Make vm statistics update interval configurable
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / include / linux / mmzone.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_MMZONE_H
2#define _LINUX_MMZONE_H
3
4#ifdef __KERNEL__
5#ifndef __ASSEMBLY__
6
1da177e4
LT
7#include <linux/spinlock.h>
8#include <linux/list.h>
9#include <linux/wait.h>
10#include <linux/cache.h>
11#include <linux/threads.h>
12#include <linux/numa.h>
13#include <linux/init.h>
bdc8cb98 14#include <linux/seqlock.h>
8357f869 15#include <linux/nodemask.h>
1da177e4 16#include <asm/atomic.h>
93ff66bf 17#include <asm/page.h>
1da177e4
LT
18
19/* Free memory management - zoned buddy allocator. */
20#ifndef CONFIG_FORCE_MAX_ZONEORDER
21#define MAX_ORDER 11
22#else
23#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
24#endif
e984bb43 25#define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
1da177e4
LT
26
27struct free_area {
28 struct list_head free_list;
29 unsigned long nr_free;
30};
31
32struct pglist_data;
33
34/*
35 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
36 * So add a wild amount of padding here to ensure that they fall into separate
37 * cachelines. There are very few zone structures in the machine, so space
38 * consumption is not a concern here.
39 */
40#if defined(CONFIG_SMP)
41struct zone_padding {
42 char x[0];
22fc6ecc 43} ____cacheline_internodealigned_in_smp;
1da177e4
LT
44#define ZONE_PADDING(name) struct zone_padding name;
45#else
46#define ZONE_PADDING(name)
47#endif
48
2244b95a 49enum zone_stat_item {
51ed4491 50 /* First 128 byte cacheline (assuming 64 bit words) */
d23ad423 51 NR_FREE_PAGES,
c8785385
CL
52 NR_INACTIVE,
53 NR_ACTIVE,
f3dbd344
CL
54 NR_ANON_PAGES, /* Mapped anonymous pages */
55 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
65ba55f5 56 only modified from process context */
347ce434 57 NR_FILE_PAGES,
b1e7a8fd 58 NR_FILE_DIRTY,
ce866b34 59 NR_WRITEBACK,
51ed4491
CL
60 /* Second 128 byte cacheline */
61 NR_SLAB_RECLAIMABLE,
62 NR_SLAB_UNRECLAIMABLE,
63 NR_PAGETABLE, /* used for pagetables */
fd39fc85 64 NR_UNSTABLE_NFS, /* NFS unstable pages */
d2c5e30c 65 NR_BOUNCE,
e129b5c2 66 NR_VMSCAN_WRITE,
ca889e6c
CL
67#ifdef CONFIG_NUMA
68 NUMA_HIT, /* allocated in intended node */
69 NUMA_MISS, /* allocated in non intended node */
70 NUMA_FOREIGN, /* was intended here, hit elsewhere */
71 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
72 NUMA_LOCAL, /* allocation from local node */
73 NUMA_OTHER, /* allocation from other node */
74#endif
2244b95a
CL
75 NR_VM_ZONE_STAT_ITEMS };
76
1da177e4
LT
77struct per_cpu_pages {
78 int count; /* number of pages in the list */
1da177e4
LT
79 int high; /* high watermark, emptying needed */
80 int batch; /* chunk size for buddy add/remove */
81 struct list_head list; /* the list of pages */
82};
83
84struct per_cpu_pageset {
85 struct per_cpu_pages pcp[2]; /* 0: hot. 1: cold */
2244b95a 86#ifdef CONFIG_SMP
df9ecaba 87 s8 stat_threshold;
2244b95a
CL
88 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
89#endif
1da177e4
LT
90} ____cacheline_aligned_in_smp;
91
e7c8d5c9
CL
92#ifdef CONFIG_NUMA
93#define zone_pcp(__z, __cpu) ((__z)->pageset[(__cpu)])
94#else
95#define zone_pcp(__z, __cpu) (&(__z)->pageset[(__cpu)])
96#endif
97
2f1b6248 98enum zone_type {
4b51d669 99#ifdef CONFIG_ZONE_DMA
2f1b6248
CL
100 /*
101 * ZONE_DMA is used when there are devices that are not able
102 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
103 * carve out the portion of memory that is needed for these devices.
