mm: compaction: Restart compaction from near where it left off
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / include / linux / mmzone.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_MMZONE_H
2#define _LINUX_MMZONE_H
3
1da177e4 4#ifndef __ASSEMBLY__
97965478 5#ifndef __GENERATING_BOUNDS_H
1da177e4 6
1da177e4
LT
7#include <linux/spinlock.h>
8#include <linux/list.h>
9#include <linux/wait.h>
e815af95 10#include <linux/bitops.h>
1da177e4
LT
11#include <linux/cache.h>
12#include <linux/threads.h>
13#include <linux/numa.h>
14#include <linux/init.h>
bdc8cb98 15#include <linux/seqlock.h>
8357f869 16#include <linux/nodemask.h>
835c134e 17#include <linux/pageblock-flags.h>
01fc0ac1 18#include <generated/bounds.h>
60063497 19#include <linux/atomic.h>
93ff66bf 20#include <asm/page.h>
1da177e4
LT
21
22/* Free memory management - zoned buddy allocator. */
23#ifndef CONFIG_FORCE_MAX_ZONEORDER
24#define MAX_ORDER 11
25#else
26#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
27#endif
e984bb43 28#define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
1da177e4 29
5ad333eb
AW
30/*
31 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
32 * costly to service. That is between allocation orders which should
35fca53e 33 * coalesce naturally under reasonable reclaim pressure and those which
5ad333eb
AW
34 * will not.
35 */
36#define PAGE_ALLOC_COSTLY_ORDER 3
37
47118af0
MN
38enum {
39 MIGRATE_UNMOVABLE,
40 MIGRATE_RECLAIMABLE,
41 MIGRATE_MOVABLE,
42 MIGRATE_PCPTYPES, /* the number of types on the pcp lists */
43 MIGRATE_RESERVE = MIGRATE_PCPTYPES,
44#ifdef CONFIG_CMA
45 /*
46 * MIGRATE_CMA migration type is designed to mimic the way
47 * ZONE_MOVABLE works. Only movable pages can be allocated
48 * from MIGRATE_CMA pageblocks and page allocator never
49 * implicitly change migration type of MIGRATE_CMA pageblock.
50 *
51 * The way to use it is to change migratetype of a range of
52 * pageblocks to MIGRATE_CMA which can be done by
53 * __free_pageblock_cma() function. What is important though
54 * is that a range of pageblocks must be aligned to
55 * MAX_ORDER_NR_PAGES should biggest page be bigger then
56 * a single pageblock.
57 */
58 MIGRATE_CMA,
59#endif
60 MIGRATE_ISOLATE, /* can't allocate from here */
61 MIGRATE_TYPES
62};
63
64#ifdef CONFIG_CMA
65# define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
49f223a9 66# define cma_wmark_pages(zone) zone->min_cma_pages
47118af0
MN
67#else
68# define is_migrate_cma(migratetype) false
49f223a9 69# define cma_wmark_pages(zone) 0
47118af0 70#endif
b2a0ac88
MG
71
72#define for_each_migratetype_order(order, type) \
73 for (order = 0; order < MAX_ORDER; order++) \
74 for (type = 0; type < MIGRATE_TYPES; type++)
75
467c996c
MG
76extern int page_group_by_mobility_disabled;
77
78static inline int get_pageblock_migratetype(struct page *page)
79{
467c996c
MG
80 return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end);
81}
82
1da177e4 83struct free_area {
b2a0ac88 84 struct list_head free_list[MIGRATE_TYPES];
1da177e4
LT
85 unsigned long nr_free;
86};
87
88struct pglist_data;
89
90/*
91 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
92 * So add a wild amount of padding here to ensure that they fall into separate
93 * cachelines. There are very few zone structures in the machine, so space
94 * consumption is not a concern here.
95 */
96#if defined(CONFIG_SMP)
97struct zone_padding {
98 char x[0];
22fc6ecc 99} ____cacheline_internodealigned_in_smp;
1da177e4
LT
100#define ZONE_PADDING(name) struct zone_padding name;
101#else
102#define ZONE_PADDING(name)
103#endif
104
2244b95a 105enum zone_stat_item {
51ed4491 106 /* First 128 byte cacheline (assuming 64 bit words) */
d23ad423 107 NR_FREE_PAGES,
b69408e8 108 NR_LRU_BASE,
4f98a2fe
RR
109 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
110 NR_ACTIVE_ANON, /* " " " " " */
111 NR_INACTIVE_FILE, /* " " " " " */
112 NR_ACTIVE_FILE, /* " " " " " */
894bc310 113 NR_UNEVICTABLE, /* " " " " " */
5344b7e6 114 NR_MLOCK, /* mlock()ed pages found and moved off LRU */
f3dbd344
CL
115 NR_ANON_PAGES, /* Mapped anonymous pages */
116 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
65ba55f5 117 only modified from process context */
347ce434 118 NR_FILE_PAGES,
b1e7a8fd 119 NR_FILE_DIRTY,
ce866b34 120 NR_WRITEBACK,
51ed4491
CL
121 NR_SLAB_RECLAIMABLE,
122 NR_SLAB_UNRECLAIMABLE,
123 NR_PAGETABLE, /* used for pagetables */
c6a7f572
KM
124 NR_KERNEL_STACK,
125 /* Second 128 byte cacheline */
fd39fc85 126 NR_UNSTABLE_NFS, /* NFS unstable pages */
d2c5e30c 127 NR_BOUNCE,
e129b5c2 128 NR_VMSCAN_WRITE,
49ea7eb6 129 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */
fc3ba692 130 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */
a731286d
KM
131 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */
132 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */
4b02108a 133 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */
ea941f0e
MR
134 NR_DIRTIED, /* page dirtyings since bootup */
135 NR_WRITTEN, /* page writings since bootup */
ca889e6c
CL
136#ifdef CONFIG_NUMA
137 NUMA_HIT, /* allocated in intended node */
138 NUMA_MISS, /* allocated in non intended node */
139 NUMA_FOREIGN, /* was intended here, hit elsewhere */
140 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
141 NUMA_LOCAL, /* allocation from local node */
142 NUMA_OTHER, /* allocation from other node */
143#endif
79134171 144 NR_ANON_TRANSPARENT_HUGEPAGES,
