Fix calculation in move_freepages_block for counting pages
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / include / linux / mmzone.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_MMZONE_H
2#define _LINUX_MMZONE_H
3
4#ifdef __KERNEL__
5#ifndef __ASSEMBLY__
6
1da177e4
LT
7#include <linux/spinlock.h>
8#include <linux/list.h>
9#include <linux/wait.h>
10#include <linux/cache.h>
11#include <linux/threads.h>
12#include <linux/numa.h>
13#include <linux/init.h>
bdc8cb98 14#include <linux/seqlock.h>
8357f869 15#include <linux/nodemask.h>
835c134e 16#include <linux/pageblock-flags.h>
1da177e4 17#include <asm/atomic.h>
93ff66bf 18#include <asm/page.h>
1da177e4
LT
19
20/* Free memory management - zoned buddy allocator. */
21#ifndef CONFIG_FORCE_MAX_ZONEORDER
22#define MAX_ORDER 11
23#else
24#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
25#endif
e984bb43 26#define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
1da177e4 27
5ad333eb
AW
28/*
29 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
30 * costly to service. That is between allocation orders which should
31 * coelesce naturally under reasonable reclaim pressure and those which
32 * will not.
33 */
34#define PAGE_ALLOC_COSTLY_ORDER 3
35
b2a0ac88 36#define MIGRATE_UNMOVABLE 0
e12ba74d
MG
37#define MIGRATE_RECLAIMABLE 1
38#define MIGRATE_MOVABLE 2
64c5e135
MG
39#define MIGRATE_RESERVE 3
40#define MIGRATE_TYPES 4
b2a0ac88
MG
41
42#define for_each_migratetype_order(order, type) \
43 for (order = 0; order < MAX_ORDER; order++) \
44 for (type = 0; type < MIGRATE_TYPES; type++)
45
1da177e4 46struct free_area {
b2a0ac88 47 struct list_head free_list[MIGRATE_TYPES];
1da177e4
LT
48 unsigned long nr_free;
49};
50
51struct pglist_data;
52
53/*
54 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
55 * So add a wild amount of padding here to ensure that they fall into separate
56 * cachelines. There are very few zone structures in the machine, so space
57 * consumption is not a concern here.
58 */
59#if defined(CONFIG_SMP)
60struct zone_padding {
61 char x[0];
22fc6ecc 62} ____cacheline_internodealigned_in_smp;
1da177e4
LT
63#define ZONE_PADDING(name) struct zone_padding name;
64#else
65#define ZONE_PADDING(name)
66#endif
67
2244b95a 68enum zone_stat_item {
51ed4491 69 /* First 128 byte cacheline (assuming 64 bit words) */
d23ad423 70 NR_FREE_PAGES,
c8785385
CL
71 NR_INACTIVE,
72 NR_ACTIVE,
f3dbd344
CL
73 NR_ANON_PAGES, /* Mapped anonymous pages */
74 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
65ba55f5 75 only modified from process context */
347ce434 76 NR_FILE_PAGES,
b1e7a8fd 77 NR_FILE_DIRTY,
ce866b34 78 NR_WRITEBACK,
51ed4491
CL
79 /* Second 128 byte cacheline */
80 NR_SLAB_RECLAIMABLE,
81 NR_SLAB_UNRECLAIMABLE,
82 NR_PAGETABLE, /* used for pagetables */
fd39fc85 83 NR_UNSTABLE_NFS, /* NFS unstable pages */
d2c5e30c 84 NR_BOUNCE,
e129b5c2 85 NR_VMSCAN_WRITE,
ca889e6c
CL
86#ifdef CONFIG_NUMA
87 NUMA_HIT, /* allocated in intended node */
88 NUMA_MISS, /* allocated in non intended node */
89 NUMA_FOREIGN, /* was intended here, hit elsewhere */
90 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
91 NUMA_LOCAL, /* allocation from local node */
92 NUMA_OTHER, /* allocation from other node */
93#endif
2244b95a
CL
94 NR_VM_ZONE_STAT_ITEMS };
95
1da177e4
LT
96struct per_cpu_pages {
97 int count; /* number of pages in the list */
1da177e4
LT
98 int high; /* high watermark, emptying needed */
99 int batch; /* chunk size for buddy add/remove */
100 struct list_head list; /* the list of pages */
101};
102
103struct per_cpu_pageset {
104 struct per_cpu_pages pcp[2]; /* 0: hot. 1: cold */
4037d452
CL
105#ifdef CONFIG_NUMA
106 s8 expire;
107#endif
2244b95a 108#ifdef CONFIG_SMP
df9ecaba 109 s8 stat_threshold;
2244b95a
CL
110 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
111#endif
1da177e4
LT
112} ____cacheline_aligned_in_smp;
113
e7c8d5c9
CL
114#ifdef CONFIG_NUMA
115#define zone_pcp(__z, __cpu) ((__z)->pageset[(__cpu)])
116#else
117#define zone_pcp(__z, __cpu) (&(__z)->pageset[(__cpu)])
118#endif
119
2f1b6248 120enum zone_type {
4b51d669 121#ifdef CONFIG_ZONE_DMA
2f1b6248
CL
122 /*
123 * ZONE_DMA is used when there are devices that are not able
124 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
125 * carve out the portion of memory that is needed for these devices.
