); \
275 preempt_enable(); \
276 ret__; \
277})
278
279#ifndef this_cpu_read
280# ifndef this_cpu_read_1
281# define this_cpu_read_1(pcp) _this_cpu_generic_read(pcp)
282# endif
283# ifndef this_cpu_read_2
284# define this_cpu_read_2(pcp) _this_cpu_generic_read(pcp)
285# endif
286# ifndef this_cpu_read_4
287# define this_cpu_read_4(pcp) _this_cpu_generic_read(pcp)
288# endif
289# ifndef this_cpu_read_8
290# define this_cpu_read_8(pcp) _this_cpu_generic_read(pcp)
291# endif
0f5e4816 292# define this_cpu_read(pcp) __pcpu_size_call_return(this_cpu_read_, (pcp))
7340a0b1
CL
293#endif
294
295#define _this_cpu_generic_to_op(pcp, val, op) \
296do { \
933393f5 297 unsigned long flags; \
e920d597 298 raw_local_irq_save(flags); \
f7b64fe8 299 *__this_cpu_ptr(&(pcp)) op val; \
e920d597 300 raw_local_irq_restore(flags); \
7340a0b1
CL
301} while (0)
302
303#ifndef this_cpu_write
304# ifndef this_cpu_write_1
305# define this_cpu_write_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), =)
306# endif
307# ifndef this_cpu_write_2
308# define this_cpu_write_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), =)
309# endif
310# ifndef this_cpu_write_4
311# define this_cpu_write_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), =)
312# endif
313# ifndef this_cpu_write_8
314# define this_cpu_write_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), =)
315# endif
0f5e4816 316# define this_cpu_write(pcp, val) __pcpu_size_call(this_cpu_write_, (pcp), (val))
7340a0b1
CL
317#endif
318
319#ifndef this_cpu_add
320# ifndef this_cpu_add_1
321# define this_cpu_add_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=)
322# endif
323# ifndef this_cpu_add_2
324# define this_cpu_add_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=)
325# endif
326# ifndef this_cpu_add_4
327# define this_cpu_add_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=)
328# endif
329# ifndef this_cpu_add_8
330# define this_cpu_add_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), +=)
331# endif
0f5e4816 332# define this_cpu_add(pcp, val) __pcpu_size_call(this_cpu_add_, (pcp), (val))
7340a0b1
CL
333#endif
334
335#ifndef this_cpu_sub
bd09d9a3 336# define this_cpu_sub(pcp, val) this_cpu_add((pcp), -(typeof(pcp))(val))
7340a0b1
CL
337#endif
338
339#ifndef this_cpu_inc
340# define this_cpu_inc(pcp) this_cpu_add((pcp), 1)
341#endif
342
343#ifndef this_cpu_dec
344# define this_cpu_dec(pcp) this_cpu_sub((pcp), 1)
345#endif
346
347#ifndef this_cpu_and
348# ifndef this_cpu_and_1
349# define this_cpu_and_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=)
350# endif
351# ifndef this_cpu_and_2
352# define this_cpu_and_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=)
353# endif
354# ifndef this_cpu_and_4
355# define this_cpu_and_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=)
356# endif
357# ifndef this_cpu_and_8
358# define this_cpu_and_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), &=)
359# endif
0f5e4816 360# define this_cpu_and(pcp, val) __pcpu_size_call(this_cpu_and_, (pcp), (val))
7340a0b1
CL
361#endif
362
363#ifndef this_cpu_or
364# ifndef this_cpu_or_1
365# define this_cpu_or_1(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=)
366# endif
367# ifndef this_cpu_or_2
368# define this_cpu_or_2(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=)
369# endif
370# ifndef this_cpu_or_4
371# define this_cpu_or_4(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=)
372# endif
373# ifndef this_cpu_or_8
374# define this_cpu_or_8(pcp, val) _this_cpu_generic_to_op((pcp), (val), |=)
375# endif
0f5e4816 376# define this_cpu_or(pcp, val) __pcpu_size_call(this_cpu_or_, (pcp), (val))
