Merge branch 'master' into percpu
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / include / linux / mmzone.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_MMZONE_H
2#define _LINUX_MMZONE_H
3
1da177e4 4#ifndef __ASSEMBLY__
97965478 5#ifndef __GENERATING_BOUNDS_H
1da177e4 6
1da177e4
LT
7#include <linux/spinlock.h>
8#include <linux/list.h>
9#include <linux/wait.h>
e815af95 10#include <linux/bitops.h>
1da177e4
LT
11#include <linux/cache.h>
12#include <linux/threads.h>
13#include <linux/numa.h>
14#include <linux/init.h>
bdc8cb98 15#include <linux/seqlock.h>
8357f869 16#include <linux/nodemask.h>
835c134e 17#include <linux/pageblock-flags.h>
01fc0ac1 18#include <generated/bounds.h>
1da177e4 19#include <asm/atomic.h>
93ff66bf 20#include <asm/page.h>
1da177e4
LT
21
22/* Free memory management - zoned buddy allocator. */
23#ifndef CONFIG_FORCE_MAX_ZONEORDER
24#define MAX_ORDER 11
25#else
26#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
27#endif
e984bb43 28#define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
1da177e4 29
5ad333eb
AW
30/*
31 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
32 * costly to service. That is between allocation orders which should
33 * coelesce naturally under reasonable reclaim pressure and those which
34 * will not.
35 */
36#define PAGE_ALLOC_COSTLY_ORDER 3
37
b2a0ac88 38#define MIGRATE_UNMOVABLE 0
e12ba74d
MG
39#define MIGRATE_RECLAIMABLE 1
40#define MIGRATE_MOVABLE 2
5f8dcc21 41#define MIGRATE_PCPTYPES 3 /* the number of types on the pcp lists */
64c5e135 42#define MIGRATE_RESERVE 3
a5d76b54
KH
43#define MIGRATE_ISOLATE 4 /* can't allocate from here */
44#define MIGRATE_TYPES 5
b2a0ac88
MG
45
46#define for_each_migratetype_order(order, type) \
47 for (order = 0; order < MAX_ORDER; order++) \
48 for (type = 0; type < MIGRATE_TYPES; type++)
49
467c996c
MG
50extern int page_group_by_mobility_disabled;
51
52static inline int get_pageblock_migratetype(struct page *page)
53{
467c996c
MG
54 return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end);
55}
56
1da177e4 57struct free_area {
b2a0ac88 58 struct list_head free_list[MIGRATE_TYPES];
1da177e4
LT
59 unsigned long nr_free;
60};
61
62struct pglist_data;
63
64/*
65 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
66 * So add a wild amount of padding here to ensure that they fall into separate
67 * cachelines. There are very few zone structures in the machine, so space
68 * consumption is not a concern here.
69 */
70#if defined(CONFIG_SMP)
71struct zone_padding {
72 char x[0];
22fc6ecc 73} ____cacheline_internodealigned_in_smp;
1da177e4
LT
74#define ZONE_PADDING(name) struct zone_padding name;
75#else
76#define ZONE_PADDING(name)
77#endif
78
2244b95a 79enum zone_stat_item {
51ed4491 80 /* First 128 byte cacheline (assuming 64 bit words) */
d23ad423 81 NR_FREE_PAGES,
b69408e8 82 NR_LRU_BASE,
4f98a2fe
RR
83 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
84 NR_ACTIVE_ANON, /* " " " " " */
85 NR_INACTIVE_FILE, /* " " " " " */
86 NR_ACTIVE_FILE, /* " " " " " */
894bc310 87 NR_UNEVICTABLE, /* " " " " " */
5344b7e6 88 NR_MLOCK, /* mlock()ed pages found and moved off LRU */
f3dbd344
CL
89 NR_ANON_PAGES, /* Mapped anonymous pages */
90 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
65ba55f5 91 only modified from process context */
347ce434 92 NR_FILE_PAGES,
b1e7a8fd 93 NR_FILE_DIRTY,
ce866b34 94 NR_WRITEBACK,
51ed4491
CL
95 NR_SLAB_RECLAIMABLE,
96 NR_SLAB_UNRECLAIMABLE,
97 NR_PAGETABLE, /* used for pagetables */
c6a7f572
KM
98 NR_KERNEL_STACK,
99 /* Second 128 byte cacheline */
fd39fc85 100 NR_UNSTABLE_NFS, /* NFS unstable pages */
d2c5e30c 101 NR_BOUNCE,
e129b5c2 102 NR_VMSCAN_WRITE,
fc3ba692 103 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */
a731286d
KM
104 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */
105 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */
4b02108a 106 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */
ca889e6c
CL
107#ifdef CONFIG_NUMA
108 NUMA_HIT, /* allocated in intended node */
109 NUMA_MISS, /* allocated in non intended node */
110 NUMA_FOREIGN, /* was intended here, hit elsewhere */
111 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
112 NUMA_LOCAL, /* allocation from local node */
113 NUMA_OTHER, /* allocation from other node */
114#endif
2244b95a
CL
115 NR_VM_ZONE_STAT_ITEMS };
116
4f98a2fe
RR
117/*
118 * We do arithmetic on the LRU lists in various places in the code,
119 * so it is important to keep the active lists LRU_ACTIVE higher in
120 * the array than the corresponding inactive lists, and to keep
121 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
122 *
123 * This has to be kept in sync with the statistics in zone_stat_item
