[PATCH] drop-pagecache
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / include / linux / mmzone.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_MMZONE_H
2#define _LINUX_MMZONE_H
3
4#ifdef __KERNEL__
5#ifndef __ASSEMBLY__
6
7#include <linux/config.h>
8#include <linux/spinlock.h>
9#include <linux/list.h>
10#include <linux/wait.h>
11#include <linux/cache.h>
12#include <linux/threads.h>
13#include <linux/numa.h>
14#include <linux/init.h>
bdc8cb98 15#include <linux/seqlock.h>
1da177e4
LT
16#include <asm/atomic.h>
17
18/* Free memory management - zoned buddy allocator. */
19#ifndef CONFIG_FORCE_MAX_ZONEORDER
20#define MAX_ORDER 11
21#else
22#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
23#endif
24
25struct free_area {
26 struct list_head free_list;
27 unsigned long nr_free;
28};
29
30struct pglist_data;
31
32/*
33 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
34 * So add a wild amount of padding here to ensure that they fall into separate
35 * cachelines. There are very few zone structures in the machine, so space
36 * consumption is not a concern here.
37 */
38#if defined(CONFIG_SMP)
39struct zone_padding {
40 char x[0];
41} ____cacheline_maxaligned_in_smp;
42#define ZONE_PADDING(name) struct zone_padding name;
43#else
44#define ZONE_PADDING(name)
45#endif
46
47struct per_cpu_pages {
48 int count; /* number of pages in the list */
1da177e4
LT
49 int high; /* high watermark, emptying needed */
50 int batch; /* chunk size for buddy add/remove */
51 struct list_head list; /* the list of pages */
52};
53
54struct per_cpu_pageset {
55 struct per_cpu_pages pcp[2]; /* 0: hot. 1: cold */
56#ifdef CONFIG_NUMA
57 unsigned long numa_hit; /* allocated in intended node */
58 unsigned long numa_miss; /* allocated in non intended node */
59 unsigned long numa_foreign; /* was intended here, hit elsewhere */
60 unsigned long interleave_hit; /* interleaver prefered this zone */
61 unsigned long local_node; /* allocation from local node */
62 unsigned long other_node; /* allocation from other node */
63#endif
64} ____cacheline_aligned_in_smp;
65
e7c8d5c9
CL
66#ifdef CONFIG_NUMA
67#define zone_pcp(__z, __cpu) ((__z)->pageset[(__cpu)])
68#else
69#define zone_pcp(__z, __cpu) (&(__z)->pageset[(__cpu)])
70#endif
71
1da177e4 72#define ZONE_DMA 0
a2f1b424
AK
73#define ZONE_DMA32 1
74#define ZONE_NORMAL 2
75#define ZONE_HIGHMEM 3
1da177e4 76
a2f1b424 77#define MAX_NR_ZONES 4 /* Sync this with ZONES_SHIFT */
1da177e4
LT
78#define ZONES_SHIFT 2 /* ceil(log2(MAX_NR_ZONES)) */
79
80
81/*
82 * When a memory allocation must conform to specific limitations (such
83 * as being suitable for DMA) the caller will pass in hints to the
84 * allocator in the gfp_mask, in the zone modifier bits. These bits
85 * are used to select a priority ordered list of memory zones which
86 * match the requested limits. GFP_ZONEMASK defines which bits within
87 * the gfp_mask should be considered as zone modifiers. Each valid
88 * combination of the zone modifier bits has a corresponding list
89 * of zones (in node_zonelists). Thus for two zone modifiers there
90 * will be a maximum of 4 (2 ** 2) zonelists, for 3 modifiers there will
91 * be 8 (2 ** 3) zonelists. GFP_ZONETYPES defines the number of possible
92 * combinations of zone modifiers in "zone modifier space".
