pageflag helpers for configed-out flags
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / include / linux / mmzone.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_MMZONE_H
2#define _LINUX_MMZONE_H
3
1da177e4 4#ifndef __ASSEMBLY__
97965478 5#ifndef __GENERATING_BOUNDS_H
1da177e4 6
1da177e4
LT
7#include <linux/spinlock.h>
8#include <linux/list.h>
9#include <linux/wait.h>
e815af95 10#include <linux/bitops.h>
1da177e4
LT
11#include <linux/cache.h>
12#include <linux/threads.h>
13#include <linux/numa.h>
14#include <linux/init.h>
bdc8cb98 15#include <linux/seqlock.h>
8357f869 16#include <linux/nodemask.h>
835c134e 17#include <linux/pageblock-flags.h>
97965478 18#include <linux/bounds.h>
1da177e4 19#include <asm/atomic.h>
93ff66bf 20#include <asm/page.h>
1da177e4
LT
21
22/* Free memory management - zoned buddy allocator. */
23#ifndef CONFIG_FORCE_MAX_ZONEORDER
24#define MAX_ORDER 11
25#else
26#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
27#endif
e984bb43 28#define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
1da177e4 29
5ad333eb
AW
30/*
31 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
32 * costly to service. That is between allocation orders which should
33 * coelesce naturally under reasonable reclaim pressure and those which
34 * will not.
35 */
36#define PAGE_ALLOC_COSTLY_ORDER 3
37
b2a0ac88 38#define MIGRATE_UNMOVABLE 0
e12ba74d
MG
39#define MIGRATE_RECLAIMABLE 1
40#define MIGRATE_MOVABLE 2
64c5e135 41#define MIGRATE_RESERVE 3
a5d76b54
KH
42#define MIGRATE_ISOLATE 4 /* can't allocate from here */
43#define MIGRATE_TYPES 5
b2a0ac88
MG
44
45#define for_each_migratetype_order(order, type) \
46 for (order = 0; order < MAX_ORDER; order++) \
47 for (type = 0; type < MIGRATE_TYPES; type++)
48
467c996c
MG
49extern int page_group_by_mobility_disabled;
50
51static inline int get_pageblock_migratetype(struct page *page)
52{
53 if (unlikely(page_group_by_mobility_disabled))
54 return MIGRATE_UNMOVABLE;
55
56 return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end);
57}
58
1da177e4 59struct free_area {
b2a0ac88 60 struct list_head free_list[MIGRATE_TYPES];
1da177e4
LT
61 unsigned long nr_free;
62};
63
64struct pglist_data;
65
66/*
67 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
68 * So add a wild amount of padding here to ensure that they fall into separate
69 * cachelines. There are very few zone structures in the machine, so space
70 * consumption is not a concern here.
71 */
72#if defined(CONFIG_SMP)
73struct zone_padding {
74 char x[0];
22fc6ecc 75} ____cacheline_internodealigned_in_smp;
1da177e4
LT
76#define ZONE_PADDING(name) struct zone_padding name;
77#else
78#define ZONE_PADDING(name)
79#endif
80
2244b95a 81enum zone_stat_item {
51ed4491 82 /* First 128 byte cacheline (assuming 64 bit words) */
d23ad423 83 NR_FREE_PAGES,
b69408e8 84 NR_LRU_BASE,
4f98a2fe
RR
85 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
86 NR_ACTIVE_ANON, /* " " " " " */
87 NR_INACTIVE_FILE, /* " " " " " */
88 NR_ACTIVE_FILE, /* " " " " " */
f3dbd344
CL
89 NR_ANON_PAGES, /* Mapped anonymous pages */
90 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
65ba55f5 91 only modified from process context */
347ce434 92 NR_FILE_PAGES,
b1e7a8fd 93 NR_FILE_DIRTY,
ce866b34 94 NR_WRITEBACK,
51ed4491
CL
95 NR_SLAB_RECLAIMABLE,
96 NR_SLAB_UNRECLAIMABLE,
97 NR_PAGETABLE, /* used for pagetables */
fd39fc85 98 NR_UNSTABLE_NFS, /* NFS unstable pages */
d2c5e30c 99 NR_BOUNCE,
e129b5c2 100 NR_VMSCAN_WRITE,
4f98a2fe 101 /* Second 128 byte cacheline */
fc3ba692 102 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */
ca889e6c
CL
103#ifdef CONFIG_NUMA
104 NUMA_HIT, /* allocated in intended node */
105 NUMA_MISS, /* allocated in non intended node */
106 NUMA_FOREIGN, /* was intended here, hit elsewhere */
107 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
108 NUMA_LOCAL, /* allocation from local node */
109 NUMA_OTHER, /* allocation from other node */
110#endif
2244b95a
CL
111 NR_VM_ZONE_STAT_ITEMS };
112
4f98a2fe
RR
113/*
114 * We do arithmetic on the LRU lists in various places in the code,
115 * so it is important to keep the active lists LRU_ACTIVE higher in
116 * the array than the corresponding inactive lists, and to keep
117 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
118 *
119 * This has to be kept in sync with the statistics in zone_stat_item
120 * above and the descriptions in vmstat_text in mm/vmstat.c
121 */
122#define LRU_BASE 0
123#define LRU_ACTIVE 1
124#define LRU_FILE 2