124 * above and the descriptions in vmstat_text in mm/vmstat.c
125 */
126#define LRU_BASE 0
127#define LRU_ACTIVE 1
128#define LRU_FILE 2
129
b69408e8 130enum lru_list {
4f98a2fe
RR
131 LRU_INACTIVE_ANON = LRU_BASE,
132 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
133 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
134 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
894bc310 135 LRU_UNEVICTABLE,
894bc310
LS
136 NR_LRU_LISTS
137};
b69408e8
CL
138
139#define for_each_lru(l) for (l = 0; l < NR_LRU_LISTS; l++)
140
894bc310
LS
141#define for_each_evictable_lru(l) for (l = 0; l <= LRU_ACTIVE_FILE; l++)
142
4f98a2fe
RR
143static inline int is_file_lru(enum lru_list l)
144{
145 return (l == LRU_INACTIVE_FILE || l == LRU_ACTIVE_FILE);
146}
147
b69408e8
CL
148static inline int is_active_lru(enum lru_list l)
149{
4f98a2fe 150 return (l == LRU_ACTIVE_ANON || l == LRU_ACTIVE_FILE);
b69408e8
CL
151}
152
894bc310
LS
153static inline int is_unevictable_lru(enum lru_list l)
154{
894bc310 155 return (l == LRU_UNEVICTABLE);
894bc310
LS
156}
157
41858966
MG
158enum zone_watermarks {
159 WMARK_MIN,
160 WMARK_LOW,
161 WMARK_HIGH,
162 NR_WMARK
163};
164
165#define min_wmark_pages(z) (z->watermark[WMARK_MIN])
166#define low_wmark_pages(z) (z->watermark[WMARK_LOW])
167#define high_wmark_pages(z) (z->watermark[WMARK_HIGH])
168
1da177e4
LT
169struct per_cpu_pages {
170 int count; /* number of pages in the list */
1da177e4
LT
171 int high; /* high watermark, emptying needed */
172 int batch; /* chunk size for buddy add/remove */
5f8dcc21
MG
173
174 /* Lists of pages, one per migrate type stored on the pcp-lists */
175 struct list_head lists[MIGRATE_PCPTYPES];
1da177e4
LT
176};
177
178struct per_cpu_pageset {
3dfa5721 179 struct per_cpu_pages pcp;
4037d452
CL
180#ifdef CONFIG_NUMA
181 s8 expire;
182#endif
2244b95a 183#ifdef CONFIG_SMP
df9ecaba 184 s8 stat_threshold;
2244b95a
CL
185 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
186#endif
99dcc3e5 187};
e7c8d5c9 188
97965478
CL
189#endif /* !__GENERATING_BOUNDS.H */
190
2f1b6248 191enum zone_type {
4b51d669 192#ifdef CONFIG_ZONE_DMA
2f1b6248
CL
193 /*
194 * ZONE_DMA is used when there are devices that are not able
195 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
196 * carve out the portion of memory that is needed for these devices.
197 * The range is arch specific.
198 *
199 * Some examples
200 *
201 * Architecture Limit
202 * ---------------------------
203 * parisc, ia64, sparc <4G
204 * s390 <2G
2f1b6248
CL
205 * arm Various
206 * alpha Unlimited or 0-16MB.
207 *
208 * i386, x86_64 and multiple other arches
209 * <16M.
210 */
211 ZONE_DMA,
4b51d669 212#endif
fb0e7942 213#ifdef CONFIG_ZONE_DMA32
2f1b6248
CL
214 /*
215 * x86_64 needs two ZONE_DMAs because it supports devices that are
216 * only able to do DMA to the lower 16M but also 32 bit devices that
217 * can only do DMA areas below 4G.
218 */
219 ZONE_DMA32,
fb0e7942 220#endif
2f1b6248
CL
221 /*
222 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
223 * performed on pages in ZONE_NORMAL if the DMA devices support
224 * transfers to all addressable memory.
225 */
226 ZONE_NORMAL,
e53ef38d 227#ifdef CONFIG_HIGHMEM
2f1b6248
CL
228 /*
229 * A memory area that is only addressable by the kernel through
230 * mapping portions into its own address space. This is for example
231 * used by i386 to allow the kernel to address the memory beyond
232 * 900MB. The kernel will set up special mappings (page
233 * table entries on i386) for each page that the kernel needs to
234 * access.
235 */
236 ZONE_HIGHMEM,
e53ef38d 237#endif
2a1e274a 238 ZONE_MOVABLE,
97965478 239 __MAX_NR_ZONES
2f1b6248 240};
1da177e4 241
97965478
CL
242#ifndef __GENERATING_BOUNDS_H
243
1da177e4
LT
244/*
245 * When a memory allocation must conform to specific limitations (such
246 * as being suitable for DMA) the caller will pass in hints to the
247 * allocator in the gfp_mask, in the zone modifier bits. These bits
248 * are used to select a priority ordered list of memory zones which
19655d34 249 * match the requested limits. See gfp_zone() in include/linux/gfp.h
1da177e4 250 */
fb0e7942 251
97965478 252#if MAX_NR_ZONES < 2
4b51d669 253#define ZONES_SHIFT 0
97965478 254#elif MAX_NR_ZONES <= 2
19655d34 255#define ZONES_SHIFT 1
97965478 256#elif MAX_NR_ZONES <= 4
19655d34 257#define ZONES_SHIFT 2
4b51d669
CL
258#else
259#error ZONES_SHIFT -- too many zones configured adjust calculation
fb0e7942 260#endif
1da177e4 261
6e901571
KM
262struct zone_reclaim_stat {
263 /*
264 * The pageout code in vmscan.c keeps track of how many of the
265 * mem/swap backed and file backed pages are refeferenced.
