score: Use HAVE_MEMBLOCK_NODE_MAP
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / include / linux / mmzone.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_MMZONE_H
2#define _LINUX_MMZONE_H
3
1da177e4 4#ifndef __ASSEMBLY__
97965478 5#ifndef __GENERATING_BOUNDS_H
1da177e4 6
1da177e4
LT
7#include <linux/spinlock.h>
8#include <linux/list.h>
9#include <linux/wait.h>
e815af95 10#include <linux/bitops.h>
1da177e4
LT
11#include <linux/cache.h>
12#include <linux/threads.h>
13#include <linux/numa.h>
14#include <linux/init.h>
bdc8cb98 15#include <linux/seqlock.h>
8357f869 16#include <linux/nodemask.h>
835c134e 17#include <linux/pageblock-flags.h>
01fc0ac1 18#include <generated/bounds.h>
60063497 19#include <linux/atomic.h>
93ff66bf 20#include <asm/page.h>
1da177e4
LT
21
22/* Free memory management - zoned buddy allocator. */
23#ifndef CONFIG_FORCE_MAX_ZONEORDER
24#define MAX_ORDER 11
25#else
26#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
27#endif
e984bb43 28#define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
1da177e4 29
5ad333eb
AW
30/*
31 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
32 * costly to service. That is between allocation orders which should
33 * coelesce naturally under reasonable reclaim pressure and those which
34 * will not.
35 */
36#define PAGE_ALLOC_COSTLY_ORDER 3
37
b2a0ac88 38#define MIGRATE_UNMOVABLE 0
e12ba74d
MG
39#define MIGRATE_RECLAIMABLE 1
40#define MIGRATE_MOVABLE 2
5f8dcc21 41#define MIGRATE_PCPTYPES 3 /* the number of types on the pcp lists */
64c5e135 42#define MIGRATE_RESERVE 3
a5d76b54
KH
43#define MIGRATE_ISOLATE 4 /* can't allocate from here */
44#define MIGRATE_TYPES 5
b2a0ac88
MG
45
46#define for_each_migratetype_order(order, type) \
47 for (order = 0; order < MAX_ORDER; order++) \
48 for (type = 0; type < MIGRATE_TYPES; type++)
49
467c996c
MG
50extern int page_group_by_mobility_disabled;
51
52static inline int get_pageblock_migratetype(struct page *page)
53{
467c996c
MG
54 return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end);
55}
56
1da177e4 57struct free_area {
b2a0ac88 58 struct list_head free_list[MIGRATE_TYPES];
1da177e4
LT
59 unsigned long nr_free;
60};
61
62struct pglist_data;
63
64/*
65 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
66 * So add a wild amount of padding here to ensure that they fall into separate
67 * cachelines. There are very few zone structures in the machine, so space
68 * consumption is not a concern here.
69 */
70#if defined(CONFIG_SMP)
71struct zone_padding {
72 char x[0];
22fc6ecc 73} ____cacheline_internodealigned_in_smp;
1da177e4
LT
74#define ZONE_PADDING(name) struct zone_padding name;
75#else
76#define ZONE_PADDING(name)
77#endif
78
2244b95a 79enum zone_stat_item {
51ed4491 80 /* First 128 byte cacheline (assuming 64 bit words) */
d23ad423 81 NR_FREE_PAGES,
b69408e8 82 NR_LRU_BASE,
4f98a2fe
RR
83 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
84 NR_ACTIVE_ANON, /* " " " " " */
85 NR_INACTIVE_FILE, /* " " " " " */
86 NR_ACTIVE_FILE, /* " " " " " */
894bc310 87 NR_UNEVICTABLE, /* " " " " " */
5344b7e6 88 NR_MLOCK, /* mlock()ed pages found and moved off LRU */
f3dbd344
CL
89 NR_ANON_PAGES, /* Mapped anonymous pages */
90 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
65ba55f5 91 only modified from process context */
347ce434 92 NR_FILE_PAGES,
b1e7a8fd 93 NR_FILE_DIRTY,
ce866b34 94 NR_WRITEBACK,
51ed4491
CL
95 NR_SLAB_RECLAIMABLE,
96 NR_SLAB_UNRECLAIMABLE,
97 NR_PAGETABLE, /* used for pagetables */
c6a7f572
KM
98 NR_KERNEL_STACK,
99 /* Second 128 byte cacheline */
fd39fc85 100 NR_UNSTABLE_NFS, /* NFS unstable pages */
d2c5e30c 101 NR_BOUNCE,
e129b5c2 102 NR_VMSCAN_WRITE,
49ea7eb6 103 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */
fc3ba692 104 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */
a731286d
KM
105 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */
106 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */
4b02108a 107 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */
ea941f0e
MR
108 NR_DIRTIED, /* page dirtyings since bootup */
109 NR_WRITTEN, /* page writings since bootup */
ca889e6c
CL
110#ifdef CONFIG_NUMA
111 NUMA_HIT, /* allocated in intended node */
112 NUMA_MISS, /* allocated in non intended node */
113 NUMA_FOREIGN, /* was intended here, hit elsewhere */
114 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
115 NUMA_LOCAL, /* allocation from local node */
116 NUMA_OTHER, /* allocation from other node */
117#endif
79134171 118 NR_ANON_TRANSPARENT_HUGEPAGES,
2244b95a
CL
119 NR_VM_ZONE_STAT_ITEMS };
120
4f98a2fe
RR
121/*
122 * We do arithmetic on the LRU lists in various places in the code,
