mm: shrink_inactive_list() nr_scan accounting fix fix
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / include / linux / mmzone.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_MMZONE_H
2#define _LINUX_MMZONE_H
3
1da177e4 4#ifndef __ASSEMBLY__
97965478 5#ifndef __GENERATING_BOUNDS_H
1da177e4 6
1da177e4
LT
7#include <linux/spinlock.h>
8#include <linux/list.h>
9#include <linux/wait.h>
e815af95 10#include <linux/bitops.h>
1da177e4
LT
11#include <linux/cache.h>
12#include <linux/threads.h>
13#include <linux/numa.h>
14#include <linux/init.h>
bdc8cb98 15#include <linux/seqlock.h>
8357f869 16#include <linux/nodemask.h>
835c134e 17#include <linux/pageblock-flags.h>
97965478 18#include <linux/bounds.h>
1da177e4 19#include <asm/atomic.h>
93ff66bf 20#include <asm/page.h>
1da177e4
LT
21
22/* Free memory management - zoned buddy allocator. */
23#ifndef CONFIG_FORCE_MAX_ZONEORDER
24#define MAX_ORDER 11
25#else
26#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
27#endif
e984bb43 28#define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
1da177e4 29
5ad333eb
AW
30/*
31 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
32 * costly to service. That is between allocation orders which should
33 * coelesce naturally under reasonable reclaim pressure and those which
34 * will not.
35 */
36#define PAGE_ALLOC_COSTLY_ORDER 3
37
b2a0ac88 38#define MIGRATE_UNMOVABLE 0
e12ba74d
MG
39#define MIGRATE_RECLAIMABLE 1
40#define MIGRATE_MOVABLE 2
64c5e135 41#define MIGRATE_RESERVE 3
a5d76b54
KH
42#define MIGRATE_ISOLATE 4 /* can't allocate from here */
43#define MIGRATE_TYPES 5
b2a0ac88
MG
44
45#define for_each_migratetype_order(order, type) \
46 for (order = 0; order < MAX_ORDER; order++) \
47 for (type = 0; type < MIGRATE_TYPES; type++)
48
467c996c
MG
49extern int page_group_by_mobility_disabled;
50
51static inline int get_pageblock_migratetype(struct page *page)
52{
467c996c
MG
53 return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end);
54}
55
1da177e4 56struct free_area {
b2a0ac88 57 struct list_head free_list[MIGRATE_TYPES];
1da177e4
LT
58 unsigned long nr_free;
59};
60
61struct pglist_data;
62
63/*
64 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
65 * So add a wild amount of padding here to ensure that they fall into separate
66 * cachelines. There are very few zone structures in the machine, so space
67 * consumption is not a concern here.
68 */
69#if defined(CONFIG_SMP)
70struct zone_padding {
71 char x[0];
22fc6ecc 72} ____cacheline_internodealigned_in_smp;
1da177e4
LT
73#define ZONE_PADDING(name) struct zone_padding name;
74#else
75#define ZONE_PADDING(name)
76#endif
77
2244b95a 78enum zone_stat_item {
51ed4491 79 /* First 128 byte cacheline (assuming 64 bit words) */
d23ad423 80 NR_FREE_PAGES,
b69408e8 81 NR_LRU_BASE,
4f98a2fe
RR
82 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
83 NR_ACTIVE_ANON, /* " " " " " */
84 NR_INACTIVE_FILE, /* " " " " " */
85 NR_ACTIVE_FILE, /* " " " " " */
894bc310 86 NR_UNEVICTABLE, /* " " " " " */
5344b7e6 87 NR_MLOCK, /* mlock()ed pages found and moved off LRU */
f3dbd344
CL
88 NR_ANON_PAGES, /* Mapped anonymous pages */
89 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
65ba55f5 90 only modified from process context */
347ce434 91 NR_FILE_PAGES,
b1e7a8fd 92 NR_FILE_DIRTY,
ce866b34 93 NR_WRITEBACK,
51ed4491
CL
94 NR_SLAB_RECLAIMABLE,
95 NR_SLAB_UNRECLAIMABLE,
96 NR_PAGETABLE, /* used for pagetables */
c6a7f572
KM
97 NR_KERNEL_STACK,
98 /* Second 128 byte cacheline */
fd39fc85 99 NR_UNSTABLE_NFS, /* NFS unstable pages */
d2c5e30c 100 NR_BOUNCE,
e129b5c2 101 NR_VMSCAN_WRITE,
fc3ba692 102 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */
4b02108a 103 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */
ca889e6c
CL
104#ifdef CONFIG_NUMA
105 NUMA_HIT, /* allocated in intended node */
106 NUMA_MISS, /* allocated in non intended node */
107 NUMA_FOREIGN, /* was intended here, hit elsewhere */
108 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
109 NUMA_LOCAL, /* allocation from local node */
110 NUMA_OTHER, /* allocation from other node */
111#endif
2244b95a
CL
112 NR_VM_ZONE_STAT_ITEMS };
113
4f98a2fe
RR
114/*
115 * We do arithmetic on the LRU lists in various places in the code,
116 * so it is important to keep the active lists LRU_ACTIVE higher in
117 * the array than the corresponding inactive lists, and to keep
118 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
119 *
120 * This has to be kept in sync with the statistics in zone_stat_item
121 * above and the descriptions in vmstat_text in mm/vmstat.c
122 */
123#define LRU_BASE 0
124#define LRU_ACTIVE 1
125#define LRU_FILE 2
