mm, oom: remove statically defined arch functions of same name
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / include / linux / mmzone.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_MMZONE_H
2#define _LINUX_MMZONE_H
3
1da177e4 4#ifndef __ASSEMBLY__
97965478 5#ifndef __GENERATING_BOUNDS_H
1da177e4 6
1da177e4
LT
7#include <linux/spinlock.h>
8#include <linux/list.h>
9#include <linux/wait.h>
e815af95 10#include <linux/bitops.h>
1da177e4
LT
11#include <linux/cache.h>
12#include <linux/threads.h>
13#include <linux/numa.h>
14#include <linux/init.h>
bdc8cb98 15#include <linux/seqlock.h>
8357f869 16#include <linux/nodemask.h>
835c134e 17#include <linux/pageblock-flags.h>
01fc0ac1 18#include <generated/bounds.h>
60063497 19#include <linux/atomic.h>
93ff66bf 20#include <asm/page.h>
1da177e4
LT
21
22/* Free memory management - zoned buddy allocator. */
23#ifndef CONFIG_FORCE_MAX_ZONEORDER
24#define MAX_ORDER 11
25#else
26#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
27#endif
e984bb43 28#define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
1da177e4 29
5ad333eb
AW
30/*
31 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
32 * costly to service. That is between allocation orders which should
35fca53e 33 * coalesce naturally under reasonable reclaim pressure and those which
5ad333eb
AW
34 * will not.
35 */
36#define PAGE_ALLOC_COSTLY_ORDER 3
37
47118af0
MN
38enum {
39 MIGRATE_UNMOVABLE,
40 MIGRATE_RECLAIMABLE,
41 MIGRATE_MOVABLE,
42 MIGRATE_PCPTYPES, /* the number of types on the pcp lists */
43 MIGRATE_RESERVE = MIGRATE_PCPTYPES,
44#ifdef CONFIG_CMA
45 /*
46 * MIGRATE_CMA migration type is designed to mimic the way
47 * ZONE_MOVABLE works. Only movable pages can be allocated
48 * from MIGRATE_CMA pageblocks and page allocator never
49 * implicitly change migration type of MIGRATE_CMA pageblock.
50 *
51 * The way to use it is to change migratetype of a range of
52 * pageblocks to MIGRATE_CMA which can be done by
53 * __free_pageblock_cma() function. What is important though
54 * is that a range of pageblocks must be aligned to
55 * MAX_ORDER_NR_PAGES should biggest page be bigger then
56 * a single pageblock.
57 */
58 MIGRATE_CMA,
59#endif
60 MIGRATE_ISOLATE, /* can't allocate from here */
61 MIGRATE_TYPES
62};
63
64#ifdef CONFIG_CMA
65# define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
66#else
67# define is_migrate_cma(migratetype) false
68#endif
b2a0ac88
MG
69
70#define for_each_migratetype_order(order, type) \
71 for (order = 0; order < MAX_ORDER; order++) \
72 for (type = 0; type < MIGRATE_TYPES; type++)
73
467c996c
MG
74extern int page_group_by_mobility_disabled;
75
76static inline int get_pageblock_migratetype(struct page *page)
77{
467c996c
MG
78 return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end);
79}
80
1da177e4 81struct free_area {
b2a0ac88 82 struct list_head free_list[MIGRATE_TYPES];
1da177e4
LT
83 unsigned long nr_free;
84};
85
86struct pglist_data;
87
88/*
89 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
90 * So add a wild amount of padding here to ensure that they fall into separate
91 * cachelines. There are very few zone structures in the machine, so space
92 * consumption is not a concern here.
93 */
94#if defined(CONFIG_SMP)
95struct zone_padding {
96 char x[0];
22fc6ecc 97} ____cacheline_internodealigned_in_smp;
1da177e4
LT
98#define ZONE_PADDING(name) struct zone_padding name;
99#else
100#define ZONE_PADDING(name)
101#endif
102
2244b95a 103enum zone_stat_item {
51ed4491 104 /* First 128 byte cacheline (assuming 64 bit words) */
d23ad423 105 NR_FREE_PAGES,
b69408e8 106 NR_LRU_BASE,
4f98a2fe
RR
107 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
108 NR_ACTIVE_ANON, /* " " " " " */
109 NR_INACTIVE_FILE, /* " " " " " */
110 NR_ACTIVE_FILE, /* " " " " " */
894bc310 111 NR_UNEVICTABLE, /* " " " " " */
5344b7e6 112 NR_MLOCK, /* mlock()ed pages found and moved off LRU */
f3dbd344
CL
113 NR_ANON_PAGES, /* Mapped anonymous pages */
114 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
65ba55f5 115 only modified from process context */
347ce434 116 NR_FILE_PAGES,
b1e7a8fd 117 NR_FILE_DIRTY,
ce866b34 118 NR_WRITEBACK,
51ed4491
CL
119 NR_SLAB_RECLAIMABLE,
120 NR_SLAB_UNRECLAIMABLE,
121 NR_PAGETABLE, /* used for pagetables */
c6a7f572
KM
122 NR_KERNEL_STACK,
123 /* Second 128 byte cacheline */
fd39fc85 124 NR_UNSTABLE_NFS, /* NFS unstable pages */
d2c5e30c 125 NR_BOUNCE,
e129b5c2 126 NR_VMSCAN_WRITE,
49ea7eb6 127 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */
fc3ba692 128 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */
a731286d
KM
129 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */
130 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */
4b02108a 131 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */
ea941f0e
MR
132 NR_DIRTIED, /* page dirtyings since bootup */
133 NR_WRITTEN, /* page writings since bootup */
ca889e6c
CL
134#ifdef CONFIG_NUMA
135 NUMA_HIT, /* allocated in intended node */
136 NUMA_MISS, /* allocated in non intended node */
137 NUMA_FOREIGN, /* was intended here, hit elsewhere */
138 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
139 NUMA_LOCAL, /* allocation from local node */
140 NUMA_OTHER, /* allocation from other node */
141#endif
79134171 142 NR_ANON_TRANSPARENT_HUGEPAGES,
d1ce749a 143 NR_FREE_CMA_PAGES,
2244b95a
CL
144 NR_VM_ZONE_STAT_ITEMS };
145
4f98a2fe
RR
146/*
147 * We do arithmetic on the LRU lists in various places in the code,
148 * so it is important to keep the active lists LRU_ACTIVE higher in
149 * the array than the corresponding inactive lists, and to keep
150 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
151 *
152 * This has to be kept in sync with the statistics in zone_stat_item
153 * above and the descriptions in vmstat_text in mm/vmstat.c
154 */
155#define LRU_BASE 0
156#define LRU_ACTIVE 1
157#define LRU_FILE 2
158
b69408e8 159enum lru_list {
4f98a2fe
RR
160 LRU_INACTIVE_ANON = LRU_BASE,
161 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
162 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
163 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
894bc310 164 LRU_UNEVICTABLE,
894bc310
LS
165 NR_LRU_LISTS
166};
b69408e8 167
4111304d 168#define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
b69408e8 169
4111304d 170#define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
894bc310 171
4111304d 172static inline int is_file_lru(enum lru_list lru)
4f98a2fe 173{
4111304d 174 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
4f98a2fe
RR
175}
176
4111304d 177static inline int is_active_lru(enum lru_list lru)
b69408e8 178{
4111304d 179 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
b69408e8
CL
180}
181
4111304d 182static inline int is_unevictable_lru(enum lru_list lru)
894bc310 183{
4111304d 184 return (lru == LRU_UNEVICTABLE);
894bc310
LS
185}
186
89abfab1
HD
187struct zone_reclaim_stat {
188 /*
189 * The pageout code in vmscan.c keeps track of how many of the
59f91e5d 190 * mem/swap backed and file backed pages are referenced.
