remove PAGE_GROUP_BY_MOBILITY
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / include / linux / mmzone.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_MMZONE_H
2#define _LINUX_MMZONE_H
3
4#ifdef __KERNEL__
5#ifndef __ASSEMBLY__
6
1da177e4
LT
7#include <linux/spinlock.h>
8#include <linux/list.h>
9#include <linux/wait.h>
10#include <linux/cache.h>
11#include <linux/threads.h>
12#include <linux/numa.h>
13#include <linux/init.h>
bdc8cb98 14#include <linux/seqlock.h>
8357f869 15#include <linux/nodemask.h>
835c134e 16#include <linux/pageblock-flags.h>
1da177e4 17#include <asm/atomic.h>
93ff66bf 18#include <asm/page.h>
1da177e4
LT
19
20/* Free memory management - zoned buddy allocator. */
21#ifndef CONFIG_FORCE_MAX_ZONEORDER
22#define MAX_ORDER 11
23#else
24#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
25#endif
e984bb43 26#define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
1da177e4 27
5ad333eb
AW
28/*
29 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
30 * costly to service. That is between allocation orders which should
31 * coelesce naturally under reasonable reclaim pressure and those which
32 * will not.
33 */
34#define PAGE_ALLOC_COSTLY_ORDER 3
35
b2a0ac88 36#define MIGRATE_UNMOVABLE 0
e12ba74d
MG
37#define MIGRATE_RECLAIMABLE 1
38#define MIGRATE_MOVABLE 2
e010487d 39#define MIGRATE_HIGHATOMIC 3
56fd56b8
MG
40#define MIGRATE_RESERVE 4
41#define MIGRATE_TYPES 5
b2a0ac88
MG
42
43#define for_each_migratetype_order(order, type) \
44 for (order = 0; order < MAX_ORDER; order++) \
45 for (type = 0; type < MIGRATE_TYPES; type++)
46
1da177e4 47struct free_area {
b2a0ac88 48 struct list_head free_list[MIGRATE_TYPES];
1da177e4
LT
49 unsigned long nr_free;
50};
51
52struct pglist_data;
53
54/*
55 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
56 * So add a wild amount of padding here to ensure that they fall into separate
57 * cachelines. There are very few zone structures in the machine, so space
58 * consumption is not a concern here.
59 */
60#if defined(CONFIG_SMP)
61struct zone_padding {
62 char x[0];
22fc6ecc 63} ____cacheline_internodealigned_in_smp;
1da177e4
LT
64#define ZONE_PADDING(name) struct zone_padding name;
65#else
66#define ZONE_PADDING(name)
67#endif
68
2244b95a 69enum zone_stat_item {
51ed4491 70 /* First 128 byte cacheline (assuming 64 bit words) */
d23ad423 71 NR_FREE_PAGES,
c8785385
CL
72 NR_INACTIVE,
73 NR_ACTIVE,
f3dbd344
CL
74 NR_ANON_PAGES, /* Mapped anonymous pages */
75 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
65ba55f5 76 only modified from process context */
347ce434 77 NR_FILE_PAGES,
b1e7a8fd 78 NR_FILE_DIRTY,
ce866b34 79 NR_WRITEBACK,
51ed4491
CL
80 /* Second 128 byte cacheline */
81 NR_SLAB_RECLAIMABLE,
82 NR_SLAB_UNRECLAIMABLE,
83 NR_PAGETABLE, /* used for pagetables */
fd39fc85 84 NR_UNSTABLE_NFS, /* NFS unstable pages */
d2c5e30c 85 NR_BOUNCE,
e129b5c2 86 NR_VMSCAN_WRITE,
ca889e6c
CL
87#ifdef CONFIG_NUMA
88 NUMA_HIT, /* allocated in intended node */
89 NUMA_MISS, /* allocated in non intended node */
90 NUMA_FOREIGN, /* was intended here, hit elsewhere */
91 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
92 NUMA_LOCAL, /* allocation from local node */
93 NUMA_OTHER, /* allocation from other node */
94#endif
2244b95a
CL
95 NR_VM_ZONE_STAT_ITEMS };
96
1da177e4
LT
97struct per_cpu_pages {
98 int count; /* number of pages in the list */
1da177e4
LT
99 int high; /* high watermark, emptying needed */
100 int batch; /* chunk size for buddy add/remove */
101 struct list_head list; /* the list of pages */
102};
103
104struct per_cpu_pageset {
105 struct per_cpu_pages pcp[2]; /* 0: hot. 1: cold */
4037d452
CL
106#ifdef CONFIG_NUMA
107 s8 expire;
108#endif
2244b95a 109#ifdef CONFIG_SMP
df9ecaba 110 s8 stat_threshold;
2244b95a
CL
111 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
112#endif
1da177e4
LT
113} ____cacheline_aligned_in_smp;
114
e7c8d5c9
CL
115#ifdef CONFIG_NUMA
116#define zone_pcp(__z, __cpu) ((__z)->pageset[(__cpu)])
117#else
118#define zone_pcp(__z, __cpu) (&(__z)->pageset[(__cpu)])
119#endif
120
2f1b6248 121enum zone_type {
4b51d669 122#ifdef CONFIG_ZONE_DMA
2f1b6248
CL
123 /*
124 * ZONE_DMA is used when there are devices that are not able
125 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
126 * carve out the portion of memory that is needed for these devices.
