memory unplug: memory hotplug cleanup
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / include / linux / mmzone.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_MMZONE_H
2#define _LINUX_MMZONE_H
3
4#ifdef __KERNEL__
5#ifndef __ASSEMBLY__
6
1da177e4
LT
7#include <linux/spinlock.h>
8#include <linux/list.h>
9#include <linux/wait.h>
10#include <linux/cache.h>
11#include <linux/threads.h>
12#include <linux/numa.h>
13#include <linux/init.h>
bdc8cb98 14#include <linux/seqlock.h>
8357f869 15#include <linux/nodemask.h>
835c134e 16#include <linux/pageblock-flags.h>
1da177e4 17#include <asm/atomic.h>
93ff66bf 18#include <asm/page.h>
1da177e4
LT
19
20/* Free memory management - zoned buddy allocator. */
21#ifndef CONFIG_FORCE_MAX_ZONEORDER
22#define MAX_ORDER 11
23#else
24#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
25#endif
e984bb43 26#define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
1da177e4 27
5ad333eb
AW
28/*
29 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
30 * costly to service. That is between allocation orders which should
31 * coelesce naturally under reasonable reclaim pressure and those which
32 * will not.
33 */
34#define PAGE_ALLOC_COSTLY_ORDER 3
35
b2a0ac88 36#define MIGRATE_UNMOVABLE 0
e12ba74d
MG
37#define MIGRATE_RECLAIMABLE 1
38#define MIGRATE_MOVABLE 2
64c5e135
MG
39#define MIGRATE_RESERVE 3
40#define MIGRATE_TYPES 4
b2a0ac88
MG
41
42#define for_each_migratetype_order(order, type) \
43 for (order = 0; order < MAX_ORDER; order++) \
44 for (type = 0; type < MIGRATE_TYPES; type++)
45
467c996c
MG
46extern int page_group_by_mobility_disabled;
47
48static inline int get_pageblock_migratetype(struct page *page)
49{
50 if (unlikely(page_group_by_mobility_disabled))
51 return MIGRATE_UNMOVABLE;
52
53 return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end);
54}
55
1da177e4 56struct free_area {
b2a0ac88 57 struct list_head free_list[MIGRATE_TYPES];
1da177e4
LT
58 unsigned long nr_free;
59};
60
61struct pglist_data;
62
63/*
64 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
65 * So add a wild amount of padding here to ensure that they fall into separate
66 * cachelines. There are very few zone structures in the machine, so space
67 * consumption is not a concern here.
68 */
69#if defined(CONFIG_SMP)
70struct zone_padding {
71 char x[0];
22fc6ecc 72} ____cacheline_internodealigned_in_smp;
1da177e4
LT
73#define ZONE_PADDING(name) struct zone_padding name;
74#else
75#define ZONE_PADDING(name)
76#endif
77
2244b95a 78enum zone_stat_item {
51ed4491 79 /* First 128 byte cacheline (assuming 64 bit words) */
d23ad423 80 NR_FREE_PAGES,
c8785385
CL
81 NR_INACTIVE,
82 NR_ACTIVE,
f3dbd344
CL
83 NR_ANON_PAGES, /* Mapped anonymous pages */
84 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
65ba55f5 85 only modified from process context */
347ce434 86 NR_FILE_PAGES,
b1e7a8fd 87 NR_FILE_DIRTY,
ce866b34 88 NR_WRITEBACK,
51ed4491
CL
89 /* Second 128 byte cacheline */
90 NR_SLAB_RECLAIMABLE,
91 NR_SLAB_UNRECLAIMABLE,
92 NR_PAGETABLE, /* used for pagetables */
fd39fc85 93 NR_UNSTABLE_NFS, /* NFS unstable pages */
d2c5e30c 94 NR_BOUNCE,
e129b5c2 95 NR_VMSCAN_WRITE,
ca889e6c
CL
96#ifdef CONFIG_NUMA
97 NUMA_HIT, /* allocated in intended node */
98 NUMA_MISS, /* allocated in non intended node */
99 NUMA_FOREIGN, /* was intended here, hit elsewhere */
100 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
101 NUMA_LOCAL, /* allocation from local node */
102 NUMA_OTHER, /* allocation from other node */
103#endif
2244b95a
CL
104 NR_VM_ZONE_STAT_ITEMS };
105
1da177e4
LT
106struct per_cpu_pages {
107 int count; /* number of pages in the list */
1da177e4
LT
108 int high; /* high watermark, emptying needed */
109 int batch; /* chunk size for buddy add/remove */
110 struct list_head list; /* the list of pages */
111};
112
113struct per_cpu_pageset {
114 struct per_cpu_pages pcp[2]; /* 0: hot. 1: cold */
4037d452
CL
115#ifdef CONFIG_NUMA
116 s8 expire;
117#endif
2244b95a 118#ifdef CONFIG_SMP
df9ecaba 119 s8 stat_threshold;
2244b95a
CL
120 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
121#endif
1da177e4
LT
122} ____cacheline_aligned_in_smp;
123
e7c8d5c9
CL
124#ifdef CONFIG_NUMA
125#define zone_pcp(__z, __cpu) ((__z)->pageset[(__cpu)])
126#else
127#define zone_pcp(__z, __cpu) (&(__z)->pageset[(__cpu)])
128#endif
129
2f1b6248 130enum zone_type {
4b51d669 131#ifdef CONFIG_ZONE_DMA
2f1b6248
CL
132 /*
133 * ZONE_DMA is used when there are devices that are not able
134 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
135 * carve out the portion of memory that is needed for these devices.