89abfab1
HD
191 * The higher the rotated/scanned ratio, the more valuable
192 * that cache is.
193 *
194 * The anon LRU stats live in [0], file LRU stats in [1]
195 */
196 unsigned long recent_rotated[2];
197 unsigned long recent_scanned[2];
198};
199
6290df54
JW
200struct lruvec {
201 struct list_head lists[NR_LRU_LISTS];
89abfab1 202 struct zone_reclaim_stat reclaim_stat;
c255a458 203#ifdef CONFIG_MEMCG
7f5e86c2
KK
204 struct zone *zone;
205#endif
6290df54
JW
206};
207
bb2a0de9
KH
208/* Mask used at gathering information at once (see memcontrol.c) */
209#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
210#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
bb2a0de9
KH
211#define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
212
39deaf85 213/* Isolate clean file */
f3fd4a61 214#define ISOLATE_CLEAN ((__force isolate_mode_t)0x1)
f80c0673 215/* Isolate unmapped file */
f3fd4a61 216#define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x2)
c8244935 217/* Isolate for asynchronous migration */
f3fd4a61 218#define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4)
e46a2879
MK
219/* Isolate unevictable pages */
220#define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8)
4356f21d
MK
221
222/* LRU Isolation modes. */
223typedef unsigned __bitwise__ isolate_mode_t;
224
41858966
MG
225enum zone_watermarks {
226 WMARK_MIN,
227 WMARK_LOW,
228 WMARK_HIGH,
229 NR_WMARK
230};
231
232#define min_wmark_pages(z) (z->watermark[WMARK_MIN])
233#define low_wmark_pages(z) (z->watermark[WMARK_LOW])
234#define high_wmark_pages(z) (z->watermark[WMARK_HIGH])
235
1da177e4
LT
236struct per_cpu_pages {
237 int count; /* number of pages in the list */
1da177e4
LT
238 int high; /* high watermark, emptying needed */
239 int batch; /* chunk size for buddy add/remove */
5f8dcc21
MG
240
241 /* Lists of pages, one per migrate type stored on the pcp-lists */
242 struct list_head lists[MIGRATE_PCPTYPES];
1da177e4
LT
243};
244
245struct per_cpu_pageset {
3dfa5721 246 struct per_cpu_pages pcp;
4037d452
CL
247#ifdef CONFIG_NUMA
248 s8 expire;
249#endif
2244b95a 250#ifdef CONFIG_SMP
df9ecaba 251 s8 stat_threshold;
2244b95a
CL
252 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
253#endif
99dcc3e5 254};
e7c8d5c9 255
97965478
CL
256#endif /* !__GENERATING_BOUNDS.H */
257
2f1b6248 258enum zone_type {
4b51d669 259#ifdef CONFIG_ZONE_DMA
2f1b6248
CL
260 /*
261 * ZONE_DMA is used when there are devices that are not able
262 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
263 * carve out the portion of memory that is needed for these devices.
264 * The range is arch specific.
265 *
266 * Some examples
267 *
268 * Architecture Limit
269 * ---------------------------
270 * parisc, ia64, sparc <4G
271 * s390 <2G
2f1b6248
CL
272 * arm Various
273 * alpha Unlimited or 0-16MB.
274 *
275 * i386, x86_64 and multiple other arches
276 * <16M.
277 */
278 ZONE_DMA,
4b51d669 279#endif
fb0e7942 280#ifdef CONFIG_ZONE_DMA32
2f1b6248
CL
281 /*
282 * x86_64 needs two ZONE_DMAs because it supports devices that are
283 * only able to do DMA to the lower 16M but also 32 bit devices that
284 * can only do DMA areas below 4G.
285 */
286 ZONE_DMA32,
fb0e7942 287#endif
2f1b6248
CL
288 /*
289 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
290 * performed on pages in ZONE_NORMAL if the DMA devices support
291 * transfers to all addressable memory.
292 */
293 ZONE_NORMAL,
e53ef38d 294#ifdef CONFIG_HIGHMEM
2f1b6248
CL
295 /*
296 * A memory area that is only addressable by the kernel through
297 * mapping portions into its own address space. This is for example
298 * used by i386 to allow the kernel to address the memory beyond
299 * 900MB. The kernel will set up special mappings (page
300 * table entries on i386) for each page that the kernel needs to
301 * access.