ac3461ad
LT
93 *
94 * NOTE! Make sure this matches the zones in <linux/gfp.h>
1da177e4 95 */
ac3461ad
LT
96#define GFP_ZONEMASK 0x07
97#define GFP_ZONETYPES 5
1da177e4
LT
98
99/*
100 * On machines where it is needed (eg PCs) we divide physical memory
a2f1b424 101 * into multiple physical zones. On a PC we have 4 zones:
1da177e4
LT
102 *
103 * ZONE_DMA < 16 MB ISA DMA capable memory
a2f1b424 104 * ZONE_DMA32 0 MB Empty
1da177e4
LT
105 * ZONE_NORMAL 16-896 MB direct mapped by the kernel
106 * ZONE_HIGHMEM > 896 MB only page cache and user processes
107 */
108
109struct zone {
110 /* Fields commonly accessed by the page allocator */
111 unsigned long free_pages;
112 unsigned long pages_min, pages_low, pages_high;
113 /*
114 * We don't know if the memory that we're going to allocate will be freeable
115 * or/and it will be released eventually, so to avoid totally wasting several
116 * GB of ram we must reserve some of the lower zone memory (otherwise we risk
117 * to run OOM on the lower zones despite there's tons of freeable ram
118 * on the higher zones). This array is recalculated at runtime if the
119 * sysctl_lowmem_reserve_ratio sysctl changes.
120 */
121 unsigned long lowmem_reserve[MAX_NR_ZONES];
122
e7c8d5c9
CL
123#ifdef CONFIG_NUMA
124 struct per_cpu_pageset *pageset[NR_CPUS];
125#else
1da177e4 126 struct per_cpu_pageset pageset[NR_CPUS];
e7c8d5c9 127#endif
1da177e4
LT
128 /*
129 * free areas of different sizes
130 */
131 spinlock_t lock;
bdc8cb98
DH
132#ifdef CONFIG_MEMORY_HOTPLUG
133 /* see spanned/present_pages for more description */
134 seqlock_t span_seqlock;
135#endif
1da177e4
LT
136 struct free_area free_area[MAX_ORDER];
137
138
139 ZONE_PADDING(_pad1_)
140
141 /* Fields commonly accessed by the page reclaim scanner */
142 spinlock_t lru_lock;
143 struct list_head active_list;
144 struct list_head inactive_list;
145 unsigned long nr_scan_active;
146 unsigned long nr_scan_inactive;
147 unsigned long nr_active;
148 unsigned long nr_inactive;
149 unsigned long pages_scanned; /* since last reclaim */
150 int all_unreclaimable; /* All pages pinned */
151
753ee728
MH
152 /*
153 * Does the allocator try to reclaim pages from the zone as soon
154 * as it fails a watermark_ok() in __alloc_pages?
155 */
156 int reclaim_pages;
1e7e5a90
MH
157 /* A count of how many reclaimers are scanning this zone */
158 atomic_t reclaim_in_progress;
753ee728 159
1da177e4
LT
160 /*
161 * prev_priority holds the scanning priority for this zone. It is
162 * defined as the scanning priority at which we achieved our reclaim
163 * target at the previous try_to_free_pages() or balance_pgdat()
164 * invokation.
165 *
166 * We use prev_priority as a measure of how much stress page reclaim is
167 * under - it drives the swappiness decision: whether to unmap mapped
168 * pages.
169 *
170 * temp_priority is used to remember the scanning priority at which
171 * this zone was successfully refilled to free_pages == pages_high.
172 *
173 * Access to both these fields is quite racy even on uniprocessor. But
174 * it is expected to average out OK.
175 */
176 int temp_priority;
177 int prev_priority;
178
179
180 ZONE_PADDING(_pad2_)
181 /* Rarely used or read-mostly fields */
182
183 /*
184 * wait_table -- the array holding the hash table
185 * wait_table_size -- the size of the hash table array
186 * wait_table_bits -- wait_table_size == (1 << wait_table_bits)
187 *
188 * The purpose of all these is to keep track of the people
189 * waiting for a page to become available and make them
190 * runnable again when possible. The trouble is that this
191 * consumes a lot of space, especially when so few things
192 * wait on pages at a given time. So instead of using
193 * per-page waitqueues, we use a waitqueue hash table.