136 * The range is arch specific.
137 *
138 * Some examples
139 *
140 * Architecture Limit
141 * ---------------------------
142 * parisc, ia64, sparc <4G
143 * s390 <2G
2f1b6248
CL
144 * arm Various
145 * alpha Unlimited or 0-16MB.
146 *
147 * i386, x86_64 and multiple other arches
148 * <16M.
149 */
150 ZONE_DMA,
4b51d669 151#endif
fb0e7942 152#ifdef CONFIG_ZONE_DMA32
2f1b6248
CL
153 /*
154 * x86_64 needs two ZONE_DMAs because it supports devices that are
155 * only able to do DMA to the lower 16M but also 32 bit devices that
156 * can only do DMA areas below 4G.
157 */
158 ZONE_DMA32,
fb0e7942 159#endif
2f1b6248
CL
160 /*
161 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
162 * performed on pages in ZONE_NORMAL if the DMA devices support
163 * transfers to all addressable memory.
164 */
165 ZONE_NORMAL,
e53ef38d 166#ifdef CONFIG_HIGHMEM
2f1b6248
CL
167 /*
168 * A memory area that is only addressable by the kernel through
169 * mapping portions into its own address space. This is for example
170 * used by i386 to allow the kernel to address the memory beyond
171 * 900MB. The kernel will set up special mappings (page
172 * table entries on i386) for each page that the kernel needs to
173 * access.
174 */
175 ZONE_HIGHMEM,
e53ef38d 176#endif
2a1e274a 177 ZONE_MOVABLE,
2f1b6248
CL
178 MAX_NR_ZONES
179};
1da177e4 180
1da177e4
LT
181/*
182 * When a memory allocation must conform to specific limitations (such
183 * as being suitable for DMA) the caller will pass in hints to the
184 * allocator in the gfp_mask, in the zone modifier bits. These bits
185 * are used to select a priority ordered list of memory zones which
19655d34 186 * match the requested limits. See gfp_zone() in include/linux/gfp.h
1da177e4 187 */
fb0e7942 188
4b51d669
CL
189/*
190 * Count the active zones. Note that the use of defined(X) outside
191 * #if and family is not necessarily defined so ensure we cannot use
192 * it later. Use __ZONE_COUNT to work out how many shift bits we need.
193 */
194#define __ZONE_COUNT ( \
195 defined(CONFIG_ZONE_DMA) \
196 + defined(CONFIG_ZONE_DMA32) \
197 + 1 \
198 + defined(CONFIG_HIGHMEM) \
2a1e274a 199 + 1 \
4b51d669
CL
200)
201#if __ZONE_COUNT < 2
202#define ZONES_SHIFT 0
203#elif __ZONE_COUNT <= 2
19655d34 204#define ZONES_SHIFT 1
4b51d669 205#elif __ZONE_COUNT <= 4
19655d34 206#define ZONES_SHIFT 2
4b51d669
CL
207#else
208#error ZONES_SHIFT -- too many zones configured adjust calculation
fb0e7942 209#endif
4b51d669 210#undef __ZONE_COUNT
1da177e4 211
1da177e4
LT
212struct zone {
213 /* Fields commonly accessed by the page allocator */
1da177e4
LT
214 unsigned long pages_min, pages_low, pages_high;
215 /*
216 * We don't know if the memory that we're going to allocate will be freeable
217 * or/and it will be released eventually, so to avoid totally wasting several
218 * GB of ram we must reserve some of the lower zone memory (otherwise we risk
219 * to run OOM on the lower zones despite there's tons of freeable ram
220 * on the higher zones). This array is recalculated at runtime if the
221 * sysctl_lowmem_reserve_ratio sysctl changes.