d1ce749a 145 NR_FREE_CMA_PAGES,
2244b95a
CL
146 NR_VM_ZONE_STAT_ITEMS };
147
4f98a2fe
RR
148/*
149 * We do arithmetic on the LRU lists in various places in the code,
150 * so it is important to keep the active lists LRU_ACTIVE higher in
151 * the array than the corresponding inactive lists, and to keep
152 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
153 *
154 * This has to be kept in sync with the statistics in zone_stat_item
155 * above and the descriptions in vmstat_text in mm/vmstat.c
156 */
157#define LRU_BASE 0
158#define LRU_ACTIVE 1
159#define LRU_FILE 2
160
b69408e8 161enum lru_list {
4f98a2fe
RR
162 LRU_INACTIVE_ANON = LRU_BASE,
163 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
164 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
165 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
894bc310 166 LRU_UNEVICTABLE,
894bc310
LS
167 NR_LRU_LISTS
168};
b69408e8 169
4111304d 170#define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
b69408e8 171
4111304d 172#define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
894bc310 173
4111304d 174static inline int is_file_lru(enum lru_list lru)
4f98a2fe 175{
4111304d 176 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
4f98a2fe
RR
177}
178
4111304d 179static inline int is_active_lru(enum lru_list lru)
b69408e8 180{
4111304d 181 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
b69408e8
CL
182}
183
4111304d 184static inline int is_unevictable_lru(enum lru_list lru)
894bc310 185{
4111304d 186 return (lru == LRU_UNEVICTABLE);
894bc310
LS
187}
188
89abfab1
HD
189struct zone_reclaim_stat {
190 /*
191 * The pageout code in vmscan.c keeps track of how many of the
59f91e5d 192 * mem/swap backed and file backed pages are referenced.
89abfab1
HD
193 * The higher the rotated/scanned ratio, the more valuable
194 * that cache is.
195 *
196 * The anon LRU stats live in [0], file LRU stats in [1]
197 */
198 unsigned long recent_rotated[2];
199 unsigned long recent_scanned[2];
200};
201
6290df54
JW
202struct lruvec {
203 struct list_head lists[NR_LRU_LISTS];
89abfab1 204 struct zone_reclaim_stat reclaim_stat;
c255a458 205#ifdef CONFIG_MEMCG
7f5e86c2
KK
206 struct zone *zone;
207#endif
6290df54
JW
208};
209
bb2a0de9
KH
210/* Mask used at gathering information at once (see memcontrol.c) */
211#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
212#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
bb2a0de9
KH
213#define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
214
39deaf85 215/* Isolate clean file */
f3fd4a61 216#define ISOLATE_CLEAN ((__force isolate_mode_t)0x1)
f80c0673 217/* Isolate unmapped file */
f3fd4a61 218#define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x2)
c8244935 219/* Isolate for asynchronous migration */
f3fd4a61 220#define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4)
4356f21d
MK
221
222/* LRU Isolation modes. */
223typedef unsigned __bitwise__ isolate_mode_t;
224
41858966
MG
225enum zone_watermarks {
226 WMARK_MIN,
227 WMARK_LOW,
228 WMARK_HIGH,
229 NR_WMARK
230};
231
232#define min_wmark_pages(z) (z->watermark[WMARK_MIN])
233#define low_wmark_pages(z) (z->watermark[WMARK_LOW])
234#define high_wmark_pages(z) (z->watermark[WMARK_HIGH])
235
1da177e4
LT
236struct per_cpu_pages {
237 int count; /* number of pages in the list */
1da177e4
LT
238 int high; /* high watermark, emptying needed */
239 int batch; /* chunk size for buddy add/remove */
5f8dcc21
MG
240
241 /* Lists of pages, one per migrate type stored on the pcp-lists */
242 struct list_head lists[MIGRATE_PCPTYPES];
1da177e4
LT
243};
244
245struct per_cpu_pageset {
3dfa5721 246 struct per_cpu_pages pcp;
4037d452
CL
247#ifdef CONFIG_NUMA
248 s8 expire;
249#endif
2244b95a 250#ifdef CONFIG_SMP
df9ecaba 251 s8 stat_threshold;
2244b95a
CL
252 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
253#endif
99dcc3e5 254};
e7c8d5c9 255
97965478
CL
256#endif /* !__GENERATING_BOUNDS.H */
257
2f1b6248 258enum zone_type {
4b51d669 259#ifdef CONFIG_ZONE_DMA
2f1b6248
CL
260 /*
261 * ZONE_DMA is used when there are devices that are not able
262 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
263 * carve out the portion of memory that is needed for these devices.
264 * The range is arch specific.
265 *
266 * Some examples
267 *
268 * Architecture Limit
269 * ---------------------------
270 * parisc, ia64, sparc <4G
271 * s390 <2G
2f1b6248
CL
272 * arm Various
273 * alpha Unlimited or 0-16MB.
274 *
275 * i386, x86_64 and multiple other arches
276 * <16M.
277 */
278 ZONE_DMA,
4b51d669 279#endif
fb0e7942 280#ifdef CONFIG_ZONE_DMA32
2f1b6248
CL
281 /*
282 * x86_64 needs two ZONE_DMAs because it supports devices that are
283 * only able to do DMA to the lower 16M but also 32 bit devices that
284 * can only do DMA areas below 4G.
285 */
286 ZONE_DMA32,
fb0e7942 287#endif
2f1b6248
CL
288 /*
289 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
290 * performed on pages in ZONE_NORMAL if the DMA devices support
291 * transfers to all addressable memory.
292 */
293 ZONE_NORMAL,
e53ef38d 294#ifdef CONFIG_HIGHMEM
2f1b6248
CL
295 /*
296 * A memory area that is only addressable by the kernel through
297 * mapping portions into its own address space. This is for example
298 * used by i386 to allow the kernel to address the memory beyond
299 * 900MB. The kernel will set up special mappings (page
300 * table entries on i386) for each page that the kernel needs to
301 * access.