127 * The range is arch specific.
128 *
129 * Some examples
130 *
131 * Architecture Limit
132 * ---------------------------
133 * parisc, ia64, sparc <4G
134 * s390 <2G
2f1b6248
CL
135 * arm Various
136 * alpha Unlimited or 0-16MB.
137 *
138 * i386, x86_64 and multiple other arches
139 * <16M.
140 */
141 ZONE_DMA,
4b51d669 142#endif
fb0e7942 143#ifdef CONFIG_ZONE_DMA32
2f1b6248
CL
144 /*
145 * x86_64 needs two ZONE_DMAs because it supports devices that are
146 * only able to do DMA to the lower 16M but also 32 bit devices that
147 * can only do DMA areas below 4G.
148 */
149 ZONE_DMA32,
fb0e7942 150#endif
2f1b6248
CL
151 /*
152 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
153 * performed on pages in ZONE_NORMAL if the DMA devices support
154 * transfers to all addressable memory.
155 */
156 ZONE_NORMAL,
e53ef38d 157#ifdef CONFIG_HIGHMEM
2f1b6248
CL
158 /*
159 * A memory area that is only addressable by the kernel through
160 * mapping portions into its own address space. This is for example
161 * used by i386 to allow the kernel to address the memory beyond
162 * 900MB. The kernel will set up special mappings (page
163 * table entries on i386) for each page that the kernel needs to
164 * access.
165 */
166 ZONE_HIGHMEM,
e53ef38d 167#endif
2a1e274a 168 ZONE_MOVABLE,
2f1b6248
CL
169 MAX_NR_ZONES
170};
1da177e4 171
1da177e4
LT
172/*
173 * When a memory allocation must conform to specific limitations (such
174 * as being suitable for DMA) the caller will pass in hints to the
175 * allocator in the gfp_mask, in the zone modifier bits. These bits
176 * are used to select a priority ordered list of memory zones which
19655d34 177 * match the requested limits. See gfp_zone() in include/linux/gfp.h
1da177e4 178 */
fb0e7942 179
4b51d669
CL
180/*
181 * Count the active zones. Note that the use of defined(X) outside
182 * #if and family is not necessarily defined so ensure we cannot use
183 * it later. Use __ZONE_COUNT to work out how many shift bits we need.
184 */
185#define __ZONE_COUNT ( \
186 defined(CONFIG_ZONE_DMA) \
187 + defined(CONFIG_ZONE_DMA32) \
188 + 1 \
189 + defined(CONFIG_HIGHMEM) \
2a1e274a 190 + 1 \
4b51d669
CL
191)
192#if __ZONE_COUNT < 2
193#define ZONES_SHIFT 0
194#elif __ZONE_COUNT <= 2
19655d34 195#define ZONES_SHIFT 1
4b51d669 196#elif __ZONE_COUNT <= 4
19655d34 197#define ZONES_SHIFT 2
4b51d669
CL
198#else
199#error ZONES_SHIFT -- too many zones configured adjust calculation
fb0e7942 200#endif
4b51d669 201#undef __ZONE_COUNT
1da177e4 202
1da177e4
LT
203struct zone {
204 /* Fields commonly accessed by the page allocator */
1da177e4
LT
205 unsigned long pages_min, pages_low, pages_high;
206 /*
207 * We don't know if the memory that we're going to allocate will be freeable
208 * or/and it will be released eventually, so to avoid totally wasting several
209 * GB of ram we must reserve some of the lower zone memory (otherwise we risk
210 * to run OOM on the lower zones despite there's tons of freeable ram
211 * on the higher zones). This array is recalculated at runtime if the
212 * sysctl_lowmem_reserve_ratio sysctl changes.