194 *
195 * The bucket discipline is to sleep on the same queue when
196 * colliding and wake all in that wait queue when removing.
197 * When something wakes, it must check to be sure its page is
198 * truly available, a la thundering herd. The cost of a
199 * collision is great, but given the expected load of the
200 * table, they should be so rare as to be outweighed by the
201 * benefits from the saved space.
202 *
203 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
204 * primary users of these fields, and in mm/page_alloc.c
205 * free_area_init_core() performs the initialization of them.
206 */
207 wait_queue_head_t * wait_table;
208 unsigned long wait_table_size;
209 unsigned long wait_table_bits;
210
211 /*
212 * Discontig memory support fields.
213 */
214 struct pglist_data *zone_pgdat;
215 struct page *zone_mem_map;
216 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
217 unsigned long zone_start_pfn;
218
bdc8cb98
DH
219 /*
220 * zone_start_pfn, spanned_pages and present_pages are all
221 * protected by span_seqlock. It is a seqlock because it has
222 * to be read outside of zone->lock, and it is done in the main
223 * allocator path. But, it is written quite infrequently.
224 *
225 * The lock is declared along with zone->lock because it is
226 * frequently read in proximity to zone->lock. It's good to
227 * give them a chance of being in the same cacheline.
228 */
1da177e4
LT
229 unsigned long spanned_pages; /* total size, including holes */
230 unsigned long present_pages; /* amount of memory (excluding holes) */
231
232 /*
233 * rarely used fields:
234 */
235 char *name;
236} ____cacheline_maxaligned_in_smp;
237
238
239/*
240 * The "priority" of VM scanning is how much of the queues we will scan in one
241 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
242 * queues ("queue_length >> 12") during an aging round.
243 */
244#define DEF_PRIORITY 12
245
246/*
247 * One allocation request operates on a zonelist. A zonelist
248 * is a list of zones, the first one is the 'goal' of the
249 * allocation, the other zones are fallback zones, in decreasing
250 * priority.
251 *
252 * Right now a zonelist takes up less than a cacheline. We never
253 * modify it apart from boot-up, and only a few indices are used,
254 * so despite the zonelist table being relatively big, the cache
255 * footprint of this construct is very small.
256 */
257struct zonelist {
258 struct zone *zones[MAX_NUMNODES * MAX_NR_ZONES + 1]; // NULL delimited
259};
260
261
262/*
263 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
264 * (mostly NUMA machines?) to denote a higher-level memory zone than the
265 * zone denotes.
266 *
267 * On NUMA machines, each NUMA node would have a pg_data_t to describe
268 * it's memory layout.
269 *
270 * Memory statistics and page replacement data structures are maintained on a
271 * per-zone basis.
272 */
273struct bootmem_data;
274typedef struct pglist_data {
275 struct zone node_zones[MAX_NR_ZONES];
276 struct zonelist node_zonelists[GFP_ZONETYPES];
277 int nr_zones;
d41dee36 278#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4 279 struct page *node_mem_map;
d41dee36 280#endif
1da177e4 281 struct bootmem_data *bdata;
208d54e5
DH
282#ifdef CONFIG_MEMORY_HOTPLUG
283 /*
284 * Must be held any time you expect node_start_pfn, node_present_pages
285 * or node_spanned_pages stay constant. Holding this will also
286 * guarantee that any pfn_valid() stays that way.
287 *
288 * Nests above zone->lock and zone->size_seqlock.
