thp: memcg huge memory
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / include / linux / mmzone.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_MMZONE_H
2#define _LINUX_MMZONE_H
3
1da177e4 4#ifndef __ASSEMBLY__
97965478 5#ifndef __GENERATING_BOUNDS_H
1da177e4 6
1da177e4
LT
7#include <linux/spinlock.h>
8#include <linux/list.h>
9#include <linux/wait.h>
e815af95 10#include <linux/bitops.h>
1da177e4
LT
11#include <linux/cache.h>
12#include <linux/threads.h>
13#include <linux/numa.h>
14#include <linux/init.h>
bdc8cb98 15#include <linux/seqlock.h>
8357f869 16#include <linux/nodemask.h>
835c134e 17#include <linux/pageblock-flags.h>
01fc0ac1 18#include <generated/bounds.h>
1da177e4 19#include <asm/atomic.h>
93ff66bf 20#include <asm/page.h>
1da177e4
LT
21
22/* Free memory management - zoned buddy allocator. */
23#ifndef CONFIG_FORCE_MAX_ZONEORDER
24#define MAX_ORDER 11
25#else
26#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
27#endif
e984bb43 28#define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
1da177e4 29
5ad333eb
AW
30/*
31 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
32 * costly to service. That is between allocation orders which should
33 * coelesce naturally under reasonable reclaim pressure and those which
34 * will not.
35 */
36#define PAGE_ALLOC_COSTLY_ORDER 3
37
b2a0ac88 38#define MIGRATE_UNMOVABLE 0
e12ba74d
MG
39#define MIGRATE_RECLAIMABLE 1
40#define MIGRATE_MOVABLE 2
5f8dcc21 41#define MIGRATE_PCPTYPES 3 /* the number of types on the pcp lists */
64c5e135 42#define MIGRATE_RESERVE 3
a5d76b54
KH
43#define MIGRATE_ISOLATE 4 /* can't allocate from here */
44#define MIGRATE_TYPES 5
b2a0ac88
MG
45
46#define for_each_migratetype_order(order, type) \
47 for (order = 0; order < MAX_ORDER; order++) \
48 for (type = 0; type < MIGRATE_TYPES; type++)
49
467c996c
MG
50extern int page_group_by_mobility_disabled;
51
52static inline int get_pageblock_migratetype(struct page *page)
53{
467c996c
MG
54 return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end);
55}
56
1da177e4 57struct free_area {
b2a0ac88 58 struct list_head free_list[MIGRATE_TYPES];
1da177e4
LT
59 unsigned long nr_free;
60};
61
62struct pglist_data;
63
64/*
65 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
66 * So add a wild amount of padding here to ensure that they fall into separate
67 * cachelines. There are very few zone structures in the machine, so space
68 * consumption is not a concern here.
69 */
70#if defined(CONFIG_SMP)
71struct zone_padding {
72 char x[0];
22fc6ecc 73} ____cacheline_internodealigned_in_smp;
1da177e4
LT
74#define ZONE_PADDING(name) struct zone_padding name;
75#else
76#define ZONE_PADDING(name)
77#endif
78
2244b95a 79enum zone_stat_item {
51ed4491 80 /* First 128 byte cacheline (assuming 64 bit words) */
d23ad423 81 NR_FREE_PAGES,
b69408e8 82 NR_LRU_BASE,
4f98a2fe
RR
83 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
84 NR_ACTIVE_ANON, /* " " " " " */
85 NR_INACTIVE_FILE, /* " " " " " */
86 NR_ACTIVE_FILE, /* " " " " " */
894bc310 87 NR_UNEVICTABLE, /* " " " " " */
5344b7e6 88 NR_MLOCK, /* mlock()ed pages found and moved off LRU */
f3dbd344
CL
89 NR_ANON_PAGES, /* Mapped anonymous pages */
90 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
65ba55f5 91 only modified from process context */
347ce434 92 NR_FILE_PAGES,
b1e7a8fd 93 NR_FILE_DIRTY,
ce866b34 94 NR_WRITEBACK,
51ed4491
CL
95 NR_SLAB_RECLAIMABLE,
96 NR_SLAB_UNRECLAIMABLE,
97 NR_PAGETABLE, /* used for pagetables */
c6a7f572
KM
98 NR_KERNEL_STACK,
99 /* Second 128 byte cacheline */
fd39fc85 100 NR_UNSTABLE_NFS, /* NFS unstable pages */
d2c5e30c 101 NR_BOUNCE,
e129b5c2 102 NR_VMSCAN_WRITE,
fc3ba692 103 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */
a731286d
KM
104 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */
105 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */
4b02108a 106 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */
ea941f0e
MR
107 NR_DIRTIED, /* page dirtyings since bootup */
108 NR_WRITTEN, /* page writings since bootup */
ca889e6c
CL
109#ifdef CONFIG_NUMA
110 NUMA_HIT, /* allocated in intended node */
111 NUMA_MISS, /* allocated in non intended node */
112 NUMA_FOREIGN, /* was intended here, hit elsewhere */
113 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
114 NUMA_LOCAL, /* allocation from local node */
115 NUMA_OTHER, /* allocation from other node */
116#endif
2244b95a
CL
117 NR_VM_ZONE_STAT_ITEMS };
118
4f98a2fe
RR
119/*
120 * We do arithmetic on the LRU lists in various places in the code,
121 * so it is important to keep the active lists LRU_ACTIVE higher in
122 * the array than the corresponding inactive lists, and to keep
123 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
124 *