213 */
214 unsigned long lowmem_reserve[MAX_NR_ZONES];
215
e7c8d5c9 216#ifdef CONFIG_NUMA
d5f541ed 217 int node;
9614634f
CL
218 /*
219 * zone reclaim becomes active if more unmapped pages exist.
220 */
8417bba4 221 unsigned long min_unmapped_pages;
0ff38490 222 unsigned long min_slab_pages;
e7c8d5c9
CL
223 struct per_cpu_pageset *pageset[NR_CPUS];
224#else
1da177e4 225 struct per_cpu_pageset pageset[NR_CPUS];
e7c8d5c9 226#endif
1da177e4
LT
227 /*
228 * free areas of different sizes
229 */
230 spinlock_t lock;
bdc8cb98
DH
231#ifdef CONFIG_MEMORY_HOTPLUG
232 /* see spanned/present_pages for more description */
233 seqlock_t span_seqlock;
234#endif
1da177e4
LT
235 struct free_area free_area[MAX_ORDER];
236
835c134e
MG
237#ifndef CONFIG_SPARSEMEM
238 /*
239 * Flags for a MAX_ORDER_NR_PAGES block. See pageblock-flags.h.
240 * In SPARSEMEM, this map is stored in struct mem_section
241 */
242 unsigned long *pageblock_flags;
243#endif /* CONFIG_SPARSEMEM */
244
1da177e4
LT
245
246 ZONE_PADDING(_pad1_)
247
248 /* Fields commonly accessed by the page reclaim scanner */
249 spinlock_t lru_lock;
250 struct list_head active_list;
251 struct list_head inactive_list;
252 unsigned long nr_scan_active;
253 unsigned long nr_scan_inactive;
1da177e4
LT
254 unsigned long pages_scanned; /* since last reclaim */
255 int all_unreclaimable; /* All pages pinned */
256
1e7e5a90
MH
257 /* A count of how many reclaimers are scanning this zone */
258 atomic_t reclaim_in_progress;
753ee728 259
2244b95a
CL
260 /* Zone statistics */
261 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
9eeff239 262
1da177e4
LT
263 /*
264 * prev_priority holds the scanning priority for this zone. It is
265 * defined as the scanning priority at which we achieved our reclaim
266 * target at the previous try_to_free_pages() or balance_pgdat()
267 * invokation.
268 *
269 * We use prev_priority as a measure of how much stress page reclaim is
270 * under - it drives the swappiness decision: whether to unmap mapped
271 * pages.
272 *
3bb1a852 273 * Access to both this field is quite racy even on uniprocessor. But
1da177e4
LT
274 * it is expected to average out OK.
275 */
1da177e4
LT
276 int prev_priority;
277
278
279 ZONE_PADDING(_pad2_)
280 /* Rarely used or read-mostly fields */
281
282 /*
283 * wait_table -- the array holding the hash table
02b694de 284 * wait_table_hash_nr_entries -- the size of the hash table array
1da177e4
LT
285 * wait_table_bits -- wait_table_size == (1 << wait_table_bits)
286 *
287 * The purpose of all these is to keep track of the people
288 * waiting for a page to become available and make them
289 * runnable again when possible. The trouble is that this
290 * consumes a lot of space, especially when so few things
291 * wait on pages at a given time. So instead of using
292 * per-page waitqueues, we use a waitqueue hash table.
293 *
294 * The bucket discipline is to sleep on the same queue when
295 * colliding and wake all in that wait queue when removing.
296 * When something wakes, it must check to be sure its page is
297 * truly available, a la thundering herd. The cost of a
298 * collision is great, but given the expected load of the
299 * table, they should be so rare as to be outweighed by the
300 * benefits from the saved space.
301 *
302 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
303 * primary users of these fields, and in mm/page_alloc.c
304 * free_area_init_core() performs the initialization of them.
305 */
306 wait_queue_head_t * wait_table;
02b694de 307 unsigned long wait_table_hash_nr_entries;
1da177e4
LT
308 unsigned long wait_table_bits;
309
310 /*
311 * Discontig memory support fields.