302 */
303 ZONE_HIGHMEM,
e53ef38d 304#endif
2a1e274a 305 ZONE_MOVABLE,
97965478 306 __MAX_NR_ZONES
2f1b6248 307};
1da177e4 308
97965478
CL
309#ifndef __GENERATING_BOUNDS_H
310
1da177e4
LT
311/*
312 * When a memory allocation must conform to specific limitations (such
313 * as being suitable for DMA) the caller will pass in hints to the
314 * allocator in the gfp_mask, in the zone modifier bits. These bits
315 * are used to select a priority ordered list of memory zones which
19655d34 316 * match the requested limits. See gfp_zone() in include/linux/gfp.h
1da177e4 317 */
fb0e7942 318
97965478 319#if MAX_NR_ZONES < 2
4b51d669 320#define ZONES_SHIFT 0
97965478 321#elif MAX_NR_ZONES <= 2
19655d34 322#define ZONES_SHIFT 1
97965478 323#elif MAX_NR_ZONES <= 4
19655d34 324#define ZONES_SHIFT 2
4b51d669
CL
325#else
326#error ZONES_SHIFT -- too many zones configured adjust calculation
fb0e7942 327#endif
1da177e4 328
1da177e4
LT
329struct zone {
330 /* Fields commonly accessed by the page allocator */
41858966
MG
331
332 /* zone watermarks, access with *_wmark_pages(zone) macros */
333 unsigned long watermark[NR_WMARK];
334
aa454840
CL
335 /*
336 * When free pages are below this point, additional steps are taken
337 * when reading the number of free pages to avoid per-cpu counter
338 * drift allowing watermarks to be breached
339 */
340 unsigned long percpu_drift_mark;
341
1da177e4
LT
342 /*
343 * We don't know if the memory that we're going to allocate will be freeable
344 * or/and it will be released eventually, so to avoid totally wasting several
345 * GB of ram we must reserve some of the lower zone memory (otherwise we risk
346 * to run OOM on the lower zones despite there's tons of freeable ram
347 * on the higher zones). This array is recalculated at runtime if the
348 * sysctl_lowmem_reserve_ratio sysctl changes.
349 */
350 unsigned long lowmem_reserve[MAX_NR_ZONES];
351
ab8fabd4
JW
352 /*
353 * This is a per-zone reserve of pages that should not be
354 * considered dirtyable memory.
355 */
356 unsigned long dirty_balance_reserve;
357
e7c8d5c9 358#ifdef CONFIG_NUMA
d5f541ed 359 int node;
9614634f
CL
360 /*
361 * zone reclaim becomes active if more unmapped pages exist.
362 */
8417bba4 363 unsigned long min_unmapped_pages;
0ff38490 364 unsigned long min_slab_pages;
e7c8d5c9 365#endif
43cf38eb 366 struct per_cpu_pageset __percpu *pageset;
1da177e4
LT
367 /*
368 * free areas of different sizes
369 */
370 spinlock_t lock;
93e4a89a 371 int all_unreclaimable; /* All pages pinned */
bb13ffeb 372#if defined CONFIG_COMPACTION || defined CONFIG_CMA
62997027
MG
373 /* Set to true when the PG_migrate_skip bits should be cleared */
374 bool compact_blockskip_flush;
c89511ab
MG
375
376 /* pfns where compaction scanners should start */
377 unsigned long compact_cached_free_pfn;
378 unsigned long compact_cached_migrate_pfn;
bb13ffeb 379#endif
bdc8cb98
DH
380#ifdef CONFIG_MEMORY_HOTPLUG
381 /* see spanned/present_pages for more description */
382 seqlock_t span_seqlock;
383#endif
1da177e4
LT
384 struct free_area free_area[MAX_ORDER];
385
835c134e
MG
386#ifndef CONFIG_SPARSEMEM
387 /*
d9c23400 388 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
835c134e
MG
389 * In SPARSEMEM, this map is stored in struct mem_section
390 */
391 unsigned long *pageblock_flags;
392#endif /* CONFIG_SPARSEMEM */
393
4f92e258
MG
394#ifdef CONFIG_COMPACTION
395 /*
396 * On compaction failure, 1<<compact_defer_shift compactions
397 * are skipped before trying again. The number attempted since
398 * last failure is tracked with compact_considered.
399 */
400 unsigned int compact_considered;
401 unsigned int compact_defer_shift;
aff62249 402 int compact_order_failed;
4f92e258 403#endif
1da177e4
LT
404
405 ZONE_PADDING(_pad1_)
406
407 /* Fields commonly accessed by the page reclaim scanner */
6290df54
JW
408 spinlock_t lru_lock;
409 struct lruvec lruvec;
4f98a2fe 410
1da177e4 411 unsigned long pages_scanned; /* since last reclaim */
e815af95 412 unsigned long flags; /* zone flags, see below */
753ee728 413
2244b95a
CL
414 /* Zone statistics */
415 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
9eeff239 416
556adecb
RR
417 /*
418 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
419 * this zone's LRU. Maintained by the pageout code.
420 */
421 unsigned int inactive_ratio;
422
1da177e4
LT
423
424 ZONE_PADDING(_pad2_)
425 /* Rarely used or read-mostly fields */
426
427 /*
428 * wait_table -- the array holding the hash table
02b694de 429 * wait_table_hash_nr_entries -- the size of the hash table array
1da177e4
LT
430 * wait_table_bits -- wait_table_size == (1 << wait_table_bits)
431 *
432 * The purpose of all these is to keep track of the people
433 * waiting for a page to become available and make them
434 * runnable again when possible. The trouble is that this
435 * consumes a lot of space, especially when so few things
436 * wait on pages at a given time. So instead of using
437 * per-page waitqueues, we use a waitqueue hash table.
438 *
439 * The bucket discipline is to sleep on the same queue when
440 * colliding and wake all in that wait queue when removing.
441 * When something wakes, it must check to be sure its page is
442 * truly available, a la thundering herd. The cost of a
443 * collision is great, but given the expected load of the
444 * table, they should be so rare as to be outweighed by the
445 * benefits from the saved space.