125 * This has to be kept in sync with the statistics in zone_stat_item
126 * above and the descriptions in vmstat_text in mm/vmstat.c
127 */
128#define LRU_BASE 0
129#define LRU_ACTIVE 1
130#define LRU_FILE 2
131
b69408e8 132enum lru_list {
4f98a2fe
RR
133 LRU_INACTIVE_ANON = LRU_BASE,
134 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
135 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
136 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
894bc310 137 LRU_UNEVICTABLE,
894bc310
LS
138 NR_LRU_LISTS
139};
b69408e8
CL
140
141#define for_each_lru(l) for (l = 0; l < NR_LRU_LISTS; l++)
142
894bc310
LS
143#define for_each_evictable_lru(l) for (l = 0; l <= LRU_ACTIVE_FILE; l++)
144
4f98a2fe
RR
145static inline int is_file_lru(enum lru_list l)
146{
147 return (l == LRU_INACTIVE_FILE || l == LRU_ACTIVE_FILE);
148}
149
b69408e8
CL
150static inline int is_active_lru(enum lru_list l)
151{
4f98a2fe 152 return (l == LRU_ACTIVE_ANON || l == LRU_ACTIVE_FILE);
b69408e8
CL
153}
154
894bc310
LS
155static inline int is_unevictable_lru(enum lru_list l)
156{
894bc310 157 return (l == LRU_UNEVICTABLE);
894bc310
LS
158}
159
41858966
MG
160enum zone_watermarks {
161 WMARK_MIN,
162 WMARK_LOW,
163 WMARK_HIGH,
164 NR_WMARK
165};
166
167#define min_wmark_pages(z) (z->watermark[WMARK_MIN])
168#define low_wmark_pages(z) (z->watermark[WMARK_LOW])
169#define high_wmark_pages(z) (z->watermark[WMARK_HIGH])
170
1da177e4
LT
171struct per_cpu_pages {
172 int count; /* number of pages in the list */
1da177e4
LT
173 int high; /* high watermark, emptying needed */
174 int batch; /* chunk size for buddy add/remove */
5f8dcc21
MG
175
176 /* Lists of pages, one per migrate type stored on the pcp-lists */
177 struct list_head lists[MIGRATE_PCPTYPES];
1da177e4
LT
178};
179
180struct per_cpu_pageset {
3dfa5721 181 struct per_cpu_pages pcp;
4037d452
CL
182#ifdef CONFIG_NUMA
183 s8 expire;
184#endif
2244b95a 185#ifdef CONFIG_SMP
df9ecaba 186 s8 stat_threshold;
2244b95a
CL
187 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
188#endif
99dcc3e5 189};
e7c8d5c9 190
97965478
CL
191#endif /* !__GENERATING_BOUNDS.H */
192
2f1b6248 193enum zone_type {
4b51d669 194#ifdef CONFIG_ZONE_DMA
2f1b6248
CL
195 /*
196 * ZONE_DMA is used when there are devices that are not able
197 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
198 * carve out the portion of memory that is needed for these devices.
199 * The range is arch specific.
200 *
201 * Some examples
202 *
203 * Architecture Limit
204 * ---------------------------
205 * parisc, ia64, sparc <4G
206 * s390 <2G
2f1b6248
CL
207 * arm Various
208 * alpha Unlimited or 0-16MB.
209 *
210 * i386, x86_64 and multiple other arches
211 * <16M.
212 */
213 ZONE_DMA,
4b51d669 214#endif
fb0e7942 215#ifdef CONFIG_ZONE_DMA32
2f1b6248
CL
216 /*
217 * x86_64 needs two ZONE_DMAs because it supports devices that are
218 * only able to do DMA to the lower 16M but also 32 bit devices that
219 * can only do DMA areas below 4G.
220 */
221 ZONE_DMA32,
fb0e7942 222#endif
2f1b6248
CL
223 /*
224 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
225 * performed on pages in ZONE_NORMAL if the DMA devices support
226 * transfers to all addressable memory.
227 */
228 ZONE_NORMAL,
e53ef38d 229#ifdef CONFIG_HIGHMEM
2f1b6248
CL
230 /*
231 * A memory area that is only addressable by the kernel through
232 * mapping portions into its own address space. This is for example
233 * used by i386 to allow the kernel to address the memory beyond
234 * 900MB. The kernel will set up special mappings (page
235 * table entries on i386) for each page that the kernel needs to
236 * access.
237 */
238 ZONE_HIGHMEM,
e53ef38d 239#endif
2a1e274a 240 ZONE_MOVABLE,
97965478 241 __MAX_NR_ZONES
2f1b6248 242};
1da177e4 243
97965478
CL
244#ifndef __GENERATING_BOUNDS_H
245
1da177e4
LT
246/*
247 * When a memory allocation must conform to specific limitations (such
248 * as being suitable for DMA) the caller will pass in hints to the
249 * allocator in the gfp_mask, in the zone modifier bits. These bits
250 * are used to select a priority ordered list of memory zones which
19655d34 251 * match the requested limits. See gfp_zone() in include/linux/gfp.h
1da177e4 252 */
fb0e7942 253
97965478 254#if MAX_NR_ZONES < 2
4b51d669 255#define ZONES_SHIFT 0
97965478 256#elif MAX_NR_ZONES <= 2
19655d34 257#define ZONES_SHIFT 1
97965478 258#elif MAX_NR_ZONES <= 4
19655d34 259#define ZONES_SHIFT 2
4b51d669
CL
260#else
261#error ZONES_SHIFT -- too many zones configured adjust calculation
fb0e7942 262#endif
1da177e4 263
6e901571
KM
264struct zone_reclaim_stat {
265 /*
266 * The pageout code in vmscan.c keeps track of how many of the
267 * mem/swap backed and file backed pages are refeferenced.