312 */
313 struct pglist_data *zone_pgdat;
1da177e4
LT
314 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
315 unsigned long zone_start_pfn;
316
bdc8cb98
DH
317 /*
318 * zone_start_pfn, spanned_pages and present_pages are all
319 * protected by span_seqlock. It is a seqlock because it has
320 * to be read outside of zone->lock, and it is done in the main
321 * allocator path. But, it is written quite infrequently.
322 *
323 * The lock is declared along with zone->lock because it is
324 * frequently read in proximity to zone->lock. It's good to
325 * give them a chance of being in the same cacheline.
326 */
1da177e4
LT
327 unsigned long spanned_pages; /* total size, including holes */
328 unsigned long present_pages; /* amount of memory (excluding holes) */
329
330 /*
331 * rarely used fields:
332 */
15ad7cdc 333 const char *name;
22fc6ecc 334} ____cacheline_internodealigned_in_smp;
1da177e4 335
1da177e4
LT
336/*
337 * The "priority" of VM scanning is how much of the queues we will scan in one
338 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
339 * queues ("queue_length >> 12") during an aging round.
340 */
341#define DEF_PRIORITY 12
342
9276b1bc
PJ
343/* Maximum number of zones on a zonelist */
344#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
345
346#ifdef CONFIG_NUMA
523b9458
CL
347
348/*
349 * The NUMA zonelists are doubled becausse we need zonelists that restrict the
350 * allocations to a single node for GFP_THISNODE.
351 *
352 * [0 .. MAX_NR_ZONES -1] : Zonelists with fallback
353 * [MAZ_NR_ZONES ... MAZ_ZONELISTS -1] : No fallback (GFP_THISNODE)
354 */
355#define MAX_ZONELISTS (2 * MAX_NR_ZONES)
356
357
9276b1bc
PJ
358/*
359 * We cache key information from each zonelist for smaller cache
360 * footprint when scanning for free pages in get_page_from_freelist().
361 *
362 * 1) The BITMAP fullzones tracks which zones in a zonelist have come
363 * up short of free memory since the last time (last_fullzone_zap)
364 * we zero'd fullzones.
365 * 2) The array z_to_n[] maps each zone in the zonelist to its node
366 * id, so that we can efficiently evaluate whether that node is
367 * set in the current tasks mems_allowed.
368 *
369 * Both fullzones and z_to_n[] are one-to-one with the zonelist,
370 * indexed by a zones offset in the zonelist zones[] array.
371 *
372 * The get_page_from_freelist() routine does two scans. During the
373 * first scan, we skip zones whose corresponding bit in 'fullzones'
374 * is set or whose corresponding node in current->mems_allowed (which
375 * comes from cpusets) is not set. During the second scan, we bypass
376 * this zonelist_cache, to ensure we look methodically at each zone.
377 *
378 * Once per second, we zero out (zap) fullzones, forcing us to
379 * reconsider nodes that might have regained more free memory.
380 * The field last_full_zap is the time we last zapped fullzones.
381 *
382 * This mechanism reduces the amount of time we waste repeatedly
383 * reexaming zones for free memory when they just came up low on
384 * memory momentarilly ago.
385 *
386 * The zonelist_cache struct members logically belong in struct
387 * zonelist. However, the mempolicy zonelists constructed for
388 * MPOL_BIND are intentionally variable length (and usually much
389 * shorter). A general purpose mechanism for handling structs with
390 * multiple variable length members is more mechanism than we want
391 * here. We resort to some special case hackery instead.
392 *
393 * The MPOL_BIND zonelists don't need this zonelist_cache (in good
394 * part because they are shorter), so we put the fixed length stuff
395 * at the front of the zonelist struct, ending in a variable length
396 * zones[], as is needed by MPOL_BIND.
397 *
398 * Then we put the optional zonelist cache on the end of the zonelist
399 * struct. This optional stuff is found by a 'zlcache_ptr' pointer in
400 * the fixed length portion at the front of the struct. This pointer
401 * both enables us to find the zonelist cache, and in the case of
402 * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
403 * to know that the zonelist cache is not there.
404 *
405 * The end result is that struct zonelists come in two flavors:
406 * 1) The full, fixed length version, shown below, and
407 * 2) The custom zonelists for MPOL_BIND.
408 * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
409 *
410 * Even though there may be multiple CPU cores on a node modifying
411 * fullzones or last_full_zap in the same zonelist_cache at the same
412 * time, we don't lock it. This is just hint data - if it is wrong now
413 * and then, the allocator will still function, perhaps a bit slower.