126 * The range is arch specific.
127 *
128 * Some examples
129 *
130 * Architecture Limit
131 * ---------------------------
132 * parisc, ia64, sparc <4G
133 * s390 <2G
2f1b6248
CL
134 * arm Various
135 * alpha Unlimited or 0-16MB.
136 *
137 * i386, x86_64 and multiple other arches
138 * <16M.
139 */
140 ZONE_DMA,
4b51d669 141#endif
fb0e7942 142#ifdef CONFIG_ZONE_DMA32
2f1b6248
CL
143 /*
144 * x86_64 needs two ZONE_DMAs because it supports devices that are
145 * only able to do DMA to the lower 16M but also 32 bit devices that
146 * can only do DMA areas below 4G.
147 */
148 ZONE_DMA32,
fb0e7942 149#endif
2f1b6248
CL
150 /*
151 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
152 * performed on pages in ZONE_NORMAL if the DMA devices support
153 * transfers to all addressable memory.
154 */
155 ZONE_NORMAL,
e53ef38d 156#ifdef CONFIG_HIGHMEM
2f1b6248
CL
157 /*
158 * A memory area that is only addressable by the kernel through
159 * mapping portions into its own address space. This is for example
160 * used by i386 to allow the kernel to address the memory beyond
161 * 900MB. The kernel will set up special mappings (page
162 * table entries on i386) for each page that the kernel needs to
163 * access.
164 */
165 ZONE_HIGHMEM,
e53ef38d 166#endif
2a1e274a 167 ZONE_MOVABLE,
2f1b6248
CL
168 MAX_NR_ZONES
169};
1da177e4 170
1da177e4
LT
171/*
172 * When a memory allocation must conform to specific limitations (such
173 * as being suitable for DMA) the caller will pass in hints to the
174 * allocator in the gfp_mask, in the zone modifier bits. These bits
175 * are used to select a priority ordered list of memory zones which
19655d34 176 * match the requested limits. See gfp_zone() in include/linux/gfp.h
1da177e4 177 */
fb0e7942 178
4b51d669
CL
179/*
180 * Count the active zones. Note that the use of defined(X) outside
181 * #if and family is not necessarily defined so ensure we cannot use
182 * it later. Use __ZONE_COUNT to work out how many shift bits we need.
183 */
184#define __ZONE_COUNT ( \
185 defined(CONFIG_ZONE_DMA) \
186 + defined(CONFIG_ZONE_DMA32) \
187 + 1 \
188 + defined(CONFIG_HIGHMEM) \
2a1e274a 189 + 1 \
4b51d669
CL
190)
191#if __ZONE_COUNT < 2
192#define ZONES_SHIFT 0
193#elif __ZONE_COUNT <= 2
19655d34 194#define ZONES_SHIFT 1
4b51d669 195#elif __ZONE_COUNT <= 4
19655d34 196#define ZONES_SHIFT 2
4b51d669
CL
197#else
198#error ZONES_SHIFT -- too many zones configured adjust calculation
fb0e7942 199#endif
4b51d669 200#undef __ZONE_COUNT
1da177e4 201
1da177e4
LT
202struct zone {
203 /* Fields commonly accessed by the page allocator */
1da177e4
LT
204 unsigned long pages_min, pages_low, pages_high;
205 /*
206 * We don't know if the memory that we're going to allocate will be freeable
207 * or/and it will be released eventually, so to avoid totally wasting several
208 * GB of ram we must reserve some of the lower zone memory (otherwise we risk
209 * to run OOM on the lower zones despite there's tons of freeable ram
210 * on the higher zones). This array is recalculated at runtime if the
211 * sysctl_lowmem_reserve_ratio sysctl changes.