302 */
303 ZONE_HIGHMEM,
e53ef38d 304#endif
2a1e274a 305 ZONE_MOVABLE,
97965478 306 __MAX_NR_ZONES
2f1b6248 307};
1da177e4 308
97965478
CL
309#ifndef __GENERATING_BOUNDS_H
310
1da177e4
LT
311/*
312 * When a memory allocation must conform to specific limitations (such
313 * as being suitable for DMA) the caller will pass in hints to the
314 * allocator in the gfp_mask, in the zone modifier bits. These bits
315 * are used to select a priority ordered list of memory zones which
19655d34 316 * match the requested limits. See gfp_zone() in include/linux/gfp.h
1da177e4 317 */
fb0e7942 318
97965478 319#if MAX_NR_ZONES < 2
4b51d669 320#define ZONES_SHIFT 0
97965478 321#elif MAX_NR_ZONES <= 2
19655d34 322#define ZONES_SHIFT 1
97965478 323#elif MAX_NR_ZONES <= 4
19655d34 324#define ZONES_SHIFT 2
4b51d669
CL
325#else
326#error ZONES_SHIFT -- too many zones configured adjust calculation
fb0e7942 327#endif
1da177e4 328
1da177e4
LT
329struct zone {
330 /* Fields commonly accessed by the page allocator */
41858966
MG
331
332 /* zone watermarks, access with *_wmark_pages(zone) macros */
333 unsigned long watermark[NR_WMARK];
334
aa454840
CL
335 /*
336 * When free pages are below this point, additional steps are taken
337 * when reading the number of free pages to avoid per-cpu counter
338 * drift allowing watermarks to be breached
339 */
340 unsigned long percpu_drift_mark;
341
1da177e4
LT
342 /*
343 * We don't know if the memory that we're going to allocate will be freeable
344 * or/and it will be released eventually, so to avoid totally wasting several
345 * GB of ram we must reserve some of the lower zone memory (otherwise we risk
346 * to run OOM on the lower zones despite there's tons of freeable ram
347 * on the higher zones). This array is recalculated at runtime if the
348 * sysctl_lowmem_reserve_ratio sysctl changes.
349 */
350 unsigned long lowmem_reserve[MAX_NR_ZONES];
351
ab8fabd4
JW
352 /*
353 * This is a per-zone reserve of pages that should not be
354 * considered dirtyable memory.
355 */
356 unsigned long dirty_balance_reserve;
357
e7c8d5c9 358#ifdef CONFIG_NUMA
d5f541ed 359 int node;
9614634f
CL
360 /*
361 * zone reclaim becomes active if more unmapped pages exist.
362 */
8417bba4 363 unsigned long min_unmapped_pages;
0ff38490 364 unsigned long min_slab_pages;
e7c8d5c9 365#endif
43cf38eb 366 struct per_cpu_pageset __percpu *pageset;
1da177e4
LT
367 /*
368 * free areas of different sizes
369 */
370 spinlock_t lock;
93e4a89a 371 int all_unreclaimable; /* All pages pinned */
bb13ffeb
MG
372#if defined CONFIG_COMPACTION || defined CONFIG_CMA
373 unsigned long compact_blockskip_expire;
c89511ab
MG
374
375 /* pfns where compaction scanners should start */
376 unsigned long compact_cached_free_pfn;
377 unsigned long compact_cached_migrate_pfn;
bb13ffeb 378#endif
bdc8cb98
DH
379#ifdef CONFIG_MEMORY_HOTPLUG
380 /* see spanned/present_pages for more description */
381 seqlock_t span_seqlock;
49f223a9
MS
382#endif
383#ifdef CONFIG_CMA
384 /*
385 * CMA needs to increase watermark levels during the allocation
386 * process to make sure that the system is not starved.
387 */
388 unsigned long min_cma_pages;
bdc8cb98 389#endif
1da177e4
LT
390 struct free_area free_area[MAX_ORDER];
391
835c134e
MG
392#ifndef CONFIG_SPARSEMEM
393 /*
d9c23400 394 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
835c134e
MG
395 * In SPARSEMEM, this map is stored in struct mem_section
396 */
397 unsigned long *pageblock_flags;
398#endif /* CONFIG_SPARSEMEM */
399
4f92e258
MG
400#ifdef CONFIG_COMPACTION
401 /*
402 * On compaction failure, 1<<compact_defer_shift compactions
403 * are skipped before trying again. The number attempted since
404 * last failure is tracked with compact_considered.
405 */
406 unsigned int compact_considered;
407 unsigned int compact_defer_shift;
aff62249 408 int compact_order_failed;
4f92e258 409#endif
1da177e4
LT
410
411 ZONE_PADDING(_pad1_)
412
413 /* Fields commonly accessed by the page reclaim scanner */
6290df54
JW
414 spinlock_t lru_lock;
415 struct lruvec lruvec;
4f98a2fe 416
1da177e4 417 unsigned long pages_scanned; /* since last reclaim */
e815af95 418 unsigned long flags; /* zone flags, see below */
753ee728 419
2244b95a
CL
420 /* Zone statistics */
421 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
9eeff239 422
556adecb
RR
423 /*
424 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
425 * this zone's LRU. Maintained by the pageout code.
426 */
427 unsigned int inactive_ratio;
428
1da177e4
LT
429
430 ZONE_PADDING(_pad2_)
431 /* Rarely used or read-mostly fields */
432
433 /*
434 * wait_table -- the array holding the hash table
02b694de 435 * wait_table_hash_nr_entries -- the size of the hash table array
1da177e4
LT
436 * wait_table_bits -- wait_table_size == (1 << wait_table_bits)
437 *
438 * The purpose of all these is to keep track of the people
439 * waiting for a page to become available and make them
440 * runnable again when possible. The trouble is that this
441 * consumes a lot of space, especially when so few things
442 * wait on pages at a given time. So instead of using
443 * per-page waitqueues, we use a waitqueue hash table.