104 * The range is arch specific.
105 *
106 * Some examples
107 *
108 * Architecture Limit
109 * ---------------------------
110 * parisc, ia64, sparc <4G
111 * s390 <2G
112 * arm26 <48M
113 * arm Various
114 * alpha Unlimited or 0-16MB.
115 *
116 * i386, x86_64 and multiple other arches
117 * <16M.
118 */
119 ZONE_DMA,
4b51d669 120#endif
fb0e7942 121#ifdef CONFIG_ZONE_DMA32
2f1b6248
CL
122 /*
123 * x86_64 needs two ZONE_DMAs because it supports devices that are
124 * only able to do DMA to the lower 16M but also 32 bit devices that
125 * can only do DMA areas below 4G.
126 */
127 ZONE_DMA32,
fb0e7942 128#endif
2f1b6248
CL
129 /*
130 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
131 * performed on pages in ZONE_NORMAL if the DMA devices support
132 * transfers to all addressable memory.
133 */
134 ZONE_NORMAL,
e53ef38d 135#ifdef CONFIG_HIGHMEM
2f1b6248
CL
136 /*
137 * A memory area that is only addressable by the kernel through
138 * mapping portions into its own address space. This is for example
139 * used by i386 to allow the kernel to address the memory beyond
140 * 900MB. The kernel will set up special mappings (page
141 * table entries on i386) for each page that the kernel needs to
142 * access.
143 */
144 ZONE_HIGHMEM,
e53ef38d 145#endif
2f1b6248
CL
146 MAX_NR_ZONES
147};
1da177e4 148
1da177e4
LT
149/*
150 * When a memory allocation must conform to specific limitations (such
151 * as being suitable for DMA) the caller will pass in hints to the
152 * allocator in the gfp_mask, in the zone modifier bits. These bits
153 * are used to select a priority ordered list of memory zones which
19655d34 154 * match the requested limits. See gfp_zone() in include/linux/gfp.h
1da177e4 155 */
fb0e7942 156
4b51d669
CL
157/*
158 * Count the active zones. Note that the use of defined(X) outside
159 * #if and family is not necessarily defined so ensure we cannot use
160 * it later. Use __ZONE_COUNT to work out how many shift bits we need.
161 */
162#define __ZONE_COUNT ( \
163 defined(CONFIG_ZONE_DMA) \
164 + defined(CONFIG_ZONE_DMA32) \
165 + 1 \
166 + defined(CONFIG_HIGHMEM) \
167)
168#if __ZONE_COUNT < 2
169#define ZONES_SHIFT 0
170#elif __ZONE_COUNT <= 2
19655d34 171#define ZONES_SHIFT 1
4b51d669 172#elif __ZONE_COUNT <= 4
19655d34 173#define ZONES_SHIFT 2
4b51d669
CL
174#else
175#error ZONES_SHIFT -- too many zones configured adjust calculation
fb0e7942 176#endif
4b51d669 177#undef __ZONE_COUNT
1da177e4 178
1da177e4
LT
179struct zone {
180 /* Fields commonly accessed by the page allocator */
1da177e4
LT
181 unsigned long pages_min, pages_low, pages_high;
182 /*
183 * We don't know if the memory that we're going to allocate will be freeable
184 * or/and it will be released eventually, so to avoid totally wasting several
185 * GB of ram we must reserve some of the lower zone memory (otherwise we risk
186 * to run OOM on the lower zones despite there's tons of freeable ram
187 * on the higher zones). This array is recalculated at runtime if the
188 * sysctl_lowmem_reserve_ratio sysctl changes.