126
b69408e8 127enum lru_list {
4f98a2fe
RR
128 LRU_INACTIVE_ANON = LRU_BASE,
129 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
130 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
131 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
894bc310 132 LRU_UNEVICTABLE,
894bc310
LS
133 NR_LRU_LISTS
134};
b69408e8
CL
135
136#define for_each_lru(l) for (l = 0; l < NR_LRU_LISTS; l++)
137
894bc310
LS
138#define for_each_evictable_lru(l) for (l = 0; l <= LRU_ACTIVE_FILE; l++)
139
4f98a2fe
RR
140static inline int is_file_lru(enum lru_list l)
141{
142 return (l == LRU_INACTIVE_FILE || l == LRU_ACTIVE_FILE);
143}
144
b69408e8
CL
145static inline int is_active_lru(enum lru_list l)
146{
4f98a2fe 147 return (l == LRU_ACTIVE_ANON || l == LRU_ACTIVE_FILE);
b69408e8
CL
148}
149
894bc310
LS
150static inline int is_unevictable_lru(enum lru_list l)
151{
894bc310 152 return (l == LRU_UNEVICTABLE);
894bc310
LS
153}
154
41858966
MG
155enum zone_watermarks {
156 WMARK_MIN,
157 WMARK_LOW,
158 WMARK_HIGH,
159 NR_WMARK
160};
161
162#define min_wmark_pages(z) (z->watermark[WMARK_MIN])
163#define low_wmark_pages(z) (z->watermark[WMARK_LOW])
164#define high_wmark_pages(z) (z->watermark[WMARK_HIGH])
165
1da177e4
LT
166struct per_cpu_pages {
167 int count; /* number of pages in the list */
1da177e4
LT
168 int high; /* high watermark, emptying needed */
169 int batch; /* chunk size for buddy add/remove */
170 struct list_head list; /* the list of pages */
171};
172
173struct per_cpu_pageset {
3dfa5721 174 struct per_cpu_pages pcp;
4037d452
CL
175#ifdef CONFIG_NUMA
176 s8 expire;
177#endif
2244b95a 178#ifdef CONFIG_SMP
df9ecaba 179 s8 stat_threshold;
2244b95a
CL
180 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
181#endif
1da177e4
LT
182} ____cacheline_aligned_in_smp;
183
e7c8d5c9
CL
184#ifdef CONFIG_NUMA
185#define zone_pcp(__z, __cpu) ((__z)->pageset[(__cpu)])
186#else
187#define zone_pcp(__z, __cpu) (&(__z)->pageset[(__cpu)])
188#endif
189
97965478
CL
190#endif /* !__GENERATING_BOUNDS.H */
191
2f1b6248 192enum zone_type {
4b51d669 193#ifdef CONFIG_ZONE_DMA
2f1b6248
CL
194 /*
195 * ZONE_DMA is used when there are devices that are not able
196 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
197 * carve out the portion of memory that is needed for these devices.
198 * The range is arch specific.
199 *
200 * Some examples
201 *
202 * Architecture Limit
203 * ---------------------------
204 * parisc, ia64, sparc <4G
205 * s390 <2G
2f1b6248
CL
206 * arm Various
207 * alpha Unlimited or 0-16MB.
208 *
209 * i386, x86_64 and multiple other arches
210 * <16M.
211 */
212 ZONE_DMA,
4b51d669 213#endif
fb0e7942 214#ifdef CONFIG_ZONE_DMA32
2f1b6248
CL
215 /*
216 * x86_64 needs two ZONE_DMAs because it supports devices that are
217 * only able to do DMA to the lower 16M but also 32 bit devices that
218 * can only do DMA areas below 4G.
219 */
220 ZONE_DMA32,
fb0e7942 221#endif
2f1b6248
CL
222 /*
223 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
224 * performed on pages in ZONE_NORMAL if the DMA devices support
225 * transfers to all addressable memory.
226 */
227 ZONE_NORMAL,
e53ef38d 228#ifdef CONFIG_HIGHMEM
2f1b6248
CL
229 /*
230 * A memory area that is only addressable by the kernel through
231 * mapping portions into its own address space. This is for example
232 * used by i386 to allow the kernel to address the memory beyond
233 * 900MB. The kernel will set up special mappings (page
234 * table entries on i386) for each page that the kernel needs to
235 * access.
236 */
237 ZONE_HIGHMEM,
e53ef38d 238#endif
2a1e274a 239 ZONE_MOVABLE,
97965478 240 __MAX_NR_ZONES
2f1b6248 241};
1da177e4 242
97965478
CL
243#ifndef __GENERATING_BOUNDS_H
244
1da177e4
LT
245/*
246 * When a memory allocation must conform to specific limitations (such
247 * as being suitable for DMA) the caller will pass in hints to the
248 * allocator in the gfp_mask, in the zone modifier bits. These bits
249 * are used to select a priority ordered list of memory zones which
19655d34 250 * match the requested limits. See gfp_zone() in include/linux/gfp.h
1da177e4 251 */
fb0e7942 252
97965478 253#if MAX_NR_ZONES < 2
4b51d669 254#define ZONES_SHIFT 0
97965478 255#elif MAX_NR_ZONES <= 2
19655d34 256#define ZONES_SHIFT 1
97965478 257#elif MAX_NR_ZONES <= 4
19655d34 258#define ZONES_SHIFT 2
4b51d669
CL
259#else
260#error ZONES_SHIFT -- too many zones configured adjust calculation
fb0e7942 261#endif
1da177e4 262
6e901571
KM
263struct zone_reclaim_stat {
264 /*
265 * The pageout code in vmscan.c keeps track of how many of the
266 * mem/swap backed and file backed pages are refeferenced.