266 * The higher the rotated/scanned ratio, the more valuable
267 * that cache is.
268 *
269 * The anon LRU stats live in [0], file LRU stats in [1]
270 */
271 unsigned long recent_rotated[2];
272 unsigned long recent_scanned[2];
f8629631
WF
273
274 /*
275 * accumulated for batching
276 */
277 unsigned long nr_saved_scan[NR_LRU_LISTS];
6e901571
KM
278};
279
1da177e4
LT
280struct zone {
281 /* Fields commonly accessed by the page allocator */
41858966
MG
282
283 /* zone watermarks, access with *_wmark_pages(zone) macros */
284 unsigned long watermark[NR_WMARK];
285
1da177e4
LT
286 /*
287 * We don't know if the memory that we're going to allocate will be freeable
288 * or/and it will be released eventually, so to avoid totally wasting several
289 * GB of ram we must reserve some of the lower zone memory (otherwise we risk
290 * to run OOM on the lower zones despite there's tons of freeable ram
291 * on the higher zones). This array is recalculated at runtime if the
292 * sysctl_lowmem_reserve_ratio sysctl changes.
293 */
294 unsigned long lowmem_reserve[MAX_NR_ZONES];
295
e7c8d5c9 296#ifdef CONFIG_NUMA
d5f541ed 297 int node;
9614634f
CL
298 /*
299 * zone reclaim becomes active if more unmapped pages exist.
300 */
8417bba4 301 unsigned long min_unmapped_pages;
0ff38490 302 unsigned long min_slab_pages;
e7c8d5c9 303#endif
99dcc3e5 304 struct per_cpu_pageset *pageset;
1da177e4
LT
305 /*
306 * free areas of different sizes
307 */
308 spinlock_t lock;
bdc8cb98
DH
309#ifdef CONFIG_MEMORY_HOTPLUG
310 /* see spanned/present_pages for more description */
311 seqlock_t span_seqlock;
312#endif
1da177e4
LT
313 struct free_area free_area[MAX_ORDER];
314
835c134e
MG
315#ifndef CONFIG_SPARSEMEM
316 /*
d9c23400 317 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
835c134e
MG
318 * In SPARSEMEM, this map is stored in struct mem_section
319 */
320 unsigned long *pageblock_flags;
321#endif /* CONFIG_SPARSEMEM */
322
1da177e4
LT
323
324 ZONE_PADDING(_pad1_)
325
326 /* Fields commonly accessed by the page reclaim scanner */
327 spinlock_t lru_lock;
6e08a369 328 struct zone_lru {
b69408e8 329 struct list_head list;
b69408e8 330 } lru[NR_LRU_LISTS];
4f98a2fe 331
6e901571 332 struct zone_reclaim_stat reclaim_stat;
4f98a2fe 333
1da177e4 334 unsigned long pages_scanned; /* since last reclaim */
e815af95 335 unsigned long flags; /* zone flags, see below */
753ee728 336
2244b95a
CL
337 /* Zone statistics */
338 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
9eeff239 339
1da177e4
LT
340 /*
341 * prev_priority holds the scanning priority for this zone. It is
342 * defined as the scanning priority at which we achieved our reclaim
343 * target at the previous try_to_free_pages() or balance_pgdat()
344 * invokation.
345 *
346 * We use prev_priority as a measure of how much stress page reclaim is
347 * under - it drives the swappiness decision: whether to unmap mapped
348 * pages.
349 *
3bb1a852 350 * Access to both this field is quite racy even on uniprocessor. But
1da177e4
LT
351 * it is expected to average out OK.
352 */
1da177e4
LT
353 int prev_priority;
354
556adecb
RR
355 /*
356 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
357 * this zone's LRU. Maintained by the pageout code.
358 */
359 unsigned int inactive_ratio;
360
1da177e4
LT
361
362 ZONE_PADDING(_pad2_)
363 /* Rarely used or read-mostly fields */
364
365 /*
366 * wait_table -- the array holding the hash table
02b694de 367 * wait_table_hash_nr_entries -- the size of the hash table array
1da177e4
LT
368 * wait_table_bits -- wait_table_size == (1 << wait_table_bits)
369 *
370 * The purpose of all these is to keep track of the people
371 * waiting for a page to become available and make them
372 * runnable again when possible. The trouble is that this
373 * consumes a lot of space, especially when so few things
374 * wait on pages at a given time. So instead of using
375 * per-page waitqueues, we use a waitqueue hash table.
376 *
377 * The bucket discipline is to sleep on the same queue when
378 * colliding and wake all in that wait queue when removing.
379 * When something wakes, it must check to be sure its page is
380 * truly available, a la thundering herd. The cost of a
381 * collision is great, but given the expected load of the
382 * table, they should be so rare as to be outweighed by the
383 * benefits from the saved space.
384 *
385 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
386 * primary users of these fields, and in mm/page_alloc.c
387 * free_area_init_core() performs the initialization of them.
388 */
389 wait_queue_head_t * wait_table;
02b694de 390 unsigned long wait_table_hash_nr_entries;
1da177e4
LT
391 unsigned long wait_table_bits;
392
393 /*
394 * Discontig memory support fields.
395 */
396 struct pglist_data *zone_pgdat;
1da177e4
LT
397 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
398 unsigned long zone_start_pfn;
399
bdc8cb98
DH
400 /*
401 * zone_start_pfn, spanned_pages and present_pages are all
402 * protected by span_seqlock. It is a seqlock because it has
403 * to be read outside of zone->lock, and it is done in the main
404 * allocator path. But, it is written quite infrequently.