189 */
190 unsigned long lowmem_reserve[MAX_NR_ZONES];
191
e7c8d5c9 192#ifdef CONFIG_NUMA
d5f541ed 193 int node;
9614634f
CL
194 /*
195 * zone reclaim becomes active if more unmapped pages exist.
196 */
8417bba4 197 unsigned long min_unmapped_pages;
0ff38490 198 unsigned long min_slab_pages;
e7c8d5c9
CL
199 struct per_cpu_pageset *pageset[NR_CPUS];
200#else
1da177e4 201 struct per_cpu_pageset pageset[NR_CPUS];
e7c8d5c9 202#endif
1da177e4
LT
203 /*
204 * free areas of different sizes
205 */
206 spinlock_t lock;
bdc8cb98
DH
207#ifdef CONFIG_MEMORY_HOTPLUG
208 /* see spanned/present_pages for more description */
209 seqlock_t span_seqlock;
210#endif
1da177e4
LT
211 struct free_area free_area[MAX_ORDER];
212
213
214 ZONE_PADDING(_pad1_)
215
216 /* Fields commonly accessed by the page reclaim scanner */
217 spinlock_t lru_lock;
218 struct list_head active_list;
219 struct list_head inactive_list;
220 unsigned long nr_scan_active;
221 unsigned long nr_scan_inactive;
1da177e4
LT
222 unsigned long pages_scanned; /* since last reclaim */
223 int all_unreclaimable; /* All pages pinned */
224
1e7e5a90
MH
225 /* A count of how many reclaimers are scanning this zone */
226 atomic_t reclaim_in_progress;
753ee728 227
2244b95a
CL
228 /* Zone statistics */
229 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
9eeff239 230
1da177e4
LT
231 /*
232 * prev_priority holds the scanning priority for this zone. It is
233 * defined as the scanning priority at which we achieved our reclaim
234 * target at the previous try_to_free_pages() or balance_pgdat()
235 * invokation.
236 *
237 * We use prev_priority as a measure of how much stress page reclaim is
238 * under - it drives the swappiness decision: whether to unmap mapped
239 * pages.
240 *
3bb1a852 241 * Access to both this field is quite racy even on uniprocessor. But
1da177e4
LT
242 * it is expected to average out OK.
243 */
1da177e4
LT
244 int prev_priority;
245
246
247 ZONE_PADDING(_pad2_)
248 /* Rarely used or read-mostly fields */
249
250 /*
251 * wait_table -- the array holding the hash table
02b694de 252 * wait_table_hash_nr_entries -- the size of the hash table array
1da177e4
LT
253 * wait_table_bits -- wait_table_size == (1 << wait_table_bits)
254 *
255 * The purpose of all these is to keep track of the people
256 * waiting for a page to become available and make them
257 * runnable again when possible. The trouble is that this
258 * consumes a lot of space, especially when so few things
259 * wait on pages at a given time. So instead of using
260 * per-page waitqueues, we use a waitqueue hash table.
261 *
262 * The bucket discipline is to sleep on the same queue when
263 * colliding and wake all in that wait queue when removing.
264 * When something wakes, it must check to be sure its page is
265 * truly available, a la thundering herd. The cost of a
266 * collision is great, but given the expected load of the
267 * table, they should be so rare as to be outweighed by the
268 * benefits from the saved space.
269 *
270 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
271 * primary users of these fields, and in mm/page_alloc.c
272 * free_area_init_core() performs the initialization of them.
273 */
274 wait_queue_head_t * wait_table;
02b694de 275 unsigned long wait_table_hash_nr_entries;
1da177e4
LT
276 unsigned long wait_table_bits;
277
278 /*
279 * Discontig memory support fields.
