[PATCH] ppc64: Kconfig memory models
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / include / linux / mmzone.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_MMZONE_H
2#define _LINUX_MMZONE_H
3
4#ifdef __KERNEL__
5#ifndef __ASSEMBLY__
6
7#include <linux/config.h>
8#include <linux/spinlock.h>
9#include <linux/list.h>
10#include <linux/wait.h>
11#include <linux/cache.h>
12#include <linux/threads.h>
13#include <linux/numa.h>
14#include <linux/init.h>
15#include <asm/atomic.h>
16
17/* Free memory management - zoned buddy allocator. */
18#ifndef CONFIG_FORCE_MAX_ZONEORDER
19#define MAX_ORDER 11
20#else
21#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
22#endif
23
24struct free_area {
25 struct list_head free_list;
26 unsigned long nr_free;
27};
28
29struct pglist_data;
30
31/*
32 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
33 * So add a wild amount of padding here to ensure that they fall into separate
34 * cachelines. There are very few zone structures in the machine, so space
35 * consumption is not a concern here.
36 */
37#if defined(CONFIG_SMP)
38struct zone_padding {
39 char x[0];
40} ____cacheline_maxaligned_in_smp;
41#define ZONE_PADDING(name) struct zone_padding name;
42#else
43#define ZONE_PADDING(name)
44#endif
45
46struct per_cpu_pages {
47 int count; /* number of pages in the list */
48 int low; /* low watermark, refill needed */
49 int high; /* high watermark, emptying needed */
50 int batch; /* chunk size for buddy add/remove */
51 struct list_head list; /* the list of pages */
52};
53
54struct per_cpu_pageset {
55 struct per_cpu_pages pcp[2]; /* 0: hot. 1: cold */
56#ifdef CONFIG_NUMA
57 unsigned long numa_hit; /* allocated in intended node */
58 unsigned long numa_miss; /* allocated in non intended node */
59 unsigned long numa_foreign; /* was intended here, hit elsewhere */
60 unsigned long interleave_hit; /* interleaver prefered this zone */
61 unsigned long local_node; /* allocation from local node */
62 unsigned long other_node; /* allocation from other node */
63#endif
64} ____cacheline_aligned_in_smp;
65
e7c8d5c9
CL
66#ifdef CONFIG_NUMA
67#define zone_pcp(__z, __cpu) ((__z)->pageset[(__cpu)])
68#else
69#define zone_pcp(__z, __cpu) (&(__z)->pageset[(__cpu)])
70#endif
71
1da177e4
LT
72#define ZONE_DMA 0
73#define ZONE_NORMAL 1
74#define ZONE_HIGHMEM 2
75
76#define MAX_NR_ZONES 3 /* Sync this with ZONES_SHIFT */
77#define ZONES_SHIFT 2 /* ceil(log2(MAX_NR_ZONES)) */
78
79
80/*
81 * When a memory allocation must conform to specific limitations (such
82 * as being suitable for DMA) the caller will pass in hints to the
83 * allocator in the gfp_mask, in the zone modifier bits. These bits
84 * are used to select a priority ordered list of memory zones which
85 * match the requested limits. GFP_ZONEMASK defines which bits within
86 * the gfp_mask should be considered as zone modifiers. Each valid
87 * combination of the zone modifier bits has a corresponding list
88 * of zones (in node_zonelists). Thus for two zone modifiers there
89 * will be a maximum of 4 (2 ** 2) zonelists, for 3 modifiers there will
90 * be 8 (2 ** 3) zonelists. GFP_ZONETYPES defines the number of possible
91 * combinations of zone modifiers in "zone modifier space".
92 */
93#define GFP_ZONEMASK 0x03
94/*
95 * As an optimisation any zone modifier bits which are only valid when
96 * no other zone modifier bits are set (loners) should be placed in
97 * the highest order bits of this field. This allows us to reduce the
98 * extent of the zonelists thus saving space. For example in the case
99 * of three zone modifier bits, we could require up to eight zonelists.
100 * If the left most zone modifier is a "loner" then the highest valid
101 * zonelist would be four allowing us to allocate only five zonelists.
102 * Use the first form when the left most bit is not a "loner", otherwise
103 * use the second.