267 * The higher the rotated/scanned ratio, the more valuable
268 * that cache is.
269 *
270 * The anon LRU stats live in [0], file LRU stats in [1]
271 */
272 unsigned long recent_rotated[2];
273 unsigned long recent_scanned[2];
274};
275
1da177e4
LT
276struct zone {
277 /* Fields commonly accessed by the page allocator */
41858966
MG
278
279 /* zone watermarks, access with *_wmark_pages(zone) macros */
280 unsigned long watermark[NR_WMARK];
281
1da177e4
LT
282 /*
283 * We don't know if the memory that we're going to allocate will be freeable
284 * or/and it will be released eventually, so to avoid totally wasting several
285 * GB of ram we must reserve some of the lower zone memory (otherwise we risk
286 * to run OOM on the lower zones despite there's tons of freeable ram
287 * on the higher zones). This array is recalculated at runtime if the
288 * sysctl_lowmem_reserve_ratio sysctl changes.
289 */
290 unsigned long lowmem_reserve[MAX_NR_ZONES];
291
e7c8d5c9 292#ifdef CONFIG_NUMA
d5f541ed 293 int node;
9614634f
CL
294 /*
295 * zone reclaim becomes active if more unmapped pages exist.
296 */
8417bba4 297 unsigned long min_unmapped_pages;
0ff38490 298 unsigned long min_slab_pages;
e7c8d5c9
CL
299 struct per_cpu_pageset *pageset[NR_CPUS];
300#else
1da177e4 301 struct per_cpu_pageset pageset[NR_CPUS];
e7c8d5c9 302#endif
1da177e4
LT
303 /*
304 * free areas of different sizes
305 */
306 spinlock_t lock;
bdc8cb98
DH
307#ifdef CONFIG_MEMORY_HOTPLUG
308 /* see spanned/present_pages for more description */
309 seqlock_t span_seqlock;
310#endif
1da177e4
LT
311 struct free_area free_area[MAX_ORDER];
312
835c134e
MG
313#ifndef CONFIG_SPARSEMEM
314 /*
d9c23400 315 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
835c134e
MG
316 * In SPARSEMEM, this map is stored in struct mem_section
317 */
318 unsigned long *pageblock_flags;
319#endif /* CONFIG_SPARSEMEM */
320
1da177e4
LT
321
322 ZONE_PADDING(_pad1_)
323
324 /* Fields commonly accessed by the page reclaim scanner */
325 spinlock_t lru_lock;
6e08a369 326 struct zone_lru {
b69408e8 327 struct list_head list;
6e08a369 328 unsigned long nr_saved_scan; /* accumulated for batching */
b69408e8 329 } lru[NR_LRU_LISTS];
4f98a2fe 330
6e901571 331 struct zone_reclaim_stat reclaim_stat;
4f98a2fe 332
1da177e4 333 unsigned long pages_scanned; /* since last reclaim */
e815af95 334 unsigned long flags; /* zone flags, see below */
753ee728 335
2244b95a
CL
336 /* Zone statistics */
337 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
9eeff239 338
1da177e4
LT
339 /*
340 * prev_priority holds the scanning priority for this zone. It is
341 * defined as the scanning priority at which we achieved our reclaim
342 * target at the previous try_to_free_pages() or balance_pgdat()
343 * invokation.
344 *
345 * We use prev_priority as a measure of how much stress page reclaim is
346 * under - it drives the swappiness decision: whether to unmap mapped
347 * pages.
348 *
3bb1a852 349 * Access to both this field is quite racy even on uniprocessor. But
1da177e4
LT
350 * it is expected to average out OK.
351 */
1da177e4
LT
352 int prev_priority;
353
556adecb
RR
354 /*
355 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
356 * this zone's LRU. Maintained by the pageout code.
357 */
358 unsigned int inactive_ratio;
359
1da177e4
LT
360
361 ZONE_PADDING(_pad2_)
362 /* Rarely used or read-mostly fields */
363
364 /*
365 * wait_table -- the array holding the hash table
02b694de 366 * wait_table_hash_nr_entries -- the size of the hash table array
1da177e4
LT
367 * wait_table_bits -- wait_table_size == (1 << wait_table_bits)
368 *
369 * The purpose of all these is to keep track of the people
370 * waiting for a page to become available and make them
371 * runnable again when possible. The trouble is that this
372 * consumes a lot of space, especially when so few things
373 * wait on pages at a given time. So instead of using
374 * per-page waitqueues, we use a waitqueue hash table.
375 *
376 * The bucket discipline is to sleep on the same queue when
377 * colliding and wake all in that wait queue when removing.
378 * When something wakes, it must check to be sure its page is
379 * truly available, a la thundering herd. The cost of a
380 * collision is great, but given the expected load of the
381 * table, they should be so rare as to be outweighed by the
382 * benefits from the saved space.
383 *
384 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
385 * primary users of these fields, and in mm/page_alloc.c
386 * free_area_init_core() performs the initialization of them.
387 */
388 wait_queue_head_t * wait_table;
02b694de 389 unsigned long wait_table_hash_nr_entries;
1da177e4
LT
390 unsigned long wait_table_bits;
391
392 /*
393 * Discontig memory support fields.