414 */
415
416
417struct zonelist_cache {
9276b1bc 418 unsigned short z_to_n[MAX_ZONES_PER_ZONELIST]; /* zone->nid */
7253f4ef 419 DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST); /* zone full? */
9276b1bc
PJ
420 unsigned long last_full_zap; /* when last zap'd (jiffies) */
421};
422#else
523b9458 423#define MAX_ZONELISTS MAX_NR_ZONES
9276b1bc
PJ
424struct zonelist_cache;
425#endif
426
1da177e4
LT
427/*
428 * One allocation request operates on a zonelist. A zonelist
429 * is a list of zones, the first one is the 'goal' of the
430 * allocation, the other zones are fallback zones, in decreasing
431 * priority.
432 *
9276b1bc
PJ
433 * If zlcache_ptr is not NULL, then it is just the address of zlcache,
434 * as explained above. If zlcache_ptr is NULL, there is no zlcache.
1da177e4 435 */
9276b1bc 436
1da177e4 437struct zonelist {
9276b1bc
PJ
438 struct zonelist_cache *zlcache_ptr; // NULL or &zlcache
439 struct zone *zones[MAX_ZONES_PER_ZONELIST + 1]; // NULL delimited
440#ifdef CONFIG_NUMA
441 struct zonelist_cache zlcache; // optional ...
442#endif
1da177e4
LT
443};
444
b377fd39
MG
445#ifdef CONFIG_NUMA
446/*
447 * Only custom zonelists like MPOL_BIND need to be filtered as part of
448 * policies. As described in the comment for struct zonelist_cache, these
449 * zonelists will not have a zlcache so zlcache_ptr will not be set. Use
450 * that to determine if the zonelists needs to be filtered or not.
451 */
452static inline int alloc_should_filter_zonelist(struct zonelist *zonelist)
453{
454 return !zonelist->zlcache_ptr;
455}
456#else
457static inline int alloc_should_filter_zonelist(struct zonelist *zonelist)
458{
459 return 0;
460}
461#endif /* CONFIG_NUMA */
462
c713216d
MG
463#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
464struct node_active_region {
465 unsigned long start_pfn;
466 unsigned long end_pfn;
467 int nid;
468};
469#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
1da177e4 470
5b99cd0e
HC
471#ifndef CONFIG_DISCONTIGMEM
472/* The array of struct pages - for discontigmem use pgdat->lmem_map */
473extern struct page *mem_map;
474#endif
475
1da177e4
LT
476/*
477 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
478 * (mostly NUMA machines?) to denote a higher-level memory zone than the
479 * zone denotes.
480 *
481 * On NUMA machines, each NUMA node would have a pg_data_t to describe
482 * it's memory layout.
483 *
484 * Memory statistics and page replacement data structures are maintained on a
485 * per-zone basis.
486 */
487struct bootmem_data;
488typedef struct pglist_data {
489 struct zone node_zones[MAX_NR_ZONES];
523b9458 490 struct zonelist node_zonelists[MAX_ZONELISTS];
1da177e4 491 int nr_zones;
d41dee36 492#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4 493 struct page *node_mem_map;
d41dee36 494#endif
1da177e4 495 struct bootmem_data *bdata;
208d54e5
DH
496#ifdef CONFIG_MEMORY_HOTPLUG
497 /*
498 * Must be held any time you expect node_start_pfn, node_present_pages
499 * or node_spanned_pages stay constant. Holding this will also
500 * guarantee that any pfn_valid() stays that way.
501 *
502 * Nests above zone->lock and zone->size_seqlock.
