mm: use two zonelist that are filtered by GFP mask
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / include / linux / mmzone.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_MMZONE_H
2#define _LINUX_MMZONE_H
3
4#ifdef __KERNEL__
5#ifndef __ASSEMBLY__
6
1da177e4
LT
7#include <linux/spinlock.h>
8#include <linux/list.h>
9#include <linux/wait.h>
e815af95 10#include <linux/bitops.h>
1da177e4
LT
11#include <linux/cache.h>
12#include <linux/threads.h>
13#include <linux/numa.h>
14#include <linux/init.h>
bdc8cb98 15#include <linux/seqlock.h>
8357f869 16#include <linux/nodemask.h>
835c134e 17#include <linux/pageblock-flags.h>
1da177e4 18#include <asm/atomic.h>
93ff66bf 19#include <asm/page.h>
1da177e4
LT
20
21/* Free memory management - zoned buddy allocator. */
22#ifndef CONFIG_FORCE_MAX_ZONEORDER
23#define MAX_ORDER 11
24#else
25#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
26#endif
e984bb43 27#define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
1da177e4 28
5ad333eb
AW
29/*
30 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
31 * costly to service. That is between allocation orders which should
32 * coelesce naturally under reasonable reclaim pressure and those which
33 * will not.
34 */
35#define PAGE_ALLOC_COSTLY_ORDER 3
36
b2a0ac88 37#define MIGRATE_UNMOVABLE 0
e12ba74d
MG
38#define MIGRATE_RECLAIMABLE 1
39#define MIGRATE_MOVABLE 2
64c5e135 40#define MIGRATE_RESERVE 3
a5d76b54
KH
41#define MIGRATE_ISOLATE 4 /* can't allocate from here */
42#define MIGRATE_TYPES 5
b2a0ac88
MG
43
44#define for_each_migratetype_order(order, type) \
45 for (order = 0; order < MAX_ORDER; order++) \
46 for (type = 0; type < MIGRATE_TYPES; type++)
47
467c996c
MG
48extern int page_group_by_mobility_disabled;
49
50static inline int get_pageblock_migratetype(struct page *page)
51{
52 if (unlikely(page_group_by_mobility_disabled))
53 return MIGRATE_UNMOVABLE;
54
55 return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end);
56}
57
1da177e4 58struct free_area {
b2a0ac88 59 struct list_head free_list[MIGRATE_TYPES];
1da177e4
LT
60 unsigned long nr_free;
61};
62
63struct pglist_data;
64
65/*
66 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
67 * So add a wild amount of padding here to ensure that they fall into separate
68 * cachelines. There are very few zone structures in the machine, so space
69 * consumption is not a concern here.
70 */
71#if defined(CONFIG_SMP)
72struct zone_padding {
73 char x[0];
22fc6ecc 74} ____cacheline_internodealigned_in_smp;
1da177e4
LT
75#define ZONE_PADDING(name) struct zone_padding name;
76#else
77#define ZONE_PADDING(name)
78#endif
79
2244b95a 80enum zone_stat_item {
51ed4491 81 /* First 128 byte cacheline (assuming 64 bit words) */
d23ad423 82 NR_FREE_PAGES,
c8785385
CL
83 NR_INACTIVE,
84 NR_ACTIVE,
f3dbd344
CL
85 NR_ANON_PAGES, /* Mapped anonymous pages */
86 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
65ba55f5 87 only modified from process context */
347ce434 88 NR_FILE_PAGES,
b1e7a8fd 89 NR_FILE_DIRTY,
ce866b34 90 NR_WRITEBACK,
51ed4491
CL
91 /* Second 128 byte cacheline */
92 NR_SLAB_RECLAIMABLE,
93 NR_SLAB_UNRECLAIMABLE,
94 NR_PAGETABLE, /* used for pagetables */
fd39fc85 95 NR_UNSTABLE_NFS, /* NFS unstable pages */
d2c5e30c 96 NR_BOUNCE,
e129b5c2 97 NR_VMSCAN_WRITE,
ca889e6c
CL
98#ifdef CONFIG_NUMA
99 NUMA_HIT, /* allocated in intended node */
100 NUMA_MISS, /* allocated in non intended node */
101 NUMA_FOREIGN, /* was intended here, hit elsewhere */
102 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */
103 NUMA_LOCAL, /* allocation from local node */
104 NUMA_OTHER, /* allocation from other node */
105#endif
2244b95a
CL
106 NR_VM_ZONE_STAT_ITEMS };
107
1da177e4
LT
108struct per_cpu_pages {
109 int count; /* number of pages in the list */
1da177e4
LT
110 int high; /* high watermark, emptying needed */
111 int batch; /* chunk size for buddy add/remove */
112 struct list_head list; /* the list of pages */
113};
114
115struct per_cpu_pageset {
3dfa5721 116 struct per_cpu_pages pcp;
4037d452
CL
117#ifdef CONFIG_NUMA
118 s8 expire;
119#endif
2244b95a 120#ifdef CONFIG_SMP
df9ecaba 121 s8 stat_threshold;
2244b95a
CL
122 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
123#endif
1da177e4
LT
124} ____cacheline_aligned_in_smp;
125
e7c8d5c9
CL
126#ifdef CONFIG_NUMA
127#define zone_pcp(__z, __cpu) ((__z)->pageset[(__cpu)])
128#else
129#define zone_pcp(__z, __cpu) (&(__z)->pageset[(__cpu)])
130#endif
131
2f1b6248 132enum zone_type {
4b51d669 133#ifdef CONFIG_ZONE_DMA
2f1b6248
CL
134 /*
135 * ZONE_DMA is used when there are devices that are not able
136 * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
137 * carve out the portion of memory that is needed for these devices.