394 */
395 struct pglist_data *zone_pgdat;
1da177e4
LT
396 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
397 unsigned long zone_start_pfn;
398
bdc8cb98
DH
399 /*
400 * zone_start_pfn, spanned_pages and present_pages are all
401 * protected by span_seqlock. It is a seqlock because it has
402 * to be read outside of zone->lock, and it is done in the main
403 * allocator path. But, it is written quite infrequently.
404 *
405 * The lock is declared along with zone->lock because it is
406 * frequently read in proximity to zone->lock. It's good to
407 * give them a chance of being in the same cacheline.
408 */
1da177e4
LT
409 unsigned long spanned_pages; /* total size, including holes */
410 unsigned long present_pages; /* amount of memory (excluding holes) */
411
412 /*
413 * rarely used fields:
414 */
15ad7cdc 415 const char *name;
22fc6ecc 416} ____cacheline_internodealigned_in_smp;
1da177e4 417
e815af95
DR
418typedef enum {
419 ZONE_ALL_UNRECLAIMABLE, /* all pages pinned */
420 ZONE_RECLAIM_LOCKED, /* prevents concurrent reclaim */
098d7f12 421 ZONE_OOM_LOCKED, /* zone is in OOM killer zonelist */
e815af95
DR
422} zone_flags_t;
423
424static inline void zone_set_flag(struct zone *zone, zone_flags_t flag)
425{
426 set_bit(flag, &zone->flags);
427}
d773ed6b
DR
428
429static inline int zone_test_and_set_flag(struct zone *zone, zone_flags_t flag)
430{
431 return test_and_set_bit(flag, &zone->flags);
432}
433
e815af95
DR
434static inline void zone_clear_flag(struct zone *zone, zone_flags_t flag)
435{
436 clear_bit(flag, &zone->flags);
437}
438
439static inline int zone_is_all_unreclaimable(const struct zone *zone)
440{
441 return test_bit(ZONE_ALL_UNRECLAIMABLE, &zone->flags);
442}
d773ed6b 443
e815af95
DR
444static inline int zone_is_reclaim_locked(const struct zone *zone)
445{
446 return test_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
447}
d773ed6b 448
098d7f12
DR
449static inline int zone_is_oom_locked(const struct zone *zone)
450{
451 return test_bit(ZONE_OOM_LOCKED, &zone->flags);
452}
e815af95 453
1da177e4
LT
454/*
455 * The "priority" of VM scanning is how much of the queues we will scan in one
456 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
457 * queues ("queue_length >> 12") during an aging round.
458 */
459#define DEF_PRIORITY 12
460
9276b1bc
PJ
461/* Maximum number of zones on a zonelist */
462#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
463
464#ifdef CONFIG_NUMA
523b9458
CL
465
466/*
467 * The NUMA zonelists are doubled becausse we need zonelists that restrict the
468 * allocations to a single node for GFP_THISNODE.
469 *
54a6eb5c
MG
470 * [0] : Zonelist with fallback
471 * [1] : No fallback (GFP_THISNODE)
523b9458 472 */
54a6eb5c 473#define MAX_ZONELISTS 2
523b9458
CL
474
475
9276b1bc
PJ
476/*
477 * We cache key information from each zonelist for smaller cache
478 * footprint when scanning for free pages in get_page_from_freelist().
479 *
480 * 1) The BITMAP fullzones tracks which zones in a zonelist have come
481 * up short of free memory since the last time (last_fullzone_zap)
482 * we zero'd fullzones.
483 * 2) The array z_to_n[] maps each zone in the zonelist to its node
484 * id, so that we can efficiently evaluate whether that node is
485 * set in the current tasks mems_allowed.
486 *
487 * Both fullzones and z_to_n[] are one-to-one with the zonelist,
488 * indexed by a zones offset in the zonelist zones[] array.
489 *
490 * The get_page_from_freelist() routine does two scans. During the
491 * first scan, we skip zones whose corresponding bit in 'fullzones'
492 * is set or whose corresponding node in current->mems_allowed (which
493 * comes from cpusets) is not set. During the second scan, we bypass
494 * this zonelist_cache, to ensure we look methodically at each zone.
495 *
496 * Once per second, we zero out (zap) fullzones, forcing us to
497 * reconsider nodes that might have regained more free memory.
498 * The field last_full_zap is the time we last zapped fullzones.
499 *
500 * This mechanism reduces the amount of time we waste repeatedly
501 * reexaming zones for free memory when they just came up low on
502 * memory momentarilly ago.
503 *
504 * The zonelist_cache struct members logically belong in struct
505 * zonelist. However, the mempolicy zonelists constructed for
506 * MPOL_BIND are intentionally variable length (and usually much
507 * shorter). A general purpose mechanism for handling structs with
508 * multiple variable length members is more mechanism than we want
509 * here. We resort to some special case hackery instead.
510 *
511 * The MPOL_BIND zonelists don't need this zonelist_cache (in good
512 * part because they are shorter), so we put the fixed length stuff
513 * at the front of the zonelist struct, ending in a variable length
514 * zones[], as is needed by MPOL_BIND.
515 *
516 * Then we put the optional zonelist cache on the end of the zonelist
517 * struct. This optional stuff is found by a 'zlcache_ptr' pointer in
518 * the fixed length portion at the front of the struct. This pointer
519 * both enables us to find the zonelist cache, and in the case of
520 * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
521 * to know that the zonelist cache is not there.
522 *
523 * The end result is that struct zonelists come in two flavors:
524 * 1) The full, fixed length version, shown below, and
525 * 2) The custom zonelists for MPOL_BIND.