125
b69408e8 126enum lru_list {
4f98a2fe
RR
127 LRU_INACTIVE_ANON = LRU_BASE,
128 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
129 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
130 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
b69408e8
CL
131 NR_LRU_LISTS };
132
133#define for_each_lru(l) for (l = 0; l < NR_LRU_LISTS; l++)
134
4f98a2fe
RR
135static inline int is_file_lru(enum lru_list l)
136{
137 return (l == LRU_INACTIVE_FILE || l == LRU_ACTIVE_FILE);
138}
139
b69408e8
CL
140static inline int is_active_lru(enum lru_list l)
141{
4f98a2fe 142 return (l == LRU_ACTIVE_ANON || l == LRU_ACTIVE_FILE);
b69408e8
CL
143}
144
1da177e4
LT
145struct per_cpu_pages {
146 int count; /* number of pages in the list */
1da177e4
LT
147 int high; /* high watermark, emptying needed */
148 int batch; /* chunk size for buddy add/remove */
149 struct list_head list; /* the list of pages */
150};
151
152struct per_cpu_pageset {
3dfa5721 153 struct per_cpu_pages pcp;
4037d452
CL
154#ifdef CONFIG_NUMA
155 s8 expire;
156#endif
2244b95a 157#ifdef CONFIG_SMP
df9ecaba 158 s8 stat_threshold;
2244b95a
CL
159 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
160#endif
1da177e4
LT
161} ____cacheline_aligned_in_smp;
162
e7c8d5c9
CL
163#ifdef CONFIG_NUMA
164#define zone_pcp(__z, __cpu) ((__z)->pageset[(__cpu)])
165#else
166#define zone_pcp(__z, __cpu) (&(__z)->pageset[(__cpu)])
167#endif
168
97965478
CL
169#endif /* !__GENERATING_BOUNDS.H */
170
2f1b6248 171enum zone_type {
4b51d669 172#ifdef CONFIG_ZONE_DMA
2f1b6248
CL
173 /*
174 * ZONE_DMA is used when there are devices that are not able
175 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
176 * carve out the portion of memory that is needed for these devices.
177 * The range is arch specific.
178 *
179 * Some examples
180 *
181 * Architecture Limit
182 * ---------------------------
183 * parisc, ia64, sparc <4G
184 * s390 <2G
2f1b6248
CL
185 * arm Various
186 * alpha Unlimited or 0-16MB.
187 *
188 * i386, x86_64 and multiple other arches
189 * <16M.
190 */
191 ZONE_DMA,
4b51d669 192#endif
fb0e7942 193#ifdef CONFIG_ZONE_DMA32
2f1b6248
CL
194 /*
195 * x86_64 needs two ZONE_DMAs because it supports devices that are
196 * only able to do DMA to the lower 16M but also 32 bit devices that
197 * can only do DMA areas below 4G.
198 */
199 ZONE_DMA32,
fb0e7942 200#endif
2f1b6248
CL
201 /*
202 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
203 * performed on pages in ZONE_NORMAL if the DMA devices support
204 * transfers to all addressable memory.
205 */
206 ZONE_NORMAL,
e53ef38d 207#ifdef CONFIG_HIGHMEM
2f1b6248
CL
208 /*
209 * A memory area that is only addressable by the kernel through
210 * mapping portions into its own address space. This is for example
211 * used by i386 to allow the kernel to address the memory beyond
212 * 900MB. The kernel will set up special mappings (page
213 * table entries on i386) for each page that the kernel needs to
214 * access.
215 */
216 ZONE_HIGHMEM,
e53ef38d 217#endif
2a1e274a 218 ZONE_MOVABLE,
97965478 219 __MAX_NR_ZONES
2f1b6248 220};
1da177e4 221
97965478
CL
222#ifndef __GENERATING_BOUNDS_H
223
1da177e4
LT
224/*
225 * When a memory allocation must conform to specific limitations (such
226 * as being suitable for DMA) the caller will pass in hints to the
227 * allocator in the gfp_mask, in the zone modifier bits. These bits
228 * are used to select a priority ordered list of memory zones which
19655d34 229 * match the requested limits. See gfp_zone() in include/linux/gfp.h
1da177e4 230 */
fb0e7942 231
97965478 232#if MAX_NR_ZONES < 2
4b51d669 233#define ZONES_SHIFT 0
97965478 234#elif MAX_NR_ZONES <= 2
19655d34 235#define ZONES_SHIFT 1
97965478 236#elif MAX_NR_ZONES <= 4
19655d34 237#define ZONES_SHIFT 2
4b51d669
CL
238#else
239#error ZONES_SHIFT -- too many zones configured adjust calculation
fb0e7942 240#endif
1da177e4 241
1da177e4
LT
242struct zone {
243 /* Fields commonly accessed by the page allocator */
1da177e4
LT
244 unsigned long pages_min, pages_low, pages_high;
245 /*
246 * We don't know if the memory that we're going to allocate will be freeable
247 * or/and it will be released eventually, so to avoid totally wasting several
248 * GB of ram we must reserve some of the lower zone memory (otherwise we risk
249 * to run OOM on the lower zones despite there's tons of freeable ram
250 * on the higher zones). This array is recalculated at runtime if the
251 * sysctl_lowmem_reserve_ratio sysctl changes.