212 */
213 unsigned long lowmem_reserve[MAX_NR_ZONES];
214
e7c8d5c9 215#ifdef CONFIG_NUMA
d5f541ed 216 int node;
9614634f
CL
217 /*
218 * zone reclaim becomes active if more unmapped pages exist.
219 */
8417bba4 220 unsigned long min_unmapped_pages;
0ff38490 221 unsigned long min_slab_pages;
e7c8d5c9
CL
222 struct per_cpu_pageset *pageset[NR_CPUS];
223#else
1da177e4 224 struct per_cpu_pageset pageset[NR_CPUS];
e7c8d5c9 225#endif
1da177e4
LT
226 /*
227 * free areas of different sizes
228 */
229 spinlock_t lock;
bdc8cb98
DH
230#ifdef CONFIG_MEMORY_HOTPLUG
231 /* see spanned/present_pages for more description */
232 seqlock_t span_seqlock;
233#endif
1da177e4
LT
234 struct free_area free_area[MAX_ORDER];
235
835c134e
MG
236#ifndef CONFIG_SPARSEMEM
237 /*
238 * Flags for a MAX_ORDER_NR_PAGES block. See pageblock-flags.h.
239 * In SPARSEMEM, this map is stored in struct mem_section
240 */
241 unsigned long *pageblock_flags;
242#endif /* CONFIG_SPARSEMEM */
243
1da177e4
LT
244
245 ZONE_PADDING(_pad1_)
246
247 /* Fields commonly accessed by the page reclaim scanner */
248 spinlock_t lru_lock;
249 struct list_head active_list;
250 struct list_head inactive_list;
251 unsigned long nr_scan_active;
252 unsigned long nr_scan_inactive;
1da177e4
LT
253 unsigned long pages_scanned; /* since last reclaim */
254 int all_unreclaimable; /* All pages pinned */
255
1e7e5a90
MH
256 /* A count of how many reclaimers are scanning this zone */
257 atomic_t reclaim_in_progress;
753ee728 258
2244b95a
CL
259 /* Zone statistics */
260 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
9eeff239 261
1da177e4
LT
262 /*
263 * prev_priority holds the scanning priority for this zone. It is
264 * defined as the scanning priority at which we achieved our reclaim
265 * target at the previous try_to_free_pages() or balance_pgdat()
266 * invokation.
267 *
268 * We use prev_priority as a measure of how much stress page reclaim is
269 * under - it drives the swappiness decision: whether to unmap mapped
270 * pages.
271 *
3bb1a852 272 * Access to both this field is quite racy even on uniprocessor. But
1da177e4
LT
273 * it is expected to average out OK.
274 */
1da177e4
LT
275 int prev_priority;
276
277
278 ZONE_PADDING(_pad2_)
279 /* Rarely used or read-mostly fields */
280
281 /*
282 * wait_table -- the array holding the hash table
02b694de 283 * wait_table_hash_nr_entries -- the size of the hash table array
1da177e4
LT
284 * wait_table_bits -- wait_table_size == (1 << wait_table_bits)
285 *
286 * The purpose of all these is to keep track of the people
287 * waiting for a page to become available and make them
288 * runnable again when possible. The trouble is that this
289 * consumes a lot of space, especially when so few things
290 * wait on pages at a given time. So instead of using
291 * per-page waitqueues, we use a waitqueue hash table.
292 *
293 * The bucket discipline is to sleep on the same queue when
294 * colliding and wake all in that wait queue when removing.
295 * When something wakes, it must check to be sure its page is
296 * truly available, a la thundering herd. The cost of a
297 * collision is great, but given the expected load of the
298 * table, they should be so rare as to be outweighed by the
299 * benefits from the saved space.
300 *
301 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
302 * primary users of these fields, and in mm/page_alloc.c
303 * free_area_init_core() performs the initialization of them.
304 */
305 wait_queue_head_t * wait_table;
02b694de 306 unsigned long wait_table_hash_nr_entries;
1da177e4
LT
307 unsigned long wait_table_bits;
308
309 /*
310 * Discontig memory support fields.