222 */
223 unsigned long lowmem_reserve[MAX_NR_ZONES];
224
e7c8d5c9 225#ifdef CONFIG_NUMA
d5f541ed 226 int node;
9614634f
CL
227 /*
228 * zone reclaim becomes active if more unmapped pages exist.
229 */
8417bba4 230 unsigned long min_unmapped_pages;
0ff38490 231 unsigned long min_slab_pages;
e7c8d5c9
CL
232 struct per_cpu_pageset *pageset[NR_CPUS];
233#else
1da177e4 234 struct per_cpu_pageset pageset[NR_CPUS];
e7c8d5c9 235#endif
1da177e4
LT
236 /*
237 * free areas of different sizes
238 */
239 spinlock_t lock;
bdc8cb98
DH
240#ifdef CONFIG_MEMORY_HOTPLUG
241 /* see spanned/present_pages for more description */
242 seqlock_t span_seqlock;
243#endif
1da177e4
LT
244 struct free_area free_area[MAX_ORDER];
245
835c134e
MG
246#ifndef CONFIG_SPARSEMEM
247 /*
d9c23400 248 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
835c134e
MG
249 * In SPARSEMEM, this map is stored in struct mem_section
250 */
251 unsigned long *pageblock_flags;
252#endif /* CONFIG_SPARSEMEM */
253
1da177e4
LT
254
255 ZONE_PADDING(_pad1_)
256
257 /* Fields commonly accessed by the page reclaim scanner */
258 spinlock_t lru_lock;
259 struct list_head active_list;
260 struct list_head inactive_list;
261 unsigned long nr_scan_active;
262 unsigned long nr_scan_inactive;
1da177e4
LT
263 unsigned long pages_scanned; /* since last reclaim */
264 int all_unreclaimable; /* All pages pinned */
265
1e7e5a90
MH
266 /* A count of how many reclaimers are scanning this zone */
267 atomic_t reclaim_in_progress;
753ee728 268
2244b95a
CL
269 /* Zone statistics */
270 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
9eeff239 271
1da177e4
LT
272 /*
273 * prev_priority holds the scanning priority for this zone. It is
274 * defined as the scanning priority at which we achieved our reclaim
275 * target at the previous try_to_free_pages() or balance_pgdat()
276 * invokation.
277 *
278 * We use prev_priority as a measure of how much stress page reclaim is
279 * under - it drives the swappiness decision: whether to unmap mapped
280 * pages.
281 *
3bb1a852 282 * Access to both this field is quite racy even on uniprocessor. But
1da177e4
LT
283 * it is expected to average out OK.
284 */
1da177e4
LT
285 int prev_priority;
286
287
288 ZONE_PADDING(_pad2_)
289 /* Rarely used or read-mostly fields */
290
291 /*
292 * wait_table -- the array holding the hash table
02b694de 293 * wait_table_hash_nr_entries -- the size of the hash table array
1da177e4
LT
294 * wait_table_bits -- wait_table_size == (1 << wait_table_bits)
295 *
296 * The purpose of all these is to keep track of the people
297 * waiting for a page to become available and make them
298 * runnable again when possible. The trouble is that this
299 * consumes a lot of space, especially when so few things
300 * wait on pages at a given time. So instead of using
301 * per-page waitqueues, we use a waitqueue hash table.
302 *
303 * The bucket discipline is to sleep on the same queue when
304 * colliding and wake all in that wait queue when removing.
305 * When something wakes, it must check to be sure its page is
306 * truly available, a la thundering herd. The cost of a
307 * collision is great, but given the expected load of the
308 * table, they should be so rare as to be outweighed by the
309 * benefits from the saved space.
310 *
311 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
312 * primary users of these fields, and in mm/page_alloc.c
313 * free_area_init_core() performs the initialization of them.
314 */
315 wait_queue_head_t * wait_table;
02b694de 316 unsigned long wait_table_hash_nr_entries;
1da177e4
LT
317 unsigned long wait_table_bits;
318
319 /*
320 * Discontig memory support fields.