138 * The range is arch specific.
139 *
140 * Some examples
141 *
142 * Architecture Limit
143 * ---------------------------
144 * parisc, ia64, sparc <4G
145 * s390 <2G
2f1b6248
CL
146 * arm Various
147 * alpha Unlimited or 0-16MB.
148 *
149 * i386, x86_64 and multiple other arches
150 * <16M.
151 */
152 ZONE_DMA,
4b51d669 153#endif
fb0e7942 154#ifdef CONFIG_ZONE_DMA32
2f1b6248
CL
155 /*
156 * x86_64 needs two ZONE_DMAs because it supports devices that are
157 * only able to do DMA to the lower 16M but also 32 bit devices that
158 * can only do DMA areas below 4G.
159 */
160 ZONE_DMA32,
fb0e7942 161#endif
2f1b6248
CL
162 /*
163 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
164 * performed on pages in ZONE_NORMAL if the DMA devices support
165 * transfers to all addressable memory.
166 */
167 ZONE_NORMAL,
e53ef38d 168#ifdef CONFIG_HIGHMEM
2f1b6248
CL
169 /*
170 * A memory area that is only addressable by the kernel through
171 * mapping portions into its own address space. This is for example
172 * used by i386 to allow the kernel to address the memory beyond
173 * 900MB. The kernel will set up special mappings (page
174 * table entries on i386) for each page that the kernel needs to
175 * access.
176 */
177 ZONE_HIGHMEM,
e53ef38d 178#endif
2a1e274a 179 ZONE_MOVABLE,
2f1b6248
CL
180 MAX_NR_ZONES
181};
1da177e4 182
1da177e4
LT
183/*
184 * When a memory allocation must conform to specific limitations (such
185 * as being suitable for DMA) the caller will pass in hints to the
186 * allocator in the gfp_mask, in the zone modifier bits. These bits
187 * are used to select a priority ordered list of memory zones which
19655d34 188 * match the requested limits. See gfp_zone() in include/linux/gfp.h
1da177e4 189 */
fb0e7942 190
4b51d669
CL
191/*
192 * Count the active zones. Note that the use of defined(X) outside
193 * #if and family is not necessarily defined so ensure we cannot use
194 * it later. Use __ZONE_COUNT to work out how many shift bits we need.
195 */
196#define __ZONE_COUNT ( \
197 defined(CONFIG_ZONE_DMA) \
198 + defined(CONFIG_ZONE_DMA32) \
199 + 1 \
200 + defined(CONFIG_HIGHMEM) \
2a1e274a 201 + 1 \
4b51d669
CL
202)
203#if __ZONE_COUNT < 2
204#define ZONES_SHIFT 0
205#elif __ZONE_COUNT <= 2
19655d34 206#define ZONES_SHIFT 1
4b51d669 207#elif __ZONE_COUNT <= 4
19655d34 208#define ZONES_SHIFT 2
4b51d669
CL
209#else
210#error ZONES_SHIFT -- too many zones configured adjust calculation
fb0e7942 211#endif
4b51d669 212#undef __ZONE_COUNT
1da177e4 213
1da177e4
LT
214struct zone {
215 /* Fields commonly accessed by the page allocator */
1da177e4
LT
216 unsigned long pages_min, pages_low, pages_high;
217 /*
218 * We don't know if the memory that we're going to allocate will be freeable
219 * or/and it will be released eventually, so to avoid totally wasting several
220 * GB of ram we must reserve some of the lower zone memory (otherwise we risk
221 * to run OOM on the lower zones despite there's tons of freeable ram
222 * on the higher zones). This array is recalculated at runtime if the
223 * sysctl_lowmem_reserve_ratio sysctl changes.