526 * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
527 *
528 * Even though there may be multiple CPU cores on a node modifying
529 * fullzones or last_full_zap in the same zonelist_cache at the same
530 * time, we don't lock it. This is just hint data - if it is wrong now
531 * and then, the allocator will still function, perhaps a bit slower.
532 */
533
534
535struct zonelist_cache {
9276b1bc 536 unsigned short z_to_n[MAX_ZONES_PER_ZONELIST]; /* zone->nid */
7253f4ef 537 DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST); /* zone full? */
9276b1bc
PJ
538 unsigned long last_full_zap; /* when last zap'd (jiffies) */
539};
540#else
54a6eb5c 541#define MAX_ZONELISTS 1
9276b1bc
PJ
542struct zonelist_cache;
543#endif
544
dd1a239f
MG
545/*
546 * This struct contains information about a zone in a zonelist. It is stored
547 * here to avoid dereferences into large structures and lookups of tables
548 */
549struct zoneref {
550 struct zone *zone; /* Pointer to actual zone */
551 int zone_idx; /* zone_idx(zoneref->zone) */
552};
553
1da177e4
LT
554/*
555 * One allocation request operates on a zonelist. A zonelist
556 * is a list of zones, the first one is the 'goal' of the
557 * allocation, the other zones are fallback zones, in decreasing
558 * priority.
559 *
9276b1bc
PJ
560 * If zlcache_ptr is not NULL, then it is just the address of zlcache,
561 * as explained above. If zlcache_ptr is NULL, there is no zlcache.
dd1a239f
MG
562 * *
563 * To speed the reading of the zonelist, the zonerefs contain the zone index
564 * of the entry being read. Helper functions to access information given
565 * a struct zoneref are
566 *
567 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs
568 * zonelist_zone_idx() - Return the index of the zone for an entry
569 * zonelist_node_idx() - Return the index of the node for an entry
1da177e4
LT
570 */
571struct zonelist {
9276b1bc 572 struct zonelist_cache *zlcache_ptr; // NULL or &zlcache
dd1a239f 573 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
9276b1bc
PJ
574#ifdef CONFIG_NUMA
575 struct zonelist_cache zlcache; // optional ...
576#endif
1da177e4
LT
577};
578
c713216d
MG
579#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
580struct node_active_region {
581 unsigned long start_pfn;
582 unsigned long end_pfn;
583 int nid;
584};
585#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
1da177e4 586
5b99cd0e
HC
587#ifndef CONFIG_DISCONTIGMEM
588/* The array of struct pages - for discontigmem use pgdat->lmem_map */
589extern struct page *mem_map;
590#endif
591
1da177e4
LT
592/*
593 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
594 * (mostly NUMA machines?) to denote a higher-level memory zone than the
595 * zone denotes.
596 *
597 * On NUMA machines, each NUMA node would have a pg_data_t to describe
598 * it's memory layout.
599 *
600 * Memory statistics and page replacement data structures are maintained on a
601 * per-zone basis.
602 */
603struct bootmem_data;
604typedef struct pglist_data {
605 struct zone node_zones[MAX_NR_ZONES];
523b9458 606 struct zonelist node_zonelists[MAX_ZONELISTS];
1da177e4 607 int nr_zones;
52d4b9ac 608#ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */
1da177e4 609 struct page *node_mem_map;
52d4b9ac
KH
610#ifdef CONFIG_CGROUP_MEM_RES_CTLR
611 struct page_cgroup *node_page_cgroup;
612#endif
d41dee36 613#endif
1da177e4 614 struct bootmem_data *bdata;
208d54e5
DH
615#ifdef CONFIG_MEMORY_HOTPLUG
616 /*
617 * Must be held any time you expect node_start_pfn, node_present_pages
618 * or node_spanned_pages stay constant. Holding this will also
619 * guarantee that any pfn_valid() stays that way.
620 *
621 * Nests above zone->lock and zone->size_seqlock.
622 */
623 spinlock_t node_size_lock;
624#endif
1da177e4
LT
625 unsigned long node_start_pfn;
626 unsigned long node_present_pages; /* total number of physical pages */
627 unsigned long node_spanned_pages; /* total size of physical page
628 range, including holes */
629 int node_id;
1da177e4
LT
630 wait_queue_head_t kswapd_wait;
631 struct task_struct *kswapd;
632 int kswapd_max_order;
633} pg_data_t;
634
635#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
636#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
d41dee36 637#ifdef CONFIG_FLAT_NODE_MEM_MAP
408fde81 638#define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
d41dee36
AW
639#else
640#define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
641#endif
408fde81 642#define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
1da177e4 643
208d54e5
DH
644#include <linux/memory_hotplug.h>
645
1da177e4
LT
646void get_zone_counts(unsigned long *active, unsigned long *inactive,
647 unsigned long *free);
648void build_all_zonelists(void);
649void wakeup_kswapd(struct zone *zone, int order);
650int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
7fb1d9fc 651 int classzone_idx, int alloc_flags);
a2f3aa02
DH
652enum memmap_context {
653 MEMMAP_EARLY,
654 MEMMAP_HOTPLUG,
655};
718127cc 656extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
a2f3aa02
DH
657 unsigned long size,
658 enum memmap_context context);
718127cc 659
1da177e4
LT
660#ifdef CONFIG_HAVE_MEMORY_PRESENT
661void memory_present(int nid, unsigned long start, unsigned long end);
662#else
663static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
664#endif
665
666#ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
667unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
668#endif
669
670/*
671 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
672 */
673#define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
674
f3fe6512
CK
675static inline int populated_zone(struct zone *zone)