289 */
290 spinlock_t node_size_lock;
291#endif
1da177e4
LT
292 unsigned long node_start_pfn;
293 unsigned long node_present_pages; /* total number of physical pages */
294 unsigned long node_spanned_pages; /* total size of physical page
295 range, including holes */
296 int node_id;
297 struct pglist_data *pgdat_next;
298 wait_queue_head_t kswapd_wait;
299 struct task_struct *kswapd;
300 int kswapd_max_order;
301} pg_data_t;
302
303#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
304#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
d41dee36 305#ifdef CONFIG_FLAT_NODE_MEM_MAP
408fde81 306#define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
d41dee36
AW
307#else
308#define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
309#endif
408fde81 310#define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
1da177e4 311
208d54e5
DH
312#include <linux/memory_hotplug.h>
313
1da177e4
LT
314extern struct pglist_data *pgdat_list;
315
316void __get_zone_counts(unsigned long *active, unsigned long *inactive,
317 unsigned long *free, struct pglist_data *pgdat);
318void get_zone_counts(unsigned long *active, unsigned long *inactive,
319 unsigned long *free);
320void build_all_zonelists(void);
321void wakeup_kswapd(struct zone *zone, int order);
322int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
7fb1d9fc 323 int classzone_idx, int alloc_flags);
1da177e4
LT
324
325#ifdef CONFIG_HAVE_MEMORY_PRESENT
326void memory_present(int nid, unsigned long start, unsigned long end);
327#else
328static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
329#endif
330
331#ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
332unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
333#endif
334
335/*
336 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
337 */
338#define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
339
340/**
341 * for_each_pgdat - helper macro to iterate over all nodes
342 * @pgdat - pointer to a pg_data_t variable
343 *
344 * Meant to help with common loops of the form
345 * pgdat = pgdat_list;
346 * while(pgdat) {
347 * ...
348 * pgdat = pgdat->pgdat_next;
349 * }
350 */
351#define for_each_pgdat(pgdat) \
352 for (pgdat = pgdat_list; pgdat; pgdat = pgdat->pgdat_next)
353
354/*
355 * next_zone - helper magic for for_each_zone()
356 * Thanks to William Lee Irwin III for this piece of ingenuity.
357 */
358static inline struct zone *next_zone(struct zone *zone)
359{
360 pg_data_t *pgdat = zone->zone_pgdat;
361
362 if (zone < pgdat->node_zones + MAX_NR_ZONES - 1)
363 zone++;
364 else if (pgdat->pgdat_next) {
365 pgdat = pgdat->pgdat_next;
366 zone = pgdat->node_zones;
367 } else
368 zone = NULL;
369
370 return zone;
371}
372
373/**
374 * for_each_zone - helper macro to iterate over all memory zones
375 * @zone - pointer to struct zone variable
376 *
377 * The user only needs to declare the zone variable, for_each_zone
378 * fills it in. This basically means for_each_zone() is an
379 * easier to read version of this piece of code:
380 *
381 * for (pgdat = pgdat_list; pgdat; pgdat = pgdat->node_next)
382 * for (i = 0; i < MAX_NR_ZONES; ++i) {
383 * struct zone * z = pgdat->node_zones + i;
384 * ...