444 *
445 * The bucket discipline is to sleep on the same queue when
446 * colliding and wake all in that wait queue when removing.
447 * When something wakes, it must check to be sure its page is
448 * truly available, a la thundering herd. The cost of a
449 * collision is great, but given the expected load of the
450 * table, they should be so rare as to be outweighed by the
451 * benefits from the saved space.
452 *
453 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
454 * primary users of these fields, and in mm/page_alloc.c
455 * free_area_init_core() performs the initialization of them.
456 */
457 wait_queue_head_t * wait_table;
02b694de 458 unsigned long wait_table_hash_nr_entries;
1da177e4
LT
459 unsigned long wait_table_bits;
460
461 /*
462 * Discontig memory support fields.
463 */
464 struct pglist_data *zone_pgdat;
1da177e4
LT
465 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
466 unsigned long zone_start_pfn;
467
bdc8cb98
DH
468 /*
469 * zone_start_pfn, spanned_pages and present_pages are all
470 * protected by span_seqlock. It is a seqlock because it has
471 * to be read outside of zone->lock, and it is done in the main
472 * allocator path. But, it is written quite infrequently.
473 *
474 * The lock is declared along with zone->lock because it is
475 * frequently read in proximity to zone->lock. It's good to
476 * give them a chance of being in the same cacheline.
477 */
1da177e4
LT
478 unsigned long spanned_pages; /* total size, including holes */
479 unsigned long present_pages; /* amount of memory (excluding holes) */
480
481 /*
482 * rarely used fields:
483 */
15ad7cdc 484 const char *name;
702d1a6e
MK
485#ifdef CONFIG_MEMORY_ISOLATION
486 /*
487 * the number of MIGRATE_ISOLATE *pageblock*.
488 * We need this for free page counting. Look at zone_watermark_ok_safe.
489 * It's protected by zone->lock
490 */
491 int nr_pageblock_isolate;
492#endif
22fc6ecc 493} ____cacheline_internodealigned_in_smp;
1da177e4 494
e815af95 495typedef enum {
e815af95 496 ZONE_RECLAIM_LOCKED, /* prevents concurrent reclaim */
098d7f12 497 ZONE_OOM_LOCKED, /* zone is in OOM killer zonelist */
0e093d99
MG
498 ZONE_CONGESTED, /* zone has many dirty pages backed by
499 * a congested BDI
500 */
e815af95
DR
501} zone_flags_t;
502
503static inline void zone_set_flag(struct zone *zone, zone_flags_t flag)
504{
505 set_bit(flag, &zone->flags);
506}
d773ed6b
DR
507
508static inline int zone_test_and_set_flag(struct zone *zone, zone_flags_t flag)
509{
510 return test_and_set_bit(flag, &zone->flags);
511}
512
e815af95
DR
513static inline void zone_clear_flag(struct zone *zone, zone_flags_t flag)
514{
515 clear_bit(flag, &zone->flags);
516}
517
0e093d99
MG
518static inline int zone_is_reclaim_congested(const struct zone *zone)
519{
520 return test_bit(ZONE_CONGESTED, &zone->flags);
521}
522
e815af95
DR
523static inline int zone_is_reclaim_locked(const struct zone *zone)
524{
525 return test_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
526}
d773ed6b 527
098d7f12
DR
528static inline int zone_is_oom_locked(const struct zone *zone)
529{
530 return test_bit(ZONE_OOM_LOCKED, &zone->flags);
531}
e815af95 532
1da177e4
LT
533/*
534 * The "priority" of VM scanning is how much of the queues we will scan in one
535 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
536 * queues ("queue_length >> 12") during an aging round.
537 */
538#define DEF_PRIORITY 12
539
9276b1bc
PJ
540/* Maximum number of zones on a zonelist */
541#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
542
543#ifdef CONFIG_NUMA
523b9458
CL
544
545/*
25a64ec1 546 * The NUMA zonelists are doubled because we need zonelists that restrict the
523b9458
CL
547 * allocations to a single node for GFP_THISNODE.
548 *
54a6eb5c
MG
549 * [0] : Zonelist with fallback
550 * [1] : No fallback (GFP_THISNODE)
523b9458 551 */
54a6eb5c 552#define MAX_ZONELISTS 2
523b9458
CL
553
554
9276b1bc
PJ
555/*
556 * We cache key information from each zonelist for smaller cache
557 * footprint when scanning for free pages in get_page_from_freelist().
558 *
559 * 1) The BITMAP fullzones tracks which zones in a zonelist have come
560 * up short of free memory since the last time (last_fullzone_zap)
561 * we zero'd fullzones.
562 * 2) The array z_to_n[] maps each zone in the zonelist to its node
563 * id, so that we can efficiently evaluate whether that node is
564 * set in the current tasks mems_allowed.
565 *
566 * Both fullzones and z_to_n[] are one-to-one with the zonelist,
567 * indexed by a zones offset in the zonelist zones[] array.
568 *
569 * The get_page_from_freelist() routine does two scans. During the
570 * first scan, we skip zones whose corresponding bit in 'fullzones'
571 * is set or whose corresponding node in current->mems_allowed (which
572 * comes from cpusets) is not set. During the second scan, we bypass
573 * this zonelist_cache, to ensure we look methodically at each zone.
574 *
575 * Once per second, we zero out (zap) fullzones, forcing us to
576 * reconsider nodes that might have regained more free memory.
577 * The field last_full_zap is the time we last zapped fullzones.
578 *
579 * This mechanism reduces the amount of time we waste repeatedly
580 * reexaming zones for free memory when they just came up low on
581 * memory momentarilly ago.
582 *
583 * The zonelist_cache struct members logically belong in struct
584 * zonelist. However, the mempolicy zonelists constructed for
585 * MPOL_BIND are intentionally variable length (and usually much
586 * shorter). A general purpose mechanism for handling structs with
587 * multiple variable length members is more mechanism than we want
588 * here. We resort to some special case hackery instead.
589 *
590 * The MPOL_BIND zonelists don't need this zonelist_cache (in good
591 * part because they are shorter), so we put the fixed length stuff
592 * at the front of the zonelist struct, ending in a variable length
593 * zones[], as is needed by MPOL_BIND.