252 */
253 unsigned long lowmem_reserve[MAX_NR_ZONES];
254
e7c8d5c9 255#ifdef CONFIG_NUMA
d5f541ed 256 int node;
9614634f
CL
257 /*
258 * zone reclaim becomes active if more unmapped pages exist.
259 */
8417bba4 260 unsigned long min_unmapped_pages;
0ff38490 261 unsigned long min_slab_pages;
e7c8d5c9
CL
262 struct per_cpu_pageset *pageset[NR_CPUS];
263#else
1da177e4 264 struct per_cpu_pageset pageset[NR_CPUS];
e7c8d5c9 265#endif
1da177e4
LT
266 /*
267 * free areas of different sizes
268 */
269 spinlock_t lock;
bdc8cb98
DH
270#ifdef CONFIG_MEMORY_HOTPLUG
271 /* see spanned/present_pages for more description */
272 seqlock_t span_seqlock;
273#endif
1da177e4
LT
274 struct free_area free_area[MAX_ORDER];
275
835c134e
MG
276#ifndef CONFIG_SPARSEMEM
277 /*
d9c23400 278 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
835c134e
MG
279 * In SPARSEMEM, this map is stored in struct mem_section
280 */
281 unsigned long *pageblock_flags;
282#endif /* CONFIG_SPARSEMEM */
283
1da177e4
LT
284
285 ZONE_PADDING(_pad1_)
286
287 /* Fields commonly accessed by the page reclaim scanner */
288 spinlock_t lru_lock;
b69408e8
CL
289 struct {
290 struct list_head list;
291 unsigned long nr_scan;
292 } lru[NR_LRU_LISTS];
4f98a2fe
RR
293
294 /*
295 * The pageout code in vmscan.c keeps track of how many of the
296 * mem/swap backed and file backed pages are refeferenced.
297 * The higher the rotated/scanned ratio, the more valuable
298 * that cache is.
299 *
300 * The anon LRU stats live in [0], file LRU stats in [1]
301 */
302 unsigned long recent_rotated[2];
303 unsigned long recent_scanned[2];
304
1da177e4 305 unsigned long pages_scanned; /* since last reclaim */
e815af95 306 unsigned long flags; /* zone flags, see below */
753ee728 307
2244b95a
CL
308 /* Zone statistics */
309 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
9eeff239 310
1da177e4
LT
311 /*
312 * prev_priority holds the scanning priority for this zone. It is
313 * defined as the scanning priority at which we achieved our reclaim
314 * target at the previous try_to_free_pages() or balance_pgdat()
315 * invokation.
316 *
317 * We use prev_priority as a measure of how much stress page reclaim is
318 * under - it drives the swappiness decision: whether to unmap mapped
319 * pages.
320 *
3bb1a852 321 * Access to both this field is quite racy even on uniprocessor. But
1da177e4
LT
322 * it is expected to average out OK.
323 */
1da177e4
LT
324 int prev_priority;
325
556adecb
RR
326 /*
327 * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
328 * this zone's LRU. Maintained by the pageout code.
329 */
330 unsigned int inactive_ratio;
331
1da177e4
LT
332
333 ZONE_PADDING(_pad2_)
334 /* Rarely used or read-mostly fields */
335
336 /*
337 * wait_table -- the array holding the hash table
02b694de 338 * wait_table_hash_nr_entries -- the size of the hash table array
1da177e4
LT
339 * wait_table_bits -- wait_table_size == (1 << wait_table_bits)
340 *
341 * The purpose of all these is to keep track of the people
342 * waiting for a page to become available and make them
343 * runnable again when possible. The trouble is that this
344 * consumes a lot of space, especially when so few things
345 * wait on pages at a given time. So instead of using
346 * per-page waitqueues, we use a waitqueue hash table.
347 *
348 * The bucket discipline is to sleep on the same queue when
349 * colliding and wake all in that wait queue when removing.
350 * When something wakes, it must check to be sure its page is
351 * truly available, a la thundering herd. The cost of a
352 * collision is great, but given the expected load of the
353 * table, they should be so rare as to be outweighed by the
354 * benefits from the saved space.
355 *
356 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
357 * primary users of these fields, and in mm/page_alloc.c
358 * free_area_init_core() performs the initialization of them.
359 */
360 wait_queue_head_t * wait_table;
02b694de 361 unsigned long wait_table_hash_nr_entries;
1da177e4
LT
362 unsigned long wait_table_bits;
363
364 /*
365 * Discontig memory support fields.
366 */
367 struct pglist_data *zone_pgdat;
1da177e4
LT
368 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
369 unsigned long zone_start_pfn;
370
bdc8cb98
DH
371 /*
372 * zone_start_pfn, spanned_pages and present_pages are all
373 * protected by span_seqlock. It is a seqlock because it has
374 * to be read outside of zone->lock, and it is done in the main
375 * allocator path. But, it is written quite infrequently.