224 */
225 unsigned long lowmem_reserve[MAX_NR_ZONES];
226
e7c8d5c9 227#ifdef CONFIG_NUMA
d5f541ed 228 int node;
9614634f
CL
229 /*
230 * zone reclaim becomes active if more unmapped pages exist.
231 */
8417bba4 232 unsigned long min_unmapped_pages;
0ff38490 233 unsigned long min_slab_pages;
e7c8d5c9
CL
234 struct per_cpu_pageset *pageset[NR_CPUS];
235#else
1da177e4 236 struct per_cpu_pageset pageset[NR_CPUS];
e7c8d5c9 237#endif
1da177e4
LT
238 /*
239 * free areas of different sizes
240 */
241 spinlock_t lock;
bdc8cb98
DH
242#ifdef CONFIG_MEMORY_HOTPLUG
243 /* see spanned/present_pages for more description */
244 seqlock_t span_seqlock;
245#endif
1da177e4
LT
246 struct free_area free_area[MAX_ORDER];
247
835c134e
MG
248#ifndef CONFIG_SPARSEMEM
249 /*
d9c23400 250 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
835c134e
MG
251 * In SPARSEMEM, this map is stored in struct mem_section
252 */
253 unsigned long *pageblock_flags;
254#endif /* CONFIG_SPARSEMEM */
255
1da177e4
LT
256
257 ZONE_PADDING(_pad1_)
258
259 /* Fields commonly accessed by the page reclaim scanner */
260 spinlock_t lru_lock;
261 struct list_head active_list;
262 struct list_head inactive_list;
263 unsigned long nr_scan_active;
264 unsigned long nr_scan_inactive;
1da177e4 265 unsigned long pages_scanned; /* since last reclaim */
e815af95 266 unsigned long flags; /* zone flags, see below */
753ee728 267
2244b95a
CL
268 /* Zone statistics */
269 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS];
9eeff239 270
1da177e4
LT
271 /*
272 * prev_priority holds the scanning priority for this zone. It is
273 * defined as the scanning priority at which we achieved our reclaim
274 * target at the previous try_to_free_pages() or balance_pgdat()
275 * invokation.
276 *
277 * We use prev_priority as a measure of how much stress page reclaim is
278 * under - it drives the swappiness decision: whether to unmap mapped
279 * pages.
280 *
3bb1a852 281 * Access to both this field is quite racy even on uniprocessor. But
1da177e4
LT
282 * it is expected to average out OK.
283 */
1da177e4
LT
284 int prev_priority;
285
286
287 ZONE_PADDING(_pad2_)
288 /* Rarely used or read-mostly fields */
289
290 /*
291 * wait_table -- the array holding the hash table
02b694de 292 * wait_table_hash_nr_entries -- the size of the hash table array
1da177e4
LT
293 * wait_table_bits -- wait_table_size == (1 << wait_table_bits)
294 *
295 * The purpose of all these is to keep track of the people
296 * waiting for a page to become available and make them
297 * runnable again when possible. The trouble is that this
298 * consumes a lot of space, especially when so few things
299 * wait on pages at a given time. So instead of using
300 * per-page waitqueues, we use a waitqueue hash table.
301 *
302 * The bucket discipline is to sleep on the same queue when
303 * colliding and wake all in that wait queue when removing.
304 * When something wakes, it must check to be sure its page is
305 * truly available, a la thundering herd. The cost of a
306 * collision is great, but given the expected load of the
307 * table, they should be so rare as to be outweighed by the
308 * benefits from the saved space.
309 *
310 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
311 * primary users of these fields, and in mm/page_alloc.c
312 * free_area_init_core() performs the initialization of them.
313 */
314 wait_queue_head_t * wait_table;
02b694de 315 unsigned long wait_table_hash_nr_entries;
1da177e4
LT
316 unsigned long wait_table_bits;
317
318 /*
319 * Discontig memory support fields.
320 */
321 struct pglist_data *zone_pgdat;
1da177e4
LT
322 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
323 unsigned long zone_start_pfn;
324
bdc8cb98
DH
325 /*
326 * zone_start_pfn, spanned_pages and present_pages are all
327 * protected by span_seqlock. It is a seqlock because it has
328 * to be read outside of zone->lock, and it is done in the main
329 * allocator path. But, it is written quite infrequently.
330 *
331 * The lock is declared along with zone->lock because it is
332 * frequently read in proximity to zone->lock. It's good to
333 * give them a chance of being in the same cacheline.