321 */
322 struct pglist_data *zone_pgdat;
1da177e4
LT
323 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
324 unsigned long zone_start_pfn;
325
bdc8cb98
DH
326 /*
327 * zone_start_pfn, spanned_pages and present_pages are all
328 * protected by span_seqlock. It is a seqlock because it has
329 * to be read outside of zone->lock, and it is done in the main
330 * allocator path. But, it is written quite infrequently.
331 *
332 * The lock is declared along with zone->lock because it is
333 * frequently read in proximity to zone->lock. It's good to
334 * give them a chance of being in the same cacheline.
335 */
1da177e4
LT
336 unsigned long spanned_pages; /* total size, including holes */
337 unsigned long present_pages; /* amount of memory (excluding holes) */
338
339 /*
340 * rarely used fields:
341 */
15ad7cdc 342 const char *name;
22fc6ecc 343} ____cacheline_internodealigned_in_smp;
1da177e4 344
1da177e4
LT
345/*
346 * The "priority" of VM scanning is how much of the queues we will scan in one
347 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
348 * queues ("queue_length >> 12") during an aging round.
349 */
350#define DEF_PRIORITY 12
351
9276b1bc
PJ
352/* Maximum number of zones on a zonelist */
353#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
354
355#ifdef CONFIG_NUMA
523b9458
CL
356
357/*
358 * The NUMA zonelists are doubled becausse we need zonelists that restrict the
359 * allocations to a single node for GFP_THISNODE.
360 *
361 * [0 .. MAX_NR_ZONES -1] : Zonelists with fallback
362 * [MAZ_NR_ZONES ... MAZ_ZONELISTS -1] : No fallback (GFP_THISNODE)
363 */
364#define MAX_ZONELISTS (2 * MAX_NR_ZONES)
365
366
9276b1bc
PJ
367/*
368 * We cache key information from each zonelist for smaller cache
369 * footprint when scanning for free pages in get_page_from_freelist().
370 *
371 * 1) The BITMAP fullzones tracks which zones in a zonelist have come
372 * up short of free memory since the last time (last_fullzone_zap)
373 * we zero'd fullzones.
374 * 2) The array z_to_n[] maps each zone in the zonelist to its node
375 * id, so that we can efficiently evaluate whether that node is
376 * set in the current tasks mems_allowed.
377 *
378 * Both fullzones and z_to_n[] are one-to-one with the zonelist,
379 * indexed by a zones offset in the zonelist zones[] array.
380 *
381 * The get_page_from_freelist() routine does two scans. During the
382 * first scan, we skip zones whose corresponding bit in 'fullzones'
383 * is set or whose corresponding node in current->mems_allowed (which
384 * comes from cpusets) is not set. During the second scan, we bypass
385 * this zonelist_cache, to ensure we look methodically at each zone.
386 *
387 * Once per second, we zero out (zap) fullzones, forcing us to
388 * reconsider nodes that might have regained more free memory.
389 * The field last_full_zap is the time we last zapped fullzones.
390 *
391 * This mechanism reduces the amount of time we waste repeatedly
392 * reexaming zones for free memory when they just came up low on
393 * memory momentarilly ago.
394 *
395 * The zonelist_cache struct members logically belong in struct
396 * zonelist. However, the mempolicy zonelists constructed for
397 * MPOL_BIND are intentionally variable length (and usually much
398 * shorter). A general purpose mechanism for handling structs with
399 * multiple variable length members is more mechanism than we want
400 * here. We resort to some special case hackery instead.
401 *
402 * The MPOL_BIND zonelists don't need this zonelist_cache (in good
403 * part because they are shorter), so we put the fixed length stuff
404 * at the front of the zonelist struct, ending in a variable length
405 * zones[], as is needed by MPOL_BIND.
406 *
407 * Then we put the optional zonelist cache on the end of the zonelist
408 * struct. This optional stuff is found by a 'zlcache_ptr' pointer in
409 * the fixed length portion at the front of the struct. This pointer
410 * both enables us to find the zonelist cache, and in the case of
411 * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
412 * to know that the zonelist cache is not there.
413 *
414 * The end result is that struct zonelists come in two flavors:
415 * 1) The full, fixed length version, shown below, and
416 * 2) The custom zonelists for MPOL_BIND.
417 * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
418 *
419 * Even though there may be multiple CPU cores on a node modifying
420 * fullzones or last_full_zap in the same zonelist_cache at the same
421 * time, we don't lock it. This is just hint data - if it is wrong now
422 * and then, the allocator will still function, perhaps a bit slower.