280 */
281 struct pglist_data *zone_pgdat;
1da177e4
LT
282 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
283 unsigned long zone_start_pfn;
284
bdc8cb98
DH
285 /*
286 * zone_start_pfn, spanned_pages and present_pages are all
287 * protected by span_seqlock. It is a seqlock because it has
288 * to be read outside of zone->lock, and it is done in the main
289 * allocator path. But, it is written quite infrequently.
290 *
291 * The lock is declared along with zone->lock because it is
292 * frequently read in proximity to zone->lock. It's good to
293 * give them a chance of being in the same cacheline.
294 */
1da177e4
LT
295 unsigned long spanned_pages; /* total size, including holes */
296 unsigned long present_pages; /* amount of memory (excluding holes) */
297
298 /*
299 * rarely used fields:
300 */
15ad7cdc 301 const char *name;
22fc6ecc 302} ____cacheline_internodealigned_in_smp;
1da177e4 303
1da177e4
LT
304/*
305 * The "priority" of VM scanning is how much of the queues we will scan in one
306 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
307 * queues ("queue_length >> 12") during an aging round.
308 */
309#define DEF_PRIORITY 12
310
9276b1bc
PJ
311/* Maximum number of zones on a zonelist */
312#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
313
314#ifdef CONFIG_NUMA
315/*
316 * We cache key information from each zonelist for smaller cache
317 * footprint when scanning for free pages in get_page_from_freelist().
318 *
319 * 1) The BITMAP fullzones tracks which zones in a zonelist have come
320 * up short of free memory since the last time (last_fullzone_zap)
321 * we zero'd fullzones.
322 * 2) The array z_to_n[] maps each zone in the zonelist to its node
323 * id, so that we can efficiently evaluate whether that node is
324 * set in the current tasks mems_allowed.
325 *
326 * Both fullzones and z_to_n[] are one-to-one with the zonelist,
327 * indexed by a zones offset in the zonelist zones[] array.
328 *
329 * The get_page_from_freelist() routine does two scans. During the
330 * first scan, we skip zones whose corresponding bit in 'fullzones'
331 * is set or whose corresponding node in current->mems_allowed (which
332 * comes from cpusets) is not set. During the second scan, we bypass
333 * this zonelist_cache, to ensure we look methodically at each zone.
334 *
335 * Once per second, we zero out (zap) fullzones, forcing us to
336 * reconsider nodes that might have regained more free memory.
337 * The field last_full_zap is the time we last zapped fullzones.
338 *
339 * This mechanism reduces the amount of time we waste repeatedly
340 * reexaming zones for free memory when they just came up low on
341 * memory momentarilly ago.
342 *
343 * The zonelist_cache struct members logically belong in struct
344 * zonelist. However, the mempolicy zonelists constructed for
345 * MPOL_BIND are intentionally variable length (and usually much
346 * shorter). A general purpose mechanism for handling structs with
347 * multiple variable length members is more mechanism than we want
348 * here. We resort to some special case hackery instead.
349 *
350 * The MPOL_BIND zonelists don't need this zonelist_cache (in good
351 * part because they are shorter), so we put the fixed length stuff
352 * at the front of the zonelist struct, ending in a variable length
353 * zones[], as is needed by MPOL_BIND.
354 *
355 * Then we put the optional zonelist cache on the end of the zonelist
356 * struct. This optional stuff is found by a 'zlcache_ptr' pointer in
357 * the fixed length portion at the front of the struct. This pointer
358 * both enables us to find the zonelist cache, and in the case of
359 * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
360 * to know that the zonelist cache is not there.
361 *
362 * The end result is that struct zonelists come in two flavors:
363 * 1) The full, fixed length version, shown below, and
364 * 2) The custom zonelists for MPOL_BIND.
365 * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
366 *
367 * Even though there may be multiple CPU cores on a node modifying
368 * fullzones or last_full_zap in the same zonelist_cache at the same
369 * time, we don't lock it. This is just hint data - if it is wrong now
370 * and then, the allocator will still function, perhaps a bit slower.