334 */
1da177e4
LT
335 unsigned long spanned_pages; /* total size, including holes */
336 unsigned long present_pages; /* amount of memory (excluding holes) */
337
338 /*
339 * rarely used fields:
340 */
15ad7cdc 341 const char *name;
22fc6ecc 342} ____cacheline_internodealigned_in_smp;
1da177e4 343
e815af95
DR
344typedef enum {
345 ZONE_ALL_UNRECLAIMABLE, /* all pages pinned */
346 ZONE_RECLAIM_LOCKED, /* prevents concurrent reclaim */
098d7f12 347 ZONE_OOM_LOCKED, /* zone is in OOM killer zonelist */
e815af95
DR
348} zone_flags_t;
349
350static inline void zone_set_flag(struct zone *zone, zone_flags_t flag)
351{
352 set_bit(flag, &zone->flags);
353}
d773ed6b
DR
354
355static inline int zone_test_and_set_flag(struct zone *zone, zone_flags_t flag)
356{
357 return test_and_set_bit(flag, &zone->flags);
358}
359
e815af95
DR
360static inline void zone_clear_flag(struct zone *zone, zone_flags_t flag)
361{
362 clear_bit(flag, &zone->flags);
363}
364
365static inline int zone_is_all_unreclaimable(const struct zone *zone)
366{
367 return test_bit(ZONE_ALL_UNRECLAIMABLE, &zone->flags);
368}
d773ed6b 369
e815af95
DR
370static inline int zone_is_reclaim_locked(const struct zone *zone)
371{
372 return test_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
373}
d773ed6b 374
098d7f12
DR
375static inline int zone_is_oom_locked(const struct zone *zone)
376{
377 return test_bit(ZONE_OOM_LOCKED, &zone->flags);
378}
e815af95 379
1da177e4
LT
380/*
381 * The "priority" of VM scanning is how much of the queues we will scan in one
382 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
383 * queues ("queue_length >> 12") during an aging round.
384 */
385#define DEF_PRIORITY 12
386
9276b1bc
PJ
387/* Maximum number of zones on a zonelist */
388#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
389
390#ifdef CONFIG_NUMA
523b9458
CL
391
392/*
393 * The NUMA zonelists are doubled becausse we need zonelists that restrict the
394 * allocations to a single node for GFP_THISNODE.
395 *
54a6eb5c
MG
396 * [0] : Zonelist with fallback
397 * [1] : No fallback (GFP_THISNODE)
523b9458 398 */
54a6eb5c 399#define MAX_ZONELISTS 2
523b9458
CL
400
401
9276b1bc
PJ
402/*
403 * We cache key information from each zonelist for smaller cache
404 * footprint when scanning for free pages in get_page_from_freelist().
405 *
406 * 1) The BITMAP fullzones tracks which zones in a zonelist have come
407 * up short of free memory since the last time (last_fullzone_zap)
408 * we zero'd fullzones.
409 * 2) The array z_to_n[] maps each zone in the zonelist to its node
410 * id, so that we can efficiently evaluate whether that node is
411 * set in the current tasks mems_allowed.
412 *
413 * Both fullzones and z_to_n[] are one-to-one with the zonelist,
414 * indexed by a zones offset in the zonelist zones[] array.
415 *
416 * The get_page_from_freelist() routine does two scans. During the
417 * first scan, we skip zones whose corresponding bit in 'fullzones'
418 * is set or whose corresponding node in current->mems_allowed (which
419 * comes from cpusets) is not set. During the second scan, we bypass
420 * this zonelist_cache, to ensure we look methodically at each zone.
421 *
422 * Once per second, we zero out (zap) fullzones, forcing us to
423 * reconsider nodes that might have regained more free memory.
424 * The field last_full_zap is the time we last zapped fullzones.
425 *
426 * This mechanism reduces the amount of time we waste repeatedly
427 * reexaming zones for free memory when they just came up low on
428 * memory momentarilly ago.
429 *
430 * The zonelist_cache struct members logically belong in struct
431 * zonelist. However, the mempolicy zonelists constructed for
432 * MPOL_BIND are intentionally variable length (and usually much
433 * shorter). A general purpose mechanism for handling structs with
434 * multiple variable length members is more mechanism than we want
435 * here. We resort to some special case hackery instead.
436 *
437 * The MPOL_BIND zonelists don't need this zonelist_cache (in good
438 * part because they are shorter), so we put the fixed length stuff
439 * at the front of the zonelist struct, ending in a variable length
440 * zones[], as is needed by MPOL_BIND.
441 *
442 * Then we put the optional zonelist cache on the end of the zonelist
443 * struct. This optional stuff is found by a 'zlcache_ptr' pointer in
444 * the fixed length portion at the front of the struct. This pointer
445 * both enables us to find the zonelist cache, and in the case of
446 * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
447 * to know that the zonelist cache is not there.