446 *
447 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
448 * primary users of these fields, and in mm/page_alloc.c
449 * free_area_init_core() performs the initialization of them.
450 */
451 wait_queue_head_t * wait_table;
02b694de 452 unsigned long wait_table_hash_nr_entries;
1da177e4
LT
453 unsigned long wait_table_bits;
454
455 /*
456 * Discontig memory support fields.
457 */
458 struct pglist_data *zone_pgdat;
1da177e4
LT
459 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
460 unsigned long zone_start_pfn;
461
bdc8cb98
DH
462 /*
463 * zone_start_pfn, spanned_pages and present_pages are all
464 * protected by span_seqlock. It is a seqlock because it has
465 * to be read outside of zone->lock, and it is done in the main
466 * allocator path. But, it is written quite infrequently.
467 *
468 * The lock is declared along with zone->lock because it is
469 * frequently read in proximity to zone->lock. It's good to
470 * give them a chance of being in the same cacheline.
471 */
1da177e4
LT
472 unsigned long spanned_pages; /* total size, including holes */
473 unsigned long present_pages; /* amount of memory (excluding holes) */
474
475 /*
476 * rarely used fields:
477 */
15ad7cdc 478 const char *name;
702d1a6e
MK
479#ifdef CONFIG_MEMORY_ISOLATION
480 /*
481 * the number of MIGRATE_ISOLATE *pageblock*.
482 * We need this for free page counting. Look at zone_watermark_ok_safe.
483 * It's protected by zone->lock
484 */
485 int nr_pageblock_isolate;
486#endif
22fc6ecc 487} ____cacheline_internodealigned_in_smp;
1da177e4 488
e815af95 489typedef enum {
e815af95 490 ZONE_RECLAIM_LOCKED, /* prevents concurrent reclaim */
098d7f12 491 ZONE_OOM_LOCKED, /* zone is in OOM killer zonelist */
0e093d99
MG
492 ZONE_CONGESTED, /* zone has many dirty pages backed by
493 * a congested BDI
494 */
e815af95
DR
495} zone_flags_t;
496
497static inline void zone_set_flag(struct zone *zone, zone_flags_t flag)
498{
499 set_bit(flag, &zone->flags);
500}
d773ed6b
DR
501
502static inline int zone_test_and_set_flag(struct zone *zone, zone_flags_t flag)
503{
504 return test_and_set_bit(flag, &zone->flags);
505}
506
e815af95
DR
507static inline void zone_clear_flag(struct zone *zone, zone_flags_t flag)
508{
509 clear_bit(flag, &zone->flags);
510}
511
0e093d99
MG
512static inline int zone_is_reclaim_congested(const struct zone *zone)
513{
514 return test_bit(ZONE_CONGESTED, &zone->flags);
515}
516
e815af95
DR
517static inline int zone_is_reclaim_locked(const struct zone *zone)
518{
519 return test_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
520}
d773ed6b 521
098d7f12
DR
522static inline int zone_is_oom_locked(const struct zone *zone)
523{
524 return test_bit(ZONE_OOM_LOCKED, &zone->flags);
525}
e815af95 526
1da177e4
LT
527/*
528 * The "priority" of VM scanning is how much of the queues we will scan in one
529 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
530 * queues ("queue_length >> 12") during an aging round.
531 */
532#define DEF_PRIORITY 12
533
9276b1bc
PJ
534/* Maximum number of zones on a zonelist */
535#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
536
537#ifdef CONFIG_NUMA
523b9458
CL
538
539/*
25a64ec1 540 * The NUMA zonelists are doubled because we need zonelists that restrict the
523b9458
CL
541 * allocations to a single node for GFP_THISNODE.
542 *
54a6eb5c
MG
543 * [0] : Zonelist with fallback
544 * [1] : No fallback (GFP_THISNODE)
523b9458 545 */
54a6eb5c 546#define MAX_ZONELISTS 2
523b9458
CL
547
548
9276b1bc
PJ
549/*
550 * We cache key information from each zonelist for smaller cache
551 * footprint when scanning for free pages in get_page_from_freelist().
552 *
553 * 1) The BITMAP fullzones tracks which zones in a zonelist have come
554 * up short of free memory since the last time (last_fullzone_zap)
555 * we zero'd fullzones.
556 * 2) The array z_to_n[] maps each zone in the zonelist to its node
557 * id, so that we can efficiently evaluate whether that node is
558 * set in the current tasks mems_allowed.
559 *
560 * Both fullzones and z_to_n[] are one-to-one with the zonelist,
561 * indexed by a zones offset in the zonelist zones[] array.
562 *
563 * The get_page_from_freelist() routine does two scans. During the
564 * first scan, we skip zones whose corresponding bit in 'fullzones'
565 * is set or whose corresponding node in current->mems_allowed (which
566 * comes from cpusets) is not set. During the second scan, we bypass
567 * this zonelist_cache, to ensure we look methodically at each zone.
568 *
569 * Once per second, we zero out (zap) fullzones, forcing us to
570 * reconsider nodes that might have regained more free memory.
571 * The field last_full_zap is the time we last zapped fullzones.
572 *
573 * This mechanism reduces the amount of time we waste repeatedly
574 * reexaming zones for free memory when they just came up low on
575 * memory momentarilly ago.
576 *
577 * The zonelist_cache struct members logically belong in struct
578 * zonelist. However, the mempolicy zonelists constructed for
579 * MPOL_BIND are intentionally variable length (and usually much
580 * shorter). A general purpose mechanism for handling structs with
581 * multiple variable length members is more mechanism than we want
582 * here. We resort to some special case hackery instead.
583 *
584 * The MPOL_BIND zonelists don't need this zonelist_cache (in good
585 * part because they are shorter), so we put the fixed length stuff
586 * at the front of the zonelist struct, ending in a variable length
587 * zones[], as is needed by MPOL_BIND.
