powerpc: Don't use the wrong thread_struct for ptrace get/set VSX regs
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / include / linux / pagemap.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_PAGEMAP_H
2#define _LINUX_PAGEMAP_H
3
4/*
5 * Copyright 1995 Linus Torvalds
6 */
7#include <linux/mm.h>
8#include <linux/fs.h>
9#include <linux/list.h>
10#include <linux/highmem.h>
11#include <linux/compiler.h>
12#include <asm/uaccess.h>
13#include <linux/gfp.h>
3e9f45bd 14#include <linux/bitops.h>
e286781d 15#include <linux/hardirq.h> /* for in_interrupt() */
1da177e4
LT
16
17/*
18 * Bits in mapping->flags. The lower __GFP_BITS_SHIFT bits are the page
19 * allocation mode flags.
20 */
21#define AS_EIO (__GFP_BITS_SHIFT + 0) /* IO error on async write */
22#define AS_ENOSPC (__GFP_BITS_SHIFT + 1) /* ENOSPC on async write */
7906d00c 23#define AS_MM_ALL_LOCKS (__GFP_BITS_SHIFT + 2) /* under mm_take_all_locks() */
1da177e4 24
3e9f45bd
GC
25static inline void mapping_set_error(struct address_space *mapping, int error)
26{
2185e69f 27 if (unlikely(error)) {
3e9f45bd
GC
28 if (error == -ENOSPC)
29 set_bit(AS_ENOSPC, &mapping->flags);
30 else
31 set_bit(AS_EIO, &mapping->flags);
32 }
33}
34
dd0fc66f 35static inline gfp_t mapping_gfp_mask(struct address_space * mapping)
1da177e4 36{
260b2367 37 return (__force gfp_t)mapping->flags & __GFP_BITS_MASK;
1da177e4
LT
38}
39
40/*
41 * This is non-atomic. Only to be used before the mapping is activated.
42 * Probably needs a barrier...
43 */
260b2367 44static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask)
1da177e4 45{
260b2367
AV
46 m->flags = (m->flags & ~(__force unsigned long)__GFP_BITS_MASK) |
47 (__force unsigned long)mask;
1da177e4
LT
48}
49
50/*
51 * The page cache can done in larger chunks than
52 * one page, because it allows for more efficient
53 * throughput (it can then be mapped into user
54 * space in smaller chunks for same flexibility).
55 *
56 * Or rather, it _will_ be done in larger chunks.
57 */
58#define PAGE_CACHE_SHIFT PAGE_SHIFT
59#define PAGE_CACHE_SIZE PAGE_SIZE
60#define PAGE_CACHE_MASK PAGE_MASK
61#define PAGE_CACHE_ALIGN(addr) (((addr)+PAGE_CACHE_SIZE-1)&PAGE_CACHE_MASK)
62
63#define page_cache_get(page) get_page(page)
64#define page_cache_release(page) put_page(page)
65void release_pages(struct page **pages, int nr, int cold);
66
e286781d
NP
67/*
68 * speculatively take a reference to a page.
69 * If the page is free (_count == 0), then _count is untouched, and 0
70 * is returned. Otherwise, _count is incremented by 1 and 1 is returned.
71 *
72 * This function must be called inside the same rcu_read_lock() section as has
73 * been used to lookup the page in the pagecache radix-tree (or page table):
74 * this allows allocators to use a synchronize_rcu() to stabilize _count.
75 *
76 * Unless an RCU grace period has passed, the count of all pages coming out
77 * of the allocator must be considered unstable. page_count may return higher
78 * than expected, and put_page must be able to do the right thing when the
79 * page has been finished with, no matter what it is subsequently allocated
80 * for (because put_page is what is used here to drop an invalid speculative
81 * reference).
82 *
83 * This is the interesting part of the lockless pagecache (and lockless
84 * get_user_pages) locking protocol, where the lookup-side (eg. find_get_page)
85 * has the following pattern:
86 * 1. find page in radix tree
87 * 2. conditionally increment refcount
88 * 3. check the page is still in pagecache (if no, goto 1)
89 *
90 * Remove-side that cares about stability of _count (eg. reclaim) has the
91 * following (with tree_lock held for write):
92 * A. atomically check refcount is correct and set it to 0 (atomic_cmpxchg)
93 * B. remove page from pagecache
94 * C. free the page
95 *
96 * There are 2 critical interleavings that matter:
97 * - 2 runs before A: in this case, A sees elevated refcount and bails out
98 * - A runs before 2: in this case, 2 sees zero refcount and retries;
99 * subsequently, B will complete and 1 will find no page, causing the
100 * lookup to return NULL.
101 *
102 * It is possible that between 1 and 2, the page is removed then the exact same
103 * page is inserted into the same position in pagecache. That's OK: the
104 * old find_get_page using tree_lock could equally have run before or after
105 * such a re-insertion, depending on order that locks are granted.
106 *
107 * Lookups racing against pagecache insertion isn't a big problem: either 1
108 * will find the page or it will not. Likewise, the old find_get_page could run
109 * either before the insertion or afterwards, depending on timing.