376 *
377 * The lock is declared along with zone->lock because it is
378 * frequently read in proximity to zone->lock. It's good to
379 * give them a chance of being in the same cacheline.
380 */
1da177e4
LT
381 unsigned long spanned_pages; /* total size, including holes */
382 unsigned long present_pages; /* amount of memory (excluding holes) */
383
384 /*
385 * rarely used fields:
386 */
15ad7cdc 387 const char *name;
22fc6ecc 388} ____cacheline_internodealigned_in_smp;
1da177e4 389
e815af95
DR
390typedef enum {
391 ZONE_ALL_UNRECLAIMABLE, /* all pages pinned */
392 ZONE_RECLAIM_LOCKED, /* prevents concurrent reclaim */
098d7f12 393 ZONE_OOM_LOCKED, /* zone is in OOM killer zonelist */
e815af95
DR
394} zone_flags_t;
395
396static inline void zone_set_flag(struct zone *zone, zone_flags_t flag)
397{
398 set_bit(flag, &zone->flags);
399}
d773ed6b
DR
400
401static inline int zone_test_and_set_flag(struct zone *zone, zone_flags_t flag)
402{
403 return test_and_set_bit(flag, &zone->flags);
404}
405
e815af95
DR
406static inline void zone_clear_flag(struct zone *zone, zone_flags_t flag)
407{
408 clear_bit(flag, &zone->flags);
409}
410
411static inline int zone_is_all_unreclaimable(const struct zone *zone)
412{
413 return test_bit(ZONE_ALL_UNRECLAIMABLE, &zone->flags);
414}
d773ed6b 415
e815af95
DR
416static inline int zone_is_reclaim_locked(const struct zone *zone)
417{
418 return test_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
419}
d773ed6b 420
098d7f12
DR
421static inline int zone_is_oom_locked(const struct zone *zone)
422{
423 return test_bit(ZONE_OOM_LOCKED, &zone->flags);
424}
e815af95 425
1da177e4
LT
426/*
427 * The "priority" of VM scanning is how much of the queues we will scan in one
428 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
429 * queues ("queue_length >> 12") during an aging round.
430 */
431#define DEF_PRIORITY 12
432
9276b1bc
PJ
433/* Maximum number of zones on a zonelist */
434#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
435
436#ifdef CONFIG_NUMA
523b9458
CL
437
438/*
439 * The NUMA zonelists are doubled becausse we need zonelists that restrict the
440 * allocations to a single node for GFP_THISNODE.
441 *
54a6eb5c
MG
442 * [0] : Zonelist with fallback
443 * [1] : No fallback (GFP_THISNODE)
523b9458 444 */
54a6eb5c 445#define MAX_ZONELISTS 2
523b9458
CL
446
447
9276b1bc
PJ
448/*
449 * We cache key information from each zonelist for smaller cache
450 * footprint when scanning for free pages in get_page_from_freelist().
451 *
452 * 1) The BITMAP fullzones tracks which zones in a zonelist have come
453 * up short of free memory since the last time (last_fullzone_zap)
454 * we zero'd fullzones.
455 * 2) The array z_to_n[] maps each zone in the zonelist to its node
456 * id, so that we can efficiently evaluate whether that node is
457 * set in the current tasks mems_allowed.
458 *
459 * Both fullzones and z_to_n[] are one-to-one with the zonelist,
460 * indexed by a zones offset in the zonelist zones[] array.
461 *
462 * The get_page_from_freelist() routine does two scans. During the
463 * first scan, we skip zones whose corresponding bit in 'fullzones'
464 * is set or whose corresponding node in current->mems_allowed (which
465 * comes from cpusets) is not set. During the second scan, we bypass
466 * this zonelist_cache, to ensure we look methodically at each zone.
467 *
468 * Once per second, we zero out (zap) fullzones, forcing us to
469 * reconsider nodes that might have regained more free memory.
470 * The field last_full_zap is the time we last zapped fullzones.
471 *
472 * This mechanism reduces the amount of time we waste repeatedly
473 * reexaming zones for free memory when they just came up low on
474 * memory momentarilly ago.
475 *
476 * The zonelist_cache struct members logically belong in struct
477 * zonelist. However, the mempolicy zonelists constructed for
478 * MPOL_BIND are intentionally variable length (and usually much
479 * shorter). A general purpose mechanism for handling structs with
480 * multiple variable length members is more mechanism than we want
481 * here. We resort to some special case hackery instead.
482 *
483 * The MPOL_BIND zonelists don't need this zonelist_cache (in good
484 * part because they are shorter), so we put the fixed length stuff
485 * at the front of the zonelist struct, ending in a variable length
486 * zones[], as is needed by MPOL_BIND.
487 *
488 * Then we put the optional zonelist cache on the end of the zonelist
489 * struct. This optional stuff is found by a 'zlcache_ptr' pointer in
490 * the fixed length portion at the front of the struct. This pointer
491 * both enables us to find the zonelist cache, and in the case of
492 * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
493 * to know that the zonelist cache is not there.