7340a0b1
CL
377#endif
378
40304775
TH
379#define _this_cpu_generic_add_return(pcp, val) \
380({ \
381 typeof(pcp) ret__; \
933393f5 382 unsigned long flags; \
e920d597 383 raw_local_irq_save(flags); \
40304775
TH
384 __this_cpu_add(pcp, val); \
385 ret__ = __this_cpu_read(pcp); \
e920d597 386 raw_local_irq_restore(flags); \
40304775
TH
387 ret__; \
388})
389
390#ifndef this_cpu_add_return
391# ifndef this_cpu_add_return_1
392# define this_cpu_add_return_1(pcp, val) _this_cpu_generic_add_return(pcp, val)
393# endif
394# ifndef this_cpu_add_return_2
395# define this_cpu_add_return_2(pcp, val) _this_cpu_generic_add_return(pcp, val)
396# endif
397# ifndef this_cpu_add_return_4
398# define this_cpu_add_return_4(pcp, val) _this_cpu_generic_add_return(pcp, val)
399# endif
400# ifndef this_cpu_add_return_8
401# define this_cpu_add_return_8(pcp, val) _this_cpu_generic_add_return(pcp, val)
402# endif
403# define this_cpu_add_return(pcp, val) __pcpu_size_call_return2(this_cpu_add_return_, pcp, val)
404#endif
405
bd09d9a3 406#define this_cpu_sub_return(pcp, val) this_cpu_add_return(pcp, -(typeof(pcp))(val))
40304775
TH
407#define this_cpu_inc_return(pcp) this_cpu_add_return(pcp, 1)
408#define this_cpu_dec_return(pcp) this_cpu_add_return(pcp, -1)
409
2b712442
CL
410#define _this_cpu_generic_xchg(pcp, nval) \
411({ typeof(pcp) ret__; \
933393f5 412 unsigned long flags; \
e920d597 413 raw_local_irq_save(flags); \
2b712442
CL
414 ret__ = __this_cpu_read(pcp); \
415 __this_cpu_write(pcp, nval); \
e920d597 416 raw_local_irq_restore(flags); \
2b712442
CL
417 ret__; \
418})
419
420#ifndef this_cpu_xchg
421# ifndef this_cpu_xchg_1
422# define this_cpu_xchg_1(pcp, nval) _this_cpu_generic_xchg(pcp, nval)
423# endif
424# ifndef this_cpu_xchg_2
425# define this_cpu_xchg_2(pcp, nval) _this_cpu_generic_xchg(pcp, nval)
426# endif
427# ifndef this_cpu_xchg_4
428# define this_cpu_xchg_4(pcp, nval) _this_cpu_generic_xchg(pcp, nval)
429# endif
430# ifndef this_cpu_xchg_8
431# define this_cpu_xchg_8(pcp, nval) _this_cpu_generic_xchg(pcp, nval)
432# endif
433# define this_cpu_xchg(pcp, nval) \
434 __pcpu_size_call_return2(this_cpu_xchg_, (pcp), nval)
435#endif
436
437#define _this_cpu_generic_cmpxchg(pcp, oval, nval) \
933393f5
CL
438({ \
439 typeof(pcp) ret__; \
440 unsigned long flags; \
e920d597 441 raw_local_irq_save(flags); \
2b712442
CL
442 ret__ = __this_cpu_read(pcp); \
443 if (ret__ == (oval)) \
444 __this_cpu_write(pcp, nval); \
e920d597 445 raw_local_irq_restore(flags); \
2b712442
CL
446 ret__; \
447})
448
449#ifndef this_cpu_cmpxchg
450# ifndef this_cpu_cmpxchg_1
451# define this_cpu_cmpxchg_1(pcp, oval, nval) _this_cpu_generic_cmpxchg(pcp, oval, nval)
452# endif
453# ifndef this_cpu_cmpxchg_2
454# define this_cpu_cmpxchg_2(pcp, oval, nval) _this_cpu_generic_cmpxchg(pcp, oval, nval)
455# endif
456# ifndef this_cpu_cmpxchg_4
457# define this_cpu_cmpxchg_4(pcp, oval, nval) _this_cpu_generic_cmpxchg(pcp, oval, nval)
458# endif
459# ifndef this_cpu_cmpxchg_8
460# define this_cpu_cmpxchg_8(pcp, oval, nval) _this_cpu_generic_cmpxchg(pcp, oval, nval)
461# endif
462# define this_cpu_cmpxchg(pcp, oval, nval) \
463 __pcpu_size_call_return2(this_cpu_cmpxchg_, pcp, oval, nval)
464#endif
465
7c334339
CL
466/*
467 * cmpxchg_double replaces two adjacent scalars at once. The first
468 * two parameters are per cpu variables which have to be of the same
469 * size. A truth value is returned to indicate success or failure
470 * (since a double register result is difficult to handle). There is
471 * very limited hardware support for these operations, so only certain
472 * sizes may work.