110 */
111static inline int page_cache_get_speculative(struct page *page)
112{
113 VM_BUG_ON(in_interrupt());
114
115#if !defined(CONFIG_SMP) && defined(CONFIG_CLASSIC_RCU)
116# ifdef CONFIG_PREEMPT
117 VM_BUG_ON(!in_atomic());
118# endif
119 /*
120 * Preempt must be disabled here - we rely on rcu_read_lock doing
121 * this for us.
122 *
123 * Pagecache won't be truncated from interrupt context, so if we have
124 * found a page in the radix tree here, we have pinned its refcount by
125 * disabling preempt, and hence no need for the "speculative get" that
126 * SMP requires.
127 */
128 VM_BUG_ON(page_count(page) == 0);
129 atomic_inc(&page->_count);
130
131#else
132 if (unlikely(!get_page_unless_zero(page))) {
133 /*
134 * Either the page has been freed, or will be freed.
135 * In either case, retry here and the caller should
136 * do the right thing (see comments above).
137 */
138 return 0;
139 }
140#endif
141 VM_BUG_ON(PageTail(page));
142
143 return 1;
144}
145
146static inline int page_freeze_refs(struct page *page, int count)
147{
148 return likely(atomic_cmpxchg(&page->_count, count, 0) == count);
149}
150
151static inline void page_unfreeze_refs(struct page *page, int count)
152{
153 VM_BUG_ON(page_count(page) != 0);
154 VM_BUG_ON(count == 0);
155
156 atomic_set(&page->_count, count);
157}
158
44110fe3 159#ifdef CONFIG_NUMA
2ae88149 160extern struct page *__page_cache_alloc(gfp_t gfp);
44110fe3 161#else
2ae88149
NP
162static inline struct page *__page_cache_alloc(gfp_t gfp)
163{
164 return alloc_pages(gfp, 0);
165}
166#endif
167
1da177e4
LT
168static inline struct page *page_cache_alloc(struct address_space *x)
169{
2ae88149 170 return __page_cache_alloc(mapping_gfp_mask(x));
1da177e4
LT
171}
172
173static inline struct page *page_cache_alloc_cold(struct address_space *x)
174{
2ae88149 175 return __page_cache_alloc(mapping_gfp_mask(x)|__GFP_COLD);
1da177e4
LT
176}
177
178typedef int filler_t(void *, struct page *);
179
180extern struct page * find_get_page(struct address_space *mapping,
57f6b96c 181 pgoff_t index);
1da177e4 182extern struct page * find_lock_page(struct address_space *mapping,
57f6b96c 183 pgoff_t index);
1da177e4 184extern struct page * find_or_create_page(struct address_space *mapping,
57f6b96c 185 pgoff_t index, gfp_t gfp_mask);
1da177e4
LT
186unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
187 unsigned int nr_pages, struct page **pages);
ebf43500
JA
188unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t start,
189 unsigned int nr_pages, struct page **pages);
1da177e4
LT
190unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
191 int tag, unsigned int nr_pages, struct page **pages);
192
afddba49
NP
193struct page *__grab_cache_page(struct address_space *mapping, pgoff_t index);
194
1da177e4
LT
195/*
196 * Returns locked page at given index in given cache, creating it if needed.
197 */
57f6b96c
FW
198static inline struct page *grab_cache_page(struct address_space *mapping,
199 pgoff_t index)
1da177e4
LT
200{
201 return find_or_create_page(mapping, index, mapping_gfp_mask(mapping));
202}
203
204extern struct page * grab_cache_page_nowait(struct address_space *mapping,
57f6b96c 205 pgoff_t index);
6fe6900e 206extern struct page * read_cache_page_async(struct address_space *mapping,
57f6b96c 207 pgoff_t index, filler_t *filler,
6fe6900e 208 void *data);
1da177e4 209extern struct page * read_cache_page(struct address_space *mapping,
57f6b96c 210 pgoff_t index, filler_t *filler,
1da177e4
LT
211 void *data);
212extern int read_cache_pages(struct address_space *mapping,
213 struct list_head *pages, filler_t *filler, void *data);
214
6fe6900e
NP
215static inline struct page *read_mapping_page_async(
216 struct address_space *mapping,
57f6b96c 217 pgoff_t index, void *data)
6fe6900e
NP
218{
219 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
220 return read_cache_page_async(mapping, index, filler, data);
221}
222
090d2b18 223static inline struct page *read_mapping_page(struct address_space *mapping,
57f6b96c 224 pgoff_t index, void *data)
090d2b18
PE
225{
226 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
227 return read_cache_page(mapping, index, filler, data);
228}
229
e286781d 230int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
57f6b96c 231 pgoff_t index, gfp_t gfp_mask);
1da177e4 232int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
57f6b96c 233 pgoff_t index, gfp_t gfp_mask);
1da177e4
LT
234extern void remove_from_page_cache(struct page *page);
235extern void __remove_from_page_cache(struct page *page);
236
e286781d
NP
237/*
238 * Like add_to_page_cache_locked, but used to add newly allocated pages:
239 * the page is new, so we can just run SetPageLocked() against it.