494 *
495 * The end result is that struct zonelists come in two flavors:
496 * 1) The full, fixed length version, shown below, and
497 * 2) The custom zonelists for MPOL_BIND.
498 * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
499 *
500 * Even though there may be multiple CPU cores on a node modifying
501 * fullzones or last_full_zap in the same zonelist_cache at the same
502 * time, we don't lock it. This is just hint data - if it is wrong now
503 * and then, the allocator will still function, perhaps a bit slower.
504 */
505
506
507struct zonelist_cache {
9276b1bc 508 unsigned short z_to_n[MAX_ZONES_PER_ZONELIST]; /* zone->nid */
7253f4ef 509 DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST); /* zone full? */
9276b1bc
PJ
510 unsigned long last_full_zap; /* when last zap'd (jiffies) */
511};
512#else
54a6eb5c 513#define MAX_ZONELISTS 1
9276b1bc
PJ
514struct zonelist_cache;
515#endif
516
dd1a239f
MG
517/*
518 * This struct contains information about a zone in a zonelist. It is stored
519 * here to avoid dereferences into large structures and lookups of tables
520 */
521struct zoneref {
522 struct zone *zone; /* Pointer to actual zone */
523 int zone_idx; /* zone_idx(zoneref->zone) */
524};
525
1da177e4
LT
526/*
527 * One allocation request operates on a zonelist. A zonelist
528 * is a list of zones, the first one is the 'goal' of the
529 * allocation, the other zones are fallback zones, in decreasing
530 * priority.
531 *
9276b1bc
PJ
532 * If zlcache_ptr is not NULL, then it is just the address of zlcache,
533 * as explained above. If zlcache_ptr is NULL, there is no zlcache.
dd1a239f
MG
534 * *
535 * To speed the reading of the zonelist, the zonerefs contain the zone index
536 * of the entry being read. Helper functions to access information given
537 * a struct zoneref are
538 *
539 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs
540 * zonelist_zone_idx() - Return the index of the zone for an entry
541 * zonelist_node_idx() - Return the index of the node for an entry
1da177e4
LT
542 */
543struct zonelist {
9276b1bc 544 struct zonelist_cache *zlcache_ptr; // NULL or &zlcache
dd1a239f 545 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
9276b1bc
PJ
546#ifdef CONFIG_NUMA
547 struct zonelist_cache zlcache; // optional ...
548#endif
1da177e4
LT
549};
550
c713216d
MG
551#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
552struct node_active_region {
553 unsigned long start_pfn;
554 unsigned long end_pfn;
555 int nid;
556};
557#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
1da177e4 558
5b99cd0e
HC
559#ifndef CONFIG_DISCONTIGMEM
560/* The array of struct pages - for discontigmem use pgdat->lmem_map */
561extern struct page *mem_map;
562#endif
563
1da177e4
LT
564/*
565 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
566 * (mostly NUMA machines?) to denote a higher-level memory zone than the
567 * zone denotes.
568 *
569 * On NUMA machines, each NUMA node would have a pg_data_t to describe
570 * it's memory layout.
571 *
572 * Memory statistics and page replacement data structures are maintained on a
573 * per-zone basis.
574 */
575struct bootmem_data;
576typedef struct pglist_data {
577 struct zone node_zones[MAX_NR_ZONES];
523b9458 578 struct zonelist node_zonelists[MAX_ZONELISTS];
1da177e4 579 int nr_zones;
d41dee36 580#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4 581 struct page *node_mem_map;
d41dee36 582#endif
1da177e4 583 struct bootmem_data *bdata;
208d54e5
DH
584#ifdef CONFIG_MEMORY_HOTPLUG
585 /*
586 * Must be held any time you expect node_start_pfn, node_present_pages
587 * or node_spanned_pages stay constant. Holding this will also
588 * guarantee that any pfn_valid() stays that way.
589 *
590 * Nests above zone->lock and zone->size_seqlock.