503 */
504 spinlock_t node_size_lock;
505#endif
1da177e4
LT
506 unsigned long node_start_pfn;
507 unsigned long node_present_pages; /* total number of physical pages */
508 unsigned long node_spanned_pages; /* total size of physical page
509 range, including holes */
510 int node_id;
1da177e4
LT
511 wait_queue_head_t kswapd_wait;
512 struct task_struct *kswapd;
513 int kswapd_max_order;
514} pg_data_t;
515
516#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
517#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
d41dee36 518#ifdef CONFIG_FLAT_NODE_MEM_MAP
408fde81 519#define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
d41dee36
AW
520#else
521#define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
522#endif
408fde81 523#define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
1da177e4 524
208d54e5
DH
525#include <linux/memory_hotplug.h>
526
1da177e4
LT
527void get_zone_counts(unsigned long *active, unsigned long *inactive,
528 unsigned long *free);
529void build_all_zonelists(void);
530void wakeup_kswapd(struct zone *zone, int order);
531int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
7fb1d9fc 532 int classzone_idx, int alloc_flags);
a2f3aa02
DH
533enum memmap_context {
534 MEMMAP_EARLY,
535 MEMMAP_HOTPLUG,
536};
718127cc 537extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
a2f3aa02
DH
538 unsigned long size,
539 enum memmap_context context);
718127cc 540
1da177e4
LT
541#ifdef CONFIG_HAVE_MEMORY_PRESENT
542void memory_present(int nid, unsigned long start, unsigned long end);
543#else
544static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
545#endif
546
547#ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
548unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
549#endif
550
551/*
552 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
553 */
554#define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
555
f3fe6512
CK
556static inline int populated_zone(struct zone *zone)
557{
558 return (!!zone->present_pages);
559}
560
2a1e274a
MG
561extern int movable_zone;
562
563static inline int zone_movable_is_highmem(void)
564{
565#if defined(CONFIG_HIGHMEM) && defined(CONFIG_ARCH_POPULATES_NODE_MAP)
566 return movable_zone == ZONE_HIGHMEM;
567#else
568 return 0;
569#endif
570}
571
2f1b6248 572static inline int is_highmem_idx(enum zone_type idx)
1da177e4 573{
e53ef38d 574#ifdef CONFIG_HIGHMEM
2a1e274a
MG
575 return (idx == ZONE_HIGHMEM ||
576 (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
e53ef38d
CL
577#else
578 return 0;
579#endif
1da177e4
LT
580}
581
2f1b6248 582static inline int is_normal_idx(enum zone_type idx)
1da177e4
LT
583{
584 return (idx == ZONE_NORMAL);
585}
9328b8fa 586
1da177e4
LT
587/**
588 * is_highmem - helper function to quickly check if a struct zone is a
589 * highmem zone or not. This is an attempt to keep references
590 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
591 * @zone - pointer to struct zone variable
592 */
593static inline int is_highmem(struct zone *zone)
594{
e53ef38d 595#ifdef CONFIG_HIGHMEM
2a1e274a
MG
596 int zone_idx = zone - zone->zone_pgdat->node_zones;
597 return zone_idx == ZONE_HIGHMEM ||
598 (zone_idx == ZONE_MOVABLE && zone_movable_is_highmem());
e53ef38d
CL
599#else
600 return 0;
601#endif
1da177e4
LT
602}
603
604static inline int is_normal(struct zone *zone)
605{
606 return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
607}
608
9328b8fa
NP
609static inline int is_dma32(struct zone *zone)
610{
fb0e7942 611#ifdef CONFIG_ZONE_DMA32
9328b8fa 612 return zone == zone->zone_pgdat->node_zones + ZONE_DMA32;
fb0e7942
CL
613#else
614 return 0;
615#endif
9328b8fa
NP
616}
617
618static inline int is_dma(struct zone *zone)
619{
4b51d669 620#ifdef CONFIG_ZONE_DMA
9328b8fa 621 return zone == zone->zone_pgdat->node_zones + ZONE_DMA;
4b51d669
CL
622#else
623 return 0;
624#endif
9328b8fa
NP
625}
626
1da177e4
LT
627/* These two functions are used to setup the per zone pages min values */
628struct ctl_table;
629struct file;
630int min_free_kbytes_sysctl_handler(struct ctl_table *, int, struct file *,
631 void __user *, size_t *, loff_t *);
632extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
633int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, struct file *,
634 void __user *, size_t *, loff_t *);
8ad4b1fb
RS
635int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int, struct file *,
636 void __user *, size_t *, loff_t *);
9614634f
CL
637int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
638 struct file *, void __user *, size_t *, loff_t *);
0ff38490
CL
639int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
640 struct file *, void __user *, size_t *, loff_t *);
1da177e4 641
f0c0b2b8
KH
642extern int numa_zonelist_order_handler(struct ctl_table *, int,
643 struct file *, void __user *, size_t *, loff_t *);
644extern char numa_zonelist_order[];
645#define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */
646
1da177e4
LT
647#include <linux/topology.h>
648/* Returns the number of the current Node. */
69d81fcd 649#ifndef numa_node_id
39c715b7 650#define numa_node_id() (cpu_to_node(raw_smp_processor_id()))
69d81fcd 651#endif
1da177e4 652
93b7504e 653#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
654
655extern struct pglist_data contig_page_data;
656#define NODE_DATA(nid) (&contig_page_data)
657#define NODE_MEM_MAP(nid) mem_map
658#define MAX_NODES_SHIFT 1
1da177e4 659
93b7504e 660#else /* CONFIG_NEED_MULTIPLE_NODES */
1da177e4
LT
661
662#include <asm/mmzone.h>
663
93b7504e 664#endif /* !CONFIG_NEED_MULTIPLE_NODES */
348f8b6c 665
95144c78
KH
666extern struct pglist_data *first_online_pgdat(void);
667extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
668extern struct zone *next_zone(struct zone *zone);
8357f869
KH
669
670/**
671 * for_each_pgdat - helper macro to iterate over all nodes
672 * @pgdat - pointer to a pg_data_t variable
673 */
674#define for_each_online_pgdat(pgdat) \
675 for (pgdat = first_online_pgdat(); \
676 pgdat; \
677 pgdat = next_online_pgdat(pgdat))
8357f869
KH
678/**
679 * for_each_zone - helper macro to iterate over all memory zones
680 * @zone - pointer to struct zone variable
681 *
682 * The user only needs to declare the zone variable, for_each_zone
683 * fills it in.