240 */
241static inline int add_to_page_cache(struct page *page,
242 struct address_space *mapping, pgoff_t offset, gfp_t gfp_mask)
243{
244 int error;
245
246 SetPageLocked(page);
247 error = add_to_page_cache_locked(page, mapping, offset, gfp_mask);
248 if (unlikely(error))
249 ClearPageLocked(page);
250 return error;
251}
252
1da177e4
LT
253/*
254 * Return byte-offset into filesystem object for page.
255 */
256static inline loff_t page_offset(struct page *page)
257{
258 return ((loff_t)page->index) << PAGE_CACHE_SHIFT;
259}
260
261static inline pgoff_t linear_page_index(struct vm_area_struct *vma,
262 unsigned long address)
263{
264 pgoff_t pgoff = (address - vma->vm_start) >> PAGE_SHIFT;
265 pgoff += vma->vm_pgoff;
266 return pgoff >> (PAGE_CACHE_SHIFT - PAGE_SHIFT);
267}
268
b3c97528
HH
269extern void __lock_page(struct page *page);
270extern int __lock_page_killable(struct page *page);
271extern void __lock_page_nosync(struct page *page);
272extern void unlock_page(struct page *page);
1da177e4 273
db37648c
NP
274/*
275 * lock_page may only be called if we have the page's inode pinned.
276 */
1da177e4
LT
277static inline void lock_page(struct page *page)
278{
279 might_sleep();
280 if (TestSetPageLocked(page))
281 __lock_page(page);
282}
db37648c 283
2687a356
MW
284/*
285 * lock_page_killable is like lock_page but can be interrupted by fatal
286 * signals. It returns 0 if it locked the page and -EINTR if it was
287 * killed while waiting.
288 */
289static inline int lock_page_killable(struct page *page)
290{
291 might_sleep();
292 if (TestSetPageLocked(page))
293 return __lock_page_killable(page);
294 return 0;
295}
296
db37648c
NP
297/*
298 * lock_page_nosync should only be used if we can't pin the page's inode.
299 * Doesn't play quite so well with block device plugging.
300 */
301static inline void lock_page_nosync(struct page *page)
302{
303 might_sleep();
304 if (TestSetPageLocked(page))
305 __lock_page_nosync(page);
306}
1da177e4
LT
307
308/*
309 * This is exported only for wait_on_page_locked/wait_on_page_writeback.
310 * Never use this directly!
311 */
b3c97528 312extern void wait_on_page_bit(struct page *page, int bit_nr);
1da177e4
LT
313
314/*
315 * Wait for a page to be unlocked.
316 *
317 * This must be called with the caller "holding" the page,
318 * ie with increased "page->count" so that the page won't
319 * go away during the wait..
320 */
321static inline void wait_on_page_locked(struct page *page)
322{
323 if (PageLocked(page))
324 wait_on_page_bit(page, PG_locked);
325}
326
327/*
328 * Wait for a page to complete writeback
329 */
330static inline void wait_on_page_writeback(struct page *page)
331{
332 if (PageWriteback(page))
333 wait_on_page_bit(page, PG_writeback);
334}
335
336extern void end_page_writeback(struct page *page);
337
338/*
339 * Fault a userspace page into pagetables. Return non-zero on a fault.
340 *
341 * This assumes that two userspace pages are always sufficient. That's
342 * not true if PAGE_CACHE_SIZE > PAGE_SIZE.
343 */
344static inline int fault_in_pages_writeable(char __user *uaddr, int size)
345{
346 int ret;
347
08291429
NP
348 if (unlikely(size == 0))
349 return 0;
350
1da177e4
LT
351 /*
352 * Writing zeroes into userspace here is OK, because we know that if
353 * the zero gets there, we'll be overwriting it.
354 */
355 ret = __put_user(0, uaddr);
356 if (ret == 0) {
357 char __user *end = uaddr + size - 1;
358
359 /*
360 * If the page was already mapped, this will get a cache miss
361 * for sure, so try to avoid doing it.
362 */
363 if (((unsigned long)uaddr & PAGE_MASK) !=
364 ((unsigned long)end & PAGE_MASK))
365 ret = __put_user(0, end);
366 }
367 return ret;
368}
369
08291429 370static inline int fault_in_pages_readable(const char __user *uaddr, int size)
1da177e4
LT
371{
372 volatile char c;
373 int ret;
374
08291429
NP
375 if (unlikely(size == 0))
376 return 0;
377
1da177e4
LT
378 ret = __get_user(c, uaddr);
379 if (ret == 0) {
380 const char __user *end = uaddr + size - 1;
381
382 if (((unsigned long)uaddr & PAGE_MASK) !=
383 ((unsigned long)end & PAGE_MASK))
08291429 384 ret = __get_user(c, end);
1da177e4 385 }
08291429 386 return ret;
1da177e4
LT
387}
388
389#endif /* _LINUX_PAGEMAP_H */