405 *
406 * The lock is declared along with zone->lock because it is
407 * frequently read in proximity to zone->lock. It's good to
408 * give them a chance of being in the same cacheline.
409 */
1da177e4
LT
410 unsigned long spanned_pages; /* total size, including holes */
411 unsigned long present_pages; /* amount of memory (excluding holes) */
412
413 /*
414 * rarely used fields:
415 */
15ad7cdc 416 const char *name;
22fc6ecc 417} ____cacheline_internodealigned_in_smp;
1da177e4 418
e815af95
DR
419typedef enum {
420 ZONE_ALL_UNRECLAIMABLE, /* all pages pinned */
421 ZONE_RECLAIM_LOCKED, /* prevents concurrent reclaim */
098d7f12 422 ZONE_OOM_LOCKED, /* zone is in OOM killer zonelist */
e815af95
DR
423} zone_flags_t;
424
425static inline void zone_set_flag(struct zone *zone, zone_flags_t flag)
426{
427 set_bit(flag, &zone->flags);
428}
d773ed6b
DR
429
430static inline int zone_test_and_set_flag(struct zone *zone, zone_flags_t flag)
431{
432 return test_and_set_bit(flag, &zone->flags);
433}
434
e815af95
DR
435static inline void zone_clear_flag(struct zone *zone, zone_flags_t flag)
436{
437 clear_bit(flag, &zone->flags);
438}
439
440static inline int zone_is_all_unreclaimable(const struct zone *zone)
441{
442 return test_bit(ZONE_ALL_UNRECLAIMABLE, &zone->flags);
443}
d773ed6b 444
e815af95
DR
445static inline int zone_is_reclaim_locked(const struct zone *zone)
446{
447 return test_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
448}
d773ed6b 449
098d7f12
DR
450static inline int zone_is_oom_locked(const struct zone *zone)
451{
452 return test_bit(ZONE_OOM_LOCKED, &zone->flags);
453}
e815af95 454
1da177e4
LT
455/*
456 * The "priority" of VM scanning is how much of the queues we will scan in one
457 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
458 * queues ("queue_length >> 12") during an aging round.
459 */
460#define DEF_PRIORITY 12
461
9276b1bc
PJ
462/* Maximum number of zones on a zonelist */
463#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
464
465#ifdef CONFIG_NUMA
523b9458
CL
466
467/*
468 * The NUMA zonelists are doubled becausse we need zonelists that restrict the
469 * allocations to a single node for GFP_THISNODE.
470 *
54a6eb5c
MG
471 * [0] : Zonelist with fallback
472 * [1] : No fallback (GFP_THISNODE)
523b9458 473 */
54a6eb5c 474#define MAX_ZONELISTS 2
523b9458
CL
475
476
9276b1bc
PJ
477/*
478 * We cache key information from each zonelist for smaller cache
479 * footprint when scanning for free pages in get_page_from_freelist().
480 *
481 * 1) The BITMAP fullzones tracks which zones in a zonelist have come
482 * up short of free memory since the last time (last_fullzone_zap)
483 * we zero'd fullzones.
484 * 2) The array z_to_n[] maps each zone in the zonelist to its node
485 * id, so that we can efficiently evaluate whether that node is
486 * set in the current tasks mems_allowed.
487 *
488 * Both fullzones and z_to_n[] are one-to-one with the zonelist,
489 * indexed by a zones offset in the zonelist zones[] array.
490 *
491 * The get_page_from_freelist() routine does two scans. During the
492 * first scan, we skip zones whose corresponding bit in 'fullzones'
493 * is set or whose corresponding node in current->mems_allowed (which
494 * comes from cpusets) is not set. During the second scan, we bypass
495 * this zonelist_cache, to ensure we look methodically at each zone.
496 *
497 * Once per second, we zero out (zap) fullzones, forcing us to
498 * reconsider nodes that might have regained more free memory.
499 * The field last_full_zap is the time we last zapped fullzones.
500 *
501 * This mechanism reduces the amount of time we waste repeatedly
502 * reexaming zones for free memory when they just came up low on
503 * memory momentarilly ago.
504 *
505 * The zonelist_cache struct members logically belong in struct
506 * zonelist. However, the mempolicy zonelists constructed for
507 * MPOL_BIND are intentionally variable length (and usually much
508 * shorter). A general purpose mechanism for handling structs with
509 * multiple variable length members is more mechanism than we want
510 * here. We resort to some special case hackery instead.
511 *
512 * The MPOL_BIND zonelists don't need this zonelist_cache (in good
513 * part because they are shorter), so we put the fixed length stuff
514 * at the front of the zonelist struct, ending in a variable length
515 * zones[], as is needed by MPOL_BIND.
516 *
517 * Then we put the optional zonelist cache on the end of the zonelist
518 * struct. This optional stuff is found by a 'zlcache_ptr' pointer in
519 * the fixed length portion at the front of the struct. This pointer
520 * both enables us to find the zonelist cache, and in the case of
521 * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
522 * to know that the zonelist cache is not there.
523 *
524 * The end result is that struct zonelists come in two flavors:
525 * 1) The full, fixed length version, shown below, and
526 * 2) The custom zonelists for MPOL_BIND.