591 */
592 spinlock_t node_size_lock;
593#endif
1da177e4
LT
594 unsigned long node_start_pfn;
595 unsigned long node_present_pages; /* total number of physical pages */
596 unsigned long node_spanned_pages; /* total size of physical page
597 range, including holes */
598 int node_id;
1da177e4
LT
599 wait_queue_head_t kswapd_wait;
600 struct task_struct *kswapd;
601 int kswapd_max_order;
602} pg_data_t;
603
604#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
605#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
d41dee36 606#ifdef CONFIG_FLAT_NODE_MEM_MAP
408fde81 607#define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
d41dee36
AW
608#else
609#define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
610#endif
408fde81 611#define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
1da177e4 612
208d54e5
DH
613#include <linux/memory_hotplug.h>
614
1da177e4
LT
615void get_zone_counts(unsigned long *active, unsigned long *inactive,
616 unsigned long *free);
617void build_all_zonelists(void);
618void wakeup_kswapd(struct zone *zone, int order);
619int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
7fb1d9fc 620 int classzone_idx, int alloc_flags);
a2f3aa02
DH
621enum memmap_context {
622 MEMMAP_EARLY,
623 MEMMAP_HOTPLUG,
624};
718127cc 625extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
a2f3aa02
DH
626 unsigned long size,
627 enum memmap_context context);
718127cc 628
1da177e4
LT
629#ifdef CONFIG_HAVE_MEMORY_PRESENT
630void memory_present(int nid, unsigned long start, unsigned long end);
631#else
632static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
633#endif
634
635#ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
636unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
637#endif
638
639/*
640 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
641 */
642#define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
643
f3fe6512
CK
644static inline int populated_zone(struct zone *zone)
645{
646 return (!!zone->present_pages);
647}
648
2a1e274a
MG
649extern int movable_zone;
650
651static inline int zone_movable_is_highmem(void)
652{
653#if defined(CONFIG_HIGHMEM) && defined(CONFIG_ARCH_POPULATES_NODE_MAP)
654 return movable_zone == ZONE_HIGHMEM;
655#else
656 return 0;
657#endif
658}
659
2f1b6248 660static inline int is_highmem_idx(enum zone_type idx)
1da177e4 661{
e53ef38d 662#ifdef CONFIG_HIGHMEM
2a1e274a
MG
663 return (idx == ZONE_HIGHMEM ||
664 (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
e53ef38d
CL
665#else
666 return 0;
667#endif
1da177e4
LT
668}
669
2f1b6248 670static inline int is_normal_idx(enum zone_type idx)
1da177e4
LT
671{
672 return (idx == ZONE_NORMAL);
673}
9328b8fa 674
1da177e4
LT
675/**
676 * is_highmem - helper function to quickly check if a struct zone is a
677 * highmem zone or not. This is an attempt to keep references
678 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
679 * @zone - pointer to struct zone variable
680 */
681static inline int is_highmem(struct zone *zone)
682{
e53ef38d 683#ifdef CONFIG_HIGHMEM
ddc81ed2
HH
684 int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones;
685 return zone_off == ZONE_HIGHMEM * sizeof(*zone) ||
686 (zone_off == ZONE_MOVABLE * sizeof(*zone) &&
687 zone_movable_is_highmem());
e53ef38d
CL
688#else
689 return 0;
690#endif
1da177e4
LT
691}
692
693static inline int is_normal(struct zone *zone)
694{
695 return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
696}
697
9328b8fa
NP
698static inline int is_dma32(struct zone *zone)
699{
fb0e7942 700#ifdef CONFIG_ZONE_DMA32
9328b8fa 701 return zone == zone->zone_pgdat->node_zones + ZONE_DMA32;
fb0e7942
CL
702#else
703 return 0;
704#endif
9328b8fa
NP
705}
706
707static inline int is_dma(struct zone *zone)
708{
4b51d669 709#ifdef CONFIG_ZONE_DMA
9328b8fa 710 return zone == zone->zone_pgdat->node_zones + ZONE_DMA;
4b51d669
CL
711#else
712 return 0;
713#endif
9328b8fa
NP
714}
715
1da177e4
LT
716/* These two functions are used to setup the per zone pages min values */
717struct ctl_table;
718struct file;
719int min_free_kbytes_sysctl_handler(struct ctl_table *, int, struct file *,
720 void __user *, size_t *, loff_t *);
721extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
722int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, struct file *,
723 void __user *, size_t *, loff_t *);
8ad4b1fb
RS
724int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int, struct file *,
725 void __user *, size_t *, loff_t *);
9614634f
CL
726int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
727 struct file *, void __user *, size_t *, loff_t *);
0ff38490
CL
728int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
729 struct file *, void __user *, size_t *, loff_t *);
1da177e4 730
f0c0b2b8
KH
731extern int numa_zonelist_order_handler(struct ctl_table *, int,
732 struct file *, void __user *, size_t *, loff_t *);
733extern char numa_zonelist_order[];
734#define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */
735
1da177e4
LT
736#include <linux/topology.h>
737/* Returns the number of the current Node. */
69d81fcd 738#ifndef numa_node_id
39c715b7 739#define numa_node_id() (cpu_to_node(raw_smp_processor_id()))
69d81fcd 740#endif
1da177e4 741
93b7504e 742#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
743
744extern struct pglist_data contig_page_data;
745#define NODE_DATA(nid) (&contig_page_data)
746#define NODE_MEM_MAP(nid) mem_map
1da177e4 747
93b7504e 748#else /* CONFIG_NEED_MULTIPLE_NODES */
1da177e4
LT
749
750#include <asm/mmzone.h>
751
93b7504e 752#endif /* !CONFIG_NEED_MULTIPLE_NODES */
348f8b6c 753
95144c78
KH
754extern struct pglist_data *first_online_pgdat(void);
755extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
756extern struct zone *next_zone(struct zone *zone);
8357f869
KH
757
758/**
12d15f0d 759 * for_each_online_pgdat - helper macro to iterate over all online nodes
8357f869
KH
760 * @pgdat - pointer to a pg_data_t variable
761 */
762#define for_each_online_pgdat(pgdat) \
763 for (pgdat = first_online_pgdat(); \
764 pgdat; \
765 pgdat = next_online_pgdat(pgdat))
8357f869
KH
766/**
767 * for_each_zone - helper macro to iterate over all memory zones
768 * @zone - pointer to struct zone variable
769 *
770 * The user only needs to declare the zone variable, for_each_zone
771 * fills it in.