385 * }
386 * }
387 */
388#define for_each_zone(zone) \
389 for (zone = pgdat_list->node_zones; zone; zone = next_zone(zone))
390
f3fe6512
CK
391static inline int populated_zone(struct zone *zone)
392{
393 return (!!zone->present_pages);
394}
395
1da177e4
LT
396static inline int is_highmem_idx(int idx)
397{
398 return (idx == ZONE_HIGHMEM);
399}
400
401static inline int is_normal_idx(int idx)
402{
403 return (idx == ZONE_NORMAL);
404}
9328b8fa 405
1da177e4
LT
406/**
407 * is_highmem - helper function to quickly check if a struct zone is a
408 * highmem zone or not. This is an attempt to keep references
409 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
410 * @zone - pointer to struct zone variable
411 */
412static inline int is_highmem(struct zone *zone)
413{
414 return zone == zone->zone_pgdat->node_zones + ZONE_HIGHMEM;
415}
416
417static inline int is_normal(struct zone *zone)
418{
419 return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
420}
421
9328b8fa
NP
422static inline int is_dma32(struct zone *zone)
423{
424 return zone == zone->zone_pgdat->node_zones + ZONE_DMA32;
425}
426
427static inline int is_dma(struct zone *zone)
428{
429 return zone == zone->zone_pgdat->node_zones + ZONE_DMA;
430}
431
1da177e4
LT
432/* These two functions are used to setup the per zone pages min values */
433struct ctl_table;
434struct file;
435int min_free_kbytes_sysctl_handler(struct ctl_table *, int, struct file *,
436 void __user *, size_t *, loff_t *);
437extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
438int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, struct file *,
439 void __user *, size_t *, loff_t *);
440
441#include <linux/topology.h>
442/* Returns the number of the current Node. */
69d81fcd 443#ifndef numa_node_id
39c715b7 444#define numa_node_id() (cpu_to_node(raw_smp_processor_id()))
69d81fcd 445#endif
1da177e4 446
93b7504e 447#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
448
449extern struct pglist_data contig_page_data;
450#define NODE_DATA(nid) (&contig_page_data)
451#define NODE_MEM_MAP(nid) mem_map
452#define MAX_NODES_SHIFT 1
1da177e4 453
93b7504e 454#else /* CONFIG_NEED_MULTIPLE_NODES */
1da177e4
LT
455
456#include <asm/mmzone.h>
457
93b7504e 458#endif /* !CONFIG_NEED_MULTIPLE_NODES */
348f8b6c 459
d41dee36
AW
460#ifdef CONFIG_SPARSEMEM
461#include <asm/sparsemem.h>
462#endif
463
07808b74 464#if BITS_PER_LONG == 32
1da177e4 465/*
a2f1b424
AK
466 * with 32 bit page->flags field, we reserve 9 bits for node/zone info.
467 * there are 4 zones (3 bits) and this leaves 9-3=6 bits for nodes.
1da177e4 468 */
a2f1b424 469#define FLAGS_RESERVED 9
348f8b6c 470
1da177e4
LT
471#elif BITS_PER_LONG == 64
472/*
473 * with 64 bit flags field, there's plenty of room.
474 */
348f8b6c 475#define FLAGS_RESERVED 32
1da177e4 476
348f8b6c 477#else
1da177e4 478
348f8b6c 479#error BITS_PER_LONG not defined
1da177e4 480
1da177e4
LT
481#endif
482
b159d43f
AW
483#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
484#define early_pfn_to_nid(nid) (0UL)
485#endif
486
2bdaf115
AW
487#ifdef CONFIG_FLATMEM
488#define pfn_to_nid(pfn) (0)
489#endif
490
d41dee36
AW
491#define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
492#define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
493
494#ifdef CONFIG_SPARSEMEM
495
496/*
497 * SECTION_SHIFT #bits space required to store a section #
498 *
499 * PA_SECTION_SHIFT physical address to/from section number
500 * PFN_SECTION_SHIFT pfn to/from section number
501 */
502#define SECTIONS_SHIFT (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)
503
504#define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
505#define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
506
507#define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
508
509#define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
510#define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
511
512#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
513#error Allocator MAX_ORDER exceeds SECTION_SIZE
514#endif
515
516struct page;
517struct mem_section {
29751f69
AW
518 /*
519 * This is, logically, a pointer to an array of struct
520 * pages. However, it is stored with some other magic.
521 * (see sparse.c::sparse_init_one_section())
522 *
523 * Making it a UL at least makes someone do a cast
524 * before using it wrong.