473 */
474#define _this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) \
475({ \
476 int ret__; \
933393f5 477 unsigned long flags; \
e920d597 478 raw_local_irq_save(flags); \
7c334339
CL
479 ret__ = __this_cpu_generic_cmpxchg_double(pcp1, pcp2, \
480 oval1, oval2, nval1, nval2); \
e920d597 481 raw_local_irq_restore(flags); \
7c334339
CL
482 ret__; \
483})
484
485#ifndef this_cpu_cmpxchg_double
486# ifndef this_cpu_cmpxchg_double_1
487# define this_cpu_cmpxchg_double_1(pcp1, pcp2, oval1, oval2, nval1, nval2) \
488 _this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
489# endif
490# ifndef this_cpu_cmpxchg_double_2
491# define this_cpu_cmpxchg_double_2(pcp1, pcp2, oval1, oval2, nval1, nval2) \
492 _this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
493# endif
494# ifndef this_cpu_cmpxchg_double_4
495# define this_cpu_cmpxchg_double_4(pcp1, pcp2, oval1, oval2, nval1, nval2) \
496 _this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
497# endif
498# ifndef this_cpu_cmpxchg_double_8
499# define this_cpu_cmpxchg_double_8(pcp1, pcp2, oval1, oval2, nval1, nval2) \
500 _this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
501# endif
502# define this_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) \
503 __pcpu_double_call_return_bool(this_cpu_cmpxchg_double_, (pcp1), (pcp2), (oval1), (oval2), (nval1), (nval2))
504#endif
505
7340a0b1 506/*
933393f5 507 * Generic percpu operations for context that are safe from preemption/interrupts.
7340a0b1 508 * Either we do not care about races or the caller has the
933393f5 509 * responsibility of handling preemption/interrupt issues. Arch code can still
7340a0b1
CL
510 * override these instructions since the arch per cpu code may be more
511 * efficient and may actually get race freeness for free (that is the
512 * case for x86 for example).
513 *
514 * If there is no other protection through preempt disable and/or
515 * disabling interupts then one of these RMW operations can show unexpected
516 * behavior because the execution thread was rescheduled on another processor
517 * or an interrupt occurred and the same percpu variable was modified from
518 * the interrupt context.
519 */
520#ifndef __this_cpu_read
521# ifndef __this_cpu_read_1
522# define __this_cpu_read_1(pcp) (*__this_cpu_ptr(&(pcp)))
523# endif
524# ifndef __this_cpu_read_2
525# define __this_cpu_read_2(pcp) (*__this_cpu_ptr(&(pcp)))
526# endif
527# ifndef __this_cpu_read_4
528# define __this_cpu_read_4(pcp) (*__this_cpu_ptr(&(pcp)))
529# endif
530# ifndef __this_cpu_read_8
531# define __this_cpu_read_8(pcp) (*__this_cpu_ptr(&(pcp)))
532# endif
0f5e4816 533# define __this_cpu_read(pcp) __pcpu_size_call_return(__this_cpu_read_, (pcp))
7340a0b1
CL
534#endif
535
536#define __this_cpu_generic_to_op(pcp, val, op) \
537do { \
538 *__this_cpu_ptr(&(pcp)) op val; \
539} while (0)
540
541#ifndef __this_cpu_write
542# ifndef __this_cpu_write_1
543# define __this_cpu_write_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), =)
544# endif
545# ifndef __this_cpu_write_2
546# define __this_cpu_write_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), =)
547# endif
548# ifndef __this_cpu_write_4
549# define __this_cpu_write_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), =)
550# endif
551# ifndef __this_cpu_write_8