123 * so it is important to keep the active lists LRU_ACTIVE higher in
124 * the array than the corresponding inactive lists, and to keep
125 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
126 *
127 * This has to be kept in sync with the statistics in zone_stat_item
128 * above and the descriptions in vmstat_text in mm/vmstat.c
129 */
130#define LRU_BASE 0
131#define LRU_ACTIVE 1
132#define LRU_FILE 2
133
b69408e8 134enum lru_list {
4f98a2fe
RR
135 LRU_INACTIVE_ANON = LRU_BASE,
136 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
137 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
138 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
894bc310 139 LRU_UNEVICTABLE,
894bc310
LS
140 NR_LRU_LISTS
141};
b69408e8
CL
142
143#define for_each_lru(l) for (l = 0; l < NR_LRU_LISTS; l++)
144
894bc310
LS
145#define for_each_evictable_lru(l) for (l = 0; l <= LRU_ACTIVE_FILE; l++)
146
4f98a2fe
RR
147static inline int is_file_lru(enum lru_list l)
148{
149 return (l == LRU_INACTIVE_FILE || l == LRU_ACTIVE_FILE);
150}
151
b69408e8
CL
152static inline int is_active_lru(enum lru_list l)
153{
4f98a2fe 154 return (l == LRU_ACTIVE_ANON || l == LRU_ACTIVE_FILE);
b69408e8
CL
155}
156
894bc310
LS
157static inline int is_unevictable_lru(enum lru_list l)
158{
894bc310 159 return (l == LRU_UNEVICTABLE);
894bc310
LS
160}
161
bb2a0de9
KH
162/* Mask used at gathering information at once (see memcontrol.c) */
163#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
164#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
165#define LRU_ALL_EVICTABLE (LRU_ALL_FILE | LRU_ALL_ANON)
166#define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
167
4356f21d
MK
168/* Isolate inactive pages */
169#define ISOLATE_INACTIVE ((__force isolate_mode_t)0x1)
170/* Isolate active pages */
171#define ISOLATE_ACTIVE ((__force isolate_mode_t)0x2)
39deaf85
MK
172/* Isolate clean file */
173#define ISOLATE_CLEAN ((__force isolate_mode_t)0x4)
f80c0673
MK
174/* Isolate unmapped file */
175#define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x8)
4356f21d
MK
176
177/* LRU Isolation modes. */
178typedef unsigned __bitwise__ isolate_mode_t;
179
41858966
MG
180enum zone_watermarks {
181 WMARK_MIN,
182 WMARK_LOW,
183 WMARK_HIGH,
184 NR_WMARK
185};
186
187#define min_wmark_pages(z) (z->watermark[WMARK_MIN])
188#define low_wmark_pages(z) (z->watermark[WMARK_LOW])
189#define high_wmark_pages(z) (z->watermark[WMARK_HIGH])
190
1da177e4
LT
191struct per_cpu_pages {
192 int count; /* number of pages in the list */
1da177e4
LT
193 int high; /* high watermark, emptying needed */
194 int batch; /* chunk size for buddy add/remove */
5f8dcc21
MG
195
196 /* Lists of pages, one per migrate type stored on the pcp-lists */
197 struct list_head lists[MIGRATE_PCPTYPES];
1da177e4
LT
198};
199
200struct per_cpu_pageset {
3dfa5721 201 struct per_cpu_pages pcp;
4037d452
CL
202#ifdef CONFIG_NUMA
203 s8 expire;
204#endif
2244b95a 205#ifdef CONFIG_SMP
df9ecaba 206 s8 stat_threshold;
2244b95a
CL
207 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
208#endif
99dcc3e5 209};
e7c8d5c9 210
97965478
CL
211#endif /* !__GENERATING_BOUNDS.H */
212
2f1b6248 213enum zone_type {
4b51d669 214#ifdef CONFIG_ZONE_DMA
2f1b6248
CL
215 /*
216 * ZONE_DMA is used when there are devices that are not able
217 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
218 * carve out the portion of memory that is needed for these devices.
219 * The range is arch specific.
220 *
221 * Some examples
222 *
223 * Architecture Limit
224 * ---------------------------
225 * parisc, ia64, sparc <4G
226 * s390 <2G
2f1b6248
CL
227 * arm Various
228 * alpha Unlimited or 0-16MB.
229 *
230 * i386, x86_64 and multiple other arches
231 * <16M.
232 */
233 ZONE_DMA,
4b51d669 234#endif
fb0e7942 235#ifdef CONFIG_ZONE_DMA32
2f1b6248
CL
236 /*
237 * x86_64 needs two ZONE_DMAs because it supports devices that are
238 * only able to do DMA to the lower 16M but also 32 bit devices that
239 * can only do DMA areas below 4G.
240 */
241 ZONE_DMA32,
fb0e7942 242#endif
2f1b6248
CL
243 /*
244 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
245 * performed on pages in ZONE_NORMAL if the DMA devices support
246 * transfers to all addressable memory.
247 */
248 ZONE_NORMAL,
e53ef38d 249#ifdef CONFIG_HIGHMEM
2f1b6248
CL
250 /*
251 * A memory area that is only addressable by the kernel through
252 * mapping portions into its own address space. This is for example
253 * used by i386 to allow the kernel to address the memory beyond
254 * 900MB. The kernel will set up special mappings (page
255 * table entries on i386) for each page that the kernel needs to
256 * access.