588 *
589 * Then we put the optional zonelist cache on the end of the zonelist
590 * struct. This optional stuff is found by a 'zlcache_ptr' pointer in
591 * the fixed length portion at the front of the struct. This pointer
592 * both enables us to find the zonelist cache, and in the case of
593 * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
594 * to know that the zonelist cache is not there.
595 *
596 * The end result is that struct zonelists come in two flavors:
597 * 1) The full, fixed length version, shown below, and
598 * 2) The custom zonelists for MPOL_BIND.
599 * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
600 *
601 * Even though there may be multiple CPU cores on a node modifying
602 * fullzones or last_full_zap in the same zonelist_cache at the same
603 * time, we don't lock it. This is just hint data - if it is wrong now
604 * and then, the allocator will still function, perhaps a bit slower.
605 */
606
607
608struct zonelist_cache {
9276b1bc 609 unsigned short z_to_n[MAX_ZONES_PER_ZONELIST]; /* zone->nid */
7253f4ef 610 DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST); /* zone full? */
9276b1bc
PJ
611 unsigned long last_full_zap; /* when last zap'd (jiffies) */
612};
613#else
54a6eb5c 614#define MAX_ZONELISTS 1
9276b1bc
PJ
615struct zonelist_cache;
616#endif
617
dd1a239f
MG
618/*
619 * This struct contains information about a zone in a zonelist. It is stored
620 * here to avoid dereferences into large structures and lookups of tables
621 */
622struct zoneref {
623 struct zone *zone; /* Pointer to actual zone */
624 int zone_idx; /* zone_idx(zoneref->zone) */
625};
626
1da177e4
LT
627/*
628 * One allocation request operates on a zonelist. A zonelist
629 * is a list of zones, the first one is the 'goal' of the
630 * allocation, the other zones are fallback zones, in decreasing
631 * priority.
632 *
9276b1bc
PJ
633 * If zlcache_ptr is not NULL, then it is just the address of zlcache,
634 * as explained above. If zlcache_ptr is NULL, there is no zlcache.
dd1a239f
MG
635 * *
636 * To speed the reading of the zonelist, the zonerefs contain the zone index
637 * of the entry being read. Helper functions to access information given
638 * a struct zoneref are
639 *
640 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs
641 * zonelist_zone_idx() - Return the index of the zone for an entry
642 * zonelist_node_idx() - Return the index of the node for an entry
1da177e4
LT
643 */
644struct zonelist {
9276b1bc 645 struct zonelist_cache *zlcache_ptr; // NULL or &zlcache
dd1a239f 646 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
9276b1bc
PJ
647#ifdef CONFIG_NUMA
648 struct zonelist_cache zlcache; // optional ...
649#endif
1da177e4
LT
650};
651
0ee332c1 652#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d
MG
653struct node_active_region {
654 unsigned long start_pfn;
655 unsigned long end_pfn;
656 int nid;
657};
0ee332c1 658#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1da177e4 659
5b99cd0e
HC
660#ifndef CONFIG_DISCONTIGMEM
661/* The array of struct pages - for discontigmem use pgdat->lmem_map */
662extern struct page *mem_map;
663#endif
664
1da177e4
LT
665/*
666 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
667 * (mostly NUMA machines?) to denote a higher-level memory zone than the
668 * zone denotes.
669 *
670 * On NUMA machines, each NUMA node would have a pg_data_t to describe
671 * it's memory layout.
672 *
673 * Memory statistics and page replacement data structures are maintained on a
674 * per-zone basis.
675 */
676struct bootmem_data;
677typedef struct pglist_data {
678 struct zone node_zones[MAX_NR_ZONES];
523b9458 679 struct zonelist node_zonelists[MAX_ZONELISTS];
1da177e4 680 int nr_zones;
52d4b9ac 681#ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */
1da177e4 682 struct page *node_mem_map;
c255a458 683#ifdef CONFIG_MEMCG
52d4b9ac
KH
684 struct page_cgroup *node_page_cgroup;
685#endif
d41dee36 686#endif
08677214 687#ifndef CONFIG_NO_BOOTMEM
1da177e4 688 struct bootmem_data *bdata;
08677214 689#endif
208d54e5
DH
690#ifdef CONFIG_MEMORY_HOTPLUG
691 /*
692 * Must be held any time you expect node_start_pfn, node_present_pages
693 * or node_spanned_pages stay constant. Holding this will also
694 * guarantee that any pfn_valid() stays that way.
695 *
696 * Nests above zone->lock and zone->size_seqlock.