423 */
424
425
426struct zonelist_cache {
9276b1bc 427 unsigned short z_to_n[MAX_ZONES_PER_ZONELIST]; /* zone->nid */
7253f4ef 428 DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST); /* zone full? */
9276b1bc
PJ
429 unsigned long last_full_zap; /* when last zap'd (jiffies) */
430};
431#else
523b9458 432#define MAX_ZONELISTS MAX_NR_ZONES
9276b1bc
PJ
433struct zonelist_cache;
434#endif
435
1da177e4
LT
436/*
437 * One allocation request operates on a zonelist. A zonelist
438 * is a list of zones, the first one is the 'goal' of the
439 * allocation, the other zones are fallback zones, in decreasing
440 * priority.
441 *
9276b1bc
PJ
442 * If zlcache_ptr is not NULL, then it is just the address of zlcache,
443 * as explained above. If zlcache_ptr is NULL, there is no zlcache.
1da177e4 444 */
9276b1bc 445
1da177e4 446struct zonelist {
9276b1bc
PJ
447 struct zonelist_cache *zlcache_ptr; // NULL or &zlcache
448 struct zone *zones[MAX_ZONES_PER_ZONELIST + 1]; // NULL delimited
449#ifdef CONFIG_NUMA
450 struct zonelist_cache zlcache; // optional ...
451#endif
1da177e4
LT
452};
453
b377fd39
MG
454#ifdef CONFIG_NUMA
455/*
456 * Only custom zonelists like MPOL_BIND need to be filtered as part of
457 * policies. As described in the comment for struct zonelist_cache, these
458 * zonelists will not have a zlcache so zlcache_ptr will not be set. Use
459 * that to determine if the zonelists needs to be filtered or not.
460 */
461static inline int alloc_should_filter_zonelist(struct zonelist *zonelist)
462{
463 return !zonelist->zlcache_ptr;
464}
465#else
466static inline int alloc_should_filter_zonelist(struct zonelist *zonelist)
467{
468 return 0;
469}
470#endif /* CONFIG_NUMA */
471
c713216d
MG
472#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
473struct node_active_region {
474 unsigned long start_pfn;
475 unsigned long end_pfn;
476 int nid;
477};
478#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
1da177e4 479
5b99cd0e
HC
480#ifndef CONFIG_DISCONTIGMEM
481/* The array of struct pages - for discontigmem use pgdat->lmem_map */
482extern struct page *mem_map;
483#endif
484
1da177e4
LT
485/*
486 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
487 * (mostly NUMA machines?) to denote a higher-level memory zone than the
488 * zone denotes.
489 *
490 * On NUMA machines, each NUMA node would have a pg_data_t to describe
491 * it's memory layout.
492 *
493 * Memory statistics and page replacement data structures are maintained on a
494 * per-zone basis.
495 */
496struct bootmem_data;
497typedef struct pglist_data {
498 struct zone node_zones[MAX_NR_ZONES];
523b9458 499 struct zonelist node_zonelists[MAX_ZONELISTS];
1da177e4 500 int nr_zones;
d41dee36 501#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4 502 struct page *node_mem_map;
d41dee36 503#endif
1da177e4 504 struct bootmem_data *bdata;
208d54e5
DH
505#ifdef CONFIG_MEMORY_HOTPLUG
506 /*
507 * Must be held any time you expect node_start_pfn, node_present_pages
508 * or node_spanned_pages stay constant. Holding this will also
509 * guarantee that any pfn_valid() stays that way.
510 *
511 * Nests above zone->lock and zone->size_seqlock.