268 * The higher the rotated/scanned ratio, the more valuable
269 * that cache is.
270 *
271 * The anon LRU stats live in [0], file LRU stats in [1]
272 */
273 unsigned long recent_rotated[2];
274 unsigned long recent_scanned[2];
f8629631
WF
275
276 /*
277 * accumulated for batching
278 */
279 unsigned long nr_saved_scan[NR_LRU_LISTS];
6e901571
KM
280};
281
1da177e4
LT
282struct zone {
283 /* Fields commonly accessed by the page allocator */
41858966
MG
284
285 /* zone watermarks, access with *_wmark_pages(zone) macros */
286 unsigned long watermark[NR_WMARK];
287
aa454840
CL
288 /*
289 * When free pages are below this point, additional steps are taken
290 * when reading the number of free pages to avoid per-cpu counter
291 * drift allowing watermarks to be breached
292 */
293 unsigned long percpu_drift_mark;
294
1da177e4
LT
295 /*
296 * We don't know if the memory that we're going to allocate will be freeable
297 * or/and it will be released eventually, so to avoid totally wasting several
298 * GB of ram we must reserve some of the lower zone memory (otherwise we risk
299 * to run OOM on the lower zones despite there's tons of freeable ram
300 * on the higher zones). This array is recalculated at runtime if the
301 * sysctl_lowmem_reserve_ratio sysctl changes.
302 */
303 unsigned long lowmem_reserve[MAX_NR_ZONES];
304
e7c8d5c9 305#ifdef CONFIG_NUMA
d5f541ed 306 int node;
9614634f
CL
307 /*
308 * zone reclaim becomes active if more unmapped pages exist.
309 */
8417bba4 310 unsigned long min_unmapped_pages;
0ff38490 311 unsigned long min_slab_pages;
e7c8d5c9 312#endif
43cf38eb 313 struct per_cpu_pageset __percpu *pageset;
1da177e4
LT
314 /*
315 * free areas of different sizes
316 */
317 spinlock_t lock;
93e4a89a 318 int all_unreclaimable; /* All pages pinned */
bdc8cb98
DH
319#ifdef CONFIG_MEMORY_HOTPLUG
320 /* see spanned/present_pages for more description */
321 seqlock_t span_seqlock;
322#endif
1da177e4
LT
323 struct free_area free_area[MAX_ORDER];
324
835c134e
MG
325#ifndef CONFIG_SPARSEMEM
326 /*
d9c23400 327 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
835c134e
MG
328 * In SPARSEMEM, this map is stored in struct mem_section
329 */
330 unsigned long *pageblock_flags;
331#endif /* CONFIG_SPARSEMEM */
332
4f92e258
MG
333#ifdef CONFIG_COMPACTION
334 /*
335 * On compaction failure, 1<<compact_defer_shift compactions
336 * are skipped before trying again. The number attempted since
337 * last failure is tracked with compact_considered.
338 */
339 unsigned int compact_considered;
340 unsigned int compact_defer_shift;
341#endif
1da177e4
LT
342
343 ZONE_PADDING(_pad1_)
344
345 /* Fields commonly accessed by the page reclaim scanner */
346 spinlock_t lru_lock;
6e08a369 347 struct zone_lru {
b69408e8 348 struct list_head list;
b69408e8 349 } lru[NR_LRU_LISTS];
4f98a2fe 350
6e901571 351 struct zone_reclaim_stat reclaim_stat;
4f98a2fe 352
1da177e4 353 unsigned long pages_scanned; /* since last reclaim */
e815af95 354 unsigned long flags; /* zone flags, see below */
753ee728 355
2244b95a
CL
356 /* Zone statistics */
357 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
9eeff239 358
556adecb
RR
359 /*
360 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
361 * this zone's LRU. Maintained by the pageout code.
362 */
363 unsigned int inactive_ratio;
364
1da177e4
LT
365
366 ZONE_PADDING(_pad2_)
367 /* Rarely used or read-mostly fields */
368
369 /*
370 * wait_table -- the array holding the hash table
02b694de 371 * wait_table_hash_nr_entries -- the size of the hash table array
1da177e4
LT
372 * wait_table_bits -- wait_table_size == (1 << wait_table_bits)
373 *
374 * The purpose of all these is to keep track of the people
375 * waiting for a page to become available and make them
376 * runnable again when possible. The trouble is that this
377 * consumes a lot of space, especially when so few things
378 * wait on pages at a given time. So instead of using
379 * per-page waitqueues, we use a waitqueue hash table.
380 *
381 * The bucket discipline is to sleep on the same queue when
382 * colliding and wake all in that wait queue when removing.
383 * When something wakes, it must check to be sure its page is
384 * truly available, a la thundering herd. The cost of a
385 * collision is great, but given the expected load of the
386 * table, they should be so rare as to be outweighed by the
387 * benefits from the saved space.
388 *
389 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
390 * primary users of these fields, and in mm/page_alloc.c
391 * free_area_init_core() performs the initialization of them.
392 */
393 wait_queue_head_t * wait_table;
02b694de 394 unsigned long wait_table_hash_nr_entries;
1da177e4
LT
395 unsigned long wait_table_bits;
396
397 /*
398 * Discontig memory support fields.
399 */
400 struct pglist_data *zone_pgdat;
1da177e4
LT
401 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
402 unsigned long zone_start_pfn;
403
bdc8cb98
DH
404 /*
405 * zone_start_pfn, spanned_pages and present_pages are all
406 * protected by span_seqlock. It is a seqlock because it has
407 * to be read outside of zone->lock, and it is done in the main
408 * allocator path. But, it is written quite infrequently.