684 */
685#define for_each_zone(zone) \
686 for (zone = (first_online_pgdat())->node_zones; \
687 zone; \
688 zone = next_zone(zone))
689
d41dee36
AW
690#ifdef CONFIG_SPARSEMEM
691#include <asm/sparsemem.h>
692#endif
693
07808b74 694#if BITS_PER_LONG == 32
1da177e4 695/*
a2f1b424
AK
696 * with 32 bit page->flags field, we reserve 9 bits for node/zone info.
697 * there are 4 zones (3 bits) and this leaves 9-3=6 bits for nodes.
1da177e4 698 */
a2f1b424 699#define FLAGS_RESERVED 9
348f8b6c 700
1da177e4
LT
701#elif BITS_PER_LONG == 64
702/*
703 * with 64 bit flags field, there's plenty of room.
704 */
348f8b6c 705#define FLAGS_RESERVED 32
1da177e4 706
348f8b6c 707#else
1da177e4 708
348f8b6c 709#error BITS_PER_LONG not defined
1da177e4 710
1da177e4
LT
711#endif
712
c713216d
MG
713#if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
714 !defined(CONFIG_ARCH_POPULATES_NODE_MAP)
b159d43f
AW
715#define early_pfn_to_nid(nid) (0UL)
716#endif
717
2bdaf115
AW
718#ifdef CONFIG_FLATMEM
719#define pfn_to_nid(pfn) (0)
720#endif
721
d41dee36
AW
722#define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
723#define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
724
725#ifdef CONFIG_SPARSEMEM
726
727/*
728 * SECTION_SHIFT #bits space required to store a section #
729 *
730 * PA_SECTION_SHIFT physical address to/from section number
731 * PFN_SECTION_SHIFT pfn to/from section number
732 */
733#define SECTIONS_SHIFT (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)
734
735#define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
736#define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
737
738#define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
739
740#define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
741#define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
742
835c134e 743#define SECTION_BLOCKFLAGS_BITS \
5c0e3066 744 ((1 << (PFN_SECTION_SHIFT - (MAX_ORDER-1))) * NR_PAGEBLOCK_BITS)
835c134e 745
d41dee36
AW
746#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
747#error Allocator MAX_ORDER exceeds SECTION_SIZE
748#endif
749
750struct page;
751struct mem_section {
29751f69
AW
752 /*
753 * This is, logically, a pointer to an array of struct
754 * pages. However, it is stored with some other magic.
755 * (see sparse.c::sparse_init_one_section())
756 *
30c253e6
AW
757 * Additionally during early boot we encode node id of
758 * the location of the section here to guide allocation.
759 * (see sparse.c::memory_present())
760 *
29751f69
AW
761 * Making it a UL at least makes someone do a cast
762 * before using it wrong.