594 *
595 * Then we put the optional zonelist cache on the end of the zonelist
596 * struct. This optional stuff is found by a 'zlcache_ptr' pointer in
597 * the fixed length portion at the front of the struct. This pointer
598 * both enables us to find the zonelist cache, and in the case of
599 * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
600 * to know that the zonelist cache is not there.
601 *
602 * The end result is that struct zonelists come in two flavors:
603 * 1) The full, fixed length version, shown below, and
604 * 2) The custom zonelists for MPOL_BIND.
605 * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
606 *
607 * Even though there may be multiple CPU cores on a node modifying
608 * fullzones or last_full_zap in the same zonelist_cache at the same
609 * time, we don't lock it. This is just hint data - if it is wrong now
610 * and then, the allocator will still function, perhaps a bit slower.
611 */
612
613
614struct zonelist_cache {
9276b1bc 615 unsigned short z_to_n[MAX_ZONES_PER_ZONELIST]; /* zone->nid */
7253f4ef 616 DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST); /* zone full? */
9276b1bc
PJ
617 unsigned long last_full_zap; /* when last zap'd (jiffies) */
618};
619#else
54a6eb5c 620#define MAX_ZONELISTS 1
9276b1bc
PJ
621struct zonelist_cache;
622#endif
623
dd1a239f
MG
624/*
625 * This struct contains information about a zone in a zonelist. It is stored
626 * here to avoid dereferences into large structures and lookups of tables
627 */
628struct zoneref {
629 struct zone *zone; /* Pointer to actual zone */
630 int zone_idx; /* zone_idx(zoneref->zone) */
631};
632
1da177e4
LT
633/*
634 * One allocation request operates on a zonelist. A zonelist
635 * is a list of zones, the first one is the 'goal' of the
636 * allocation, the other zones are fallback zones, in decreasing
637 * priority.
638 *
9276b1bc
PJ
639 * If zlcache_ptr is not NULL, then it is just the address of zlcache,
640 * as explained above. If zlcache_ptr is NULL, there is no zlcache.
dd1a239f
MG
641 * *
642 * To speed the reading of the zonelist, the zonerefs contain the zone index
643 * of the entry being read. Helper functions to access information given
644 * a struct zoneref are
645 *
646 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs
647 * zonelist_zone_idx() - Return the index of the zone for an entry
648 * zonelist_node_idx() - Return the index of the node for an entry
1da177e4
LT
649 */
650struct zonelist {
9276b1bc 651 struct zonelist_cache *zlcache_ptr; // NULL or &zlcache
dd1a239f 652 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
9276b1bc
PJ
653#ifdef CONFIG_NUMA
654 struct zonelist_cache zlcache; // optional ...
655#endif
1da177e4
LT
656};
657
0ee332c1 658#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d
MG
659struct node_active_region {
660 unsigned long start_pfn;
661 unsigned long end_pfn;
662 int nid;
663};
0ee332c1 664#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1da177e4 665
5b99cd0e
HC
666#ifndef CONFIG_DISCONTIGMEM
667/* The array of struct pages - for discontigmem use pgdat->lmem_map */
668extern struct page *mem_map;
669#endif
670
1da177e4
LT
671/*
672 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
673 * (mostly NUMA machines?) to denote a higher-level memory zone than the
674 * zone denotes.
675 *
676 * On NUMA machines, each NUMA node would have a pg_data_t to describe
677 * it's memory layout.
678 *
679 * Memory statistics and page replacement data structures are maintained on a
680 * per-zone basis.
681 */
682struct bootmem_data;
683typedef struct pglist_data {
684 struct zone node_zones[MAX_NR_ZONES];
523b9458 685 struct zonelist node_zonelists[MAX_ZONELISTS];
1da177e4 686 int nr_zones;
52d4b9ac 687#ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */
1da177e4 688 struct page *node_mem_map;
c255a458 689#ifdef CONFIG_MEMCG
52d4b9ac
KH
690 struct page_cgroup *node_page_cgroup;
691#endif
d41dee36 692#endif
08677214 693#ifndef CONFIG_NO_BOOTMEM
1da177e4 694 struct bootmem_data *bdata;
08677214 695#endif
208d54e5
DH
696#ifdef CONFIG_MEMORY_HOTPLUG
697 /*
698 * Must be held any time you expect node_start_pfn, node_present_pages
699 * or node_spanned_pages stay constant. Holding this will also
700 * guarantee that any pfn_valid() stays that way.
701 *
702 * Nests above zone->lock and zone->size_seqlock.