371 */
372
373
374struct zonelist_cache {
9276b1bc 375 unsigned short z_to_n[MAX_ZONES_PER_ZONELIST]; /* zone->nid */
7253f4ef 376 DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST); /* zone full? */
9276b1bc
PJ
377 unsigned long last_full_zap; /* when last zap'd (jiffies) */
378};
379#else
380struct zonelist_cache;
381#endif
382
1da177e4
LT
383/*
384 * One allocation request operates on a zonelist. A zonelist
385 * is a list of zones, the first one is the 'goal' of the
386 * allocation, the other zones are fallback zones, in decreasing
387 * priority.
388 *
9276b1bc
PJ
389 * If zlcache_ptr is not NULL, then it is just the address of zlcache,
390 * as explained above. If zlcache_ptr is NULL, there is no zlcache.
1da177e4 391 */
9276b1bc 392
1da177e4 393struct zonelist {
9276b1bc
PJ
394 struct zonelist_cache *zlcache_ptr; // NULL or &zlcache
395 struct zone *zones[MAX_ZONES_PER_ZONELIST + 1]; // NULL delimited
396#ifdef CONFIG_NUMA
397 struct zonelist_cache zlcache; // optional ...
398#endif
1da177e4
LT
399};
400
c713216d
MG
401#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
402struct node_active_region {
403 unsigned long start_pfn;
404 unsigned long end_pfn;
405 int nid;
406};
407#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
1da177e4 408
5b99cd0e
HC
409#ifndef CONFIG_DISCONTIGMEM
410/* The array of struct pages - for discontigmem use pgdat->lmem_map */
411extern struct page *mem_map;
412#endif
413
1da177e4
LT
414/*
415 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
416 * (mostly NUMA machines?) to denote a higher-level memory zone than the
417 * zone denotes.
418 *
419 * On NUMA machines, each NUMA node would have a pg_data_t to describe
420 * it's memory layout.
421 *
422 * Memory statistics and page replacement data structures are maintained on a
423 * per-zone basis.
424 */
425struct bootmem_data;
426typedef struct pglist_data {
427 struct zone node_zones[MAX_NR_ZONES];
19655d34 428 struct zonelist node_zonelists[MAX_NR_ZONES];
1da177e4 429 int nr_zones;
d41dee36 430#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4 431 struct page *node_mem_map;
d41dee36 432#endif
1da177e4 433 struct bootmem_data *bdata;
208d54e5
DH
434#ifdef CONFIG_MEMORY_HOTPLUG
435 /*
436 * Must be held any time you expect node_start_pfn, node_present_pages
437 * or node_spanned_pages stay constant. Holding this will also
438 * guarantee that any pfn_valid() stays that way.
439 *
440 * Nests above zone->lock and zone->size_seqlock.