527 * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
528 *
529 * Even though there may be multiple CPU cores on a node modifying
530 * fullzones or last_full_zap in the same zonelist_cache at the same
531 * time, we don't lock it. This is just hint data - if it is wrong now
532 * and then, the allocator will still function, perhaps a bit slower.
533 */
534
535
536struct zonelist_cache {
9276b1bc 537 unsigned short z_to_n[MAX_ZONES_PER_ZONELIST]; /* zone->nid */
7253f4ef 538 DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST); /* zone full? */
9276b1bc
PJ
539 unsigned long last_full_zap; /* when last zap'd (jiffies) */
540};
541#else
54a6eb5c 542#define MAX_ZONELISTS 1
9276b1bc
PJ
543struct zonelist_cache;
544#endif
545
dd1a239f
MG
546/*
547 * This struct contains information about a zone in a zonelist. It is stored
548 * here to avoid dereferences into large structures and lookups of tables
549 */
550struct zoneref {
551 struct zone *zone; /* Pointer to actual zone */
552 int zone_idx; /* zone_idx(zoneref->zone) */
553};
554
1da177e4
LT
555/*
556 * One allocation request operates on a zonelist. A zonelist
557 * is a list of zones, the first one is the 'goal' of the
558 * allocation, the other zones are fallback zones, in decreasing
559 * priority.
560 *
9276b1bc
PJ
561 * If zlcache_ptr is not NULL, then it is just the address of zlcache,
562 * as explained above. If zlcache_ptr is NULL, there is no zlcache.
dd1a239f
MG
563 * *
564 * To speed the reading of the zonelist, the zonerefs contain the zone index
565 * of the entry being read. Helper functions to access information given
566 * a struct zoneref are
567 *
568 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs
569 * zonelist_zone_idx() - Return the index of the zone for an entry
570 * zonelist_node_idx() - Return the index of the node for an entry
1da177e4
LT
571 */
572struct zonelist {
9276b1bc 573 struct zonelist_cache *zlcache_ptr; // NULL or &zlcache
dd1a239f 574 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
9276b1bc
PJ
575#ifdef CONFIG_NUMA
576 struct zonelist_cache zlcache; // optional ...
577#endif
1da177e4
LT
578};
579
c713216d
MG
580#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
581struct node_active_region {
582 unsigned long start_pfn;
583 unsigned long end_pfn;
584 int nid;
585};
586#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
1da177e4 587
5b99cd0e
HC
588#ifndef CONFIG_DISCONTIGMEM
589/* The array of struct pages - for discontigmem use pgdat->lmem_map */
590extern struct page *mem_map;
591#endif
592
1da177e4
LT
593/*
594 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
595 * (mostly NUMA machines?) to denote a higher-level memory zone than the
596 * zone denotes.
597 *
598 * On NUMA machines, each NUMA node would have a pg_data_t to describe
599 * it's memory layout.
600 *
601 * Memory statistics and page replacement data structures are maintained on a
602 * per-zone basis.
603 */
604struct bootmem_data;
605typedef struct pglist_data {
606 struct zone node_zones[MAX_NR_ZONES];
523b9458 607 struct zonelist node_zonelists[MAX_ZONELISTS];
1da177e4 608 int nr_zones;
52d4b9ac 609#ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */
1da177e4 610 struct page *node_mem_map;
52d4b9ac
KH
611#ifdef CONFIG_CGROUP_MEM_RES_CTLR
612 struct page_cgroup *node_page_cgroup;
613#endif
d41dee36 614#endif
1da177e4 615 struct bootmem_data *bdata;
208d54e5
DH
616#ifdef CONFIG_MEMORY_HOTPLUG
617 /*
618 * Must be held any time you expect node_start_pfn, node_present_pages
619 * or node_spanned_pages stay constant. Holding this will also
620 * guarantee that any pfn_valid() stays that way.
621 *
622 * Nests above zone->lock and zone->size_seqlock.
623 */
624 spinlock_t node_size_lock;
625#endif
1da177e4
LT
626 unsigned long node_start_pfn;
627 unsigned long node_present_pages; /* total number of physical pages */
628 unsigned long node_spanned_pages; /* total size of physical page
629 range, including holes */
630 int node_id;
1da177e4
LT
631 wait_queue_head_t kswapd_wait;
632 struct task_struct *kswapd;
633 int kswapd_max_order;
634} pg_data_t;
635
636#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
637#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
d41dee36 638#ifdef CONFIG_FLAT_NODE_MEM_MAP
408fde81 639#define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
d41dee36
AW
640#else
641#define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
642#endif
408fde81 643#define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
1da177e4 644
208d54e5
DH
645#include <linux/memory_hotplug.h>
646
1da177e4
LT
647void get_zone_counts(unsigned long *active, unsigned long *inactive,
648 unsigned long *free);
649void build_all_zonelists(void);
650void wakeup_kswapd(struct zone *zone, int order);
651int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
7fb1d9fc 652 int classzone_idx, int alloc_flags);
a2f3aa02
DH
653enum memmap_context {
654 MEMMAP_EARLY,
655 MEMMAP_HOTPLUG,
656};
718127cc 657extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
a2f3aa02
DH
658 unsigned long size,
659 enum memmap_context context);
718127cc 660
1da177e4
LT
661#ifdef CONFIG_HAVE_MEMORY_PRESENT
662void memory_present(int nid, unsigned long start, unsigned long end);
663#else
664static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
665#endif
666
667#ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
668unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
669#endif
670
671/*
672 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
673 */
674#define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
675
f3fe6512
CK