257 */
258 ZONE_HIGHMEM,
e53ef38d 259#endif
2a1e274a 260 ZONE_MOVABLE,
97965478 261 __MAX_NR_ZONES
2f1b6248 262};
1da177e4 263
97965478
CL
264#ifndef __GENERATING_BOUNDS_H
265
1da177e4
LT
266/*
267 * When a memory allocation must conform to specific limitations (such
268 * as being suitable for DMA) the caller will pass in hints to the
269 * allocator in the gfp_mask, in the zone modifier bits. These bits
270 * are used to select a priority ordered list of memory zones which
19655d34 271 * match the requested limits. See gfp_zone() in include/linux/gfp.h
1da177e4 272 */
fb0e7942 273
97965478 274#if MAX_NR_ZONES < 2
4b51d669 275#define ZONES_SHIFT 0
97965478 276#elif MAX_NR_ZONES <= 2
19655d34 277#define ZONES_SHIFT 1
97965478 278#elif MAX_NR_ZONES <= 4
19655d34 279#define ZONES_SHIFT 2
4b51d669
CL
280#else
281#error ZONES_SHIFT -- too many zones configured adjust calculation
fb0e7942 282#endif
1da177e4 283
6e901571
KM
284struct zone_reclaim_stat {
285 /*
286 * The pageout code in vmscan.c keeps track of how many of the
287 * mem/swap backed and file backed pages are refeferenced.
288 * The higher the rotated/scanned ratio, the more valuable
289 * that cache is.
290 *
291 * The anon LRU stats live in [0], file LRU stats in [1]
292 */
293 unsigned long recent_rotated[2];
294 unsigned long recent_scanned[2];
295};
296
1da177e4
LT
297struct zone {
298 /* Fields commonly accessed by the page allocator */
41858966
MG
299
300 /* zone watermarks, access with *_wmark_pages(zone) macros */
301 unsigned long watermark[NR_WMARK];
302
aa454840
CL
303 /*
304 * When free pages are below this point, additional steps are taken
305 * when reading the number of free pages to avoid per-cpu counter
306 * drift allowing watermarks to be breached
307 */
308 unsigned long percpu_drift_mark;
309
1da177e4
LT
310 /*
311 * We don't know if the memory that we're going to allocate will be freeable
312 * or/and it will be released eventually, so to avoid totally wasting several
313 * GB of ram we must reserve some of the lower zone memory (otherwise we risk
314 * to run OOM on the lower zones despite there's tons of freeable ram
315 * on the higher zones). This array is recalculated at runtime if the
316 * sysctl_lowmem_reserve_ratio sysctl changes.
317 */
318 unsigned long lowmem_reserve[MAX_NR_ZONES];
319
e7c8d5c9 320#ifdef CONFIG_NUMA
d5f541ed 321 int node;
9614634f
CL
322 /*
323 * zone reclaim becomes active if more unmapped pages exist.
324 */
8417bba4 325 unsigned long min_unmapped_pages;
0ff38490 326 unsigned long min_slab_pages;
e7c8d5c9 327#endif
43cf38eb 328 struct per_cpu_pageset __percpu *pageset;
1da177e4
LT
329 /*
330 * free areas of different sizes
331 */
332 spinlock_t lock;
93e4a89a 333 int all_unreclaimable; /* All pages pinned */
bdc8cb98
DH
334#ifdef CONFIG_MEMORY_HOTPLUG
335 /* see spanned/present_pages for more description */
336 seqlock_t span_seqlock;
337#endif
1da177e4
LT
338 struct free_area free_area[MAX_ORDER];
339
835c134e
MG
340#ifndef CONFIG_SPARSEMEM
341 /*
d9c23400 342 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
835c134e
MG
343 * In SPARSEMEM, this map is stored in struct mem_section
344 */
345 unsigned long *pageblock_flags;
346#endif /* CONFIG_SPARSEMEM */
347
4f92e258
MG
348#ifdef CONFIG_COMPACTION
349 /*
350 * On compaction failure, 1<<compact_defer_shift compactions
351 * are skipped before trying again. The number attempted since
352 * last failure is tracked with compact_considered.
353 */
354 unsigned int compact_considered;
355 unsigned int compact_defer_shift;
356#endif
1da177e4
LT
357
358 ZONE_PADDING(_pad1_)
359
360 /* Fields commonly accessed by the page reclaim scanner */
361 spinlock_t lru_lock;
6e08a369 362 struct zone_lru {
b69408e8 363 struct list_head list;
b69408e8 364 } lru[NR_LRU_LISTS];
4f98a2fe 365
6e901571 366 struct zone_reclaim_stat reclaim_stat;
4f98a2fe 367
1da177e4 368 unsigned long pages_scanned; /* since last reclaim */
e815af95 369 unsigned long flags; /* zone flags, see below */
753ee728 370
2244b95a
CL
371 /* Zone statistics */
372 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
9eeff239 373
556adecb
RR
374 /*
375 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
376 * this zone's LRU. Maintained by the pageout code.
377 */
378 unsigned int inactive_ratio;
379
1da177e4
LT
380
381 ZONE_PADDING(_pad2_)
382 /* Rarely used or read-mostly fields */
383
384 /*
385 * wait_table -- the array holding the hash table
02b694de 386 * wait_table_hash_nr_entries -- the size of the hash table array
1da177e4
LT
387 * wait_table_bits -- wait_table_size == (1 << wait_table_bits)
388 *
389 * The purpose of all these is to keep track of the people
390 * waiting for a page to become available and make them
391 * runnable again when possible. The trouble is that this
392 * consumes a lot of space, especially when so few things
393 * wait on pages at a given time. So instead of using
394 * per-page waitqueues, we use a waitqueue hash table.
395 *
396 * The bucket discipline is to sleep on the same queue when
397 * colliding and wake all in that wait queue when removing.
398 * When something wakes, it must check to be sure its page is
399 * truly available, a la thundering herd. The cost of a
400 * collision is great, but given the expected load of the
401 * table, they should be so rare as to be outweighed by the
402 * benefits from the saved space.
403 *
404 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
405 * primary users of these fields, and in mm/page_alloc.c
406 * free_area_init_core() performs the initialization of them.
407 */
408 wait_queue_head_t * wait_table;
02b694de 409 unsigned long wait_table_hash_nr_entries;
1da177e4
LT
410 unsigned long wait_table_bits;
411
412 /*
413 * Discontig memory support fields.