441 */
442 spinlock_t node_size_lock;
443#endif
1da177e4
LT
444 unsigned long node_start_pfn;
445 unsigned long node_present_pages; /* total number of physical pages */
446 unsigned long node_spanned_pages; /* total size of physical page
447 range, including holes */
448 int node_id;
1da177e4
LT
449 wait_queue_head_t kswapd_wait;
450 struct task_struct *kswapd;
451 int kswapd_max_order;
452} pg_data_t;
453
454#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
455#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
d41dee36 456#ifdef CONFIG_FLAT_NODE_MEM_MAP
408fde81 457#define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
d41dee36
AW
458#else
459#define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
460#endif
408fde81 461#define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
1da177e4 462
208d54e5
DH
463#include <linux/memory_hotplug.h>
464
1da177e4
LT
465void get_zone_counts(unsigned long *active, unsigned long *inactive,
466 unsigned long *free);
467void build_all_zonelists(void);
468void wakeup_kswapd(struct zone *zone, int order);
469int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
7fb1d9fc 470 int classzone_idx, int alloc_flags);
a2f3aa02
DH
471enum memmap_context {
472 MEMMAP_EARLY,
473 MEMMAP_HOTPLUG,
474};
718127cc 475extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
a2f3aa02
DH
476 unsigned long size,
477 enum memmap_context context);
718127cc 478
1da177e4
LT
479#ifdef CONFIG_HAVE_MEMORY_PRESENT
480void memory_present(int nid, unsigned long start, unsigned long end);
481#else
482static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
483#endif
484
485#ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
486unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
487#endif
488
489/*
490 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
491 */
492#define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
493
f3fe6512
CK
494static inline int populated_zone(struct zone *zone)
495{
496 return (!!zone->present_pages);
497}
498
2f1b6248 499static inline int is_highmem_idx(enum zone_type idx)
1da177e4 500{
e53ef38d 501#ifdef CONFIG_HIGHMEM
1da177e4 502 return (idx == ZONE_HIGHMEM);
e53ef38d
CL
503#else
504 return 0;
505#endif
1da177e4
LT
506}
507
2f1b6248 508static inline int is_normal_idx(enum zone_type idx)
1da177e4
LT
509{
510 return (idx == ZONE_NORMAL);
511}
9328b8fa 512
1da177e4
LT
513/**
514 * is_highmem - helper function to quickly check if a struct zone is a
515 * highmem zone or not. This is an attempt to keep references
516 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
517 * @zone - pointer to struct zone variable
518 */
519static inline int is_highmem(struct zone *zone)
520{
e53ef38d 521#ifdef CONFIG_HIGHMEM
1da177e4 522 return zone == zone->zone_pgdat->node_zones + ZONE_HIGHMEM;
e53ef38d
CL
523#else
524 return 0;
525#endif
1da177e4
LT
526}
527
528static inline int is_normal(struct zone *zone)
529{
530 return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
531}
532
9328b8fa
NP
533static inline int is_dma32(struct zone *zone)
534{
fb0e7942 535#ifdef CONFIG_ZONE_DMA32
9328b8fa 536 return zone == zone->zone_pgdat->node_zones + ZONE_DMA32;
fb0e7942
CL
537#else
538 return 0;
539#endif
9328b8fa
NP
540}
541
542static inline int is_dma(struct zone *zone)
543{
4b51d669 544#ifdef CONFIG_ZONE_DMA
9328b8fa 545 return zone == zone->zone_pgdat->node_zones + ZONE_DMA;
4b51d669
CL
546#else
547 return 0;
548#endif
9328b8fa
NP
549}
550
1da177e4
LT
551/* These two functions are used to setup the per zone pages min values */
552struct ctl_table;
553struct file;
554int min_free_kbytes_sysctl_handler(struct ctl_table *, int, struct file *,
555 void __user *, size_t *, loff_t *);
556extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
557int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, struct file *,
558 void __user *, size_t *, loff_t *);
8ad4b1fb
RS
559int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int, struct file *,
560 void __user *, size_t *, loff_t *);
9614634f
CL
561int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
562 struct file *, void __user *, size_t *, loff_t *);
0ff38490
CL
563int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
564 struct file *, void __user *, size_t *, loff_t *);
1da177e4
LT
565
566#include <linux/topology.h>
567/* Returns the number of the current Node. */
69d81fcd 568#ifndef numa_node_id
39c715b7 569#define numa_node_id() (cpu_to_node(raw_smp_processor_id()))
69d81fcd 570#endif
1da177e4 571
93b7504e 572#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
573
574extern struct pglist_data contig_page_data;
575#define NODE_DATA(nid) (&contig_page_data)
576#define NODE_MEM_MAP(nid) mem_map
577#define MAX_NODES_SHIFT 1
1da177e4 578
93b7504e 579#else /* CONFIG_NEED_MULTIPLE_NODES */
1da177e4
LT
580
581#include <asm/mmzone.h>
582
93b7504e 583#endif /* !CONFIG_NEED_MULTIPLE_NODES */
348f8b6c 584
95144c78
KH
585extern struct pglist_data *first_online_pgdat(void);
586extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
587extern struct zone *next_zone(struct zone *zone);
8357f869
KH
588
589/**
590 * for_each_pgdat - helper macro to iterate over all nodes
591 * @pgdat - pointer to a pg_data_t variable
592 */
593#define for_each_online_pgdat(pgdat) \
594 for (pgdat = first_online_pgdat(); \
595 pgdat; \
596 pgdat = next_online_pgdat(pgdat))
8357f869
KH
597/**
598 * for_each_zone - helper macro to iterate over all memory zones
599 * @zone - pointer to struct zone variable
600 *
601 * The user only needs to declare the zone variable, for_each_zone
602 * fills it in.