311 */
312 struct pglist_data *zone_pgdat;
1da177e4
LT
313 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
314 unsigned long zone_start_pfn;
315
bdc8cb98
DH
316 /*
317 * zone_start_pfn, spanned_pages and present_pages are all
318 * protected by span_seqlock. It is a seqlock because it has
319 * to be read outside of zone->lock, and it is done in the main
320 * allocator path. But, it is written quite infrequently.
321 *
322 * The lock is declared along with zone->lock because it is
323 * frequently read in proximity to zone->lock. It's good to
324 * give them a chance of being in the same cacheline.
325 */
1da177e4
LT
326 unsigned long spanned_pages; /* total size, including holes */
327 unsigned long present_pages; /* amount of memory (excluding holes) */
328
329 /*
330 * rarely used fields:
331 */
15ad7cdc 332 const char *name;
22fc6ecc 333} ____cacheline_internodealigned_in_smp;
1da177e4 334
1da177e4
LT
335/*
336 * The "priority" of VM scanning is how much of the queues we will scan in one
337 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
338 * queues ("queue_length >> 12") during an aging round.
339 */
340#define DEF_PRIORITY 12
341
9276b1bc
PJ
342/* Maximum number of zones on a zonelist */
343#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
344
345#ifdef CONFIG_NUMA
523b9458
CL
346
347/*
348 * The NUMA zonelists are doubled becausse we need zonelists that restrict the
349 * allocations to a single node for GFP_THISNODE.
350 *
351 * [0 .. MAX_NR_ZONES -1] : Zonelists with fallback
352 * [MAZ_NR_ZONES ... MAZ_ZONELISTS -1] : No fallback (GFP_THISNODE)
353 */
354#define MAX_ZONELISTS (2 * MAX_NR_ZONES)
355
356
9276b1bc
PJ
357/*
358 * We cache key information from each zonelist for smaller cache
359 * footprint when scanning for free pages in get_page_from_freelist().
360 *
361 * 1) The BITMAP fullzones tracks which zones in a zonelist have come
362 * up short of free memory since the last time (last_fullzone_zap)
363 * we zero'd fullzones.
364 * 2) The array z_to_n[] maps each zone in the zonelist to its node
365 * id, so that we can efficiently evaluate whether that node is
366 * set in the current tasks mems_allowed.
367 *
368 * Both fullzones and z_to_n[] are one-to-one with the zonelist,
369 * indexed by a zones offset in the zonelist zones[] array.
370 *
371 * The get_page_from_freelist() routine does two scans. During the
372 * first scan, we skip zones whose corresponding bit in 'fullzones'
373 * is set or whose corresponding node in current->mems_allowed (which
374 * comes from cpusets) is not set. During the second scan, we bypass
375 * this zonelist_cache, to ensure we look methodically at each zone.
376 *
377 * Once per second, we zero out (zap) fullzones, forcing us to
378 * reconsider nodes that might have regained more free memory.
379 * The field last_full_zap is the time we last zapped fullzones.
380 *
381 * This mechanism reduces the amount of time we waste repeatedly
382 * reexaming zones for free memory when they just came up low on
383 * memory momentarilly ago.
384 *
385 * The zonelist_cache struct members logically belong in struct
386 * zonelist. However, the mempolicy zonelists constructed for
387 * MPOL_BIND are intentionally variable length (and usually much
388 * shorter). A general purpose mechanism for handling structs with
389 * multiple variable length members is more mechanism than we want
390 * here. We resort to some special case hackery instead.
391 *
392 * The MPOL_BIND zonelists don't need this zonelist_cache (in good
393 * part because they are shorter), so we put the fixed length stuff
394 * at the front of the zonelist struct, ending in a variable length
395 * zones[], as is needed by MPOL_BIND.
396 *
397 * Then we put the optional zonelist cache on the end of the zonelist
398 * struct. This optional stuff is found by a 'zlcache_ptr' pointer in
399 * the fixed length portion at the front of the struct. This pointer
400 * both enables us to find the zonelist cache, and in the case of
401 * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
402 * to know that the zonelist cache is not there.
403 *
404 * The end result is that struct zonelists come in two flavors:
405 * 1) The full, fixed length version, shown below, and
406 * 2) The custom zonelists for MPOL_BIND.
407 * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
408 *
409 * Even though there may be multiple CPU cores on a node modifying
410 * fullzones or last_full_zap in the same zonelist_cache at the same
411 * time, we don't lock it. This is just hint data - if it is wrong now
412 * and then, the allocator will still function, perhaps a bit slower.