409 *
410 * The lock is declared along with zone->lock because it is
411 * frequently read in proximity to zone->lock. It's good to
412 * give them a chance of being in the same cacheline.
413 */
1da177e4
LT
414 unsigned long spanned_pages; /* total size, including holes */
415 unsigned long present_pages; /* amount of memory (excluding holes) */
416
417 /*
418 * rarely used fields:
419 */
15ad7cdc 420 const char *name;
22fc6ecc 421} ____cacheline_internodealigned_in_smp;
1da177e4 422
e815af95 423typedef enum {
e815af95 424 ZONE_RECLAIM_LOCKED, /* prevents concurrent reclaim */
098d7f12 425 ZONE_OOM_LOCKED, /* zone is in OOM killer zonelist */
0e093d99
MG
426 ZONE_CONGESTED, /* zone has many dirty pages backed by
427 * a congested BDI
428 */
e815af95
DR
429} zone_flags_t;
430
431static inline void zone_set_flag(struct zone *zone, zone_flags_t flag)
432{
433 set_bit(flag, &zone->flags);
434}
d773ed6b
DR
435
436static inline int zone_test_and_set_flag(struct zone *zone, zone_flags_t flag)
437{
438 return test_and_set_bit(flag, &zone->flags);
439}
440
e815af95
DR
441static inline void zone_clear_flag(struct zone *zone, zone_flags_t flag)
442{
443 clear_bit(flag, &zone->flags);
444}
445
0e093d99
MG
446static inline int zone_is_reclaim_congested(const struct zone *zone)
447{
448 return test_bit(ZONE_CONGESTED, &zone->flags);
449}
450
e815af95
DR
451static inline int zone_is_reclaim_locked(const struct zone *zone)
452{
453 return test_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
454}
d773ed6b 455
098d7f12
DR
456static inline int zone_is_oom_locked(const struct zone *zone)
457{
458 return test_bit(ZONE_OOM_LOCKED, &zone->flags);
459}
e815af95 460
1da177e4
LT
461/*
462 * The "priority" of VM scanning is how much of the queues we will scan in one
463 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
464 * queues ("queue_length >> 12") during an aging round.
465 */
466#define DEF_PRIORITY 12
467
9276b1bc
PJ
468/* Maximum number of zones on a zonelist */
469#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
470
471#ifdef CONFIG_NUMA
523b9458
CL
472
473/*
474 * The NUMA zonelists are doubled becausse we need zonelists that restrict the
475 * allocations to a single node for GFP_THISNODE.
476 *
54a6eb5c
MG
477 * [0] : Zonelist with fallback
478 * [1] : No fallback (GFP_THISNODE)
523b9458 479 */
54a6eb5c 480#define MAX_ZONELISTS 2
523b9458
CL
481
482
9276b1bc
PJ
483/*
484 * We cache key information from each zonelist for smaller cache
485 * footprint when scanning for free pages in get_page_from_freelist().
486 *
487 * 1) The BITMAP fullzones tracks which zones in a zonelist have come
488 * up short of free memory since the last time (last_fullzone_zap)
489 * we zero'd fullzones.
490 * 2) The array z_to_n[] maps each zone in the zonelist to its node
491 * id, so that we can efficiently evaluate whether that node is
492 * set in the current tasks mems_allowed.
493 *
494 * Both fullzones and z_to_n[] are one-to-one with the zonelist,
495 * indexed by a zones offset in the zonelist zones[] array.
496 *
497 * The get_page_from_freelist() routine does two scans. During the
498 * first scan, we skip zones whose corresponding bit in 'fullzones'
499 * is set or whose corresponding node in current->mems_allowed (which
500 * comes from cpusets) is not set. During the second scan, we bypass
501 * this zonelist_cache, to ensure we look methodically at each zone.
502 *
503 * Once per second, we zero out (zap) fullzones, forcing us to
504 * reconsider nodes that might have regained more free memory.
505 * The field last_full_zap is the time we last zapped fullzones.
506 *
507 * This mechanism reduces the amount of time we waste repeatedly
508 * reexaming zones for free memory when they just came up low on
509 * memory momentarilly ago.
510 *
511 * The zonelist_cache struct members logically belong in struct
512 * zonelist. However, the mempolicy zonelists constructed for
513 * MPOL_BIND are intentionally variable length (and usually much
514 * shorter). A general purpose mechanism for handling structs with
515 * multiple variable length members is more mechanism than we want
516 * here. We resort to some special case hackery instead.
517 *
518 * The MPOL_BIND zonelists don't need this zonelist_cache (in good
519 * part because they are shorter), so we put the fixed length stuff
520 * at the front of the zonelist struct, ending in a variable length
521 * zones[], as is needed by MPOL_BIND.
522 *
523 * Then we put the optional zonelist cache on the end of the zonelist
524 * struct. This optional stuff is found by a 'zlcache_ptr' pointer in
525 * the fixed length portion at the front of the struct. This pointer
526 * both enables us to find the zonelist cache, and in the case of
527 * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
528 * to know that the zonelist cache is not there.
529 *
530 * The end result is that struct zonelists come in two flavors:
531 * 1) The full, fixed length version, shown below, and
532 * 2) The custom zonelists for MPOL_BIND.
533 * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
534 *
535 * Even though there may be multiple CPU cores on a node modifying
536 * fullzones or last_full_zap in the same zonelist_cache at the same
537 * time, we don't lock it. This is just hint data - if it is wrong now
538 * and then, the allocator will still function, perhaps a bit slower.