676{
677 return (!!zone->present_pages);
678}
679
2a1e274a
MG
680extern int movable_zone;
681
682static inline int zone_movable_is_highmem(void)
683{
684#if defined(CONFIG_HIGHMEM) && defined(CONFIG_ARCH_POPULATES_NODE_MAP)
685 return movable_zone == ZONE_HIGHMEM;
686#else
687 return 0;
688#endif
689}
690
2f1b6248 691static inline int is_highmem_idx(enum zone_type idx)
1da177e4 692{
e53ef38d 693#ifdef CONFIG_HIGHMEM
2a1e274a
MG
694 return (idx == ZONE_HIGHMEM ||
695 (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
e53ef38d
CL
696#else
697 return 0;
698#endif
1da177e4
LT
699}
700
2f1b6248 701static inline int is_normal_idx(enum zone_type idx)
1da177e4
LT
702{
703 return (idx == ZONE_NORMAL);
704}
9328b8fa 705
1da177e4
LT
706/**
707 * is_highmem - helper function to quickly check if a struct zone is a
708 * highmem zone or not. This is an attempt to keep references
709 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
710 * @zone - pointer to struct zone variable
711 */
712static inline int is_highmem(struct zone *zone)
713{
e53ef38d 714#ifdef CONFIG_HIGHMEM
ddc81ed2
HH
715 int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones;
716 return zone_off == ZONE_HIGHMEM * sizeof(*zone) ||
717 (zone_off == ZONE_MOVABLE * sizeof(*zone) &&
718 zone_movable_is_highmem());
e53ef38d
CL
719#else
720 return 0;
721#endif
1da177e4
LT
722}
723
724static inline int is_normal(struct zone *zone)
725{
726 return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
727}
728
9328b8fa
NP
729static inline int is_dma32(struct zone *zone)
730{
fb0e7942 731#ifdef CONFIG_ZONE_DMA32
9328b8fa 732 return zone == zone->zone_pgdat->node_zones + ZONE_DMA32;
fb0e7942
CL
733#else
734 return 0;
735#endif
9328b8fa
NP
736}
737
738static inline int is_dma(struct zone *zone)
739{
4b51d669 740#ifdef CONFIG_ZONE_DMA
9328b8fa 741 return zone == zone->zone_pgdat->node_zones + ZONE_DMA;
4b51d669
CL
742#else
743 return 0;
744#endif
9328b8fa
NP
745}
746
1da177e4
LT
747/* These two functions are used to setup the per zone pages min values */
748struct ctl_table;
749struct file;
750int min_free_kbytes_sysctl_handler(struct ctl_table *, int, struct file *,
751 void __user *, size_t *, loff_t *);
752extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
753int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, struct file *,
754 void __user *, size_t *, loff_t *);
8ad4b1fb
RS
755int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int, struct file *,
756 void __user *, size_t *, loff_t *);
9614634f
CL
757int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
758 struct file *, void __user *, size_t *, loff_t *);
0ff38490
CL
759int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
760 struct file *, void __user *, size_t *, loff_t *);
1da177e4 761
f0c0b2b8
KH
762extern int numa_zonelist_order_handler(struct ctl_table *, int,
763 struct file *, void __user *, size_t *, loff_t *);
764extern char numa_zonelist_order[];
765#define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */
766
93b7504e 767#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
768
769extern struct pglist_data contig_page_data;
770#define NODE_DATA(nid) (&contig_page_data)
771#define NODE_MEM_MAP(nid) mem_map
1da177e4 772
93b7504e 773#else /* CONFIG_NEED_MULTIPLE_NODES */
1da177e4
LT
774
775#include <asm/mmzone.h>
776
93b7504e 777#endif /* !CONFIG_NEED_MULTIPLE_NODES */
348f8b6c 778
95144c78
KH
779extern struct pglist_data *first_online_pgdat(void);
780extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
781extern struct zone *next_zone(struct zone *zone);
8357f869
KH
782
783/**
12d15f0d 784 * for_each_online_pgdat - helper macro to iterate over all online nodes
8357f869
KH
785 * @pgdat - pointer to a pg_data_t variable
786 */
787#define for_each_online_pgdat(pgdat) \
788 for (pgdat = first_online_pgdat(); \
789 pgdat; \
790 pgdat = next_online_pgdat(pgdat))
8357f869
KH
791/**
792 * for_each_zone - helper macro to iterate over all memory zones
793 * @zone - pointer to struct zone variable
794 *
795 * The user only needs to declare the zone variable, for_each_zone
796 * fills it in.
797 */
798#define for_each_zone(zone) \
799 for (zone = (first_online_pgdat())->node_zones; \
800 zone; \
801 zone = next_zone(zone))
802
ee99c71c
KM
803#define for_each_populated_zone(zone) \
804 for (zone = (first_online_pgdat())->node_zones; \
805 zone; \
806 zone = next_zone(zone)) \
807 if (!populated_zone(zone)) \
808 ; /* do nothing */ \
809 else
810
dd1a239f
MG
811static inline struct zone *zonelist_zone(struct zoneref *zoneref)
812{
813 return zoneref->zone;
814}
815
816static inline int zonelist_zone_idx(struct zoneref *zoneref)
817{
818 return zoneref->zone_idx;
819}
820
821static inline int zonelist_node_idx(struct zoneref *zoneref)
822{
823#ifdef CONFIG_NUMA
824 /* zone_to_nid not available in this context */
825 return zoneref->zone->node;
826#else
827 return 0;
828#endif /* CONFIG_NUMA */
829}
830
19770b32
MG
831/**
832 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
833 * @z - The cursor used as a starting point for the search
834 * @highest_zoneidx - The zone index of the highest zone to return
835 * @nodes - An optional nodemask to filter the zonelist with
836 * @zone - The first suitable zone found is returned via this parameter
837 *
838 * This function returns the next zone at or below a given zone index that is
839 * within the allowed nodemask using a cursor as the starting point for the
5bead2a0
MG
840 * search. The zoneref returned is a cursor that represents the current zone
841 * being examined. It should be advanced by one before calling
842 * next_zones_zonelist again.