772 */
773#define for_each_zone(zone) \
774 for (zone = (first_online_pgdat())->node_zones; \
775 zone; \
776 zone = next_zone(zone))
777
dd1a239f
MG
778static inline struct zone *zonelist_zone(struct zoneref *zoneref)
779{
780 return zoneref->zone;
781}
782
783static inline int zonelist_zone_idx(struct zoneref *zoneref)
784{
785 return zoneref->zone_idx;
786}
787
788static inline int zonelist_node_idx(struct zoneref *zoneref)
789{
790#ifdef CONFIG_NUMA
791 /* zone_to_nid not available in this context */
792 return zoneref->zone->node;
793#else
794 return 0;
795#endif /* CONFIG_NUMA */
796}
797
19770b32
MG
798/**
799 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
800 * @z - The cursor used as a starting point for the search
801 * @highest_zoneidx - The zone index of the highest zone to return
802 * @nodes - An optional nodemask to filter the zonelist with
803 * @zone - The first suitable zone found is returned via this parameter
804 *
805 * This function returns the next zone at or below a given zone index that is
806 * within the allowed nodemask using a cursor as the starting point for the
5bead2a0
MG
807 * search. The zoneref returned is a cursor that represents the current zone
808 * being examined. It should be advanced by one before calling
809 * next_zones_zonelist again.
19770b32
MG
810 */
811struct zoneref *next_zones_zonelist(struct zoneref *z,
812 enum zone_type highest_zoneidx,
813 nodemask_t *nodes,
814 struct zone **zone);
dd1a239f 815
19770b32
MG
816/**
817 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
818 * @zonelist - The zonelist to search for a suitable zone
819 * @highest_zoneidx - The zone index of the highest zone to return
820 * @nodes - An optional nodemask to filter the zonelist with
821 * @zone - The first suitable zone found is returned via this parameter
822 *
823 * This function returns the first zone at or below a given zone index that is
824 * within the allowed nodemask. The zoneref returned is a cursor that can be
5bead2a0
MG
825 * used to iterate the zonelist with next_zones_zonelist by advancing it by
826 * one before calling.
19770b32 827 */
dd1a239f 828static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
19770b32
MG
829 enum zone_type highest_zoneidx,
830 nodemask_t *nodes,
831 struct zone **zone)
54a6eb5c 832{
19770b32
MG
833 return next_zones_zonelist(zonelist->_zonerefs, highest_zoneidx, nodes,
834 zone);
54a6eb5c
MG
835}
836
19770b32
MG
837/**
838 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
839 * @zone - The current zone in the iterator
840 * @z - The current pointer within zonelist->zones being iterated
841 * @zlist - The zonelist being iterated
842 * @highidx - The zone index of the highest zone to return
843 * @nodemask - Nodemask allowed by the allocator
844 *
845 * This iterator iterates though all zones at or below a given zone index and
846 * within a given nodemask
847 */
848#define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
849 for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone); \
850 zone; \
5bead2a0 851 z = next_zones_zonelist(++z, highidx, nodemask, &zone)) \
54a6eb5c
MG
852
853/**
854 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
855 * @zone - The current zone in the iterator
856 * @z - The current pointer within zonelist->zones being iterated
857 * @zlist - The zonelist being iterated
858 * @highidx - The zone index of the highest zone to return
859 *
860 * This iterator iterates though all zones at or below a given zone index.
861 */
862#define for_each_zone_zonelist(zone, z, zlist, highidx) \
19770b32 863 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
54a6eb5c 864
d41dee36
AW
865#ifdef CONFIG_SPARSEMEM
866#include <asm/sparsemem.h>
867#endif
868
c713216d
MG
869#if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
870 !defined(CONFIG_ARCH_POPULATES_NODE_MAP)
b4544568
AM
871static inline unsigned long early_pfn_to_nid(unsigned long pfn)
872{
873 return 0;
874}
b159d43f
AW
875#endif
876
2bdaf115
AW
877#ifdef CONFIG_FLATMEM
878#define pfn_to_nid(pfn) (0)
879#endif
880
d41dee36
AW
881#define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
882#define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
883
884#ifdef CONFIG_SPARSEMEM
885
886/*
887 * SECTION_SHIFT #bits space required to store a section #
888 *
889 * PA_SECTION_SHIFT physical address to/from section number
890 * PFN_SECTION_SHIFT pfn to/from section number
891 */
892#define SECTIONS_SHIFT (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)
893
894#define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
895#define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
896
897#define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
898
899#define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
900#define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
901
835c134e 902#define SECTION_BLOCKFLAGS_BITS \
d9c23400 903 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
835c134e 904
d41dee36
AW
905#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
906#error Allocator MAX_ORDER exceeds SECTION_SIZE
907#endif
908
909struct page;
910struct mem_section {
29751f69
AW
911 /*
912 * This is, logically, a pointer to an array of struct
913 * pages. However, it is stored with some other magic.
914 * (see sparse.c::sparse_init_one_section())
915 *
30c253e6
AW
916 * Additionally during early boot we encode node id of
917 * the location of the section here to guide allocation.