512 */
513 spinlock_t node_size_lock;
514#endif
1da177e4
LT
515 unsigned long node_start_pfn;
516 unsigned long node_present_pages; /* total number of physical pages */
517 unsigned long node_spanned_pages; /* total size of physical page
518 range, including holes */
519 int node_id;
1da177e4
LT
520 wait_queue_head_t kswapd_wait;
521 struct task_struct *kswapd;
522 int kswapd_max_order;
523} pg_data_t;
524
525#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
526#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
d41dee36 527#ifdef CONFIG_FLAT_NODE_MEM_MAP
408fde81 528#define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
d41dee36
AW
529#else
530#define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
531#endif
408fde81 532#define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
1da177e4 533
208d54e5
DH
534#include <linux/memory_hotplug.h>
535
1da177e4
LT
536void get_zone_counts(unsigned long *active, unsigned long *inactive,
537 unsigned long *free);
538void build_all_zonelists(void);
539void wakeup_kswapd(struct zone *zone, int order);
540int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
7fb1d9fc 541 int classzone_idx, int alloc_flags);
a2f3aa02
DH
542enum memmap_context {
543 MEMMAP_EARLY,
544 MEMMAP_HOTPLUG,
545};
718127cc 546extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
a2f3aa02
DH
547 unsigned long size,
548 enum memmap_context context);
718127cc 549
1da177e4
LT
550#ifdef CONFIG_HAVE_MEMORY_PRESENT
551void memory_present(int nid, unsigned long start, unsigned long end);
552#else
553static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
554#endif
555
556#ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
557unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
558#endif
559
560/*
561 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
562 */
563#define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
564
f3fe6512
CK
565static inline int populated_zone(struct zone *zone)
566{
567 return (!!zone->present_pages);
568}
569
2a1e274a
MG
570extern int movable_zone;
571
572static inline int zone_movable_is_highmem(void)
573{
574#if defined(CONFIG_HIGHMEM) && defined(CONFIG_ARCH_POPULATES_NODE_MAP)
575 return movable_zone == ZONE_HIGHMEM;
576#else
577 return 0;
578#endif
579}
580
2f1b6248 581static inline int is_highmem_idx(enum zone_type idx)
1da177e4 582{
e53ef38d 583#ifdef CONFIG_HIGHMEM
2a1e274a
MG
584 return (idx == ZONE_HIGHMEM ||
585 (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
e53ef38d
CL
586#else
587 return 0;
588#endif
1da177e4
LT
589}
590
2f1b6248 591static inline int is_normal_idx(enum zone_type idx)
1da177e4
LT
592{
593 return (idx == ZONE_NORMAL);
594}
9328b8fa 595
1da177e4
LT
596/**
597 * is_highmem - helper function to quickly check if a struct zone is a
598 * highmem zone or not. This is an attempt to keep references
599 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
600 * @zone - pointer to struct zone variable
601 */
602static inline int is_highmem(struct zone *zone)
603{
e53ef38d 604#ifdef CONFIG_HIGHMEM
2a1e274a
MG
605 int zone_idx = zone - zone->zone_pgdat->node_zones;
606 return zone_idx == ZONE_HIGHMEM ||
607 (zone_idx == ZONE_MOVABLE && zone_movable_is_highmem());
e53ef38d
CL
608#else
609 return 0;
610#endif
1da177e4
LT
611}
612
613static inline int is_normal(struct zone *zone)
614{
615 return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
616}
617
9328b8fa
NP
618static inline int is_dma32(struct zone *zone)
619{
fb0e7942 620#ifdef CONFIG_ZONE_DMA32
9328b8fa 621 return zone == zone->zone_pgdat->node_zones + ZONE_DMA32;
fb0e7942
CL
622#else
623 return 0;
624#endif
9328b8fa
NP
625}
626
627static inline int is_dma(struct zone *zone)
628{
4b51d669 629#ifdef CONFIG_ZONE_DMA
9328b8fa 630 return zone == zone->zone_pgdat->node_zones + ZONE_DMA;
4b51d669
CL
631#else
632 return 0;
633#endif
9328b8fa
NP
634}
635
1da177e4
LT
636/* These two functions are used to setup the per zone pages min values */
637struct ctl_table;
638struct file;
639int min_free_kbytes_sysctl_handler(struct ctl_table *, int, struct file *,
640 void __user *, size_t *, loff_t *);
641extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
642int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, struct file *,
643 void __user *, size_t *, loff_t *);
8ad4b1fb
RS
644int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int, struct file *,
645 void __user *, size_t *, loff_t *);