676static inline int populated_zone(struct zone *zone)
677{
678 return (!!zone->present_pages);
679}
680
2a1e274a
MG
681extern int movable_zone;
682
683static inline int zone_movable_is_highmem(void)
684{
685#if defined(CONFIG_HIGHMEM) && defined(CONFIG_ARCH_POPULATES_NODE_MAP)
686 return movable_zone == ZONE_HIGHMEM;
687#else
688 return 0;
689#endif
690}
691
2f1b6248 692static inline int is_highmem_idx(enum zone_type idx)
1da177e4 693{
e53ef38d 694#ifdef CONFIG_HIGHMEM
2a1e274a
MG
695 return (idx == ZONE_HIGHMEM ||
696 (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
e53ef38d
CL
697#else
698 return 0;
699#endif
1da177e4
LT
700}
701
2f1b6248 702static inline int is_normal_idx(enum zone_type idx)
1da177e4
LT
703{
704 return (idx == ZONE_NORMAL);
705}
9328b8fa 706
1da177e4
LT
707/**
708 * is_highmem - helper function to quickly check if a struct zone is a
709 * highmem zone or not. This is an attempt to keep references
710 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
711 * @zone - pointer to struct zone variable
712 */
713static inline int is_highmem(struct zone *zone)
714{
e53ef38d 715#ifdef CONFIG_HIGHMEM
ddc81ed2
HH
716 int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones;
717 return zone_off == ZONE_HIGHMEM * sizeof(*zone) ||
718 (zone_off == ZONE_MOVABLE * sizeof(*zone) &&
719 zone_movable_is_highmem());
e53ef38d
CL
720#else
721 return 0;
722#endif
1da177e4
LT
723}
724
725static inline int is_normal(struct zone *zone)
726{
727 return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
728}
729
9328b8fa
NP
730static inline int is_dma32(struct zone *zone)
731{
fb0e7942 732#ifdef CONFIG_ZONE_DMA32
9328b8fa 733 return zone == zone->zone_pgdat->node_zones + ZONE_DMA32;
fb0e7942
CL
734#else
735 return 0;
736#endif
9328b8fa
NP
737}
738
739static inline int is_dma(struct zone *zone)
740{
4b51d669 741#ifdef CONFIG_ZONE_DMA
9328b8fa 742 return zone == zone->zone_pgdat->node_zones + ZONE_DMA;
4b51d669
CL
743#else
744 return 0;
745#endif
9328b8fa
NP
746}
747
1da177e4
LT
748/* These two functions are used to setup the per zone pages min values */
749struct ctl_table;
8d65af78 750int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
1da177e4
LT
751 void __user *, size_t *, loff_t *);
752extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
8d65af78 753int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
1da177e4 754 void __user *, size_t *, loff_t *);
8d65af78 755int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
8ad4b1fb 756 void __user *, size_t *, loff_t *);
9614634f 757int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
8d65af78 758 void __user *, size_t *, loff_t *);
0ff38490 759int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
8d65af78 760 void __user *, size_t *, loff_t *);
1da177e4 761
f0c0b2b8 762extern int numa_zonelist_order_handler(struct ctl_table *, int,
8d65af78 763 void __user *, size_t *, loff_t *);
f0c0b2b8
KH
764extern char numa_zonelist_order[];
765#define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */
766
93b7504e 767#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
768
769extern struct pglist_data contig_page_data;
770#define NODE_DATA(nid) (&contig_page_data)
771#define NODE_MEM_MAP(nid) mem_map
1da177e4 772
93b7504e 773#else /* CONFIG_NEED_MULTIPLE_NODES */
1da177e4
LT
774
775#include <asm/mmzone.h>
776
93b7504e 777#endif /* !CONFIG_NEED_MULTIPLE_NODES */
348f8b6c 778
95144c78
KH
779extern struct pglist_data *first_online_pgdat(void);
780extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
781extern struct zone *next_zone(struct zone *zone);
8357f869
KH
782
783/**
12d15f0d 784 * for_each_online_pgdat - helper macro to iterate over all online nodes
8357f869
KH
785 * @pgdat - pointer to a pg_data_t variable
786 */
787#define for_each_online_pgdat(pgdat) \
788 for (pgdat = first_online_pgdat(); \
789 pgdat; \
790 pgdat = next_online_pgdat(pgdat))
8357f869
KH
791/**
792 * for_each_zone - helper macro to iterate over all memory zones
793 * @zone - pointer to struct zone variable
794 *
795 * The user only needs to declare the zone variable, for_each_zone
796 * fills it in.
797 */
798#define for_each_zone(zone) \
799 for (zone = (first_online_pgdat())->node_zones; \
800 zone; \
801 zone = next_zone(zone))
802
ee99c71c
KM
803#define for_each_populated_zone(zone) \
804 for (zone = (first_online_pgdat())->node_zones; \
805 zone; \
806 zone = next_zone(zone)) \
807 if (!populated_zone(zone)) \
808 ; /* do nothing */ \
809 else
810
dd1a239f
MG
811static inline struct zone *zonelist_zone(struct zoneref *zoneref)
812{
813 return zoneref->zone;
814}
815
816static inline int zonelist_zone_idx(struct zoneref *zoneref)
817{
818 return zoneref->zone_idx;
819}
820
821static inline int zonelist_node_idx(struct zoneref *zoneref)
822{
823#ifdef CONFIG_NUMA
824 /* zone_to_nid not available in this context */
825 return zoneref->zone->node;
826#else
827 return 0;
828#endif /* CONFIG_NUMA */
829}
830
19770b32
MG
831/**
832 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
833 * @z - The cursor used as a starting point for the search
834 * @highest_zoneidx - The zone index of the highest zone to return
835 * @nodes - An optional nodemask to filter the zonelist with
836 * @zone - The first suitable zone found is returned via this parameter
837 *
838 * This function returns the next zone at or below a given zone index that is
839 * within the allowed nodemask using a cursor as the starting point for the
5bead2a0
MG
840 * search. The zoneref returned is a cursor that represents the current zone
841 * being examined. It should be advanced by one before calling
842 * next_zones_zonelist again.