697 */
698 spinlock_t node_size_lock;
699#endif
1da177e4
LT
700 unsigned long node_start_pfn;
701 unsigned long node_present_pages; /* total number of physical pages */
702 unsigned long node_spanned_pages; /* total size of physical page
703 range, including holes */
704 int node_id;
957f822a 705 nodemask_t reclaim_nodes; /* Nodes allowed to reclaim from */
1da177e4 706 wait_queue_head_t kswapd_wait;
5515061d 707 wait_queue_head_t pfmemalloc_wait;
d8adde17 708 struct task_struct *kswapd; /* Protected by lock_memory_hotplug() */
1da177e4 709 int kswapd_max_order;
99504748 710 enum zone_type classzone_idx;
1da177e4
LT
711} pg_data_t;
712
713#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
714#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
d41dee36 715#ifdef CONFIG_FLAT_NODE_MEM_MAP
408fde81 716#define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
d41dee36
AW
717#else
718#define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
719#endif
408fde81 720#define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
1da177e4 721
c6830c22
KH
722#define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn)
723
724#define node_end_pfn(nid) ({\
725 pg_data_t *__pgdat = NODE_DATA(nid);\
726 __pgdat->node_start_pfn + __pgdat->node_spanned_pages;\
727})
728
208d54e5
DH
729#include <linux/memory_hotplug.h>
730
4eaf3f64 731extern struct mutex zonelists_mutex;
9adb62a5 732void build_all_zonelists(pg_data_t *pgdat, struct zone *zone);
99504748 733void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx);
88f5acf8
MG
734bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
735 int classzone_idx, int alloc_flags);
736bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
7fb1d9fc 737 int classzone_idx, int alloc_flags);
a2f3aa02
DH
738enum memmap_context {
739 MEMMAP_EARLY,
740 MEMMAP_HOTPLUG,
741};
718127cc 742extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
a2f3aa02
DH
743 unsigned long size,
744 enum memmap_context context);
718127cc 745
bea8c150 746extern void lruvec_init(struct lruvec *lruvec);
7f5e86c2
KK
747
748static inline struct zone *lruvec_zone(struct lruvec *lruvec)
749{
c255a458 750#ifdef CONFIG_MEMCG
7f5e86c2
KK
751 return lruvec->zone;
752#else
753 return container_of(lruvec, struct zone, lruvec);
754#endif
755}
756
1da177e4
LT
757#ifdef CONFIG_HAVE_MEMORY_PRESENT
758void memory_present(int nid, unsigned long start, unsigned long end);
759#else
760static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
761#endif
762
7aac7898
LS
763#ifdef CONFIG_HAVE_MEMORYLESS_NODES
764int local_memory_node(int node_id);
765#else
766static inline int local_memory_node(int node_id) { return node_id; };
767#endif
768
1da177e4
LT
769#ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
770unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
771#endif
772
773/*
774 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
775 */
776#define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
777
f3fe6512
CK
778static inline int populated_zone(struct zone *zone)
779{
780 return (!!zone->present_pages);
781}
782
2a1e274a
MG
783extern int movable_zone;
784
785static inline int zone_movable_is_highmem(void)
786{
fe03025d 787#if defined(CONFIG_HIGHMEM) && defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
2a1e274a
MG
788 return movable_zone == ZONE_HIGHMEM;
789#else
790 return 0;
791#endif
792}
793
2f1b6248 794static inline int is_highmem_idx(enum zone_type idx)
1da177e4 795{
e53ef38d 796#ifdef CONFIG_HIGHMEM
2a1e274a
MG
797 return (idx == ZONE_HIGHMEM ||
798 (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
e53ef38d
CL
799#else
800 return 0;
801#endif
1da177e4
LT
802}
803
2f1b6248 804static inline int is_normal_idx(enum zone_type idx)
1da177e4
LT
805{
806 return (idx == ZONE_NORMAL);
807}
9328b8fa 808
1da177e4
LT
809/**
810 * is_highmem - helper function to quickly check if a struct zone is a
811 * highmem zone or not. This is an attempt to keep references
812 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
813 * @zone - pointer to struct zone variable
814 */
815static inline int is_highmem(struct zone *zone)
816{
e53ef38d 817#ifdef CONFIG_HIGHMEM
ddc81ed2
HH
818 int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones;
819 return zone_off == ZONE_HIGHMEM * sizeof(*zone) ||
820 (zone_off == ZONE_MOVABLE * sizeof(*zone) &&
821 zone_movable_is_highmem());
e53ef38d
CL
822#else
823 return 0;
824#endif
1da177e4
LT
825}
826
827static inline int is_normal(struct zone *zone)
828{
829 return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
830}
831
9328b8fa
NP
832static inline int is_dma32(struct zone *zone)
833{
fb0e7942 834#ifdef CONFIG_ZONE_DMA32
9328b8fa 835 return zone == zone->zone_pgdat->node_zones + ZONE_DMA32;
fb0e7942
CL
836#else
837 return 0;
838#endif
9328b8fa
NP
839}
840
841static inline int is_dma(struct zone *zone)
842{
4b51d669 843#ifdef CONFIG_ZONE_DMA
9328b8fa 844 return zone == zone->zone_pgdat->node_zones + ZONE_DMA;
4b51d669
CL
845#else
846 return 0;
847#endif
9328b8fa
NP
848}
849
1da177e4
LT
850/* These two functions are used to setup the per zone pages min values */
851struct ctl_table;
8d65af78 852int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
1da177e4
LT
853 void __user *, size_t *, loff_t *);
854extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
8d65af78 855int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
1da177e4 856 void __user *, size_t *, loff_t *);
8d65af78 857int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
8ad4b1fb 858 void __user *, size_t *, loff_t *);
9614634f 859int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
8d65af78 860 void __user *, size_t *, loff_t *);
0ff38490 861int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
8d65af78 862 void __user *, size_t *, loff_t *);
1da177e4 863
f0c0b2b8 864extern int numa_zonelist_order_handler(struct ctl_table *, int,
8d65af78 865 void __user *, size_t *, loff_t *);
f0c0b2b8
KH
866extern char numa_zonelist_order[];
867#define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */
868
93b7504e 869#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
870
871extern struct pglist_data contig_page_data;
872#define NODE_DATA(nid) (&contig_page_data)
873#define NODE_MEM_MAP(nid) mem_map
1da177e4 874
93b7504e 875#else /* CONFIG_NEED_MULTIPLE_NODES */
1da177e4
LT
876
877#include <asm/mmzone.h>
878
93b7504e 879#endif /* !CONFIG_NEED_MULTIPLE_NODES */
348f8b6c 880
95144c78
KH
881extern struct pglist_data *first_online_pgdat(void);
882extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
883extern struct zone *next_zone(struct zone *zone);
8357f869
KH
884
885/**
12d15f0d 886 * for_each_online_pgdat - helper macro to iterate over all online nodes
8357f869
KH
887 * @pgdat - pointer to a pg_data_t variable
888 */
889#define for_each_online_pgdat(pgdat) \
890 for (pgdat = first_online_pgdat(); \
891 pgdat; \
892 pgdat = next_online_pgdat(pgdat))
8357f869
KH
893/**
894 * for_each_zone - helper macro to iterate over all memory zones
895 * @zone - pointer to struct zone variable
896 *
897 * The user only needs to declare the zone variable, for_each_zone
898 * fills it in.