19770b32
MG
843 */
844struct zoneref *next_zones_zonelist(struct zoneref *z,
845 enum zone_type highest_zoneidx,
846 nodemask_t *nodes,
847 struct zone **zone);
dd1a239f 848
19770b32
MG
849/**
850 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
851 * @zonelist - The zonelist to search for a suitable zone
852 * @highest_zoneidx - The zone index of the highest zone to return
853 * @nodes - An optional nodemask to filter the zonelist with
854 * @zone - The first suitable zone found is returned via this parameter
855 *
856 * This function returns the first zone at or below a given zone index that is
857 * within the allowed nodemask. The zoneref returned is a cursor that can be
5bead2a0
MG
858 * used to iterate the zonelist with next_zones_zonelist by advancing it by
859 * one before calling.
19770b32 860 */
dd1a239f 861static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
19770b32
MG
862 enum zone_type highest_zoneidx,
863 nodemask_t *nodes,
864 struct zone **zone)
54a6eb5c 865{
19770b32
MG
866 return next_zones_zonelist(zonelist->_zonerefs, highest_zoneidx, nodes,
867 zone);
54a6eb5c
MG
868}
869
19770b32
MG
870/**
871 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
872 * @zone - The current zone in the iterator
873 * @z - The current pointer within zonelist->zones being iterated
874 * @zlist - The zonelist being iterated
875 * @highidx - The zone index of the highest zone to return
876 * @nodemask - Nodemask allowed by the allocator
877 *
878 * This iterator iterates though all zones at or below a given zone index and
879 * within a given nodemask
880 */
881#define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
882 for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone); \
883 zone; \
5bead2a0 884 z = next_zones_zonelist(++z, highidx, nodemask, &zone)) \
54a6eb5c
MG
885
886/**
887 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
888 * @zone - The current zone in the iterator
889 * @z - The current pointer within zonelist->zones being iterated
890 * @zlist - The zonelist being iterated
891 * @highidx - The zone index of the highest zone to return
892 *
893 * This iterator iterates though all zones at or below a given zone index.
894 */
895#define for_each_zone_zonelist(zone, z, zlist, highidx) \
19770b32 896 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
54a6eb5c 897
d41dee36
AW
898#ifdef CONFIG_SPARSEMEM
899#include <asm/sparsemem.h>
900#endif
901
c713216d
MG
902#if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
903 !defined(CONFIG_ARCH_POPULATES_NODE_MAP)
b4544568
AM
904static inline unsigned long early_pfn_to_nid(unsigned long pfn)
905{
906 return 0;
907}
b159d43f
AW
908#endif
909
2bdaf115
AW
910#ifdef CONFIG_FLATMEM
911#define pfn_to_nid(pfn) (0)
912#endif
913
d41dee36
AW
914#define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
915#define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
916
917#ifdef CONFIG_SPARSEMEM
918
919/*
920 * SECTION_SHIFT #bits space required to store a section #
921 *
922 * PA_SECTION_SHIFT physical address to/from section number
923 * PFN_SECTION_SHIFT pfn to/from section number
924 */
925#define SECTIONS_SHIFT (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)
926
927#define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
928#define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
929
930#define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
931
932#define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
933#define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
934
835c134e 935#define SECTION_BLOCKFLAGS_BITS \
d9c23400 936 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
835c134e 937
d41dee36
AW
938#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
939#error Allocator MAX_ORDER exceeds SECTION_SIZE
940#endif
941
942struct page;
52d4b9ac 943struct page_cgroup;
d41dee36 944struct mem_section {
29751f69
AW
945 /*
946 * This is, logically, a pointer to an array of struct
947 * pages. However, it is stored with some other magic.
948 * (see sparse.c::sparse_init_one_section())
949 *
30c253e6
AW
950 * Additionally during early boot we encode node id of
951 * the location of the section here to guide allocation.
952 * (see sparse.c::memory_present())
953 *
29751f69
AW
954 * Making it a UL at least makes someone do a cast
955 * before using it wrong.
956 */
957 unsigned long section_mem_map;
5c0e3066
MG
958
959 /* See declaration of similar field in struct zone */
960 unsigned long *pageblock_flags;
52d4b9ac
KH
961#ifdef CONFIG_CGROUP_MEM_RES_CTLR
962 /*
963 * If !SPARSEMEM, pgdat doesn't have page_cgroup pointer. We use
964 * section. (see memcontrol.h/page_cgroup.h about this.)