413 */
414
415
416struct zonelist_cache {
9276b1bc 417 unsigned short z_to_n[MAX_ZONES_PER_ZONELIST]; /* zone->nid */
7253f4ef 418 DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST); /* zone full? */
9276b1bc
PJ
419 unsigned long last_full_zap; /* when last zap'd (jiffies) */
420};
421#else
523b9458 422#define MAX_ZONELISTS MAX_NR_ZONES
9276b1bc
PJ
423struct zonelist_cache;
424#endif
425
1da177e4
LT
426/*
427 * One allocation request operates on a zonelist. A zonelist
428 * is a list of zones, the first one is the 'goal' of the
429 * allocation, the other zones are fallback zones, in decreasing
430 * priority.
431 *
9276b1bc
PJ
432 * If zlcache_ptr is not NULL, then it is just the address of zlcache,
433 * as explained above. If zlcache_ptr is NULL, there is no zlcache.
1da177e4 434 */
9276b1bc 435
1da177e4 436struct zonelist {
9276b1bc
PJ
437 struct zonelist_cache *zlcache_ptr; // NULL or &zlcache
438 struct zone *zones[MAX_ZONES_PER_ZONELIST + 1]; // NULL delimited
439#ifdef CONFIG_NUMA
440 struct zonelist_cache zlcache; // optional ...
441#endif
1da177e4
LT
442};
443
b377fd39
MG
444#ifdef CONFIG_NUMA
445/*
446 * Only custom zonelists like MPOL_BIND need to be filtered as part of
447 * policies. As described in the comment for struct zonelist_cache, these
448 * zonelists will not have a zlcache so zlcache_ptr will not be set. Use
449 * that to determine if the zonelists needs to be filtered or not.
450 */
451static inline int alloc_should_filter_zonelist(struct zonelist *zonelist)
452{
453 return !zonelist->zlcache_ptr;
454}
455#else
456static inline int alloc_should_filter_zonelist(struct zonelist *zonelist)
457{
458 return 0;
459}
460#endif /* CONFIG_NUMA */
461
c713216d
MG
462#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
463struct node_active_region {
464 unsigned long start_pfn;
465 unsigned long end_pfn;
466 int nid;
467};
468#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
1da177e4 469
5b99cd0e
HC
470#ifndef CONFIG_DISCONTIGMEM
471/* The array of struct pages - for discontigmem use pgdat->lmem_map */
472extern struct page *mem_map;
473#endif
474
1da177e4
LT
475/*
476 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
477 * (mostly NUMA machines?) to denote a higher-level memory zone than the
478 * zone denotes.
479 *
480 * On NUMA machines, each NUMA node would have a pg_data_t to describe
481 * it's memory layout.
482 *
483 * Memory statistics and page replacement data structures are maintained on a
484 * per-zone basis.
485 */
486struct bootmem_data;
487typedef struct pglist_data {
488 struct zone node_zones[MAX_NR_ZONES];
523b9458 489 struct zonelist node_zonelists[MAX_ZONELISTS];
1da177e4 490 int nr_zones;
d41dee36 491#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4 492 struct page *node_mem_map;
d41dee36 493#endif
1da177e4 494 struct bootmem_data *bdata;
208d54e5
DH
495#ifdef CONFIG_MEMORY_HOTPLUG
496 /*
497 * Must be held any time you expect node_start_pfn, node_present_pages
498 * or node_spanned_pages stay constant. Holding this will also
499 * guarantee that any pfn_valid() stays that way.
500 *
501 * Nests above zone->lock and zone->size_seqlock.