414 */
415 struct pglist_data *zone_pgdat;
1da177e4
LT
416 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
417 unsigned long zone_start_pfn;
418
bdc8cb98
DH
419 /*
420 * zone_start_pfn, spanned_pages and present_pages are all
421 * protected by span_seqlock. It is a seqlock because it has
422 * to be read outside of zone->lock, and it is done in the main
423 * allocator path. But, it is written quite infrequently.
424 *
425 * The lock is declared along with zone->lock because it is
426 * frequently read in proximity to zone->lock. It's good to
427 * give them a chance of being in the same cacheline.
428 */
1da177e4
LT
429 unsigned long spanned_pages; /* total size, including holes */
430 unsigned long present_pages; /* amount of memory (excluding holes) */
431
432 /*
433 * rarely used fields:
434 */
15ad7cdc 435 const char *name;
22fc6ecc 436} ____cacheline_internodealigned_in_smp;
1da177e4 437
e815af95 438typedef enum {
e815af95 439 ZONE_RECLAIM_LOCKED, /* prevents concurrent reclaim */
098d7f12 440 ZONE_OOM_LOCKED, /* zone is in OOM killer zonelist */
0e093d99
MG
441 ZONE_CONGESTED, /* zone has many dirty pages backed by
442 * a congested BDI
443 */
e815af95
DR
444} zone_flags_t;
445
446static inline void zone_set_flag(struct zone *zone, zone_flags_t flag)
447{
448 set_bit(flag, &zone->flags);
449}
d773ed6b
DR
450
451static inline int zone_test_and_set_flag(struct zone *zone, zone_flags_t flag)
452{
453 return test_and_set_bit(flag, &zone->flags);
454}
455
e815af95
DR
456static inline void zone_clear_flag(struct zone *zone, zone_flags_t flag)
457{
458 clear_bit(flag, &zone->flags);
459}
460
0e093d99
MG
461static inline int zone_is_reclaim_congested(const struct zone *zone)
462{
463 return test_bit(ZONE_CONGESTED, &zone->flags);
464}
465
e815af95
DR
466static inline int zone_is_reclaim_locked(const struct zone *zone)
467{
468 return test_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
469}
d773ed6b 470
098d7f12
DR
471static inline int zone_is_oom_locked(const struct zone *zone)
472{
473 return test_bit(ZONE_OOM_LOCKED, &zone->flags);
474}
e815af95 475
1da177e4
LT
476/*
477 * The "priority" of VM scanning is how much of the queues we will scan in one
478 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
479 * queues ("queue_length >> 12") during an aging round.
480 */
481#define DEF_PRIORITY 12
482
9276b1bc
PJ
483/* Maximum number of zones on a zonelist */
484#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
485
486#ifdef CONFIG_NUMA
523b9458
CL
487
488/*
25a64ec1 489 * The NUMA zonelists are doubled because we need zonelists that restrict the
523b9458
CL
490 * allocations to a single node for GFP_THISNODE.
491 *
54a6eb5c
MG
492 * [0] : Zonelist with fallback
493 * [1] : No fallback (GFP_THISNODE)
523b9458 494 */
54a6eb5c 495#define MAX_ZONELISTS 2
523b9458
CL
496
497
9276b1bc
PJ
498/*
499 * We cache key information from each zonelist for smaller cache
500 * footprint when scanning for free pages in get_page_from_freelist().
501 *
502 * 1) The BITMAP fullzones tracks which zones in a zonelist have come
503 * up short of free memory since the last time (last_fullzone_zap)
504 * we zero'd fullzones.
505 * 2) The array z_to_n[] maps each zone in the zonelist to its node
506 * id, so that we can efficiently evaluate whether that node is
507 * set in the current tasks mems_allowed.
508 *
509 * Both fullzones and z_to_n[] are one-to-one with the zonelist,
510 * indexed by a zones offset in the zonelist zones[] array.
511 *
512 * The get_page_from_freelist() routine does two scans. During the
513 * first scan, we skip zones whose corresponding bit in 'fullzones'
514 * is set or whose corresponding node in current->mems_allowed (which
515 * comes from cpusets) is not set. During the second scan, we bypass
516 * this zonelist_cache, to ensure we look methodically at each zone.
517 *
518 * Once per second, we zero out (zap) fullzones, forcing us to
519 * reconsider nodes that might have regained more free memory.
520 * The field last_full_zap is the time we last zapped fullzones.
521 *
522 * This mechanism reduces the amount of time we waste repeatedly
523 * reexaming zones for free memory when they just came up low on
524 * memory momentarilly ago.
525 *
526 * The zonelist_cache struct members logically belong in struct
527 * zonelist. However, the mempolicy zonelists constructed for
528 * MPOL_BIND are intentionally variable length (and usually much
529 * shorter). A general purpose mechanism for handling structs with
530 * multiple variable length members is more mechanism than we want
531 * here. We resort to some special case hackery instead.
532 *
533 * The MPOL_BIND zonelists don't need this zonelist_cache (in good
534 * part because they are shorter), so we put the fixed length stuff
535 * at the front of the zonelist struct, ending in a variable length
536 * zones[], as is needed by MPOL_BIND.
537 *
538 * Then we put the optional zonelist cache on the end of the zonelist
539 * struct. This optional stuff is found by a 'zlcache_ptr' pointer in
540 * the fixed length portion at the front of the struct. This pointer
541 * both enables us to find the zonelist cache, and in the case of
542 * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
543 * to know that the zonelist cache is not there.
544 *
545 * The end result is that struct zonelists come in two flavors:
546 * 1) The full, fixed length version, shown below, and
547 * 2) The custom zonelists for MPOL_BIND.