899 */
900#define for_each_zone(zone) \
901 for (zone = (first_online_pgdat())->node_zones; \
902 zone; \
903 zone = next_zone(zone))
904
ee99c71c
KM
905#define for_each_populated_zone(zone) \
906 for (zone = (first_online_pgdat())->node_zones; \
907 zone; \
908 zone = next_zone(zone)) \
909 if (!populated_zone(zone)) \
910 ; /* do nothing */ \
911 else
912
dd1a239f
MG
913static inline struct zone *zonelist_zone(struct zoneref *zoneref)
914{
915 return zoneref->zone;
916}
917
918static inline int zonelist_zone_idx(struct zoneref *zoneref)
919{
920 return zoneref->zone_idx;
921}
922
923static inline int zonelist_node_idx(struct zoneref *zoneref)
924{
925#ifdef CONFIG_NUMA
926 /* zone_to_nid not available in this context */
927 return zoneref->zone->node;
928#else
929 return 0;
930#endif /* CONFIG_NUMA */
931}
932
19770b32
MG
933/**
934 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
935 * @z - The cursor used as a starting point for the search
936 * @highest_zoneidx - The zone index of the highest zone to return
937 * @nodes - An optional nodemask to filter the zonelist with
938 * @zone - The first suitable zone found is returned via this parameter
939 *
940 * This function returns the next zone at or below a given zone index that is
941 * within the allowed nodemask using a cursor as the starting point for the
5bead2a0
MG
942 * search. The zoneref returned is a cursor that represents the current zone
943 * being examined. It should be advanced by one before calling
944 * next_zones_zonelist again.
19770b32
MG
945 */
946struct zoneref *next_zones_zonelist(struct zoneref *z,
947 enum zone_type highest_zoneidx,
948 nodemask_t *nodes,
949 struct zone **zone);
dd1a239f 950
19770b32
MG
951/**
952 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
953 * @zonelist - The zonelist to search for a suitable zone
954 * @highest_zoneidx - The zone index of the highest zone to return
955 * @nodes - An optional nodemask to filter the zonelist with
956 * @zone - The first suitable zone found is returned via this parameter
957 *
958 * This function returns the first zone at or below a given zone index that is
959 * within the allowed nodemask. The zoneref returned is a cursor that can be
5bead2a0
MG
960 * used to iterate the zonelist with next_zones_zonelist by advancing it by
961 * one before calling.
19770b32 962 */
dd1a239f 963static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
19770b32
MG
964 enum zone_type highest_zoneidx,
965 nodemask_t *nodes,
966 struct zone **zone)
54a6eb5c 967{
19770b32
MG
968 return next_zones_zonelist(zonelist->_zonerefs, highest_zoneidx, nodes,
969 zone);
54a6eb5c
MG
970}
971
19770b32
MG
972/**
973 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
974 * @zone - The current zone in the iterator
975 * @z - The current pointer within zonelist->zones being iterated
976 * @zlist - The zonelist being iterated
977 * @highidx - The zone index of the highest zone to return
978 * @nodemask - Nodemask allowed by the allocator
979 *
980 * This iterator iterates though all zones at or below a given zone index and
981 * within a given nodemask
982 */
983#define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
984 for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone); \
985 zone; \
5bead2a0 986 z = next_zones_zonelist(++z, highidx, nodemask, &zone)) \
54a6eb5c
MG
987
988/**
989 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
990 * @zone - The current zone in the iterator
991 * @z - The current pointer within zonelist->zones being iterated
992 * @zlist - The zonelist being iterated
993 * @highidx - The zone index of the highest zone to return
994 *
995 * This iterator iterates though all zones at or below a given zone index.
996 */
997#define for_each_zone_zonelist(zone, z, zlist, highidx) \
19770b32 998 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
54a6eb5c 999
d41dee36
AW
1000#ifdef CONFIG_SPARSEMEM
1001#include <asm/sparsemem.h>
1002#endif
1003
c713216d 1004#if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
0ee332c1 1005 !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
b4544568
AM
1006static inline unsigned long early_pfn_to_nid(unsigned long pfn)
1007{
1008 return 0;
1009}
b159d43f
AW
1010#endif
1011
2bdaf115
AW
1012#ifdef CONFIG_FLATMEM
1013#define pfn_to_nid(pfn) (0)
1014#endif
1015
d41dee36
AW
1016#ifdef CONFIG_SPARSEMEM
1017
1018/*
1019 * SECTION_SHIFT #bits space required to store a section #
1020 *
1021 * PA_SECTION_SHIFT physical address to/from section number
1022 * PFN_SECTION_SHIFT pfn to/from section number
1023 */
1024#define SECTIONS_SHIFT (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)
1025
1026#define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
1027#define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
1028
1029#define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
1030
1031#define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
1032#define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
1033
835c134e 1034#define SECTION_BLOCKFLAGS_BITS \
d9c23400 1035 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
835c134e 1036
d41dee36
AW
1037#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
1038#error Allocator MAX_ORDER exceeds SECTION_SIZE
1039#endif
1040
e3c40f37
DK
1041#define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
1042#define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
1043
a539f353
DK
1044#define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1045#define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK)
1046
d41dee36 1047struct page;
52d4b9ac 1048struct page_cgroup;
d41dee36 1049struct mem_section {
29751f69
AW
1050 /*
1051 * This is, logically, a pointer to an array of struct
1052 * pages. However, it is stored with some other magic.
1053 * (see sparse.c::sparse_init_one_section())
1054 *
30c253e6
AW
1055 * Additionally during early boot we encode node id of
1056 * the location of the section here to guide allocation.
1057 * (see sparse.c::memory_present())
1058 *
29751f69
AW
1059 * Making it a UL at least makes someone do a cast
1060 * before using it wrong.
1061 */
1062 unsigned long section_mem_map;
5c0e3066
MG
1063
1064 /* See declaration of similar field in struct zone */
1065 unsigned long *pageblock_flags;
c255a458 1066#ifdef CONFIG_MEMCG
52d4b9ac
KH
1067 /*
1068 * If !SPARSEMEM, pgdat doesn't have page_cgroup pointer. We use
1069 * section. (see memcontrol.h/page_cgroup.h about this.)