19770b32
MG
843 */
844struct zoneref *next_zones_zonelist(struct zoneref *z,
845 enum zone_type highest_zoneidx,
846 nodemask_t *nodes,
847 struct zone **zone);
dd1a239f 848
19770b32
MG
849/**
850 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
851 * @zonelist - The zonelist to search for a suitable zone
852 * @highest_zoneidx - The zone index of the highest zone to return
853 * @nodes - An optional nodemask to filter the zonelist with
854 * @zone - The first suitable zone found is returned via this parameter
855 *
856 * This function returns the first zone at or below a given zone index that is
857 * within the allowed nodemask. The zoneref returned is a cursor that can be
5bead2a0
MG
858 * used to iterate the zonelist with next_zones_zonelist by advancing it by
859 * one before calling.
19770b32 860 */
dd1a239f 861static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
19770b32
MG
862 enum zone_type highest_zoneidx,
863 nodemask_t *nodes,
864 struct zone **zone)
54a6eb5c 865{
19770b32
MG
866 return next_zones_zonelist(zonelist->_zonerefs, highest_zoneidx, nodes,
867 zone);
54a6eb5c
MG
868}
869
19770b32
MG
870/**
871 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
872 * @zone - The current zone in the iterator
873 * @z - The current pointer within zonelist->zones being iterated
874 * @zlist - The zonelist being iterated
875 * @highidx - The zone index of the highest zone to return
876 * @nodemask - Nodemask allowed by the allocator
877 *
878 * This iterator iterates though all zones at or below a given zone index and
879 * within a given nodemask
880 */
881#define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
882 for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone); \
883 zone; \
5bead2a0 884 z = next_zones_zonelist(++z, highidx, nodemask, &zone)) \
54a6eb5c
MG
885
886/**
887 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
888 * @zone - The current zone in the iterator
889 * @z - The current pointer within zonelist->zones being iterated
890 * @zlist - The zonelist being iterated
891 * @highidx - The zone index of the highest zone to return
892 *
893 * This iterator iterates though all zones at or below a given zone index.
894 */
895#define for_each_zone_zonelist(zone, z, zlist, highidx) \
19770b32 896 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
54a6eb5c 897
d41dee36
AW
898#ifdef CONFIG_SPARSEMEM
899#include <asm/sparsemem.h>
900#endif
901
c713216d
MG
902#if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
903 !defined(CONFIG_ARCH_POPULATES_NODE_MAP)
b4544568
AM
904static inline unsigned long early_pfn_to_nid(unsigned long pfn)
905{
906 return 0;
907}
b159d43f
AW
908#endif
909
2bdaf115
AW
910#ifdef CONFIG_FLATMEM
911#define pfn_to_nid(pfn) (0)
912#endif
913
d41dee36
AW
914#define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
915#define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
916
917#ifdef CONFIG_SPARSEMEM
918
919/*
920 * SECTION_SHIFT #bits space required to store a section #
921 *
922 * PA_SECTION_SHIFT physical address to/from section number
923 * PFN_SECTION_SHIFT pfn to/from section number
924 */
925#define SECTIONS_SHIFT (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)
926
927#define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
928#define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
929
930#define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
931
932#define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
933#define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
934
835c134e 935#define SECTION_BLOCKFLAGS_BITS \
d9c23400 936 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
835c134e 937
d41dee36
AW
938#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
939#error Allocator MAX_ORDER exceeds SECTION_SIZE
940#endif
941
942struct page;
52d4b9ac 943struct page_cgroup;
d41dee36 944struct mem_section {
29751f69
AW
945 /*
946 * This is, logically, a pointer to an array of struct
947 * pages. However, it is stored with some other magic.
948 * (see sparse.c::sparse_init_one_section())
949 *
30c253e6
AW
950 * Additionally during early boot we encode node id of
951 * the location of the section here to guide allocation.
952 * (see sparse.c::memory_present())
953 *
29751f69
AW
954 * Making it a UL at least makes someone do a cast
955 * before using it wrong.
956 */
957 unsigned long section_mem_map;
5c0e3066
MG
958
959 /* See declaration of similar field in struct zone */
960 unsigned long *pageblock_flags;
52d4b9ac
KH
961#ifdef CONFIG_CGROUP_MEM_RES_CTLR
962 /*
963 * If !SPARSEMEM, pgdat doesn't have page_cgroup pointer. We use
964 * section. (see memcontrol.h/page_cgroup.h about this.)