502 */
503 spinlock_t node_size_lock;
504#endif
1da177e4
LT
505 unsigned long node_start_pfn;
506 unsigned long node_present_pages; /* total number of physical pages */
507 unsigned long node_spanned_pages; /* total size of physical page
508 range, including holes */
509 int node_id;
1da177e4
LT
510 wait_queue_head_t kswapd_wait;
511 struct task_struct *kswapd;
512 int kswapd_max_order;
513} pg_data_t;
514
515#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
516#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
d41dee36 517#ifdef CONFIG_FLAT_NODE_MEM_MAP
408fde81 518#define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
d41dee36
AW
519#else
520#define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
521#endif
408fde81 522#define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
1da177e4 523
208d54e5
DH
524#include <linux/memory_hotplug.h>
525
1da177e4
LT
526void get_zone_counts(unsigned long *active, unsigned long *inactive,
527 unsigned long *free);
528void build_all_zonelists(void);
529void wakeup_kswapd(struct zone *zone, int order);
530int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
7fb1d9fc 531 int classzone_idx, int alloc_flags);
a2f3aa02
DH
532enum memmap_context {
533 MEMMAP_EARLY,
534 MEMMAP_HOTPLUG,
535};
718127cc 536extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
a2f3aa02
DH
537 unsigned long size,
538 enum memmap_context context);
718127cc 539
1da177e4
LT
540#ifdef CONFIG_HAVE_MEMORY_PRESENT
541void memory_present(int nid, unsigned long start, unsigned long end);
542#else
543static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
544#endif
545
546#ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
547unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
548#endif
549
550/*
551 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
552 */
553#define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
554
f3fe6512
CK
555static inline int populated_zone(struct zone *zone)
556{
557 return (!!zone->present_pages);
558}
559
2a1e274a
MG
560extern int movable_zone;
561
562static inline int zone_movable_is_highmem(void)
563{
564#if defined(CONFIG_HIGHMEM) && defined(CONFIG_ARCH_POPULATES_NODE_MAP)
565 return movable_zone == ZONE_HIGHMEM;
566#else
567 return 0;
568#endif
569}
570
2f1b6248 571static inline int is_highmem_idx(enum zone_type idx)
1da177e4 572{
e53ef38d 573#ifdef CONFIG_HIGHMEM
2a1e274a
MG
574 return (idx == ZONE_HIGHMEM ||
575 (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
e53ef38d
CL
576#else
577 return 0;
578#endif
1da177e4
LT
579}
580
2f1b6248 581static inline int is_normal_idx(enum zone_type idx)
1da177e4
LT
582{
583 return (idx == ZONE_NORMAL);
584}
9328b8fa 585
1da177e4
LT
586/**
587 * is_highmem - helper function to quickly check if a struct zone is a
588 * highmem zone or not. This is an attempt to keep references
589 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
590 * @zone - pointer to struct zone variable
591 */
592static inline int is_highmem(struct zone *zone)
593{
e53ef38d 594#ifdef CONFIG_HIGHMEM
2a1e274a
MG
595 int zone_idx = zone - zone->zone_pgdat->node_zones;
596 return zone_idx == ZONE_HIGHMEM ||
597 (zone_idx == ZONE_MOVABLE && zone_movable_is_highmem());
e53ef38d
CL
598#else
599 return 0;
600#endif
1da177e4
LT
601}
602
603static inline int is_normal(struct zone *zone)
604{
605 return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
606}
607
9328b8fa
NP
608static inline int is_dma32(struct zone *zone)
609{
fb0e7942 610#ifdef CONFIG_ZONE_DMA32
9328b8fa 611 return zone == zone->zone_pgdat->node_zones + ZONE_DMA32;
fb0e7942
CL
612#else
613 return 0;
614#endif
9328b8fa
NP
615}
616
617static inline int is_dma(struct zone *zone)
618{
4b51d669 619#ifdef CONFIG_ZONE_DMA
9328b8fa 620 return zone == zone->zone_pgdat->node_zones + ZONE_DMA;
4b51d669
CL
621#else
622 return 0;
623#endif
9328b8fa
NP
624}
625
1da177e4
LT
626/* These two functions are used to setup the per zone pages min values */
627struct ctl_table;
628struct file;
629int min_free_kbytes_sysctl_handler(struct ctl_table *, int, struct file *,
630 void __user *, size_t *, loff_t *);
631extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
632int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, struct file *,
633 void __user *, size_t *, loff_t *);
8ad4b1fb
RS
634int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int, struct file *,
635 void __user *, size_t *, loff_t *);
9614634f
CL
636int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
637 struct file *, void __user *, size_t *, loff_t *);
0ff38490
CL
638int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
639 struct file *, void __user *, size_t *, loff_t *);
1da177e4 640
f0c0b2b8
KH
641extern int numa_zonelist_order_handler(struct ctl_table *, int,
642 struct file *, void __user *, size_t *, loff_t *);
643extern char numa_zonelist_order[];
644#define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */
645
1da177e4
LT
646#include <linux/topology.h>
647/* Returns the number of the current Node. */
69d81fcd 648#ifndef numa_node_id
39c715b7 649#define numa_node_id() (cpu_to_node(raw_smp_processor_id()))
69d81fcd 650#endif
1da177e4 651
93b7504e 652#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
653
654extern struct pglist_data contig_page_data;
655#define NODE_DATA(nid) (&contig_page_data)
656#define NODE_MEM_MAP(nid) mem_map
657#define MAX_NODES_SHIFT 1
1da177e4 658
93b7504e 659#else /* CONFIG_NEED_MULTIPLE_NODES */
1da177e4
LT
660
661#include <asm/mmzone.h>
662
93b7504e 663#endif /* !CONFIG_NEED_MULTIPLE_NODES */
348f8b6c 664
95144c78
KH
665extern struct pglist_data *first_online_pgdat(void);
666extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
667extern struct zone *next_zone(struct zone *zone);
8357f869
KH
668
669/**
670 * for_each_pgdat - helper macro to iterate over all nodes
671 * @pgdat - pointer to a pg_data_t variable
672 */
673#define for_each_online_pgdat(pgdat) \
674 for (pgdat = first_online_pgdat(); \
675 pgdat; \
676 pgdat = next_online_pgdat(pgdat))
8357f869
KH
677/**
678 * for_each_zone - helper macro to iterate over all memory zones
679 * @zone - pointer to struct zone variable
680 *
681 * The user only needs to declare the zone variable, for_each_zone
682 * fills it in.