448 *
449 * The end result is that struct zonelists come in two flavors:
450 * 1) The full, fixed length version, shown below, and
451 * 2) The custom zonelists for MPOL_BIND.
452 * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
453 *
454 * Even though there may be multiple CPU cores on a node modifying
455 * fullzones or last_full_zap in the same zonelist_cache at the same
456 * time, we don't lock it. This is just hint data - if it is wrong now
457 * and then, the allocator will still function, perhaps a bit slower.
458 */
459
460
461struct zonelist_cache {
9276b1bc 462 unsigned short z_to_n[MAX_ZONES_PER_ZONELIST]; /* zone->nid */
7253f4ef 463 DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST); /* zone full? */
9276b1bc
PJ
464 unsigned long last_full_zap; /* when last zap'd (jiffies) */
465};
466#else
54a6eb5c 467#define MAX_ZONELISTS 1
9276b1bc
PJ
468struct zonelist_cache;
469#endif
470
1da177e4
LT
471/*
472 * One allocation request operates on a zonelist. A zonelist
473 * is a list of zones, the first one is the 'goal' of the
474 * allocation, the other zones are fallback zones, in decreasing
475 * priority.
476 *
9276b1bc
PJ
477 * If zlcache_ptr is not NULL, then it is just the address of zlcache,
478 * as explained above. If zlcache_ptr is NULL, there is no zlcache.
1da177e4 479 */
9276b1bc 480
1da177e4 481struct zonelist {
9276b1bc
PJ
482 struct zonelist_cache *zlcache_ptr; // NULL or &zlcache
483 struct zone *zones[MAX_ZONES_PER_ZONELIST + 1]; // NULL delimited
484#ifdef CONFIG_NUMA
485 struct zonelist_cache zlcache; // optional ...
486#endif
1da177e4
LT
487};
488
c713216d
MG
489#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
490struct node_active_region {
491 unsigned long start_pfn;
492 unsigned long end_pfn;
493 int nid;
494};
495#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
1da177e4 496
5b99cd0e
HC
497#ifndef CONFIG_DISCONTIGMEM
498/* The array of struct pages - for discontigmem use pgdat->lmem_map */
499extern struct page *mem_map;
500#endif
501
1da177e4
LT
502/*
503 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
504 * (mostly NUMA machines?) to denote a higher-level memory zone than the
505 * zone denotes.
506 *
507 * On NUMA machines, each NUMA node would have a pg_data_t to describe
508 * it's memory layout.
509 *
510 * Memory statistics and page replacement data structures are maintained on a
511 * per-zone basis.
512 */
513struct bootmem_data;
514typedef struct pglist_data {
515 struct zone node_zones[MAX_NR_ZONES];
523b9458 516 struct zonelist node_zonelists[MAX_ZONELISTS];
1da177e4 517 int nr_zones;
d41dee36 518#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4 519 struct page *node_mem_map;
d41dee36 520#endif
1da177e4 521 struct bootmem_data *bdata;
208d54e5
DH
522#ifdef CONFIG_MEMORY_HOTPLUG
523 /*
524 * Must be held any time you expect node_start_pfn, node_present_pages
525 * or node_spanned_pages stay constant. Holding this will also
526 * guarantee that any pfn_valid() stays that way.
527 *
528 * Nests above zone->lock and zone->size_seqlock.