525 */
526 unsigned long section_mem_map;
d41dee36
AW
527};
528
3e347261
BP
529#ifdef CONFIG_SPARSEMEM_EXTREME
530#define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
531#else
532#define SECTIONS_PER_ROOT 1
533#endif
802f192e 534
3e347261
BP
535#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
536#define NR_SECTION_ROOTS (NR_MEM_SECTIONS / SECTIONS_PER_ROOT)
537#define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
802f192e 538
3e347261
BP
539#ifdef CONFIG_SPARSEMEM_EXTREME
540extern struct mem_section *mem_section[NR_SECTION_ROOTS];
802f192e 541#else
3e347261
BP
542extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
543#endif
d41dee36 544
29751f69
AW
545static inline struct mem_section *__nr_to_section(unsigned long nr)
546{
3e347261
BP
547 if (!mem_section[SECTION_NR_TO_ROOT(nr)])
548 return NULL;
549 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
29751f69 550}
4ca644d9 551extern int __section_nr(struct mem_section* ms);
29751f69
AW
552
553/*
554 * We use the lower bits of the mem_map pointer to store
555 * a little bit of information. There should be at least
556 * 3 bits here due to 32-bit alignment.
557 */
558#define SECTION_MARKED_PRESENT (1UL<<0)
559#define SECTION_HAS_MEM_MAP (1UL<<1)
560#define SECTION_MAP_LAST_BIT (1UL<<2)
561#define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
562
563static inline struct page *__section_mem_map_addr(struct mem_section *section)
564{
565 unsigned long map = section->section_mem_map;
566 map &= SECTION_MAP_MASK;
567 return (struct page *)map;
568}
569
570static inline int valid_section(struct mem_section *section)
571{
802f192e 572 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
29751f69
AW
573}
574
575static inline int section_has_mem_map(struct mem_section *section)
576{
802f192e 577 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
29751f69
AW
578}
579
580static inline int valid_section_nr(unsigned long nr)
581{
582 return valid_section(__nr_to_section(nr));
583}
584
d41dee36
AW
585static inline struct mem_section *__pfn_to_section(unsigned long pfn)
586{
29751f69 587 return __nr_to_section(pfn_to_section_nr(pfn));
d41dee36
AW
588}
589
590#define pfn_to_page(pfn) \
591({ \
592 unsigned long __pfn = (pfn); \
29751f69 593 __section_mem_map_addr(__pfn_to_section(__pfn)) + __pfn; \
d41dee36
AW
594})
595#define page_to_pfn(page) \
596({ \
29751f69
AW
597 page - __section_mem_map_addr(__nr_to_section( \
598 page_to_section(page))); \
d41dee36
AW
599})
600
601static inline int pfn_valid(unsigned long pfn)
602{
603 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
604 return 0;
29751f69 605 return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
d41dee36
AW
606}
607
608/*
609 * These are _only_ used during initialisation, therefore they
610 * can use __initdata ... They could have names to indicate
611 * this restriction.
612 */
613#ifdef CONFIG_NUMA
161599ff
AW
614#define pfn_to_nid(pfn) \
615({ \
616 unsigned long __pfn_to_nid_pfn = (pfn); \
617 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
618})
2bdaf115
AW
619#else
620#define pfn_to_nid(pfn) (0)
d41dee36
AW
621#endif
622
d41dee36
AW
623#define early_pfn_valid(pfn) pfn_valid(pfn)
624void sparse_init(void);
625#else
626#define sparse_init() do {} while (0)
28ae55c9 627#define sparse_index_init(_sec, _nid) do {} while (0)
d41dee36
AW
628#endif /* CONFIG_SPARSEMEM */
629
630#ifndef early_pfn_valid
631#define early_pfn_valid(pfn) (1)
632#endif
633
634void memory_present(int nid, unsigned long start, unsigned long end);
635unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
636
1da177e4
LT
637#endif /* !__ASSEMBLY__ */
638#endif /* __KERNEL__ */
639#endif /* _LINUX_MMZONE_H */