539 */
540
541
542struct zonelist_cache {
9276b1bc 543 unsigned short z_to_n[MAX_ZONES_PER_ZONELIST]; /* zone->nid */
7253f4ef 544 DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST); /* zone full? */
9276b1bc
PJ
545 unsigned long last_full_zap; /* when last zap'd (jiffies) */
546};
547#else
54a6eb5c 548#define MAX_ZONELISTS 1
9276b1bc
PJ
549struct zonelist_cache;
550#endif
551
dd1a239f
MG
552/*
553 * This struct contains information about a zone in a zonelist. It is stored
554 * here to avoid dereferences into large structures and lookups of tables
555 */
556struct zoneref {
557 struct zone *zone; /* Pointer to actual zone */
558 int zone_idx; /* zone_idx(zoneref->zone) */
559};
560
1da177e4
LT
561/*
562 * One allocation request operates on a zonelist. A zonelist
563 * is a list of zones, the first one is the 'goal' of the
564 * allocation, the other zones are fallback zones, in decreasing
565 * priority.
566 *
9276b1bc
PJ
567 * If zlcache_ptr is not NULL, then it is just the address of zlcache,
568 * as explained above. If zlcache_ptr is NULL, there is no zlcache.
dd1a239f
MG
569 * *
570 * To speed the reading of the zonelist, the zonerefs contain the zone index
571 * of the entry being read. Helper functions to access information given
572 * a struct zoneref are
573 *
574 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs
575 * zonelist_zone_idx() - Return the index of the zone for an entry
576 * zonelist_node_idx() - Return the index of the node for an entry
1da177e4
LT
577 */
578struct zonelist {
9276b1bc 579 struct zonelist_cache *zlcache_ptr; // NULL or &zlcache
dd1a239f 580 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
9276b1bc
PJ
581#ifdef CONFIG_NUMA
582 struct zonelist_cache zlcache; // optional ...
583#endif
1da177e4
LT
584};
585
c713216d
MG
586#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
587struct node_active_region {
588 unsigned long start_pfn;
589 unsigned long end_pfn;
590 int nid;
591};
592#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
1da177e4 593
5b99cd0e
HC
594#ifndef CONFIG_DISCONTIGMEM
595/* The array of struct pages - for discontigmem use pgdat->lmem_map */
596extern struct page *mem_map;
597#endif
598
1da177e4
LT
599/*
600 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
601 * (mostly NUMA machines?) to denote a higher-level memory zone than the
602 * zone denotes.
603 *
604 * On NUMA machines, each NUMA node would have a pg_data_t to describe
605 * it's memory layout.
606 *
607 * Memory statistics and page replacement data structures are maintained on a
608 * per-zone basis.
609 */
610struct bootmem_data;
611typedef struct pglist_data {
612 struct zone node_zones[MAX_NR_ZONES];
523b9458 613 struct zonelist node_zonelists[MAX_ZONELISTS];
1da177e4 614 int nr_zones;
52d4b9ac 615#ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */
1da177e4 616 struct page *node_mem_map;
52d4b9ac
KH
617#ifdef CONFIG_CGROUP_MEM_RES_CTLR
618 struct page_cgroup *node_page_cgroup;
619#endif
d41dee36 620#endif
08677214 621#ifndef CONFIG_NO_BOOTMEM
1da177e4 622 struct bootmem_data *bdata;
08677214 623#endif
208d54e5
DH
624#ifdef CONFIG_MEMORY_HOTPLUG
625 /*
626 * Must be held any time you expect node_start_pfn, node_present_pages
627 * or node_spanned_pages stay constant. Holding this will also
628 * guarantee that any pfn_valid() stays that way.
629 *
630 * Nests above zone->lock and zone->size_seqlock.
631 */
632 spinlock_t node_size_lock;
633#endif
1da177e4
LT
634 unsigned long node_start_pfn;
635 unsigned long node_present_pages; /* total number of physical pages */
636 unsigned long node_spanned_pages; /* total size of physical page
637 range, including holes */
638 int node_id;
1da177e4
LT
639 wait_queue_head_t kswapd_wait;
640 struct task_struct *kswapd;
641 int kswapd_max_order;
99504748 642 enum zone_type classzone_idx;
1da177e4
LT
643} pg_data_t;
644
645#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
646#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
d41dee36 647#ifdef CONFIG_FLAT_NODE_MEM_MAP
408fde81 648#define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
d41dee36
AW
649#else
650#define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
651#endif
408fde81 652#define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
1da177e4 653
208d54e5
DH
654#include <linux/memory_hotplug.h>
655
4eaf3f64 656extern struct mutex zonelists_mutex;
1f522509 657void build_all_zonelists(void *data);
99504748 658void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx);
88f5acf8
MG
659bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
660 int classzone_idx, int alloc_flags);
661bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
7fb1d9fc 662 int classzone_idx, int alloc_flags);
a2f3aa02
DH
663enum memmap_context {
664 MEMMAP_EARLY,
665 MEMMAP_HOTPLUG,
666};
718127cc 667extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
a2f3aa02
DH
668 unsigned long size,
669 enum memmap_context context);
718127cc 670
1da177e4
LT
671#ifdef CONFIG_HAVE_MEMORY_PRESENT
672void memory_present(int nid, unsigned long start, unsigned long end);
673#else
674static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
675#endif
676
7aac7898
LS
677#ifdef CONFIG_HAVE_MEMORYLESS_NODES
678int local_memory_node(int node_id);
679#else
680static inline int local_memory_node(int node_id) { return node_id; };
681#endif
682
1da177e4
LT
683#ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
684unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
685#endif
686
687/*
688 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
689 */
690#define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
691
f3fe6512
CK