548 * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
549 *
550 * Even though there may be multiple CPU cores on a node modifying
551 * fullzones or last_full_zap in the same zonelist_cache at the same
552 * time, we don't lock it. This is just hint data - if it is wrong now
553 * and then, the allocator will still function, perhaps a bit slower.
554 */
555
556
557struct zonelist_cache {
9276b1bc 558 unsigned short z_to_n[MAX_ZONES_PER_ZONELIST]; /* zone->nid */
7253f4ef 559 DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST); /* zone full? */
9276b1bc
PJ
560 unsigned long last_full_zap; /* when last zap'd (jiffies) */
561};
562#else
54a6eb5c 563#define MAX_ZONELISTS 1
9276b1bc
PJ
564struct zonelist_cache;
565#endif
566
dd1a239f
MG
567/*
568 * This struct contains information about a zone in a zonelist. It is stored
569 * here to avoid dereferences into large structures and lookups of tables
570 */
571struct zoneref {
572 struct zone *zone; /* Pointer to actual zone */
573 int zone_idx; /* zone_idx(zoneref->zone) */
574};
575
1da177e4
LT
576/*
577 * One allocation request operates on a zonelist. A zonelist
578 * is a list of zones, the first one is the 'goal' of the
579 * allocation, the other zones are fallback zones, in decreasing
580 * priority.
581 *
9276b1bc
PJ
582 * If zlcache_ptr is not NULL, then it is just the address of zlcache,
583 * as explained above. If zlcache_ptr is NULL, there is no zlcache.
dd1a239f
MG
584 * *
585 * To speed the reading of the zonelist, the zonerefs contain the zone index
586 * of the entry being read. Helper functions to access information given
587 * a struct zoneref are
588 *
589 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs
590 * zonelist_zone_idx() - Return the index of the zone for an entry
591 * zonelist_node_idx() - Return the index of the node for an entry
1da177e4
LT
592 */
593struct zonelist {
9276b1bc 594 struct zonelist_cache *zlcache_ptr; // NULL or &zlcache
dd1a239f 595 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
9276b1bc
PJ
596#ifdef CONFIG_NUMA
597 struct zonelist_cache zlcache; // optional ...
598#endif
1da177e4
LT
599};
600
c713216d
MG
601#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
602struct node_active_region {
603 unsigned long start_pfn;
604 unsigned long end_pfn;
605 int nid;
606};
607#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
1da177e4 608
5b99cd0e
HC
609#ifndef CONFIG_DISCONTIGMEM
610/* The array of struct pages - for discontigmem use pgdat->lmem_map */
611extern struct page *mem_map;
612#endif
613
1da177e4
LT
614/*
615 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
616 * (mostly NUMA machines?) to denote a higher-level memory zone than the
617 * zone denotes.
618 *
619 * On NUMA machines, each NUMA node would have a pg_data_t to describe
620 * it's memory layout.
621 *
622 * Memory statistics and page replacement data structures are maintained on a
623 * per-zone basis.
624 */
625struct bootmem_data;
626typedef struct pglist_data {
627 struct zone node_zones[MAX_NR_ZONES];
523b9458 628 struct zonelist node_zonelists[MAX_ZONELISTS];
1da177e4 629 int nr_zones;
52d4b9ac 630#ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */
1da177e4 631 struct page *node_mem_map;
52d4b9ac
KH
632#ifdef CONFIG_CGROUP_MEM_RES_CTLR
633 struct page_cgroup *node_page_cgroup;
634#endif
d41dee36 635#endif
08677214 636#ifndef CONFIG_NO_BOOTMEM
1da177e4 637 struct bootmem_data *bdata;
08677214 638#endif
208d54e5
DH
639#ifdef CONFIG_MEMORY_HOTPLUG
640 /*
641 * Must be held any time you expect node_start_pfn, node_present_pages
642 * or node_spanned_pages stay constant. Holding this will also
643 * guarantee that any pfn_valid() stays that way.
644 *
645 * Nests above zone->lock and zone->size_seqlock.
646 */
647 spinlock_t node_size_lock;
648#endif
1da177e4
LT
649 unsigned long node_start_pfn;
650 unsigned long node_present_pages; /* total number of physical pages */
651 unsigned long node_spanned_pages; /* total size of physical page
652 range, including holes */
653 int node_id;
1da177e4
LT
654 wait_queue_head_t kswapd_wait;
655 struct task_struct *kswapd;
656 int kswapd_max_order;
99504748 657 enum zone_type classzone_idx;
1da177e4
LT
658} pg_data_t;
659
660#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
661#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
d41dee36 662#ifdef CONFIG_FLAT_NODE_MEM_MAP
408fde81 663#define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
d41dee36
AW
664#else
665#define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
666#endif
408fde81 667#define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
1da177e4 668
c6830c22
KH
669#define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn)
670
671#define node_end_pfn(nid) ({\
672 pg_data_t *__pgdat = NODE_DATA(nid);\
673 __pgdat->node_start_pfn + __pgdat->node_spanned_pages;\
674})
675
208d54e5
DH
676#include <linux/memory_hotplug.h>
677
4eaf3f64 678extern struct mutex zonelists_mutex;
1f522509 679void build_all_zonelists(void *data);
99504748 680void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx);
88f5acf8
MG
681bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