104 */
105/* #define GFP_ZONETYPES (GFP_ZONEMASK + 1) */ /* Non-loner */
106#define GFP_ZONETYPES ((GFP_ZONEMASK + 1) / 2 + 1) /* Loner */
107
108/*
109 * On machines where it is needed (eg PCs) we divide physical memory
110 * into multiple physical zones. On a PC we have 3 zones:
111 *
112 * ZONE_DMA < 16 MB ISA DMA capable memory
113 * ZONE_NORMAL 16-896 MB direct mapped by the kernel
114 * ZONE_HIGHMEM > 896 MB only page cache and user processes
115 */
116
117struct zone {
118 /* Fields commonly accessed by the page allocator */
119 unsigned long free_pages;
120 unsigned long pages_min, pages_low, pages_high;
121 /*
122 * We don't know if the memory that we're going to allocate will be freeable
123 * or/and it will be released eventually, so to avoid totally wasting several
124 * GB of ram we must reserve some of the lower zone memory (otherwise we risk
125 * to run OOM on the lower zones despite there's tons of freeable ram
126 * on the higher zones). This array is recalculated at runtime if the
127 * sysctl_lowmem_reserve_ratio sysctl changes.
128 */
129 unsigned long lowmem_reserve[MAX_NR_ZONES];
130
e7c8d5c9
CL
131#ifdef CONFIG_NUMA
132 struct per_cpu_pageset *pageset[NR_CPUS];
133#else
1da177e4 134 struct per_cpu_pageset pageset[NR_CPUS];
e7c8d5c9 135#endif
1da177e4
LT
136 /*
137 * free areas of different sizes
138 */
139 spinlock_t lock;
140 struct free_area free_area[MAX_ORDER];
141
142
143 ZONE_PADDING(_pad1_)
144
145 /* Fields commonly accessed by the page reclaim scanner */
146 spinlock_t lru_lock;
147 struct list_head active_list;
148 struct list_head inactive_list;
149 unsigned long nr_scan_active;
150 unsigned long nr_scan_inactive;
151 unsigned long nr_active;
152 unsigned long nr_inactive;
153 unsigned long pages_scanned; /* since last reclaim */
154 int all_unreclaimable; /* All pages pinned */
155
753ee728
MH
156 /*
157 * Does the allocator try to reclaim pages from the zone as soon
158 * as it fails a watermark_ok() in __alloc_pages?
159 */
160 int reclaim_pages;
1e7e5a90
MH
161 /* A count of how many reclaimers are scanning this zone */
162 atomic_t reclaim_in_progress;
753ee728 163
1da177e4
LT
164 /*
165 * prev_priority holds the scanning priority for this zone. It is
166 * defined as the scanning priority at which we achieved our reclaim
167 * target at the previous try_to_free_pages() or balance_pgdat()
168 * invokation.
169 *
170 * We use prev_priority as a measure of how much stress page reclaim is
171 * under - it drives the swappiness decision: whether to unmap mapped
172 * pages.
173 *
174 * temp_priority is used to remember the scanning priority at which
175 * this zone was successfully refilled to free_pages == pages_high.
176 *
177 * Access to both these fields is quite racy even on uniprocessor. But
178 * it is expected to average out OK.
179 */
180 int temp_priority;
181 int prev_priority;
182
183
184 ZONE_PADDING(_pad2_)
185 /* Rarely used or read-mostly fields */
186
187 /*
188 * wait_table -- the array holding the hash table
189 * wait_table_size -- the size of the hash table array
190 * wait_table_bits -- wait_table_size == (1 << wait_table_bits)
191 *
192 * The purpose of all these is to keep track of the people
193 * waiting for a page to become available and make them
194 * runnable again when possible. The trouble is that this
195 * consumes a lot of space, especially when so few things
196 * wait on pages at a given time. So instead of using
197 * per-page waitqueues, we use a waitqueue hash table.
198 *
199 * The bucket discipline is to sleep on the same queue when
200 * colliding and wake all in that wait queue when removing.
201 * When something wakes, it must check to be sure its page is
202 * truly available, a la thundering herd. The cost of a
203 * collision is great, but given the expected load of the
204 * table, they should be so rare as to be outweighed by the
205 * benefits from the saved space.
206 *
207 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
208 * primary users of these fields, and in mm/page_alloc.c
209 * free_area_init_core() performs the initialization of them.
210 */
211 wait_queue_head_t * wait_table;
212 unsigned long wait_table_size;
213 unsigned long wait_table_bits;
214
215 /*
216 * Discontig memory support fields.