692static inline int populated_zone(struct zone *zone)
693{
694 return (!!zone->present_pages);
695}
696
2a1e274a
MG
697extern int movable_zone;
698
699static inline int zone_movable_is_highmem(void)
700{
701#if defined(CONFIG_HIGHMEM) && defined(CONFIG_ARCH_POPULATES_NODE_MAP)
702 return movable_zone == ZONE_HIGHMEM;
703#else
704 return 0;
705#endif
706}
707
2f1b6248 708static inline int is_highmem_idx(enum zone_type idx)
1da177e4 709{
e53ef38d 710#ifdef CONFIG_HIGHMEM
2a1e274a
MG
711 return (idx == ZONE_HIGHMEM ||
712 (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
e53ef38d
CL
713#else
714 return 0;
715#endif
1da177e4
LT
716}
717
2f1b6248 718static inline int is_normal_idx(enum zone_type idx)
1da177e4
LT
719{
720 return (idx == ZONE_NORMAL);
721}
9328b8fa 722
1da177e4
LT
723/**
724 * is_highmem - helper function to quickly check if a struct zone is a
725 * highmem zone or not. This is an attempt to keep references
726 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
727 * @zone - pointer to struct zone variable
728 */
729static inline int is_highmem(struct zone *zone)
730{
e53ef38d 731#ifdef CONFIG_HIGHMEM
ddc81ed2
HH
732 int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones;
733 return zone_off == ZONE_HIGHMEM * sizeof(*zone) ||
734 (zone_off == ZONE_MOVABLE * sizeof(*zone) &&
735 zone_movable_is_highmem());
e53ef38d
CL
736#else
737 return 0;
738#endif
1da177e4
LT
739}
740
741static inline int is_normal(struct zone *zone)
742{
743 return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
744}
745
9328b8fa
NP
746static inline int is_dma32(struct zone *zone)
747{
fb0e7942 748#ifdef CONFIG_ZONE_DMA32
9328b8fa 749 return zone == zone->zone_pgdat->node_zones + ZONE_DMA32;
fb0e7942
CL
750#else
751 return 0;
752#endif
9328b8fa
NP
753}
754
755static inline int is_dma(struct zone *zone)
756{
4b51d669 757#ifdef CONFIG_ZONE_DMA
9328b8fa 758 return zone == zone->zone_pgdat->node_zones + ZONE_DMA;
4b51d669
CL
759#else
760 return 0;
761#endif
9328b8fa
NP
762}
763
1da177e4
LT
764/* These two functions are used to setup the per zone pages min values */
765struct ctl_table;
8d65af78 766int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
1da177e4
LT
767 void __user *, size_t *, loff_t *);
768extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
8d65af78 769int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
1da177e4 770 void __user *, size_t *, loff_t *);
8d65af78 771int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
8ad4b1fb 772 void __user *, size_t *, loff_t *);
9614634f 773int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
8d65af78 774 void __user *, size_t *, loff_t *);
0ff38490 775int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
8d65af78 776 void __user *, size_t *, loff_t *);
1da177e4 777
f0c0b2b8 778extern int numa_zonelist_order_handler(struct ctl_table *, int,
8d65af78 779 void __user *, size_t *, loff_t *);
f0c0b2b8
KH
780extern char numa_zonelist_order[];
781#define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */
782
93b7504e 783#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
784
785extern struct pglist_data contig_page_data;
786#define NODE_DATA(nid) (&contig_page_data)
787#define NODE_MEM_MAP(nid) mem_map
1da177e4 788
93b7504e 789#else /* CONFIG_NEED_MULTIPLE_NODES */
1da177e4
LT
790
791#include <asm/mmzone.h>
792
93b7504e 793#endif /* !CONFIG_NEED_MULTIPLE_NODES */
348f8b6c 794
95144c78
KH
795extern struct pglist_data *first_online_pgdat(void);
796extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
797extern struct zone *next_zone(struct zone *zone);
8357f869
KH
798
799/**
12d15f0d 800 * for_each_online_pgdat - helper macro to iterate over all online nodes
8357f869
KH
801 * @pgdat - pointer to a pg_data_t variable
802 */
803#define for_each_online_pgdat(pgdat) \
804 for (pgdat = first_online_pgdat(); \
805 pgdat; \
806 pgdat = next_online_pgdat(pgdat))
8357f869
KH
807/**
808 * for_each_zone - helper macro to iterate over all memory zones
809 * @zone - pointer to struct zone variable
810 *
811 * The user only needs to declare the zone variable, for_each_zone
812 * fills it in.
813 */
814#define for_each_zone(zone) \
815 for (zone = (first_online_pgdat())->node_zones; \
816 zone; \
817 zone = next_zone(zone))
818
ee99c71c
KM
819#define for_each_populated_zone(zone) \
820 for (zone = (first_online_pgdat())->node_zones; \
821 zone; \
822 zone = next_zone(zone)) \
823 if (!populated_zone(zone)) \
824 ; /* do nothing */ \
825 else
826
dd1a239f
MG
827static inline struct zone *zonelist_zone(struct zoneref *zoneref)
828{
829 return zoneref->zone;
830}
831
832static inline int zonelist_zone_idx(struct zoneref *zoneref)
833{
834 return zoneref->zone_idx;
835}
836
837static inline int zonelist_node_idx(struct zoneref *zoneref)
838{
839#ifdef CONFIG_NUMA
840 /* zone_to_nid not available in this context */
841 return zoneref->zone->node;
842#else
843 return 0;
844#endif /* CONFIG_NUMA */
845}
846
19770b32
MG
847/**
848 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
849 * @z - The cursor used as a starting point for the search
850 * @highest_zoneidx - The zone index of the highest zone to return
851 * @nodes - An optional nodemask to filter the zonelist with
852 * @zone - The first suitable zone found is returned via this parameter
853 *
854 * This function returns the next zone at or below a given zone index that is
855 * within the allowed nodemask using a cursor as the starting point for the
5bead2a0
MG
856 * search. The zoneref returned is a cursor that represents the current zone
857 * being examined. It should be advanced by one before calling
858 * next_zones_zonelist again.