682 int classzone_idx, int alloc_flags);
683bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
7fb1d9fc 684 int classzone_idx, int alloc_flags);
a2f3aa02
DH
685enum memmap_context {
686 MEMMAP_EARLY,
687 MEMMAP_HOTPLUG,
688};
718127cc 689extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
a2f3aa02
DH
690 unsigned long size,
691 enum memmap_context context);
718127cc 692
1da177e4
LT
693#ifdef CONFIG_HAVE_MEMORY_PRESENT
694void memory_present(int nid, unsigned long start, unsigned long end);
695#else
696static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
697#endif
698
7aac7898
LS
699#ifdef CONFIG_HAVE_MEMORYLESS_NODES
700int local_memory_node(int node_id);
701#else
702static inline int local_memory_node(int node_id) { return node_id; };
703#endif
704
1da177e4
LT
705#ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
706unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
707#endif
708
709/*
710 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
711 */
712#define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
713
f3fe6512
CK
714static inline int populated_zone(struct zone *zone)
715{
716 return (!!zone->present_pages);
717}
718
2a1e274a
MG
719extern int movable_zone;
720
721static inline int zone_movable_is_highmem(void)
722{
723#if defined(CONFIG_HIGHMEM) && defined(CONFIG_ARCH_POPULATES_NODE_MAP)
724 return movable_zone == ZONE_HIGHMEM;
725#else
726 return 0;
727#endif
728}
729
2f1b6248 730static inline int is_highmem_idx(enum zone_type idx)
1da177e4 731{
e53ef38d 732#ifdef CONFIG_HIGHMEM
2a1e274a
MG
733 return (idx == ZONE_HIGHMEM ||
734 (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
e53ef38d
CL
735#else
736 return 0;
737#endif
1da177e4
LT
738}
739
2f1b6248 740static inline int is_normal_idx(enum zone_type idx)
1da177e4
LT
741{
742 return (idx == ZONE_NORMAL);
743}
9328b8fa 744
1da177e4
LT
745/**
746 * is_highmem - helper function to quickly check if a struct zone is a
747 * highmem zone or not. This is an attempt to keep references
748 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
749 * @zone - pointer to struct zone variable
750 */
751static inline int is_highmem(struct zone *zone)
752{
e53ef38d 753#ifdef CONFIG_HIGHMEM
ddc81ed2
HH
754 int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones;
755 return zone_off == ZONE_HIGHMEM * sizeof(*zone) ||
756 (zone_off == ZONE_MOVABLE * sizeof(*zone) &&
757 zone_movable_is_highmem());
e53ef38d
CL
758#else
759 return 0;
760#endif
1da177e4
LT
761}
762
763static inline int is_normal(struct zone *zone)
764{
765 return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
766}
767
9328b8fa
NP
768static inline int is_dma32(struct zone *zone)
769{
fb0e7942 770#ifdef CONFIG_ZONE_DMA32
9328b8fa 771 return zone == zone->zone_pgdat->node_zones + ZONE_DMA32;
fb0e7942
CL
772#else
773 return 0;
774#endif
9328b8fa
NP
775}
776
777static inline int is_dma(struct zone *zone)
778{
4b51d669 779#ifdef CONFIG_ZONE_DMA
9328b8fa 780 return zone == zone->zone_pgdat->node_zones + ZONE_DMA;
4b51d669
CL
781#else
782 return 0;
783#endif
9328b8fa
NP
784}
785
1da177e4
LT
786/* These two functions are used to setup the per zone pages min values */
787struct ctl_table;
8d65af78 788int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
1da177e4
LT
789 void __user *, size_t *, loff_t *);
790extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
8d65af78 791int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
1da177e4 792 void __user *, size_t *, loff_t *);
8d65af78 793int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
8ad4b1fb 794 void __user *, size_t *, loff_t *);
9614634f 795int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
8d65af78 796 void __user *, size_t *, loff_t *);
0ff38490 797int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
8d65af78 798 void __user *, size_t *, loff_t *);
1da177e4 799
f0c0b2b8 800extern int numa_zonelist_order_handler(struct ctl_table *, int,
8d65af78 801 void __user *, size_t *, loff_t *);
f0c0b2b8
KH
802extern char numa_zonelist_order[];
803#define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */
804
93b7504e 805#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
806
807extern struct pglist_data contig_page_data;
808#define NODE_DATA(nid) (&contig_page_data)
809#define NODE_MEM_MAP(nid) mem_map
1da177e4 810
93b7504e 811#else /* CONFIG_NEED_MULTIPLE_NODES */
1da177e4
LT
812
813#include <asm/mmzone.h>
814
93b7504e 815#endif /* !CONFIG_NEED_MULTIPLE_NODES */
348f8b6c 816
95144c78
KH
817extern struct pglist_data *first_online_pgdat(void);
818extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
819extern struct zone *next_zone(struct zone *zone);
8357f869
KH
820
821/**
12d15f0d 822 * for_each_online_pgdat - helper macro to iterate over all online nodes
8357f869
KH
823 * @pgdat - pointer to a pg_data_t variable
824 */
825#define for_each_online_pgdat(pgdat) \
826 for (pgdat = first_online_pgdat(); \
827 pgdat; \
828 pgdat = next_online_pgdat(pgdat))
8357f869
KH
829/**
830 * for_each_zone - helper macro to iterate over all memory zones
831 * @zone - pointer to struct zone variable
832 *
833 * The user only needs to declare the zone variable, for_each_zone
834 * fills it in.