9614634f
CL
646int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
647 struct file *, void __user *, size_t *, loff_t *);
0ff38490
CL
648int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
649 struct file *, void __user *, size_t *, loff_t *);
1da177e4 650
f0c0b2b8
KH
651extern int numa_zonelist_order_handler(struct ctl_table *, int,
652 struct file *, void __user *, size_t *, loff_t *);
653extern char numa_zonelist_order[];
654#define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */
655
1da177e4
LT
656#include <linux/topology.h>
657/* Returns the number of the current Node. */
69d81fcd 658#ifndef numa_node_id
39c715b7 659#define numa_node_id() (cpu_to_node(raw_smp_processor_id()))
69d81fcd 660#endif
1da177e4 661
93b7504e 662#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
663
664extern struct pglist_data contig_page_data;
665#define NODE_DATA(nid) (&contig_page_data)
666#define NODE_MEM_MAP(nid) mem_map
667#define MAX_NODES_SHIFT 1
1da177e4 668
93b7504e 669#else /* CONFIG_NEED_MULTIPLE_NODES */
1da177e4
LT
670
671#include <asm/mmzone.h>
672
93b7504e 673#endif /* !CONFIG_NEED_MULTIPLE_NODES */
348f8b6c 674
95144c78
KH
675extern struct pglist_data *first_online_pgdat(void);
676extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
677extern struct zone *next_zone(struct zone *zone);
8357f869
KH
678
679/**
680 * for_each_pgdat - helper macro to iterate over all nodes
681 * @pgdat - pointer to a pg_data_t variable
682 */
683#define for_each_online_pgdat(pgdat) \
684 for (pgdat = first_online_pgdat(); \
685 pgdat; \
686 pgdat = next_online_pgdat(pgdat))
8357f869
KH
687/**
688 * for_each_zone - helper macro to iterate over all memory zones
689 * @zone - pointer to struct zone variable
690 *
691 * The user only needs to declare the zone variable, for_each_zone
692 * fills it in.
693 */
694#define for_each_zone(zone) \
695 for (zone = (first_online_pgdat())->node_zones; \
696 zone; \
697 zone = next_zone(zone))
698
d41dee36
AW
699#ifdef CONFIG_SPARSEMEM
700#include <asm/sparsemem.h>
701#endif
702
07808b74 703#if BITS_PER_LONG == 32
1da177e4 704/*
a2f1b424
AK
705 * with 32 bit page->flags field, we reserve 9 bits for node/zone info.
706 * there are 4 zones (3 bits) and this leaves 9-3=6 bits for nodes.
1da177e4 707 */
a2f1b424 708#define FLAGS_RESERVED 9
348f8b6c 709
1da177e4
LT
710#elif BITS_PER_LONG == 64
711/*
712 * with 64 bit flags field, there's plenty of room.
713 */
348f8b6c 714#define FLAGS_RESERVED 32
1da177e4 715
348f8b6c 716#else
1da177e4 717
348f8b6c 718#error BITS_PER_LONG not defined
1da177e4 719
1da177e4
LT
720#endif
721
c713216d
MG
722#if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
723 !defined(CONFIG_ARCH_POPULATES_NODE_MAP)
b159d43f
AW
724#define early_pfn_to_nid(nid) (0UL)
725#endif
726
2bdaf115
AW
727#ifdef CONFIG_FLATMEM
728#define pfn_to_nid(pfn) (0)
729#endif
730
d41dee36
AW
731#define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
732#define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
733
734#ifdef CONFIG_SPARSEMEM
735
736/*
737 * SECTION_SHIFT #bits space required to store a section #
738 *
739 * PA_SECTION_SHIFT physical address to/from section number
740 * PFN_SECTION_SHIFT pfn to/from section number
741 */
742#define SECTIONS_SHIFT (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)
743
744#define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
745#define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
746
747#define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
748
749#define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
750#define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
751
835c134e 752#define SECTION_BLOCKFLAGS_BITS \
d9c23400 753 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
835c134e 754
d41dee36
AW
755#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
756#error Allocator MAX_ORDER exceeds SECTION_SIZE
757#endif
758
759struct page;
760struct mem_section {
29751f69
AW
761 /*
762 * This is, logically, a pointer to an array of struct
763 * pages. However, it is stored with some other magic.
764 * (see sparse.c::sparse_init_one_section())
765 *
30c253e6
AW
766 * Additionally during early boot we encode node id of
767 * the location of the section here to guide allocation.
768 * (see sparse.c::memory_present())
769 *
29751f69
AW
770 * Making it a UL at least makes someone do a cast
771 * before using it wrong.