703 */
704 spinlock_t node_size_lock;
705#endif
1da177e4
LT
706 unsigned long node_start_pfn;
707 unsigned long node_present_pages; /* total number of physical pages */
708 unsigned long node_spanned_pages; /* total size of physical page
709 range, including holes */
710 int node_id;
1da177e4 711 wait_queue_head_t kswapd_wait;
5515061d 712 wait_queue_head_t pfmemalloc_wait;
d8adde17 713 struct task_struct *kswapd; /* Protected by lock_memory_hotplug() */
1da177e4 714 int kswapd_max_order;
99504748 715 enum zone_type classzone_idx;
1da177e4
LT
716} pg_data_t;
717
718#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
719#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
d41dee36 720#ifdef CONFIG_FLAT_NODE_MEM_MAP
408fde81 721#define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
d41dee36
AW
722#else
723#define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
724#endif
408fde81 725#define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
1da177e4 726
c6830c22
KH
727#define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn)
728
729#define node_end_pfn(nid) ({\
730 pg_data_t *__pgdat = NODE_DATA(nid);\
731 __pgdat->node_start_pfn + __pgdat->node_spanned_pages;\
732})
733
208d54e5
DH
734#include <linux/memory_hotplug.h>
735
4eaf3f64 736extern struct mutex zonelists_mutex;
9adb62a5 737void build_all_zonelists(pg_data_t *pgdat, struct zone *zone);
99504748 738void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx);
88f5acf8
MG
739bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
740 int classzone_idx, int alloc_flags);
741bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
7fb1d9fc 742 int classzone_idx, int alloc_flags);
a2f3aa02
DH
743enum memmap_context {
744 MEMMAP_EARLY,
745 MEMMAP_HOTPLUG,
746};
718127cc 747extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
a2f3aa02
DH
748 unsigned long size,
749 enum memmap_context context);
718127cc 750
7f5e86c2
KK
751extern void lruvec_init(struct lruvec *lruvec, struct zone *zone);
752
753static inline struct zone *lruvec_zone(struct lruvec *lruvec)
754{
c255a458 755#ifdef CONFIG_MEMCG
7f5e86c2
KK
756 return lruvec->zone;
757#else
758 return container_of(lruvec, struct zone, lruvec);
759#endif
760}
761
1da177e4
LT
762#ifdef CONFIG_HAVE_MEMORY_PRESENT
763void memory_present(int nid, unsigned long start, unsigned long end);
764#else
765static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
766#endif
767
7aac7898
LS
768#ifdef CONFIG_HAVE_MEMORYLESS_NODES
769int local_memory_node(int node_id);
770#else
771static inline int local_memory_node(int node_id) { return node_id; };
772#endif
773
1da177e4
LT
774#ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
775unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
776#endif
777
778/*
779 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
780 */
781#define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
782
f3fe6512
CK
783static inline int populated_zone(struct zone *zone)
784{
785 return (!!zone->present_pages);
786}
787
2a1e274a
MG
788extern int movable_zone;
789
790static inline int zone_movable_is_highmem(void)
791{
fe03025d 792#if defined(CONFIG_HIGHMEM) && defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
2a1e274a
MG
793 return movable_zone == ZONE_HIGHMEM;
794#else
795 return 0;
796#endif
797}
798
2f1b6248 799static inline int is_highmem_idx(enum zone_type idx)
1da177e4 800{
e53ef38d 801#ifdef CONFIG_HIGHMEM
2a1e274a
MG
802 return (idx == ZONE_HIGHMEM ||
803 (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
e53ef38d
CL
804#else
805 return 0;
806#endif
1da177e4
LT
807}
808
2f1b6248 809static inline int is_normal_idx(enum zone_type idx)
1da177e4
LT
810{
811 return (idx == ZONE_NORMAL);
812}
9328b8fa 813
1da177e4
LT
814/**
815 * is_highmem - helper function to quickly check if a struct zone is a
816 * highmem zone or not. This is an attempt to keep references
817 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
818 * @zone - pointer to struct zone variable
819 */
820static inline int is_highmem(struct zone *zone)
821{
e53ef38d 822#ifdef CONFIG_HIGHMEM
ddc81ed2
HH
823 int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones;
824 return zone_off == ZONE_HIGHMEM * sizeof(*zone) ||
825 (zone_off == ZONE_MOVABLE * sizeof(*zone) &&
826 zone_movable_is_highmem());
e53ef38d
CL
827#else
828 return 0;
829#endif
1da177e4
LT
830}
831
832static inline int is_normal(struct zone *zone)
833{
834 return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
835}
836
9328b8fa
NP
837static inline int is_dma32(struct zone *zone)
838{
fb0e7942 839#ifdef CONFIG_ZONE_DMA32
9328b8fa 840 return zone == zone->zone_pgdat->node_zones + ZONE_DMA32;
fb0e7942
CL
841#else
842 return 0;
843#endif
9328b8fa
NP
844}
845
846static inline int is_dma(struct zone *zone)
847{
4b51d669 848#ifdef CONFIG_ZONE_DMA
9328b8fa 849 return zone == zone->zone_pgdat->node_zones + ZONE_DMA;
4b51d669
CL
850#else
851 return 0;
852#endif
9328b8fa
NP
853}
854
1da177e4
LT
855/* These two functions are used to setup the per zone pages min values */
856struct ctl_table;
8d65af78 857int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
1da177e4
LT
858 void __user *, size_t *, loff_t *);
859extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
8d65af78 860int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
1da177e4 861 void __user *, size_t *, loff_t *);
8d65af78 862int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
8ad4b1fb 863 void __user *, size_t *, loff_t *);
9614634f 864int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
8d65af78 865 void __user *, size_t *, loff_t *);
0ff38490 866int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
8d65af78 867 void __user *, size_t *, loff_t *);
1da177e4 868
f0c0b2b8 869extern int numa_zonelist_order_handler(struct ctl_table *, int,
8d65af78 870 void __user *, size_t *, loff_t *);
f0c0b2b8
KH
871extern char numa_zonelist_order[];
872#define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */
873
93b7504e 874#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
875
876extern struct pglist_data contig_page_data;
877#define NODE_DATA(nid) (&contig_page_data)
878#define NODE_MEM_MAP(nid) mem_map
1da177e4 879
93b7504e 880#else /* CONFIG_NEED_MULTIPLE_NODES */
1da177e4
LT
881
882#include <asm/mmzone.h>
883
93b7504e 884#endif /* !CONFIG_NEED_MULTIPLE_NODES */
348f8b6c 885
95144c78
KH
886extern struct pglist_data *first_online_pgdat(void);
887extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
888extern struct zone *next_zone(struct zone *zone);
8357f869
KH
889
890/**
12d15f0d 891 * for_each_online_pgdat - helper macro to iterate over all online nodes
8357f869
KH
892 * @pgdat - pointer to a pg_data_t variable
893 */
894#define for_each_online_pgdat(pgdat) \
895 for (pgdat = first_online_pgdat(); \
896 pgdat; \
897 pgdat = next_online_pgdat(pgdat))
8357f869
KH
898/**
899 * for_each_zone - helper macro to iterate over all memory zones
900 * @zone - pointer to struct zone variable
901 *
902 * The user only needs to declare the zone variable, for_each_zone
903 * fills it in.