965 */
966 struct page_cgroup *page_cgroup;
967 unsigned long pad;
968#endif
d41dee36
AW
969};
970
3e347261
BP
971#ifdef CONFIG_SPARSEMEM_EXTREME
972#define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
973#else
974#define SECTIONS_PER_ROOT 1
975#endif
802f192e 976
3e347261
BP
977#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
978#define NR_SECTION_ROOTS (NR_MEM_SECTIONS / SECTIONS_PER_ROOT)
979#define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
802f192e 980
3e347261
BP
981#ifdef CONFIG_SPARSEMEM_EXTREME
982extern struct mem_section *mem_section[NR_SECTION_ROOTS];
802f192e 983#else
3e347261
BP
984extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
985#endif
d41dee36 986
29751f69
AW
987static inline struct mem_section *__nr_to_section(unsigned long nr)
988{
3e347261
BP
989 if (!mem_section[SECTION_NR_TO_ROOT(nr)])
990 return NULL;
991 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
29751f69 992}
4ca644d9 993extern int __section_nr(struct mem_section* ms);
04753278 994extern unsigned long usemap_size(void);
29751f69
AW
995
996/*
997 * We use the lower bits of the mem_map pointer to store
998 * a little bit of information. There should be at least
999 * 3 bits here due to 32-bit alignment.
1000 */
1001#define SECTION_MARKED_PRESENT (1UL<<0)
1002#define SECTION_HAS_MEM_MAP (1UL<<1)
1003#define SECTION_MAP_LAST_BIT (1UL<<2)
1004#define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
30c253e6 1005#define SECTION_NID_SHIFT 2
29751f69
AW
1006
1007static inline struct page *__section_mem_map_addr(struct mem_section *section)
1008{
1009 unsigned long map = section->section_mem_map;
1010 map &= SECTION_MAP_MASK;
1011 return (struct page *)map;
1012}
1013
540557b9 1014static inline int present_section(struct mem_section *section)
29751f69 1015{
802f192e 1016 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
29751f69
AW
1017}
1018
540557b9
AW
1019static inline int present_section_nr(unsigned long nr)
1020{
1021 return present_section(__nr_to_section(nr));
1022}
1023
1024static inline int valid_section(struct mem_section *section)
29751f69 1025{
802f192e 1026 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
29751f69
AW
1027}
1028
1029static inline int valid_section_nr(unsigned long nr)
1030{
1031 return valid_section(__nr_to_section(nr));
1032}
1033
d41dee36
AW
1034static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1035{
29751f69 1036 return __nr_to_section(pfn_to_section_nr(pfn));
d41dee36
AW
1037}
1038
d41dee36
AW
1039static inline int pfn_valid(unsigned long pfn)
1040{
1041 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1042 return 0;
29751f69 1043 return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
d41dee36
AW
1044}
1045
540557b9
AW
1046static inline int pfn_present(unsigned long pfn)
1047{
1048 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1049 return 0;
1050 return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1051}
1052
d41dee36
AW
1053/*
1054 * These are _only_ used during initialisation, therefore they
1055 * can use __initdata ... They could have names to indicate
1056 * this restriction.
1057 */
1058#ifdef CONFIG_NUMA
161599ff
AW
1059#define pfn_to_nid(pfn) \
1060({ \
1061 unsigned long __pfn_to_nid_pfn = (pfn); \
1062 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
1063})
2bdaf115
AW
1064#else
1065#define pfn_to_nid(pfn) (0)
d41dee36
AW
1066#endif
1067
d41dee36
AW
1068#define early_pfn_valid(pfn) pfn_valid(pfn)
1069void sparse_init(void);
1070#else
1071#define sparse_init() do {} while (0)
28ae55c9 1072#define sparse_index_init(_sec, _nid) do {} while (0)
d41dee36
AW
1073#endif /* CONFIG_SPARSEMEM */
1074
75167957 1075#ifdef CONFIG_NODES_SPAN_OTHER_NODES
cc2559bc 1076bool early_pfn_in_nid(unsigned long pfn, int nid);
75167957
AW
1077#else
1078#define early_pfn_in_nid(pfn, nid) (1)
1079#endif
1080
d41dee36
AW
1081#ifndef early_pfn_valid
1082#define early_pfn_valid(pfn) (1)
1083#endif
1084
1085void memory_present(int nid, unsigned long start, unsigned long end);
1086unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
1087
14e07298
AW
1088/*
1089 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1090 * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
1091 * pfn_valid_within() should be used in this case; we optimise this away
1092 * when we have no holes within a MAX_ORDER_NR_PAGES block.
1093 */
1094#ifdef CONFIG_HOLES_IN_ZONE
1095#define pfn_valid_within(pfn) pfn_valid(pfn)
1096#else
1097#define pfn_valid_within(pfn) (1)
1098#endif
1099
eb33575c
MG
1100#ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1101/*
1102 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1103 * associated with it or not. In FLATMEM, it is expected that holes always
1104 * have valid memmap as long as there is valid PFNs either side of the hole.
1105 * In SPARSEMEM, it is assumed that a valid section has a memmap for the
1106 * entire section.
1107 *
1108 * However, an ARM, and maybe other embedded architectures in the future
1109 * free memmap backing holes to save memory on the assumption the memmap is
1110 * never used. The page_zone linkages are then broken even though pfn_valid()
1111 * returns true. A walker of the full memmap must then do this additional
1112 * check to ensure the memmap they are looking at is sane by making sure
1113 * the zone and PFN linkages are still valid. This is expensive, but walkers
1114 * of the full memmap are extremely rare.
1115 */
1116int memmap_valid_within(unsigned long pfn,
1117 struct page *page, struct zone *zone);
1118#else
1119static inline int memmap_valid_within(unsigned long pfn,
1120 struct page *page, struct zone *zone)
1121{
1122 return 1;
1123}
1124#endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1125
97965478 1126#endif /* !__GENERATING_BOUNDS.H */
1da177e4 1127#endif /* !__ASSEMBLY__ */
1da177e4 1128#endif /* _LINUX_MMZONE_H */