529 */
530 spinlock_t node_size_lock;
531#endif
1da177e4
LT
532 unsigned long node_start_pfn;
533 unsigned long node_present_pages; /* total number of physical pages */
534 unsigned long node_spanned_pages; /* total size of physical page
535 range, including holes */
536 int node_id;
1da177e4
LT
537 wait_queue_head_t kswapd_wait;
538 struct task_struct *kswapd;
539 int kswapd_max_order;
540} pg_data_t;
541
542#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
543#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
d41dee36 544#ifdef CONFIG_FLAT_NODE_MEM_MAP
408fde81 545#define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
d41dee36
AW
546#else
547#define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
548#endif
408fde81 549#define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
1da177e4 550
208d54e5
DH
551#include <linux/memory_hotplug.h>
552
1da177e4
LT
553void get_zone_counts(unsigned long *active, unsigned long *inactive,
554 unsigned long *free);
555void build_all_zonelists(void);
556void wakeup_kswapd(struct zone *zone, int order);
557int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
7fb1d9fc 558 int classzone_idx, int alloc_flags);
a2f3aa02
DH
559enum memmap_context {
560 MEMMAP_EARLY,
561 MEMMAP_HOTPLUG,
562};
718127cc 563extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
a2f3aa02
DH
564 unsigned long size,
565 enum memmap_context context);
718127cc 566
1da177e4
LT
567#ifdef CONFIG_HAVE_MEMORY_PRESENT
568void memory_present(int nid, unsigned long start, unsigned long end);
569#else
570static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
571#endif
572
573#ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
574unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
575#endif
576
577/*
578 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
579 */
580#define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
581
f3fe6512
CK
582static inline int populated_zone(struct zone *zone)
583{
584 return (!!zone->present_pages);
585}
586
2a1e274a
MG
587extern int movable_zone;
588
589static inline int zone_movable_is_highmem(void)
590{
591#if defined(CONFIG_HIGHMEM) && defined(CONFIG_ARCH_POPULATES_NODE_MAP)
592 return movable_zone == ZONE_HIGHMEM;
593#else
594 return 0;
595#endif
596}
597
2f1b6248 598static inline int is_highmem_idx(enum zone_type idx)
1da177e4 599{
e53ef38d 600#ifdef CONFIG_HIGHMEM
2a1e274a
MG
601 return (idx == ZONE_HIGHMEM ||
602 (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
e53ef38d
CL
603#else
604 return 0;
605#endif
1da177e4
LT
606}
607
2f1b6248 608static inline int is_normal_idx(enum zone_type idx)
1da177e4
LT
609{
610 return (idx == ZONE_NORMAL);
611}
9328b8fa 612
1da177e4
LT
613/**
614 * is_highmem - helper function to quickly check if a struct zone is a
615 * highmem zone or not. This is an attempt to keep references
616 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
617 * @zone - pointer to struct zone variable
618 */
619static inline int is_highmem(struct zone *zone)
620{
e53ef38d 621#ifdef CONFIG_HIGHMEM
ddc81ed2
HH
622 int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones;
623 return zone_off == ZONE_HIGHMEM * sizeof(*zone) ||
624 (zone_off == ZONE_MOVABLE * sizeof(*zone) &&
625 zone_movable_is_highmem());
e53ef38d
CL
626#else
627 return 0;
628#endif
1da177e4
LT
629}
630
631static inline int is_normal(struct zone *zone)
632{
633 return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
634}
635
9328b8fa
NP
636static inline int is_dma32(struct zone *zone)
637{
fb0e7942 638#ifdef CONFIG_ZONE_DMA32
9328b8fa 639 return zone == zone->zone_pgdat->node_zones + ZONE_DMA32;
fb0e7942
CL
640#else
641 return 0;
642#endif
9328b8fa
NP
643}
644
645static inline int is_dma(struct zone *zone)
646{
4b51d669 647#ifdef CONFIG_ZONE_DMA
9328b8fa 648 return zone == zone->zone_pgdat->node_zones + ZONE_DMA;
4b51d669
CL
649#else
650 return 0;
651#endif
9328b8fa
NP
652}
653
1da177e4
LT
654/* These two functions are used to setup the per zone pages min values */
655struct ctl_table;
656struct file;
657int min_free_kbytes_sysctl_handler(struct ctl_table *, int, struct file *,
658 void __user *, size_t *, loff_t *);
659extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
660int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, struct file *,
661 void __user *, size_t *, loff_t *);
8ad4b1fb
RS
662int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int, struct file *,
663 void __user *, size_t *, loff_t *);
9614634f
CL
664int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
665 struct file *, void __user *, size_t *, loff_t *);
0ff38490
CL
666int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
667 struct file *, void __user *, size_t *, loff_t *);
1da177e4 668
f0c0b2b8
KH
669extern int numa_zonelist_order_handler(struct ctl_table *, int,
670 struct file *, void __user *, size_t *, loff_t *);
671extern char numa_zonelist_order[];
672#define NUMA_ZONELIST_ORDER_LEN 16 /* string buffer size */
673
1da177e4
LT
674#include <linux/topology.h>
675/* Returns the number of the current Node. */
69d81fcd 676#ifndef numa_node_id
39c715b7 677#define numa_node_id() (cpu_to_node(raw_smp_processor_id()))
69d81fcd 678#endif
1da177e4 679
93b7504e 680#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
681
682extern struct pglist_data contig_page_data;
683#define NODE_DATA(nid) (&contig_page_data)
684#define NODE_MEM_MAP(nid) mem_map
1da177e4 685
93b7504e 686#else /* CONFIG_NEED_MULTIPLE_NODES */
1da177e4
LT
687
688#include <asm/mmzone.h>
689
93b7504e 690#endif /* !CONFIG_NEED_MULTIPLE_NODES */
348f8b6c 691
95144c78
KH
692extern struct pglist_data *first_online_pgdat(void);
693extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
694extern struct zone *next_zone(struct zone *zone);
8357f869
KH
695
696/**
697 * for_each_pgdat - helper macro to iterate over all nodes
698 * @pgdat - pointer to a pg_data_t variable
699 */
700#define for_each_online_pgdat(pgdat) \
701 for (pgdat = first_online_pgdat(); \
702 pgdat; \
703 pgdat = next_online_pgdat(pgdat))
8357f869
KH
704/**
705 * for_each_zone - helper macro to iterate over all memory zones
706 * @zone - pointer to struct zone variable
707 *
708 * The user only needs to declare the zone variable, for_each_zone
709 * fills it in.