603 */
604#define for_each_zone(zone) \
605 for (zone = (first_online_pgdat())->node_zones; \
606 zone; \
607 zone = next_zone(zone))
608
d41dee36
AW
609#ifdef CONFIG_SPARSEMEM
610#include <asm/sparsemem.h>
611#endif
612
07808b74 613#if BITS_PER_LONG == 32
1da177e4 614/*
a2f1b424
AK
615 * with 32 bit page->flags field, we reserve 9 bits for node/zone info.
616 * there are 4 zones (3 bits) and this leaves 9-3=6 bits for nodes.
1da177e4 617 */
a2f1b424 618#define FLAGS_RESERVED 9
348f8b6c 619
1da177e4
LT
620#elif BITS_PER_LONG == 64
621/*
622 * with 64 bit flags field, there's plenty of room.
623 */
348f8b6c 624#define FLAGS_RESERVED 32
1da177e4 625
348f8b6c 626#else
1da177e4 627
348f8b6c 628#error BITS_PER_LONG not defined
1da177e4 629
1da177e4
LT
630#endif
631
c713216d
MG
632#if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
633 !defined(CONFIG_ARCH_POPULATES_NODE_MAP)
b159d43f
AW
634#define early_pfn_to_nid(nid) (0UL)
635#endif
636
2bdaf115
AW
637#ifdef CONFIG_FLATMEM
638#define pfn_to_nid(pfn) (0)
639#endif
640
d41dee36
AW
641#define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
642#define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
643
644#ifdef CONFIG_SPARSEMEM
645
646/*
647 * SECTION_SHIFT #bits space required to store a section #
648 *
649 * PA_SECTION_SHIFT physical address to/from section number
650 * PFN_SECTION_SHIFT pfn to/from section number
651 */
652#define SECTIONS_SHIFT (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)
653
654#define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
655#define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
656
657#define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
658
659#define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
660#define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
661
662#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
663#error Allocator MAX_ORDER exceeds SECTION_SIZE
664#endif
665
666struct page;
667struct mem_section {
29751f69
AW
668 /*
669 * This is, logically, a pointer to an array of struct
670 * pages. However, it is stored with some other magic.
671 * (see sparse.c::sparse_init_one_section())
672 *
30c253e6
AW
673 * Additionally during early boot we encode node id of
674 * the location of the section here to guide allocation.
675 * (see sparse.c::memory_present())
676 *
29751f69
AW
677 * Making it a UL at least makes someone do a cast
678 * before using it wrong.