683 */
684#define for_each_zone(zone) \
685 for (zone = (first_online_pgdat())->node_zones; \
686 zone; \
687 zone = next_zone(zone))
688
d41dee36
AW
689#ifdef CONFIG_SPARSEMEM
690#include <asm/sparsemem.h>
691#endif
692
07808b74 693#if BITS_PER_LONG == 32
1da177e4 694/*
a2f1b424
AK
695 * with 32 bit page->flags field, we reserve 9 bits for node/zone info.
696 * there are 4 zones (3 bits) and this leaves 9-3=6 bits for nodes.
1da177e4 697 */
a2f1b424 698#define FLAGS_RESERVED 9
348f8b6c 699
1da177e4
LT
700#elif BITS_PER_LONG == 64
701/*
702 * with 64 bit flags field, there's plenty of room.
703 */
348f8b6c 704#define FLAGS_RESERVED 32
1da177e4 705
348f8b6c 706#else
1da177e4 707
348f8b6c 708#error BITS_PER_LONG not defined
1da177e4 709
1da177e4
LT
710#endif
711
c713216d
MG
712#if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
713 !defined(CONFIG_ARCH_POPULATES_NODE_MAP)
b159d43f
AW
714#define early_pfn_to_nid(nid) (0UL)
715#endif
716
2bdaf115
AW
717#ifdef CONFIG_FLATMEM
718#define pfn_to_nid(pfn) (0)
719#endif
720
d41dee36
AW
721#define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
722#define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
723
724#ifdef CONFIG_SPARSEMEM
725
726/*
727 * SECTION_SHIFT #bits space required to store a section #
728 *
729 * PA_SECTION_SHIFT physical address to/from section number
730 * PFN_SECTION_SHIFT pfn to/from section number
731 */
732#define SECTIONS_SHIFT (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)
733
734#define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
735#define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
736
737#define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
738
739#define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
740#define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
741
835c134e 742#define SECTION_BLOCKFLAGS_BITS \
5c0e3066 743 ((1 << (PFN_SECTION_SHIFT - (MAX_ORDER-1))) * NR_PAGEBLOCK_BITS)
835c134e 744
d41dee36
AW
745#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
746#error Allocator MAX_ORDER exceeds SECTION_SIZE
747#endif
748
749struct page;
750struct mem_section {
29751f69
AW
751 /*
752 * This is, logically, a pointer to an array of struct
753 * pages. However, it is stored with some other magic.
754 * (see sparse.c::sparse_init_one_section())
755 *
30c253e6
AW
756 * Additionally during early boot we encode node id of
757 * the location of the section here to guide allocation.
758 * (see sparse.c::memory_present())
759 *
29751f69
AW
760 * Making it a UL at least makes someone do a cast
761 * before using it wrong.