1070 */
1071 struct page_cgroup *page_cgroup;
1072 unsigned long pad;
1073#endif
d41dee36
AW
1074};
1075
3e347261
BP
1076#ifdef CONFIG_SPARSEMEM_EXTREME
1077#define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
1078#else
1079#define SECTIONS_PER_ROOT 1
1080#endif
802f192e 1081
3e347261 1082#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
0faa5638 1083#define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
3e347261 1084#define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
802f192e 1085
3e347261
BP
1086#ifdef CONFIG_SPARSEMEM_EXTREME
1087extern struct mem_section *mem_section[NR_SECTION_ROOTS];
802f192e 1088#else
3e347261
BP
1089extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1090#endif
d41dee36 1091
29751f69
AW
1092static inline struct mem_section *__nr_to_section(unsigned long nr)
1093{
3e347261
BP
1094 if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1095 return NULL;
1096 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
29751f69 1097}
4ca644d9 1098extern int __section_nr(struct mem_section* ms);
04753278 1099extern unsigned long usemap_size(void);
29751f69
AW
1100
1101/*
1102 * We use the lower bits of the mem_map pointer to store
1103 * a little bit of information. There should be at least
1104 * 3 bits here due to 32-bit alignment.
1105 */
1106#define SECTION_MARKED_PRESENT (1UL<<0)
1107#define SECTION_HAS_MEM_MAP (1UL<<1)
1108#define SECTION_MAP_LAST_BIT (1UL<<2)
1109#define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
30c253e6 1110#define SECTION_NID_SHIFT 2
29751f69
AW
1111
1112static inline struct page *__section_mem_map_addr(struct mem_section *section)
1113{
1114 unsigned long map = section->section_mem_map;
1115 map &= SECTION_MAP_MASK;
1116 return (struct page *)map;
1117}
1118
540557b9 1119static inline int present_section(struct mem_section *section)
29751f69 1120{
802f192e 1121 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
29751f69
AW
1122}
1123
540557b9
AW
1124static inline int present_section_nr(unsigned long nr)
1125{
1126 return present_section(__nr_to_section(nr));
1127}
1128
1129static inline int valid_section(struct mem_section *section)
29751f69 1130{
802f192e 1131 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
29751f69
AW
1132}
1133
1134static inline int valid_section_nr(unsigned long nr)
1135{
1136 return valid_section(__nr_to_section(nr));
1137}
1138
d41dee36
AW
1139static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1140{
29751f69 1141 return __nr_to_section(pfn_to_section_nr(pfn));
d41dee36
AW
1142}
1143
7b7bf499 1144#ifndef CONFIG_HAVE_ARCH_PFN_VALID
d41dee36
AW
1145static inline int pfn_valid(unsigned long pfn)
1146{
1147 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1148 return 0;
29751f69 1149 return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
d41dee36 1150}
7b7bf499 1151#endif
d41dee36 1152
540557b9
AW
1153static inline int pfn_present(unsigned long pfn)
1154{
1155 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1156 return 0;
1157 return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1158}
1159
d41dee36
AW
1160/*
1161 * These are _only_ used during initialisation, therefore they
1162 * can use __initdata ... They could have names to indicate
1163 * this restriction.
1164 */
1165#ifdef CONFIG_NUMA
161599ff
AW
1166#define pfn_to_nid(pfn) \
1167({ \
1168 unsigned long __pfn_to_nid_pfn = (pfn); \
1169 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
1170})
2bdaf115
AW
1171#else
1172#define pfn_to_nid(pfn) (0)
d41dee36
AW
1173#endif
1174
d41dee36
AW
1175#define early_pfn_valid(pfn) pfn_valid(pfn)
1176void sparse_init(void);
1177#else
1178#define sparse_init() do {} while (0)
28ae55c9 1179#define sparse_index_init(_sec, _nid) do {} while (0)
d41dee36
AW
1180#endif /* CONFIG_SPARSEMEM */
1181
75167957 1182#ifdef CONFIG_NODES_SPAN_OTHER_NODES
cc2559bc 1183bool early_pfn_in_nid(unsigned long pfn, int nid);
75167957
AW
1184#else
1185#define early_pfn_in_nid(pfn, nid) (1)
1186#endif
1187
d41dee36
AW
1188#ifndef early_pfn_valid
1189#define early_pfn_valid(pfn) (1)
1190#endif
1191
1192void memory_present(int nid, unsigned long start, unsigned long end);
1193unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
1194
14e07298
AW
1195/*
1196 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1197 * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
1198 * pfn_valid_within() should be used in this case; we optimise this away
1199 * when we have no holes within a MAX_ORDER_NR_PAGES block.
1200 */
1201#ifdef CONFIG_HOLES_IN_ZONE
1202#define pfn_valid_within(pfn) pfn_valid(pfn)
1203#else
1204#define pfn_valid_within(pfn) (1)
1205#endif
1206
eb33575c
MG
1207#ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1208/*
1209 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1210 * associated with it or not. In FLATMEM, it is expected that holes always
1211 * have valid memmap as long as there is valid PFNs either side of the hole.
1212 * In SPARSEMEM, it is assumed that a valid section has a memmap for the
1213 * entire section.
1214 *
1215 * However, an ARM, and maybe other embedded architectures in the future
1216 * free memmap backing holes to save memory on the assumption the memmap is
1217 * never used. The page_zone linkages are then broken even though pfn_valid()
1218 * returns true. A walker of the full memmap must then do this additional
1219 * check to ensure the memmap they are looking at is sane by making sure
1220 * the zone and PFN linkages are still valid. This is expensive, but walkers
1221 * of the full memmap are extremely rare.
1222 */
1223int memmap_valid_within(unsigned long pfn,
1224 struct page *page, struct zone *zone);
1225#else
1226static inline int memmap_valid_within(unsigned long pfn,
1227 struct page *page, struct zone *zone)
1228{
1229 return 1;
1230}
1231#endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1232
97965478 1233#endif /* !__GENERATING_BOUNDS.H */
1da177e4 1234#endif /* !__ASSEMBLY__ */
1da177e4 1235#endif /* _LINUX_MMZONE_H */