19770b32
MG
859 */
860struct zoneref *next_zones_zonelist(struct zoneref *z,
861 enum zone_type highest_zoneidx,
862 nodemask_t *nodes,
863 struct zone **zone);
dd1a239f 864
19770b32
MG
865/**
866 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
867 * @zonelist - The zonelist to search for a suitable zone
868 * @highest_zoneidx - The zone index of the highest zone to return
869 * @nodes - An optional nodemask to filter the zonelist with
870 * @zone - The first suitable zone found is returned via this parameter
871 *
872 * This function returns the first zone at or below a given zone index that is
873 * within the allowed nodemask. The zoneref returned is a cursor that can be
5bead2a0
MG
874 * used to iterate the zonelist with next_zones_zonelist by advancing it by
875 * one before calling.
19770b32 876 */
dd1a239f 877static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
19770b32
MG
878 enum zone_type highest_zoneidx,
879 nodemask_t *nodes,
880 struct zone **zone)
54a6eb5c 881{
19770b32
MG
882 return next_zones_zonelist(zonelist->_zonerefs, highest_zoneidx, nodes,
883 zone);
54a6eb5c
MG
884}
885
19770b32
MG
886/**
887 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
888 * @zone - The current zone in the iterator
889 * @z - The current pointer within zonelist->zones being iterated
890 * @zlist - The zonelist being iterated
891 * @highidx - The zone index of the highest zone to return
892 * @nodemask - Nodemask allowed by the allocator
893 *
894 * This iterator iterates though all zones at or below a given zone index and
895 * within a given nodemask
896 */
897#define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
898 for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone); \
899 zone; \
5bead2a0 900 z = next_zones_zonelist(++z, highidx, nodemask, &zone)) \
54a6eb5c
MG
901
902/**
903 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
904 * @zone - The current zone in the iterator
905 * @z - The current pointer within zonelist->zones being iterated
906 * @zlist - The zonelist being iterated
907 * @highidx - The zone index of the highest zone to return
908 *
909 * This iterator iterates though all zones at or below a given zone index.
910 */
911#define for_each_zone_zonelist(zone, z, zlist, highidx) \
19770b32 912 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
54a6eb5c 913
d41dee36
AW
914#ifdef CONFIG_SPARSEMEM
915#include <asm/sparsemem.h>
916#endif
917
c713216d
MG
918#if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
919 !defined(CONFIG_ARCH_POPULATES_NODE_MAP)
b4544568
AM
920static inline unsigned long early_pfn_to_nid(unsigned long pfn)
921{
922 return 0;
923}
b159d43f
AW
924#endif
925
2bdaf115
AW
926#ifdef CONFIG_FLATMEM
927#define pfn_to_nid(pfn) (0)
928#endif
929
d41dee36
AW
930#define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
931#define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
932
933#ifdef CONFIG_SPARSEMEM
934
935/*
936 * SECTION_SHIFT #bits space required to store a section #
937 *
938 * PA_SECTION_SHIFT physical address to/from section number
939 * PFN_SECTION_SHIFT pfn to/from section number
940 */
941#define SECTIONS_SHIFT (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)
942
943#define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
944#define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
945
946#define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
947
948#define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
949#define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
950
835c134e 951#define SECTION_BLOCKFLAGS_BITS \
d9c23400 952 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
835c134e 953
d41dee36
AW
954#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
955#error Allocator MAX_ORDER exceeds SECTION_SIZE
956#endif
957
958struct page;
52d4b9ac 959struct page_cgroup;
d41dee36 960struct mem_section {
29751f69
AW
961 /*
962 * This is, logically, a pointer to an array of struct
963 * pages. However, it is stored with some other magic.
964 * (see sparse.c::sparse_init_one_section())
965 *
30c253e6
AW
966 * Additionally during early boot we encode node id of
967 * the location of the section here to guide allocation.
968 * (see sparse.c::memory_present())
969 *
29751f69
AW
970 * Making it a UL at least makes someone do a cast
971 * before using it wrong.
972 */
973 unsigned long section_mem_map;
5c0e3066
MG
974
975 /* See declaration of similar field in struct zone */
976 unsigned long *pageblock_flags;
52d4b9ac
KH
977#ifdef CONFIG_CGROUP_MEM_RES_CTLR
978 /*
979 * If !SPARSEMEM, pgdat doesn't have page_cgroup pointer. We use
980 * section. (see memcontrol.h/page_cgroup.h about this.)