710 */
711#define for_each_zone(zone) \
712 for (zone = (first_online_pgdat())->node_zones; \
713 zone; \
714 zone = next_zone(zone))
715
54a6eb5c
MG
716/* Returns the first zone at or below highest_zoneidx in a zonelist */
717static inline struct zone **first_zones_zonelist(struct zonelist *zonelist,
718 enum zone_type highest_zoneidx)
719{
720 struct zone **z;
721
722 /* Find the first suitable zone to use for the allocation */
723 z = zonelist->zones;
724 while (*z && zone_idx(*z) > highest_zoneidx)
725 z++;
726
727 return z;
728}
729
730/* Returns the next zone at or below highest_zoneidx in a zonelist */
731static inline struct zone **next_zones_zonelist(struct zone **z,
732 enum zone_type highest_zoneidx)
733{
734 /* Find the next suitable zone to use for the allocation */
735 while (*z && zone_idx(*z) > highest_zoneidx)
736 z++;
737
738 return z;
739}
740
741/**
742 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
743 * @zone - The current zone in the iterator
744 * @z - The current pointer within zonelist->zones being iterated
745 * @zlist - The zonelist being iterated
746 * @highidx - The zone index of the highest zone to return
747 *
748 * This iterator iterates though all zones at or below a given zone index.
749 */
750#define for_each_zone_zonelist(zone, z, zlist, highidx) \
751 for (z = first_zones_zonelist(zlist, highidx), zone = *z++; \
752 zone; \
753 z = next_zones_zonelist(z, highidx), zone = *z++)
754
d41dee36
AW
755#ifdef CONFIG_SPARSEMEM
756#include <asm/sparsemem.h>
757#endif
758
07808b74 759#if BITS_PER_LONG == 32
1da177e4 760/*
a2f1b424
AK
761 * with 32 bit page->flags field, we reserve 9 bits for node/zone info.
762 * there are 4 zones (3 bits) and this leaves 9-3=6 bits for nodes.
1da177e4 763 */
a2f1b424 764#define FLAGS_RESERVED 9
348f8b6c 765
1da177e4
LT
766#elif BITS_PER_LONG == 64
767/*
768 * with 64 bit flags field, there's plenty of room.
769 */
348f8b6c 770#define FLAGS_RESERVED 32
1da177e4 771
348f8b6c 772#else
1da177e4 773
348f8b6c 774#error BITS_PER_LONG not defined
1da177e4 775
1da177e4
LT
776#endif
777
c713216d
MG
778#if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
779 !defined(CONFIG_ARCH_POPULATES_NODE_MAP)
b159d43f
AW
780#define early_pfn_to_nid(nid) (0UL)
781#endif
782
2bdaf115
AW
783#ifdef CONFIG_FLATMEM
784#define pfn_to_nid(pfn) (0)
785#endif
786
d41dee36
AW
787#define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
788#define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
789
790#ifdef CONFIG_SPARSEMEM
791
792/*
793 * SECTION_SHIFT #bits space required to store a section #
794 *
795 * PA_SECTION_SHIFT physical address to/from section number
796 * PFN_SECTION_SHIFT pfn to/from section number
797 */
798#define SECTIONS_SHIFT (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)
799
800#define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
801#define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
802
803#define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
804
805#define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
806#define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
807
835c134e 808#define SECTION_BLOCKFLAGS_BITS \
d9c23400 809 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
835c134e 810
d41dee36
AW
811#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
812#error Allocator MAX_ORDER exceeds SECTION_SIZE
813#endif
814
815struct page;
816struct mem_section {
29751f69
AW
817 /*
818 * This is, logically, a pointer to an array of struct
819 * pages. However, it is stored with some other magic.
820 * (see sparse.c::sparse_init_one_section())
821 *
30c253e6
AW
822 * Additionally during early boot we encode node id of
823 * the location of the section here to guide allocation.
824 * (see sparse.c::memory_present())
825 *
29751f69
AW
826 * Making it a UL at least makes someone do a cast
827 * before using it wrong.