904 */
905#define for_each_zone(zone) \
906 for (zone = (first_online_pgdat())->node_zones; \
907 zone; \
908 zone = next_zone(zone))
909
ee99c71c
KM
910#define for_each_populated_zone(zone) \
911 for (zone = (first_online_pgdat())->node_zones; \
912 zone; \
913 zone = next_zone(zone)) \
914 if (!populated_zone(zone)) \
915 ; /* do nothing */ \
916 else
917
dd1a239f
MG
918static inline struct zone *zonelist_zone(struct zoneref *zoneref)
919{
920 return zoneref->zone;
921}
922
923static inline int zonelist_zone_idx(struct zoneref *zoneref)
924{
925 return zoneref->zone_idx;
926}
927
928static inline int zonelist_node_idx(struct zoneref *zoneref)
929{
930#ifdef CONFIG_NUMA
931 /* zone_to_nid not available in this context */
932 return zoneref->zone->node;
933#else
934 return 0;
935#endif /* CONFIG_NUMA */
936}
937
19770b32
MG
938/**
939 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
940 * @z - The cursor used as a starting point for the search
941 * @highest_zoneidx - The zone index of the highest zone to return
942 * @nodes - An optional nodemask to filter the zonelist with
943 * @zone - The first suitable zone found is returned via this parameter
944 *
945 * This function returns the next zone at or below a given zone index that is
946 * within the allowed nodemask using a cursor as the starting point for the
5bead2a0
MG
947 * search. The zoneref returned is a cursor that represents the current zone
948 * being examined. It should be advanced by one before calling
949 * next_zones_zonelist again.
19770b32
MG
950 */
951struct zoneref *next_zones_zonelist(struct zoneref *z,
952 enum zone_type highest_zoneidx,
953 nodemask_t *nodes,
954 struct zone **zone);
dd1a239f 955
19770b32
MG
956/**
957 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
958 * @zonelist - The zonelist to search for a suitable zone
959 * @highest_zoneidx - The zone index of the highest zone to return
960 * @nodes - An optional nodemask to filter the zonelist with
961 * @zone - The first suitable zone found is returned via this parameter
962 *
963 * This function returns the first zone at or below a given zone index that is
964 * within the allowed nodemask. The zoneref returned is a cursor that can be
5bead2a0
MG
965 * used to iterate the zonelist with next_zones_zonelist by advancing it by
966 * one before calling.
19770b32 967 */
dd1a239f 968static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
19770b32
MG
969 enum zone_type highest_zoneidx,
970 nodemask_t *nodes,
971 struct zone **zone)
54a6eb5c 972{
19770b32
MG
973 return next_zones_zonelist(zonelist->_zonerefs, highest_zoneidx, nodes,
974 zone);
54a6eb5c
MG
975}
976
19770b32
MG
977/**
978 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
979 * @zone - The current zone in the iterator
980 * @z - The current pointer within zonelist->zones being iterated
981 * @zlist - The zonelist being iterated
982 * @highidx - The zone index of the highest zone to return
983 * @nodemask - Nodemask allowed by the allocator
984 *
985 * This iterator iterates though all zones at or below a given zone index and
986 * within a given nodemask
987 */
988#define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
989 for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone); \
990 zone; \
5bead2a0 991 z = next_zones_zonelist(++z, highidx, nodemask, &zone)) \
54a6eb5c
MG
992
993/**
994 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
995 * @zone - The current zone in the iterator
996 * @z - The current pointer within zonelist->zones being iterated
997 * @zlist - The zonelist being iterated
998 * @highidx - The zone index of the highest zone to return
999 *
1000 * This iterator iterates though all zones at or below a given zone index.
1001 */
1002#define for_each_zone_zonelist(zone, z, zlist, highidx) \
19770b32 1003 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
54a6eb5c 1004
d41dee36
AW
1005#ifdef CONFIG_SPARSEMEM
1006#include <asm/sparsemem.h>
1007#endif
1008
c713216d 1009#if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
0ee332c1 1010 !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
b4544568
AM
1011static inline unsigned long early_pfn_to_nid(unsigned long pfn)
1012{
1013 return 0;
1014}
b159d43f
AW
1015#endif
1016
2bdaf115
AW
1017#ifdef CONFIG_FLATMEM
1018#define pfn_to_nid(pfn) (0)
1019#endif
1020
d41dee36
AW
1021#ifdef CONFIG_SPARSEMEM
1022
1023/*
1024 * SECTION_SHIFT #bits space required to store a section #
1025 *
1026 * PA_SECTION_SHIFT physical address to/from section number
1027 * PFN_SECTION_SHIFT pfn to/from section number
1028 */
1029#define SECTIONS_SHIFT (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)
1030
1031#define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
1032#define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
1033
1034#define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
1035
1036#define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
1037#define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
1038
835c134e 1039#define SECTION_BLOCKFLAGS_BITS \
d9c23400 1040 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
835c134e 1041
d41dee36
AW
1042#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
1043#error Allocator MAX_ORDER exceeds SECTION_SIZE
1044#endif
1045
e3c40f37
DK
1046#define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
1047#define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
1048
a539f353
DK
1049#define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1050#define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK)
1051
d41dee36 1052struct page;
52d4b9ac 1053struct page_cgroup;
d41dee36 1054struct mem_section {
29751f69
AW
1055 /*
1056 * This is, logically, a pointer to an array of struct
1057 * pages. However, it is stored with some other magic.
1058 * (see sparse.c::sparse_init_one_section())
1059 *
30c253e6
AW
1060 * Additionally during early boot we encode node id of
1061 * the location of the section here to guide allocation.
1062 * (see sparse.c::memory_present())
1063 *
29751f69
AW
1064 * Making it a UL at least makes someone do a cast
1065 * before using it wrong.
1066 */
1067 unsigned long section_mem_map;
5c0e3066
MG
1068
1069 /* See declaration of similar field in struct zone */
1070 unsigned long *pageblock_flags;
c255a458 1071#ifdef CONFIG_MEMCG
52d4b9ac
KH
1072 /*
1073 * If !SPARSEMEM, pgdat doesn't have page_cgroup pointer. We use
1074 * section. (see memcontrol.h/page_cgroup.h about this.)