965 */
966 struct page_cgroup *page_cgroup;
967 unsigned long pad;
968#endif
d41dee36
AW
969};
970
3e347261
BP
971#ifdef CONFIG_SPARSEMEM_EXTREME
972#define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
973#else
974#define SECTIONS_PER_ROOT 1
975#endif
802f192e 976
3e347261
BP
977#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
978#define NR_SECTION_ROOTS (NR_MEM_SECTIONS / SECTIONS_PER_ROOT)
979#define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
802f192e 980
3e347261
BP
981#ifdef CONFIG_SPARSEMEM_EXTREME
982extern struct mem_section *mem_section[NR_SECTION_ROOTS];
802f192e 983#else
3e347261
BP
984extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
985#endif
d41dee36 986
29751f69
AW
987static inline struct mem_section *__nr_to_section(unsigned long nr)
988{
3e347261
BP
989 if (!mem_section[SECTION_NR_TO_ROOT(nr)])
990 return NULL;
991 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
29751f69 992}
4ca644d9 993extern int __section_nr(struct mem_section* ms);
04753278 994extern unsigned long usemap_size(void);
29751f69
AW
995
996/*
997 * We use the lower bits of the mem_map pointer to store
998 * a little bit of information. There should be at least
999 * 3 bits here due to 32-bit alignment.
1000 */
1001#define SECTION_MARKED_PRESENT (1UL<<0)
1002#define SECTION_HAS_MEM_MAP (1UL<<1)
1003#define SECTION_MAP_LAST_BIT (1UL<<2)
1004#define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
30c253e6 1005#define SECTION_NID_SHIFT 2
29751f69
AW
1006
1007static inline struct page *__section_mem_map_addr(struct mem_section *section)
1008{
1009 unsigned long map = section->section_mem_map;
1010 map &= SECTION_MAP_MASK;
1011 return (struct page *)map;
1012}
1013
540557b9 1014static inline int present_section(struct mem_section *section)
29751f69 1015{
802f192e 1016 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
29751f69
AW
1017}
1018
540557b9
AW
1019static inline int present_section_nr(unsigned long nr)
1020{
1021 return present_section(__nr_to_section(nr));
1022}
1023
1024static inline int valid_section(struct mem_section *section)
29751f69 1025{
802f192e 1026 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
29751f69
AW
1027}
1028
1029static inline int valid_section_nr(unsigned long nr)
1030{
1031 return valid_section(__nr_to_section(nr));
1032}
1033
d41dee36
AW
1034static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1035{
29751f69 1036 return __nr_to_section(pfn_to_section_nr(pfn));
d41dee36
AW
1037}
1038
d41dee36
AW
1039static inline int pfn_valid(unsigned long pfn)
1040{
1041 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1042 return 0;
29751f69 1043 return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
d41dee36
AW
1044}
1045
540557b9
AW
1046static inline int pfn_present(unsigned long pfn)
1047{
1048 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1049 return 0;
1050 return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1051}
1052
d41dee36
AW
1053/*
1054 * These are _only_ used during initialisation, therefore they
1055 * can use __initdata ... They could have names to indicate
1056 * this restriction.
1057 */
1058#ifdef CONFIG_NUMA
161599ff
AW
1059#define pfn_to_nid(pfn) \
1060({ \
1061 unsigned long __pfn_to_nid_pfn = (pfn); \
1062 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
1063})
2bdaf115
AW
1064#else
1065#define pfn_to_nid(pfn) (0)
d41dee36
AW
1066#endif
1067
d41dee36
AW
1068#define early_pfn_valid(pfn) pfn_valid(pfn)
1069void sparse_init(void);
1070#else
1071#define sparse_init() do {} while (0)
28ae55c9 1072#define sparse_index_init(_sec, _nid) do {} while (0)
d41dee36
AW
1073#endif /* CONFIG_SPARSEMEM */
1074
75167957 1075#ifdef CONFIG_NODES_SPAN_OTHER_NODES
cc2559bc 1076bool early_pfn_in_nid(unsigned long pfn, int nid);
75167957
AW
1077#else
1078#define early_pfn_in_nid(pfn, nid) (1)
1079#endif
1080
d41dee36
AW
1081#ifndef early_pfn_valid
1082#define early_pfn_valid(pfn) (1)
1083#endif
1084
1085void memory_present(int nid, unsigned long start, unsigned long end);
1086unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
1087
14e07298
AW
1088/*
1089 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1090 * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
1091 * pfn_valid_within() should be used in this case; we optimise this away
1092 * when we have no holes within a MAX_ORDER_NR_PAGES block.
1093 */
1094#ifdef CONFIG_HOLES_IN_ZONE
1095#define pfn_valid_within(pfn) pfn_valid(pfn)
1096#else
1097#define pfn_valid_within(pfn) (1)
1098#endif
1099
eb33575c
MG
1100#ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1101/*
1102 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1103 * associated with it or not. In FLATMEM, it is expected that holes always
1104 * have valid memmap as long as there is valid PFNs either side of the hole.
1105 * In SPARSEMEM, it is assumed that a valid section has a memmap for the
1106 * entire section.
1107 *
1108 * However, an ARM, and maybe other embedded architectures in the future
1109 * free memmap backing holes to save memory on the assumption the memmap is
1110 * never used. The page_zone linkages are then broken even though pfn_valid()
1111 * returns true. A walker of the full memmap must then do this additional
1112 * check to ensure the memmap they are looking at is sane by making sure
1113 * the zone and PFN linkages are still valid. This is expensive, but walkers
1114 * of the full memmap are extremely rare.
1115 */
1116int memmap_valid_within(unsigned long pfn,
1117 struct page *page, struct zone *zone);
1118#else
1119static inline int memmap_valid_within(unsigned long pfn,
1120 struct page *page, struct zone *zone)
1121{
1122 return 1;
1123}
1124#endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1125
97965478 1126#endif /* !__GENERATING_BOUNDS.H */
1da177e4 1127#endif /* !__ASSEMBLY__ */
1da177e4 1128#endif /* _LINUX_MMZONE_H */