552# define __this_cpu_write_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), =)
553# endif
0f5e4816 554# define __this_cpu_write(pcp, val) __pcpu_size_call(__this_cpu_write_, (pcp), (val))
7340a0b1
CL
555#endif
556
557#ifndef __this_cpu_add
558# ifndef __this_cpu_add_1
559# define __this_cpu_add_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=)
560# endif
561# ifndef __this_cpu_add_2
562# define __this_cpu_add_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=)
563# endif
564# ifndef __this_cpu_add_4
565# define __this_cpu_add_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=)
566# endif
567# ifndef __this_cpu_add_8
568# define __this_cpu_add_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), +=)
569# endif
0f5e4816 570# define __this_cpu_add(pcp, val) __pcpu_size_call(__this_cpu_add_, (pcp), (val))
7340a0b1
CL
571#endif
572
573#ifndef __this_cpu_sub
bd09d9a3 574# define __this_cpu_sub(pcp, val) __this_cpu_add((pcp), -(typeof(pcp))(val))
7340a0b1
CL
575#endif
576
577#ifndef __this_cpu_inc
578# define __this_cpu_inc(pcp) __this_cpu_add((pcp), 1)
579#endif
580
581#ifndef __this_cpu_dec
582# define __this_cpu_dec(pcp) __this_cpu_sub((pcp), 1)
583#endif
584
585#ifndef __this_cpu_and
586# ifndef __this_cpu_and_1
587# define __this_cpu_and_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=)
588# endif
589# ifndef __this_cpu_and_2
590# define __this_cpu_and_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=)
591# endif
592# ifndef __this_cpu_and_4
593# define __this_cpu_and_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=)
594# endif
595# ifndef __this_cpu_and_8
596# define __this_cpu_and_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), &=)
597# endif
0f5e4816 598# define __this_cpu_and(pcp, val) __pcpu_size_call(__this_cpu_and_, (pcp), (val))
7340a0b1
CL
599#endif
600
601#ifndef __this_cpu_or
602# ifndef __this_cpu_or_1
603# define __this_cpu_or_1(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=)
604# endif
605# ifndef __this_cpu_or_2
606# define __this_cpu_or_2(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=)
607# endif
608# ifndef __this_cpu_or_4
609# define __this_cpu_or_4(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=)
610# endif
611# ifndef __this_cpu_or_8
612# define __this_cpu_or_8(pcp, val) __this_cpu_generic_to_op((pcp), (val), |=)
613# endif
0f5e4816 614# define __this_cpu_or(pcp, val) __pcpu_size_call(__this_cpu_or_, (pcp), (val))
7340a0b1
CL
615#endif
616
a663ffff
CL
617#define __this_cpu_generic_add_return(pcp, val) \
618({ \
619 __this_cpu_add(pcp, val); \
620 __this_cpu_read(pcp); \
621})
622
623#ifndef __this_cpu_add_return
624# ifndef __this_cpu_add_return_1
625# define __this_cpu_add_return_1(pcp, val) __this_cpu_generic_add_return(pcp, val)
626# endif
627# ifndef __this_cpu_add_return_2
628# define __this_cpu_add_return_2(pcp, val) __this_cpu_generic_add_return(pcp, val)
629# endif
630# ifndef __this_cpu_add_return_4
631# define __this_cpu_add_return_4(pcp, val) __this_cpu_generic_add_return(pcp, val)
632# endif
633# ifndef __this_cpu_add_return_8
634# define __this_cpu_add_return_8(pcp, val) __this_cpu_generic_add_return(pcp, val)
635# endif
7d96b3e5
KK
636# define __this_cpu_add_return(pcp, val) \
637 __pcpu_size_call_return2(__this_cpu_add_return_, pcp, val)
a663ffff
CL
638#endif
639