1075 */
1076 struct page_cgroup *page_cgroup;
1077 unsigned long pad;
1078#endif
d41dee36
AW
1079};
1080
3e347261
BP
1081#ifdef CONFIG_SPARSEMEM_EXTREME
1082#define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
1083#else
1084#define SECTIONS_PER_ROOT 1
1085#endif
802f192e 1086
3e347261 1087#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
0faa5638 1088#define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
3e347261 1089#define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
802f192e 1090
3e347261
BP
1091#ifdef CONFIG_SPARSEMEM_EXTREME
1092extern struct mem_section *mem_section[NR_SECTION_ROOTS];
802f192e 1093#else
3e347261
BP
1094extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1095#endif
d41dee36 1096
29751f69
AW
1097static inline struct mem_section *__nr_to_section(unsigned long nr)
1098{
3e347261
BP
1099 if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1100 return NULL;
1101 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
29751f69 1102}
4ca644d9 1103extern int __section_nr(struct mem_section* ms);
04753278 1104extern unsigned long usemap_size(void);
29751f69
AW
1105
1106/*
1107 * We use the lower bits of the mem_map pointer to store
1108 * a little bit of information. There should be at least
1109 * 3 bits here due to 32-bit alignment.
1110 */
1111#define SECTION_MARKED_PRESENT (1UL<<0)
1112#define SECTION_HAS_MEM_MAP (1UL<<1)
1113#define SECTION_MAP_LAST_BIT (1UL<<2)
1114#define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
30c253e6 1115#define SECTION_NID_SHIFT 2
29751f69
AW
1116
1117static inline struct page *__section_mem_map_addr(struct mem_section *section)
1118{
1119 unsigned long map = section->section_mem_map;
1120 map &= SECTION_MAP_MASK;
1121 return (struct page *)map;
1122}
1123
540557b9 1124static inline int present_section(struct mem_section *section)
29751f69 1125{
802f192e 1126 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
29751f69
AW
1127}
1128
540557b9
AW
1129static inline int present_section_nr(unsigned long nr)
1130{
1131 return present_section(__nr_to_section(nr));
1132}
1133
1134static inline int valid_section(struct mem_section *section)
29751f69 1135{
802f192e 1136 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
29751f69
AW
1137}
1138
1139static inline int valid_section_nr(unsigned long nr)
1140{
1141 return valid_section(__nr_to_section(nr));
1142}
1143
d41dee36
AW
1144static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1145{
29751f69 1146 return __nr_to_section(pfn_to_section_nr(pfn));
d41dee36
AW
1147}
1148
7b7bf499 1149#ifndef CONFIG_HAVE_ARCH_PFN_VALID
d41dee36
AW
1150static inline int pfn_valid(unsigned long pfn)
1151{
1152 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1153 return 0;
29751f69 1154 return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
d41dee36 1155}
7b7bf499 1156#endif
d41dee36 1157
540557b9
AW
1158static inline int pfn_present(unsigned long pfn)
1159{
1160 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1161 return 0;
1162 return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1163}
1164
d41dee36
AW
1165/*
1166 * These are _only_ used during initialisation, therefore they
1167 * can use __initdata ... They could have names to indicate
1168 * this restriction.
1169 */
1170#ifdef CONFIG_NUMA
161599ff
AW
1171#define pfn_to_nid(pfn) \
1172({ \
1173 unsigned long __pfn_to_nid_pfn = (pfn); \
1174 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
1175})
2bdaf115
AW
1176#else
1177#define pfn_to_nid(pfn) (0)
d41dee36
AW
1178#endif
1179
d41dee36
AW
1180#define early_pfn_valid(pfn) pfn_valid(pfn)
1181void sparse_init(void);
1182#else
1183#define sparse_init() do {} while (0)
28ae55c9 1184#define sparse_index_init(_sec, _nid) do {} while (0)
d41dee36
AW
1185#endif /* CONFIG_SPARSEMEM */
1186
75167957 1187#ifdef CONFIG_NODES_SPAN_OTHER_NODES
cc2559bc 1188bool early_pfn_in_nid(unsigned long pfn, int nid);
75167957
AW
1189#else
1190#define early_pfn_in_nid(pfn, nid) (1)
1191#endif
1192
d41dee36
AW
1193#ifndef early_pfn_valid
1194#define early_pfn_valid(pfn) (1)
1195#endif
1196
1197void memory_present(int nid, unsigned long start, unsigned long end);
1198unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
1199
14e07298
AW
1200/*
1201 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1202 * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
1203 * pfn_valid_within() should be used in this case; we optimise this away
1204 * when we have no holes within a MAX_ORDER_NR_PAGES block.
1205 */
1206#ifdef CONFIG_HOLES_IN_ZONE
1207#define pfn_valid_within(pfn) pfn_valid(pfn)
1208#else
1209#define pfn_valid_within(pfn) (1)
1210#endif
1211
eb33575c
MG
1212#ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1213/*
1214 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1215 * associated with it or not. In FLATMEM, it is expected that holes always
1216 * have valid memmap as long as there is valid PFNs either side of the hole.
1217 * In SPARSEMEM, it is assumed that a valid section has a memmap for the
1218 * entire section.
1219 *
1220 * However, an ARM, and maybe other embedded architectures in the future
1221 * free memmap backing holes to save memory on the assumption the memmap is
1222 * never used. The page_zone linkages are then broken even though pfn_valid()
1223 * returns true. A walker of the full memmap must then do this additional
1224 * check to ensure the memmap they are looking at is sane by making sure
1225 * the zone and PFN linkages are still valid. This is expensive, but walkers
1226 * of the full memmap are extremely rare.
1227 */
1228int memmap_valid_within(unsigned long pfn,
1229 struct page *page, struct zone *zone);
1230#else
1231static inline int memmap_valid_within(unsigned long pfn,
1232 struct page *page, struct zone *zone)
1233{
1234 return 1;
1235}
1236#endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1237
97965478 1238#endif /* !__GENERATING_BOUNDS.H */
1da177e4 1239#endif /* !__ASSEMBLY__ */
1da177e4 1240#endif /* _LINUX_MMZONE_H */