918 * (see sparse.c::memory_present())
919 *
29751f69
AW
920 * Making it a UL at least makes someone do a cast
921 * before using it wrong.
922 */
923 unsigned long section_mem_map;
5c0e3066
MG
924
925 /* See declaration of similar field in struct zone */
926 unsigned long *pageblock_flags;
d41dee36
AW
927};
928
3e347261
BP
929#ifdef CONFIG_SPARSEMEM_EXTREME
930#define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
931#else
932#define SECTIONS_PER_ROOT 1
933#endif
802f192e 934
3e347261
BP
935#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
936#define NR_SECTION_ROOTS (NR_MEM_SECTIONS / SECTIONS_PER_ROOT)
937#define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
802f192e 938
3e347261
BP
939#ifdef CONFIG_SPARSEMEM_EXTREME
940extern struct mem_section *mem_section[NR_SECTION_ROOTS];
802f192e 941#else
3e347261
BP
942extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
943#endif
d41dee36 944
29751f69
AW
945static inline struct mem_section *__nr_to_section(unsigned long nr)
946{
3e347261
BP
947 if (!mem_section[SECTION_NR_TO_ROOT(nr)])
948 return NULL;
949 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
29751f69 950}
4ca644d9 951extern int __section_nr(struct mem_section* ms);
04753278 952extern unsigned long usemap_size(void);
29751f69
AW
953
954/*
955 * We use the lower bits of the mem_map pointer to store
956 * a little bit of information. There should be at least
957 * 3 bits here due to 32-bit alignment.
958 */
959#define SECTION_MARKED_PRESENT (1UL<<0)
960#define SECTION_HAS_MEM_MAP (1UL<<1)
961#define SECTION_MAP_LAST_BIT (1UL<<2)
962#define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
30c253e6 963#define SECTION_NID_SHIFT 2
29751f69
AW
964
965static inline struct page *__section_mem_map_addr(struct mem_section *section)
966{
967 unsigned long map = section->section_mem_map;
968 map &= SECTION_MAP_MASK;
969 return (struct page *)map;
970}
971
540557b9 972static inline int present_section(struct mem_section *section)
29751f69 973{
802f192e 974 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
29751f69
AW
975}
976
540557b9
AW
977static inline int present_section_nr(unsigned long nr)
978{
979 return present_section(__nr_to_section(nr));
980}
981
982static inline int valid_section(struct mem_section *section)
29751f69 983{
802f192e 984 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
29751f69
AW
985}
986
987static inline int valid_section_nr(unsigned long nr)
988{
989 return valid_section(__nr_to_section(nr));
990}
991
d41dee36
AW
992static inline struct mem_section *__pfn_to_section(unsigned long pfn)
993{
29751f69 994 return __nr_to_section(pfn_to_section_nr(pfn));
d41dee36
AW
995}
996
d41dee36
AW
997static inline int pfn_valid(unsigned long pfn)
998{
999 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1000 return 0;
29751f69 1001 return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
d41dee36
AW
1002}
1003
540557b9
AW
1004static inline int pfn_present(unsigned long pfn)
1005{
1006 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1007 return 0;
1008 return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1009}
1010
d41dee36
AW
1011/*
1012 * These are _only_ used during initialisation, therefore they
1013 * can use __initdata ... They could have names to indicate
1014 * this restriction.
1015 */
1016#ifdef CONFIG_NUMA
161599ff
AW
1017#define pfn_to_nid(pfn) \
1018({ \
1019 unsigned long __pfn_to_nid_pfn = (pfn); \
1020 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
1021})
2bdaf115
AW
1022#else
1023#define pfn_to_nid(pfn) (0)
d41dee36
AW
1024#endif
1025
d41dee36
AW
1026#define early_pfn_valid(pfn) pfn_valid(pfn)
1027void sparse_init(void);
1028#else
1029#define sparse_init() do {} while (0)
28ae55c9 1030#define sparse_index_init(_sec, _nid) do {} while (0)
d41dee36
AW
1031#endif /* CONFIG_SPARSEMEM */
1032
75167957
AW
1033#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1034#define early_pfn_in_nid(pfn, nid) (early_pfn_to_nid(pfn) == (nid))
1035#else
1036#define early_pfn_in_nid(pfn, nid) (1)
1037#endif
1038
d41dee36
AW
1039#ifndef early_pfn_valid
1040#define early_pfn_valid(pfn) (1)
1041#endif
1042
1043void memory_present(int nid, unsigned long start, unsigned long end);
1044unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
1045
14e07298
AW
1046/*
1047 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1048 * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
1049 * pfn_valid_within() should be used in this case; we optimise this away
1050 * when we have no holes within a MAX_ORDER_NR_PAGES block.
1051 */
1052#ifdef CONFIG_HOLES_IN_ZONE
1053#define pfn_valid_within(pfn) pfn_valid(pfn)
1054#else
1055#define pfn_valid_within(pfn) (1)
1056#endif
1057
97965478 1058#endif /* !__GENERATING_BOUNDS.H */
1da177e4 1059#endif /* !__ASSEMBLY__ */
1da177e4 1060#endif /* _LINUX_MMZONE_H */