bd09d9a3 640#define __this_cpu_sub_return(pcp, val) __this_cpu_add_return(pcp, -(typeof(pcp))(val))
adb79506
KK
641#define __this_cpu_inc_return(pcp) __this_cpu_add_return(pcp, 1)
642#define __this_cpu_dec_return(pcp) __this_cpu_add_return(pcp, -1)
a663ffff 643
2b712442
CL
644#define __this_cpu_generic_xchg(pcp, nval) \
645({ typeof(pcp) ret__; \
646 ret__ = __this_cpu_read(pcp); \
647 __this_cpu_write(pcp, nval); \
648 ret__; \
649})
650
651#ifndef __this_cpu_xchg
652# ifndef __this_cpu_xchg_1
653# define __this_cpu_xchg_1(pcp, nval) __this_cpu_generic_xchg(pcp, nval)
654# endif
655# ifndef __this_cpu_xchg_2
656# define __this_cpu_xchg_2(pcp, nval) __this_cpu_generic_xchg(pcp, nval)
657# endif
658# ifndef __this_cpu_xchg_4
659# define __this_cpu_xchg_4(pcp, nval) __this_cpu_generic_xchg(pcp, nval)
660# endif
661# ifndef __this_cpu_xchg_8
662# define __this_cpu_xchg_8(pcp, nval) __this_cpu_generic_xchg(pcp, nval)
663# endif
664# define __this_cpu_xchg(pcp, nval) \
665 __pcpu_size_call_return2(__this_cpu_xchg_, (pcp), nval)
666#endif
667
668#define __this_cpu_generic_cmpxchg(pcp, oval, nval) \
669({ \
670 typeof(pcp) ret__; \
671 ret__ = __this_cpu_read(pcp); \
672 if (ret__ == (oval)) \
673 __this_cpu_write(pcp, nval); \
674 ret__; \
675})
676
677#ifndef __this_cpu_cmpxchg
678# ifndef __this_cpu_cmpxchg_1
679# define __this_cpu_cmpxchg_1(pcp, oval, nval) __this_cpu_generic_cmpxchg(pcp, oval, nval)
680# endif
681# ifndef __this_cpu_cmpxchg_2
682# define __this_cpu_cmpxchg_2(pcp, oval, nval) __this_cpu_generic_cmpxchg(pcp, oval, nval)
683# endif
684# ifndef __this_cpu_cmpxchg_4
685# define __this_cpu_cmpxchg_4(pcp, oval, nval) __this_cpu_generic_cmpxchg(pcp, oval, nval)
686# endif
687# ifndef __this_cpu_cmpxchg_8
688# define __this_cpu_cmpxchg_8(pcp, oval, nval) __this_cpu_generic_cmpxchg(pcp, oval, nval)
689# endif
690# define __this_cpu_cmpxchg(pcp, oval, nval) \
691 __pcpu_size_call_return2(__this_cpu_cmpxchg_, pcp, oval, nval)
692#endif
693
7c334339
CL
694#define __this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) \
695({ \
696 int __ret = 0; \
697 if (__this_cpu_read(pcp1) == (oval1) && \
698 __this_cpu_read(pcp2) == (oval2)) { \
699 __this_cpu_write(pcp1, (nval1)); \
700 __this_cpu_write(pcp2, (nval2)); \
701 __ret = 1; \
702 } \
703 (__ret); \
704})
705
706#ifndef __this_cpu_cmpxchg_double
707# ifndef __this_cpu_cmpxchg_double_1
708# define __this_cpu_cmpxchg_double_1(pcp1, pcp2, oval1, oval2, nval1, nval2) \
709 __this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
710# endif
711# ifndef __this_cpu_cmpxchg_double_2
712# define __this_cpu_cmpxchg_double_2(pcp1, pcp2, oval1, oval2, nval1, nval2) \
713 __this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
714# endif
715# ifndef __this_cpu_cmpxchg_double_4
716# define __this_cpu_cmpxchg_double_4(pcp1, pcp2, oval1, oval2, nval1, nval2) \
717 __this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
718# endif
719# ifndef __this_cpu_cmpxchg_double_8
720# define __this_cpu_cmpxchg_double_8(pcp1, pcp2, oval1, oval2, nval1, nval2) \
721 __this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)
722# endif
723# define __this_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) \
724 __pcpu_double_call_return_bool(__this_cpu_cmpxchg_double_, (pcp1), (pcp2), (oval1), (oval2), (nval1), (nval2))
725#endif
726
1da177e4 727#endif /* __LINUX_PERCPU_H */