762 */
763 unsigned long section_mem_map;
5c0e3066
MG
764
765 /* See declaration of similar field in struct zone */
766 unsigned long *pageblock_flags;
d41dee36
AW
767};
768
3e347261
BP
769#ifdef CONFIG_SPARSEMEM_EXTREME
770#define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
771#else
772#define SECTIONS_PER_ROOT 1
773#endif
802f192e 774
3e347261
BP
775#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
776#define NR_SECTION_ROOTS (NR_MEM_SECTIONS / SECTIONS_PER_ROOT)
777#define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
802f192e 778
3e347261
BP
779#ifdef CONFIG_SPARSEMEM_EXTREME
780extern struct mem_section *mem_section[NR_SECTION_ROOTS];
802f192e 781#else
3e347261
BP
782extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
783#endif
d41dee36 784
29751f69
AW
785static inline struct mem_section *__nr_to_section(unsigned long nr)
786{
3e347261
BP
787 if (!mem_section[SECTION_NR_TO_ROOT(nr)])
788 return NULL;
789 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
29751f69 790}
4ca644d9 791extern int __section_nr(struct mem_section* ms);
29751f69
AW
792
793/*
794 * We use the lower bits of the mem_map pointer to store
795 * a little bit of information. There should be at least
796 * 3 bits here due to 32-bit alignment.
797 */
798#define SECTION_MARKED_PRESENT (1UL<<0)
799#define SECTION_HAS_MEM_MAP (1UL<<1)
800#define SECTION_MAP_LAST_BIT (1UL<<2)
801#define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
30c253e6 802#define SECTION_NID_SHIFT 2
29751f69
AW
803
804static inline struct page *__section_mem_map_addr(struct mem_section *section)
805{
806 unsigned long map = section->section_mem_map;
807 map &= SECTION_MAP_MASK;
808 return (struct page *)map;
809}
810
540557b9 811static inline int present_section(struct mem_section *section)
29751f69 812{
802f192e 813 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
29751f69
AW
814}
815
540557b9
AW
816static inline int present_section_nr(unsigned long nr)
817{
818 return present_section(__nr_to_section(nr));
819}
820
821static inline int valid_section(struct mem_section *section)
29751f69 822{
802f192e 823 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
29751f69
AW
824}
825
826static inline int valid_section_nr(unsigned long nr)
827{
828 return valid_section(__nr_to_section(nr));
829}
830
d41dee36
AW
831static inline struct mem_section *__pfn_to_section(unsigned long pfn)
832{
29751f69 833 return __nr_to_section(pfn_to_section_nr(pfn));
d41dee36
AW
834}
835
d41dee36
AW
836static inline int pfn_valid(unsigned long pfn)
837{
838 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
839 return 0;
29751f69 840 return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
d41dee36
AW
841}
842
540557b9
AW
843static inline int pfn_present(unsigned long pfn)
844{
845 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
846 return 0;
847 return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
848}
849
d41dee36
AW
850/*
851 * These are _only_ used during initialisation, therefore they
852 * can use __initdata ... They could have names to indicate
853 * this restriction.
854 */
855#ifdef CONFIG_NUMA
161599ff
AW
856#define pfn_to_nid(pfn) \
857({ \
858 unsigned long __pfn_to_nid_pfn = (pfn); \
859 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
860})
2bdaf115
AW
861#else
862#define pfn_to_nid(pfn) (0)
d41dee36
AW
863#endif
864
d41dee36
AW
865#define early_pfn_valid(pfn) pfn_valid(pfn)
866void sparse_init(void);
867#else
868#define sparse_init() do {} while (0)
28ae55c9 869#define sparse_index_init(_sec, _nid) do {} while (0)
d41dee36
AW
870#endif /* CONFIG_SPARSEMEM */
871
75167957
AW
872#ifdef CONFIG_NODES_SPAN_OTHER_NODES
873#define early_pfn_in_nid(pfn, nid) (early_pfn_to_nid(pfn) == (nid))
874#else
875#define early_pfn_in_nid(pfn, nid) (1)
876#endif
877
d41dee36
AW
878#ifndef early_pfn_valid
879#define early_pfn_valid(pfn) (1)
880#endif
881
882void memory_present(int nid, unsigned long start, unsigned long end);
883unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
884
14e07298
AW
885/*
886 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
887 * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
888 * pfn_valid_within() should be used in this case; we optimise this away
889 * when we have no holes within a MAX_ORDER_NR_PAGES block.
890 */
891#ifdef CONFIG_HOLES_IN_ZONE
892#define pfn_valid_within(pfn) pfn_valid(pfn)
893#else
894#define pfn_valid_within(pfn) (1)
895#endif
896
1da177e4
LT
897#endif /* !__ASSEMBLY__ */
898#endif /* __KERNEL__ */
899#endif /* _LINUX_MMZONE_H */