763 */
764 unsigned long section_mem_map;
5c0e3066
MG
765
766 /* See declaration of similar field in struct zone */
767 unsigned long *pageblock_flags;
d41dee36
AW
768};
769
3e347261
BP
770#ifdef CONFIG_SPARSEMEM_EXTREME
771#define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
772#else
773#define SECTIONS_PER_ROOT 1
774#endif
802f192e 775
3e347261
BP
776#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
777#define NR_SECTION_ROOTS (NR_MEM_SECTIONS / SECTIONS_PER_ROOT)
778#define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
802f192e 779
3e347261
BP
780#ifdef CONFIG_SPARSEMEM_EXTREME
781extern struct mem_section *mem_section[NR_SECTION_ROOTS];
802f192e 782#else
3e347261
BP
783extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
784#endif
d41dee36 785
29751f69
AW
786static inline struct mem_section *__nr_to_section(unsigned long nr)
787{
3e347261
BP
788 if (!mem_section[SECTION_NR_TO_ROOT(nr)])
789 return NULL;
790 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
29751f69 791}
4ca644d9 792extern int __section_nr(struct mem_section* ms);
29751f69
AW
793
794/*
795 * We use the lower bits of the mem_map pointer to store
796 * a little bit of information. There should be at least
797 * 3 bits here due to 32-bit alignment.
798 */
799#define SECTION_MARKED_PRESENT (1UL<<0)
800#define SECTION_HAS_MEM_MAP (1UL<<1)
801#define SECTION_MAP_LAST_BIT (1UL<<2)
802#define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
30c253e6 803#define SECTION_NID_SHIFT 2
29751f69
AW
804
805static inline struct page *__section_mem_map_addr(struct mem_section *section)
806{
807 unsigned long map = section->section_mem_map;
808 map &= SECTION_MAP_MASK;
809 return (struct page *)map;
810}
811
540557b9 812static inline int present_section(struct mem_section *section)
29751f69 813{
802f192e 814 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
29751f69
AW
815}
816
540557b9
AW
817static inline int present_section_nr(unsigned long nr)
818{
819 return present_section(__nr_to_section(nr));
820}
821
822static inline int valid_section(struct mem_section *section)
29751f69 823{
802f192e 824 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
29751f69
AW
825}
826
827static inline int valid_section_nr(unsigned long nr)
828{
829 return valid_section(__nr_to_section(nr));
830}
831
d41dee36
AW
832static inline struct mem_section *__pfn_to_section(unsigned long pfn)
833{
29751f69 834 return __nr_to_section(pfn_to_section_nr(pfn));
d41dee36
AW
835}
836
d41dee36
AW
837static inline int pfn_valid(unsigned long pfn)
838{
839 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
840 return 0;
29751f69 841 return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
d41dee36
AW
842}
843
540557b9
AW
844static inline int pfn_present(unsigned long pfn)
845{
846 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
847 return 0;
848 return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
849}
850
d41dee36
AW
851/*
852 * These are _only_ used during initialisation, therefore they
853 * can use __initdata ... They could have names to indicate
854 * this restriction.
855 */
856#ifdef CONFIG_NUMA
161599ff
AW
857#define pfn_to_nid(pfn) \
858({ \
859 unsigned long __pfn_to_nid_pfn = (pfn); \
860 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
861})
2bdaf115
AW
862#else
863#define pfn_to_nid(pfn) (0)
d41dee36
AW
864#endif
865
d41dee36
AW
866#define early_pfn_valid(pfn) pfn_valid(pfn)
867void sparse_init(void);
868#else
869#define sparse_init() do {} while (0)
28ae55c9 870#define sparse_index_init(_sec, _nid) do {} while (0)
d41dee36
AW
871#endif /* CONFIG_SPARSEMEM */
872
75167957
AW
873#ifdef CONFIG_NODES_SPAN_OTHER_NODES
874#define early_pfn_in_nid(pfn, nid) (early_pfn_to_nid(pfn) == (nid))
875#else
876#define early_pfn_in_nid(pfn, nid) (1)
877#endif
878
d41dee36
AW
879#ifndef early_pfn_valid
880#define early_pfn_valid(pfn) (1)
881#endif
882
883void memory_present(int nid, unsigned long start, unsigned long end);
884unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
885
14e07298
AW
886/*
887 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
888 * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
889 * pfn_valid_within() should be used in this case; we optimise this away
890 * when we have no holes within a MAX_ORDER_NR_PAGES block.
891 */
892#ifdef CONFIG_HOLES_IN_ZONE
893#define pfn_valid_within(pfn) pfn_valid(pfn)
894#else
895#define pfn_valid_within(pfn) (1)
896#endif
897
1da177e4
LT
898#endif /* !__ASSEMBLY__ */
899#endif /* __KERNEL__ */
900#endif /* _LINUX_MMZONE_H */