828 */
829 unsigned long section_mem_map;
5c0e3066
MG
830
831 /* See declaration of similar field in struct zone */
832 unsigned long *pageblock_flags;
d41dee36
AW
833};
834
3e347261
BP
835#ifdef CONFIG_SPARSEMEM_EXTREME
836#define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
837#else
838#define SECTIONS_PER_ROOT 1
839#endif
802f192e 840
3e347261
BP
841#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
842#define NR_SECTION_ROOTS (NR_MEM_SECTIONS / SECTIONS_PER_ROOT)
843#define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
802f192e 844
3e347261
BP
845#ifdef CONFIG_SPARSEMEM_EXTREME
846extern struct mem_section *mem_section[NR_SECTION_ROOTS];
802f192e 847#else
3e347261
BP
848extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
849#endif
d41dee36 850
29751f69
AW
851static inline struct mem_section *__nr_to_section(unsigned long nr)
852{
3e347261
BP
853 if (!mem_section[SECTION_NR_TO_ROOT(nr)])
854 return NULL;
855 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
29751f69 856}
4ca644d9 857extern int __section_nr(struct mem_section* ms);
29751f69
AW
858
859/*
860 * We use the lower bits of the mem_map pointer to store
861 * a little bit of information. There should be at least
862 * 3 bits here due to 32-bit alignment.
863 */
864#define SECTION_MARKED_PRESENT (1UL<<0)
865#define SECTION_HAS_MEM_MAP (1UL<<1)
866#define SECTION_MAP_LAST_BIT (1UL<<2)
867#define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
30c253e6 868#define SECTION_NID_SHIFT 2
29751f69
AW
869
870static inline struct page *__section_mem_map_addr(struct mem_section *section)
871{
872 unsigned long map = section->section_mem_map;
873 map &= SECTION_MAP_MASK;
874 return (struct page *)map;
875}
876
540557b9 877static inline int present_section(struct mem_section *section)
29751f69 878{
802f192e 879 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
29751f69
AW
880}
881
540557b9
AW
882static inline int present_section_nr(unsigned long nr)
883{
884 return present_section(__nr_to_section(nr));
885}
886
887static inline int valid_section(struct mem_section *section)
29751f69 888{
802f192e 889 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
29751f69
AW
890}
891
892static inline int valid_section_nr(unsigned long nr)
893{
894 return valid_section(__nr_to_section(nr));
895}
896
d41dee36
AW
897static inline struct mem_section *__pfn_to_section(unsigned long pfn)
898{
29751f69 899 return __nr_to_section(pfn_to_section_nr(pfn));
d41dee36
AW
900}
901
d41dee36
AW
902static inline int pfn_valid(unsigned long pfn)
903{
904 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
905 return 0;
29751f69 906 return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
d41dee36
AW
907}
908
540557b9
AW
909static inline int pfn_present(unsigned long pfn)
910{
911 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
912 return 0;
913 return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
914}
915
d41dee36
AW
916/*
917 * These are _only_ used during initialisation, therefore they
918 * can use __initdata ... They could have names to indicate
919 * this restriction.
920 */
921#ifdef CONFIG_NUMA
161599ff
AW
922#define pfn_to_nid(pfn) \
923({ \
924 unsigned long __pfn_to_nid_pfn = (pfn); \
925 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \
926})
2bdaf115
AW
927#else
928#define pfn_to_nid(pfn) (0)
d41dee36
AW
929#endif
930
d41dee36
AW
931#define early_pfn_valid(pfn) pfn_valid(pfn)
932void sparse_init(void);
933#else
934#define sparse_init() do {} while (0)
28ae55c9 935#define sparse_index_init(_sec, _nid) do {} while (0)
d41dee36
AW
936#endif /* CONFIG_SPARSEMEM */
937
75167957
AW
938#ifdef CONFIG_NODES_SPAN_OTHER_NODES
939#define early_pfn_in_nid(pfn, nid) (early_pfn_to_nid(pfn) == (nid))
940#else
941#define early_pfn_in_nid(pfn, nid) (1)
942#endif
943
d41dee36
AW
944#ifndef early_pfn_valid
945#define early_pfn_valid(pfn) (1)
946#endif
947
948void memory_present(int nid, unsigned long start, unsigned long end);
949unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
950
14e07298
AW
951/*
952 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
953 * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
954 * pfn_valid_within() should be used in this case; we optimise this away
955 * when we have no holes within a MAX_ORDER_NR_PAGES block.
956 */
957#ifdef CONFIG_HOLES_IN_ZONE
958#define pfn_valid_within(pfn) pfn_valid(pfn)
959#else
960#define pfn_valid_within(pfn) (1)
961#endif
962
1da177e4
LT
963#endif /* !__ASSEMBLY__ */
964#endif /* __KERNEL__ */
965#endif /* _LINUX_MMZONE_H */