981 */
982 struct page_cgroup *page_cgroup;
983 unsigned long pad;
984#endif
d41dee36
AW
985};
986
3e347261
BP
987#ifdef CONFIG_SPARSEMEM_EXTREME
988#define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
989#else
990#define SECTIONS_PER_ROOT 1
991#endif
802f192e 992
3e347261 993#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
0faa5638 994#define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
3e347261 995#define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
802f192e 996
3e347261
BP
997#ifdef CONFIG_SPARSEMEM_EXTREME
998extern struct mem_section *mem_section[NR_SECTION_ROOTS];
802f192e 999#else
3e347261
BP
1000extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1001#endif
d41dee36 1002
29751f69
AW
1003static inline struct mem_section *__nr_to_section(unsigned long nr)
1004{
3e347261
BP
1005 if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1006 return NULL;
1007 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
29751f69 1008}
4ca644d9 1009extern int __section_nr(struct mem_section* ms);
04753278 1010extern unsigned long usemap_size(void);
29751f69
AW
1011
1012/*
1013 * We use the lower bits of the mem_map pointer to store
1014 * a little bit of information. There should be at least
1015 * 3 bits here due to 32-bit alignment.
1016 */
1017#define SECTION_MARKED_PRESENT (1UL<<0)
1018#define SECTION_HAS_MEM_MAP (1UL<<1)
1019#define SECTION_MAP_LAST_BIT (1UL<<2)
1020#define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
30c253e6 1021#define SECTION_NID_SHIFT 2
29751f69
AW
1022
1023static inline struct page *__section_mem_map_addr(struct mem_section *section)
1024{
1025 unsigned long map = section->section_mem_map;
1026 map &= SECTION_MAP_MASK;
1027 return (struct page *)map;
1028}
1029
540557b9 1030static inline int present_section(struct mem_section *section)
29751f69 1031{
802f192e 1032 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
29751f69
AW
1033}
1034
540557b9
AW
1035static inline int present_section_nr(unsigned long nr)
1036{
1037 return present_section(__nr_to_section(nr));
1038}
1039
1040static inline int valid_section(struct mem_section *section)
29751f69 1041{
802f192e 1042 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
29751f69
AW
1043}
1044
1045static inline int valid_section_nr(unsigned long nr)
1046{
1047 return valid_section(__nr_to_section(nr));
1048}
1049
d41dee36
AW
1050static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1051{
29751f69 1052 return __nr_to_section(pfn_to_section_nr(pfn));
d41dee36
AW
1053}
1054
d41dee36
AW
1055static inline int pfn_valid(unsigned long pfn)
1056{
1057 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1058 return 0;
29751f69 1059 return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
d41dee36
AW
1060}
1061
540557b9
AW
1062static inline int pfn_present(unsigned long pfn)
1063{
1064 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1065 return 0;
1066 return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1067}
1068
d41dee36
AW
1069/*
1070 * These are _only_ used during initialisation, therefore they
1071 * can use __initdata ... They could have names to indicate
1072 * this restriction.
1073 */
1074#ifdef CONFIG_NUMA
161599ff
AW
1075#define pfn_to_nid(pfn) \
1076({ \
1077 unsigned long __pfn_to_nid_pfn = (pfn); \
1078 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
1079})
2bdaf115
AW
1080#else
1081#define pfn_to_nid(pfn) (0)
d41dee36
AW
1082#endif
1083
d41dee36
AW
1084#define early_pfn_valid(pfn) pfn_valid(pfn)
1085void sparse_init(void);
1086#else
1087#define sparse_init() do {} while (0)
28ae55c9 1088#define sparse_index_init(_sec, _nid) do {} while (0)
d41dee36
AW
1089#endif /* CONFIG_SPARSEMEM */
1090
75167957 1091#ifdef CONFIG_NODES_SPAN_OTHER_NODES
cc2559bc 1092bool early_pfn_in_nid(unsigned long pfn, int nid);
75167957
AW
1093#else
1094#define early_pfn_in_nid(pfn, nid) (1)
1095#endif
1096
d41dee36
AW
1097#ifndef early_pfn_valid
1098#define early_pfn_valid(pfn) (1)
1099#endif
1100
1101void memory_present(int nid, unsigned long start, unsigned long end);
1102unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
1103
14e07298
AW
1104/*
1105 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1106 * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
1107 * pfn_valid_within() should be used in this case; we optimise this away
1108 * when we have no holes within a MAX_ORDER_NR_PAGES block.
1109 */
1110#ifdef CONFIG_HOLES_IN_ZONE
1111#define pfn_valid_within(pfn) pfn_valid(pfn)
1112#else
1113#define pfn_valid_within(pfn) (1)
1114#endif
1115
eb33575c
MG
1116#ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1117/*
1118 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1119 * associated with it or not. In FLATMEM, it is expected that holes always
1120 * have valid memmap as long as there is valid PFNs either side of the hole.
1121 * In SPARSEMEM, it is assumed that a valid section has a memmap for the
1122 * entire section.
1123 *
1124 * However, an ARM, and maybe other embedded architectures in the future
1125 * free memmap backing holes to save memory on the assumption the memmap is
1126 * never used. The page_zone linkages are then broken even though pfn_valid()
1127 * returns true. A walker of the full memmap must then do this additional
1128 * check to ensure the memmap they are looking at is sane by making sure
1129 * the zone and PFN linkages are still valid. This is expensive, but walkers
1130 * of the full memmap are extremely rare.
1131 */
1132int memmap_valid_within(unsigned long pfn,
1133 struct page *page, struct zone *zone);
1134#else
1135static inline int memmap_valid_within(unsigned long pfn,
1136 struct page *page, struct zone *zone)
1137{
1138 return 1;
1139}
1140#endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1141
97965478 1142#endif /* !__GENERATING_BOUNDS.H */
1da177e4 1143#endif /* !__ASSEMBLY__ */
1da177e4 1144#endif /* _LINUX_MMZONE_H */