772 */
773 unsigned long section_mem_map;
5c0e3066
MG
774
775 /* See declaration of similar field in struct zone */
776 unsigned long *pageblock_flags;
d41dee36
AW
777};
778
3e347261
BP
779#ifdef CONFIG_SPARSEMEM_EXTREME
780#define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
781#else
782#define SECTIONS_PER_ROOT 1
783#endif
802f192e 784
3e347261
BP
785#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
786#define NR_SECTION_ROOTS (NR_MEM_SECTIONS / SECTIONS_PER_ROOT)
787#define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
802f192e 788
3e347261
BP
789#ifdef CONFIG_SPARSEMEM_EXTREME
790extern struct mem_section *mem_section[NR_SECTION_ROOTS];
802f192e 791#else
3e347261
BP
792extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
793#endif
d41dee36 794
29751f69
AW
795static inline struct mem_section *__nr_to_section(unsigned long nr)
796{
3e347261
BP
797 if (!mem_section[SECTION_NR_TO_ROOT(nr)])
798 return NULL;
799 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
29751f69 800}
4ca644d9 801extern int __section_nr(struct mem_section* ms);
29751f69
AW
802
803/*
804 * We use the lower bits of the mem_map pointer to store
805 * a little bit of information. There should be at least
806 * 3 bits here due to 32-bit alignment.
807 */
808#define SECTION_MARKED_PRESENT (1UL<<0)
809#define SECTION_HAS_MEM_MAP (1UL<<1)
810#define SECTION_MAP_LAST_BIT (1UL<<2)
811#define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
30c253e6 812#define SECTION_NID_SHIFT 2
29751f69
AW
813
814static inline struct page *__section_mem_map_addr(struct mem_section *section)
815{
816 unsigned long map = section->section_mem_map;
817 map &= SECTION_MAP_MASK;
818 return (struct page *)map;
819}
820
540557b9 821static inline int present_section(struct mem_section *section)
29751f69 822{
802f192e 823 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
29751f69
AW
824}
825
540557b9
AW
826static inline int present_section_nr(unsigned long nr)
827{
828 return present_section(__nr_to_section(nr));
829}
830
831static inline int valid_section(struct mem_section *section)
29751f69 832{
802f192e 833 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
29751f69
AW
834}
835
836static inline int valid_section_nr(unsigned long nr)
837{
838 return valid_section(__nr_to_section(nr));
839}
840
d41dee36
AW
841static inline struct mem_section *__pfn_to_section(unsigned long pfn)
842{
29751f69 843 return __nr_to_section(pfn_to_section_nr(pfn));
d41dee36
AW
844}
845
d41dee36
AW
846static inline int pfn_valid(unsigned long pfn)
847{
848 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
849 return 0;
29751f69 850 return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
d41dee36
AW
851}
852
540557b9
AW
853static inline int pfn_present(unsigned long pfn)
854{
855 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
856 return 0;
857 return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
858}
859
d41dee36
AW
860/*
861 * These are _only_ used during initialisation, therefore they
862 * can use __initdata ... They could have names to indicate
863 * this restriction.
864 */
865#ifdef CONFIG_NUMA
161599ff
AW
866#define pfn_to_nid(pfn) \
867({ \
868 unsigned long __pfn_to_nid_pfn = (pfn); \
869 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
870})
2bdaf115
AW
871#else
872#define pfn_to_nid(pfn) (0)
d41dee36
AW
873#endif
874
d41dee36
AW
875#define early_pfn_valid(pfn) pfn_valid(pfn)
876void sparse_init(void);
877#else
878#define sparse_init() do {} while (0)
28ae55c9 879#define sparse_index_init(_sec, _nid) do {} while (0)
d41dee36
AW
880#endif /* CONFIG_SPARSEMEM */
881
75167957
AW
882#ifdef CONFIG_NODES_SPAN_OTHER_NODES
883#define early_pfn_in_nid(pfn, nid) (early_pfn_to_nid(pfn) == (nid))
884#else
885#define early_pfn_in_nid(pfn, nid) (1)
886#endif
887
d41dee36
AW
888#ifndef early_pfn_valid
889#define early_pfn_valid(pfn) (1)
890#endif
891
892void memory_present(int nid, unsigned long start, unsigned long end);
893unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
894
14e07298
AW
895/*
896 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
897 * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
898 * pfn_valid_within() should be used in this case; we optimise this away
899 * when we have no holes within a MAX_ORDER_NR_PAGES block.
900 */
901#ifdef CONFIG_HOLES_IN_ZONE
902#define pfn_valid_within(pfn) pfn_valid(pfn)
903#else
904#define pfn_valid_within(pfn) (1)
905#endif
906
1da177e4
LT
907#endif /* !__ASSEMBLY__ */
908#endif /* __KERNEL__ */
909#endif /* _LINUX_MMZONE_H */