835 */
836#define for_each_zone(zone) \
837 for (zone = (first_online_pgdat())->node_zones; \
838 zone; \
839 zone = next_zone(zone))
840
ee99c71c
KM
841#define for_each_populated_zone(zone) \
842 for (zone = (first_online_pgdat())->node_zones; \
843 zone; \
844 zone = next_zone(zone)) \
845 if (!populated_zone(zone)) \
846 ; /* do nothing */ \
847 else
848
dd1a239f
MG
849static inline struct zone *zonelist_zone(struct zoneref *zoneref)
850{
851 return zoneref->zone;
852}
853
854static inline int zonelist_zone_idx(struct zoneref *zoneref)
855{
856 return zoneref->zone_idx;
857}
858
859static inline int zonelist_node_idx(struct zoneref *zoneref)
860{
861#ifdef CONFIG_NUMA
862 /* zone_to_nid not available in this context */
863 return zoneref->zone->node;
864#else
865 return 0;
866#endif /* CONFIG_NUMA */
867}
868
19770b32
MG
869/**
870 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
871 * @z - The cursor used as a starting point for the search
872 * @highest_zoneidx - The zone index of the highest zone to return
873 * @nodes - An optional nodemask to filter the zonelist with
874 * @zone - The first suitable zone found is returned via this parameter
875 *
876 * This function returns the next zone at or below a given zone index that is
877 * within the allowed nodemask using a cursor as the starting point for the
5bead2a0
MG
878 * search. The zoneref returned is a cursor that represents the current zone
879 * being examined. It should be advanced by one before calling
880 * next_zones_zonelist again.
19770b32
MG
881 */
882struct zoneref *next_zones_zonelist(struct zoneref *z,
883 enum zone_type highest_zoneidx,
884 nodemask_t *nodes,
885 struct zone **zone);
dd1a239f 886
19770b32
MG
887/**
888 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
889 * @zonelist - The zonelist to search for a suitable zone
890 * @highest_zoneidx - The zone index of the highest zone to return
891 * @nodes - An optional nodemask to filter the zonelist with
892 * @zone - The first suitable zone found is returned via this parameter
893 *
894 * This function returns the first zone at or below a given zone index that is
895 * within the allowed nodemask. The zoneref returned is a cursor that can be
5bead2a0
MG
896 * used to iterate the zonelist with next_zones_zonelist by advancing it by
897 * one before calling.
19770b32 898 */
dd1a239f 899static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
19770b32
MG
900 enum zone_type highest_zoneidx,
901 nodemask_t *nodes,
902 struct zone **zone)
54a6eb5c 903{
19770b32
MG
904 return next_zones_zonelist(zonelist->_zonerefs, highest_zoneidx, nodes,
905 zone);
54a6eb5c
MG
906}
907
19770b32
MG
908/**
909 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
910 * @zone - The current zone in the iterator
911 * @z - The current pointer within zonelist->zones being iterated
912 * @zlist - The zonelist being iterated
913 * @highidx - The zone index of the highest zone to return
914 * @nodemask - Nodemask allowed by the allocator
915 *
916 * This iterator iterates though all zones at or below a given zone index and
917 * within a given nodemask
918 */
919#define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
920 for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone); \
921 zone; \
5bead2a0 922 z = next_zones_zonelist(++z, highidx, nodemask, &zone)) \
54a6eb5c
MG
923
924/**
925 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
926 * @zone - The current zone in the iterator
927 * @z - The current pointer within zonelist->zones being iterated
928 * @zlist - The zonelist being iterated
929 * @highidx - The zone index of the highest zone to return
930 *
931 * This iterator iterates though all zones at or below a given zone index.
932 */
933#define for_each_zone_zonelist(zone, z, zlist, highidx) \
19770b32 934 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
54a6eb5c 935
d41dee36
AW
936#ifdef CONFIG_SPARSEMEM
937#include <asm/sparsemem.h>
938#endif
939
c713216d
MG
940#if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
941 !defined(CONFIG_ARCH_POPULATES_NODE_MAP)
b4544568
AM
942static inline unsigned long early_pfn_to_nid(unsigned long pfn)
943{
944 return 0;
945}
b159d43f
AW
946#endif
947
2bdaf115
AW
948#ifdef CONFIG_FLATMEM
949#define pfn_to_nid(pfn) (0)
950#endif
951
d41dee36
AW
952#ifdef CONFIG_SPARSEMEM
953
954/*
955 * SECTION_SHIFT #bits space required to store a section #
956 *
957 * PA_SECTION_SHIFT physical address to/from section number
958 * PFN_SECTION_SHIFT pfn to/from section number
959 */
960#define SECTIONS_SHIFT (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)
961
962#define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
963#define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
964
965#define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
966
967#define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
968#define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
969
835c134e 970#define SECTION_BLOCKFLAGS_BITS \
d9c23400 971 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
835c134e 972
d41dee36
AW
973#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
974#error Allocator MAX_ORDER exceeds SECTION_SIZE
975#endif
976
e3c40f37
DK
977#define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
978#define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
979
a539f353
DK
980#define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
981#define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK)
982
d41dee36 983struct page;
52d4b9ac 984struct page_cgroup;
d41dee36 985struct mem_section {
29751f69
AW
986 /*
987 * This is, logically, a pointer to an array of struct
988 * pages. However, it is stored with some other magic.
989 * (see sparse.c::sparse_init_one_section())
990 *
30c253e6
AW
991 * Additionally during early boot we encode node id of
992 * the location of the section here to guide allocation.
993 * (see sparse.c::memory_present())
994 *
29751f69
AW
995 * Making it a UL at least makes someone do a cast
996 * before using it wrong.
997 */
998 unsigned long section_mem_map;
5c0e3066
MG
999
1000 /* See declaration of similar field in struct zone */
1001 unsigned long *pageblock_flags;
52d4b9ac
KH
1002#ifdef CONFIG_CGROUP_MEM_RES_CTLR
1003 /*
1004 * If !SPARSEMEM, pgdat doesn't have page_cgroup pointer. We use
1005 * section. (see memcontrol.h/page_cgroup.h about this.)