679 */
680 unsigned long section_mem_map;
d41dee36
AW
681};
682
3e347261
BP
683#ifdef CONFIG_SPARSEMEM_EXTREME
684#define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
685#else
686#define SECTIONS_PER_ROOT 1
687#endif
802f192e 688
3e347261
BP
689#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
690#define NR_SECTION_ROOTS (NR_MEM_SECTIONS / SECTIONS_PER_ROOT)
691#define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
802f192e 692
3e347261
BP
693#ifdef CONFIG_SPARSEMEM_EXTREME
694extern struct mem_section *mem_section[NR_SECTION_ROOTS];
802f192e 695#else
3e347261
BP
696extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
697#endif
d41dee36 698
29751f69
AW
699static inline struct mem_section *__nr_to_section(unsigned long nr)
700{
3e347261
BP
701 if (!mem_section[SECTION_NR_TO_ROOT(nr)])
702 return NULL;
703 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
29751f69 704}
4ca644d9 705extern int __section_nr(struct mem_section* ms);
29751f69
AW
706
707/*
708 * We use the lower bits of the mem_map pointer to store
709 * a little bit of information. There should be at least
710 * 3 bits here due to 32-bit alignment.
711 */
712#define SECTION_MARKED_PRESENT (1UL<<0)
713#define SECTION_HAS_MEM_MAP (1UL<<1)
714#define SECTION_MAP_LAST_BIT (1UL<<2)
715#define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
30c253e6 716#define SECTION_NID_SHIFT 2
29751f69
AW
717
718static inline struct page *__section_mem_map_addr(struct mem_section *section)
719{
720 unsigned long map = section->section_mem_map;
721 map &= SECTION_MAP_MASK;
722 return (struct page *)map;
723}
724
725static inline int valid_section(struct mem_section *section)
726{
802f192e 727 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
29751f69
AW
728}
729
730static inline int section_has_mem_map(struct mem_section *section)
731{
802f192e 732 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
29751f69
AW
733}
734
735static inline int valid_section_nr(unsigned long nr)
736{
737 return valid_section(__nr_to_section(nr));
738}
739
d41dee36
AW
740static inline struct mem_section *__pfn_to_section(unsigned long pfn)
741{
29751f69 742 return __nr_to_section(pfn_to_section_nr(pfn));
d41dee36
AW
743}
744
d41dee36
AW
745static inline int pfn_valid(unsigned long pfn)
746{
747 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
748 return 0;
29751f69 749 return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
d41dee36
AW
750}
751
752/*
753 * These are _only_ used during initialisation, therefore they
754 * can use __initdata ... They could have names to indicate
755 * this restriction.
756 */
757#ifdef CONFIG_NUMA
161599ff
AW
758#define pfn_to_nid(pfn) \
759({ \
760 unsigned long __pfn_to_nid_pfn = (pfn); \
761 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
762})
2bdaf115
AW
763#else
764#define pfn_to_nid(pfn) (0)
d41dee36
AW
765#endif
766
d41dee36
AW
767#define early_pfn_valid(pfn) pfn_valid(pfn)
768void sparse_init(void);
769#else
770#define sparse_init() do {} while (0)
28ae55c9 771#define sparse_index_init(_sec, _nid) do {} while (0)
d41dee36
AW
772#endif /* CONFIG_SPARSEMEM */
773
75167957
AW
774#ifdef CONFIG_NODES_SPAN_OTHER_NODES
775#define early_pfn_in_nid(pfn, nid) (early_pfn_to_nid(pfn) == (nid))
776#else
777#define early_pfn_in_nid(pfn, nid) (1)
778#endif
779
d41dee36
AW
780#ifndef early_pfn_valid
781#define early_pfn_valid(pfn) (1)
782#endif
783
784void memory_present(int nid, unsigned long start, unsigned long end);
785unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
786
14e07298
AW
787/*
788 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
789 * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
790 * pfn_valid_within() should be used in this case; we optimise this away
791 * when we have no holes within a MAX_ORDER_NR_PAGES block.
792 */
793#ifdef CONFIG_HOLES_IN_ZONE
794#define pfn_valid_within(pfn) pfn_valid(pfn)
795#else
796#define pfn_valid_within(pfn) (1)
797#endif
798
1da177e4
LT
799#endif /* !__ASSEMBLY__ */
800#endif /* __KERNEL__ */
801#endif /* _LINUX_MMZONE_H */