1006 */
1007 struct page_cgroup *page_cgroup;
1008 unsigned long pad;
1009#endif
d41dee36
AW
1010};
1011
3e347261
BP
1012#ifdef CONFIG_SPARSEMEM_EXTREME
1013#define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
1014#else
1015#define SECTIONS_PER_ROOT 1
1016#endif
802f192e 1017
3e347261 1018#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
0faa5638 1019#define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
3e347261 1020#define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
802f192e 1021
3e347261
BP
1022#ifdef CONFIG_SPARSEMEM_EXTREME
1023extern struct mem_section *mem_section[NR_SECTION_ROOTS];
802f192e 1024#else
3e347261
BP
1025extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1026#endif
d41dee36 1027
29751f69
AW
1028static inline struct mem_section *__nr_to_section(unsigned long nr)
1029{
3e347261
BP
1030 if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1031 return NULL;
1032 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
29751f69 1033}
4ca644d9 1034extern int __section_nr(struct mem_section* ms);
04753278 1035extern unsigned long usemap_size(void);
29751f69
AW
1036
1037/*
1038 * We use the lower bits of the mem_map pointer to store
1039 * a little bit of information. There should be at least
1040 * 3 bits here due to 32-bit alignment.
1041 */
1042#define SECTION_MARKED_PRESENT (1UL<<0)
1043#define SECTION_HAS_MEM_MAP (1UL<<1)
1044#define SECTION_MAP_LAST_BIT (1UL<<2)
1045#define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
30c253e6 1046#define SECTION_NID_SHIFT 2
29751f69
AW
1047
1048static inline struct page *__section_mem_map_addr(struct mem_section *section)
1049{
1050 unsigned long map = section->section_mem_map;
1051 map &= SECTION_MAP_MASK;
1052 return (struct page *)map;
1053}
1054
540557b9 1055static inline int present_section(struct mem_section *section)
29751f69 1056{
802f192e 1057 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
29751f69
AW
1058}
1059
540557b9
AW
1060static inline int present_section_nr(unsigned long nr)
1061{
1062 return present_section(__nr_to_section(nr));
1063}
1064
1065static inline int valid_section(struct mem_section *section)
29751f69 1066{
802f192e 1067 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
29751f69
AW
1068}
1069
1070static inline int valid_section_nr(unsigned long nr)
1071{
1072 return valid_section(__nr_to_section(nr));
1073}
1074
d41dee36
AW
1075static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1076{
29751f69 1077 return __nr_to_section(pfn_to_section_nr(pfn));
d41dee36
AW
1078}
1079
7b7bf499 1080#ifndef CONFIG_HAVE_ARCH_PFN_VALID
d41dee36
AW
1081static inline int pfn_valid(unsigned long pfn)
1082{
1083 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1084 return 0;
29751f69 1085 return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
d41dee36 1086}
7b7bf499 1087#endif
d41dee36 1088
540557b9
AW
1089static inline int pfn_present(unsigned long pfn)
1090{
1091 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1092 return 0;
1093 return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1094}
1095
d41dee36
AW
1096/*
1097 * These are _only_ used during initialisation, therefore they
1098 * can use __initdata ... They could have names to indicate
1099 * this restriction.
1100 */
1101#ifdef CONFIG_NUMA
161599ff
AW
1102#define pfn_to_nid(pfn) \
1103({ \
1104 unsigned long __pfn_to_nid_pfn = (pfn); \
1105 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
1106})
2bdaf115
AW
1107#else
1108#define pfn_to_nid(pfn) (0)
d41dee36
AW
1109#endif
1110
d41dee36
AW
1111#define early_pfn_valid(pfn) pfn_valid(pfn)
1112void sparse_init(void);
1113#else
1114#define sparse_init() do {} while (0)
28ae55c9 1115#define sparse_index_init(_sec, _nid) do {} while (0)
d41dee36
AW
1116#endif /* CONFIG_SPARSEMEM */
1117
75167957 1118#ifdef CONFIG_NODES_SPAN_OTHER_NODES
cc2559bc 1119bool early_pfn_in_nid(unsigned long pfn, int nid);
75167957
AW
1120#else
1121#define early_pfn_in_nid(pfn, nid) (1)
1122#endif
1123
d41dee36
AW
1124#ifndef early_pfn_valid
1125#define early_pfn_valid(pfn) (1)
1126#endif
1127
1128void memory_present(int nid, unsigned long start, unsigned long end);
1129unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
1130
14e07298
AW
1131/*
1132 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1133 * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
1134 * pfn_valid_within() should be used in this case; we optimise this away
1135 * when we have no holes within a MAX_ORDER_NR_PAGES block.
1136 */
1137#ifdef CONFIG_HOLES_IN_ZONE
1138#define pfn_valid_within(pfn) pfn_valid(pfn)
1139#else
1140#define pfn_valid_within(pfn) (1)
1141#endif
1142
eb33575c
MG
1143#ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1144/*
1145 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1146 * associated with it or not. In FLATMEM, it is expected that holes always
1147 * have valid memmap as long as there is valid PFNs either side of the hole.
1148 * In SPARSEMEM, it is assumed that a valid section has a memmap for the
1149 * entire section.
1150 *
1151 * However, an ARM, and maybe other embedded architectures in the future
1152 * free memmap backing holes to save memory on the assumption the memmap is
1153 * never used. The page_zone linkages are then broken even though pfn_valid()
1154 * returns true. A walker of the full memmap must then do this additional
1155 * check to ensure the memmap they are looking at is sane by making sure
1156 * the zone and PFN linkages are still valid. This is expensive, but walkers
1157 * of the full memmap are extremely rare.
1158 */
1159int memmap_valid_within(unsigned long pfn,
1160 struct page *page, struct zone *zone);
1161#else
1162static inline int memmap_valid_within(unsigned long pfn,
1163 struct page *page, struct zone *zone)
1164{
1165 return 1;
1166}
1167#endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1168
97965478 1169#endif /* !__GENERATING_BOUNDS.H */
1da177e4 1170#endif /* !__ASSEMBLY__ */
1da177e4 1171#endif /* _LINUX_MMZONE_H */