217 */
218 struct pglist_data *zone_pgdat;
219 struct page *zone_mem_map;
220 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
221 unsigned long zone_start_pfn;
222
223 unsigned long spanned_pages; /* total size, including holes */
224 unsigned long present_pages; /* amount of memory (excluding holes) */
225
226 /*
227 * rarely used fields:
228 */
229 char *name;
230} ____cacheline_maxaligned_in_smp;
231
232
233/*
234 * The "priority" of VM scanning is how much of the queues we will scan in one
235 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
236 * queues ("queue_length >> 12") during an aging round.
237 */
238#define DEF_PRIORITY 12
239
240/*
241 * One allocation request operates on a zonelist. A zonelist
242 * is a list of zones, the first one is the 'goal' of the
243 * allocation, the other zones are fallback zones, in decreasing
244 * priority.
245 *
246 * Right now a zonelist takes up less than a cacheline. We never
247 * modify it apart from boot-up, and only a few indices are used,
248 * so despite the zonelist table being relatively big, the cache
249 * footprint of this construct is very small.
250 */
251struct zonelist {
252 struct zone *zones[MAX_NUMNODES * MAX_NR_ZONES + 1]; // NULL delimited
253};
254
255
256/*
257 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
258 * (mostly NUMA machines?) to denote a higher-level memory zone than the
259 * zone denotes.
260 *
261 * On NUMA machines, each NUMA node would have a pg_data_t to describe
262 * it's memory layout.
263 *
264 * Memory statistics and page replacement data structures are maintained on a
265 * per-zone basis.
266 */
267struct bootmem_data;
268typedef struct pglist_data {
269 struct zone node_zones[MAX_NR_ZONES];
270 struct zonelist node_zonelists[GFP_ZONETYPES];
271 int nr_zones;
272 struct page *node_mem_map;
273 struct bootmem_data *bdata;
274 unsigned long node_start_pfn;
275 unsigned long node_present_pages; /* total number of physical pages */
276 unsigned long node_spanned_pages; /* total size of physical page
277 range, including holes */
278 int node_id;
279 struct pglist_data *pgdat_next;
280 wait_queue_head_t kswapd_wait;
281 struct task_struct *kswapd;
282 int kswapd_max_order;
283} pg_data_t;
284
285#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
286#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
408fde81
DH
287#define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
288#define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
1da177e4
LT
289
290extern struct pglist_data *pgdat_list;
291
292void __get_zone_counts(unsigned long *active, unsigned long *inactive,
293 unsigned long *free, struct pglist_data *pgdat);
294void get_zone_counts(unsigned long *active, unsigned long *inactive,
295 unsigned long *free);
296void build_all_zonelists(void);
297void wakeup_kswapd(struct zone *zone, int order);
298int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
299 int alloc_type, int can_try_harder, int gfp_high);
300
301#ifdef CONFIG_HAVE_MEMORY_PRESENT
302void memory_present(int nid, unsigned long start, unsigned long end);
303#else
304static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
305#endif
306
307#ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
308unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
309#endif
310
311/*
312 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
313 */
314#define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
315
316/**
317 * for_each_pgdat - helper macro to iterate over all nodes
318 * @pgdat - pointer to a pg_data_t variable
319 *
320 * Meant to help with common loops of the form
321 * pgdat = pgdat_list;
322 * while(pgdat) {
323 * ...
324 * pgdat = pgdat->pgdat_next;
325 * }
326 */
327#define for_each_pgdat(pgdat) \
328 for (pgdat = pgdat_list; pgdat; pgdat = pgdat->pgdat_next)
329
330/*
331 * next_zone - helper magic for for_each_zone()
332 * Thanks to William Lee Irwin III for this piece of ingenuity.
333 */
334static inline struct zone *next_zone(struct zone *zone)
335{
336 pg_data_t *pgdat = zone->zone_pgdat;
337
338 if (zone < pgdat->node_zones + MAX_NR_ZONES - 1)
339 zone++;
340 else if (pgdat->pgdat_next) {
341 pgdat = pgdat->pgdat_next;
342 zone = pgdat->node_zones;
343 } else
344 zone = NULL;
345
346 return zone;
347}
348
349/**
350 * for_each_zone - helper macro to iterate over all memory zones
351 * @zone - pointer to struct zone variable
352 *
353 * The user only needs to declare the zone variable, for_each_zone
354 * fills it in. This basically means for_each_zone() is an
355 * easier to read version of this piece of code:
356 *
357 * for (pgdat = pgdat_list; pgdat; pgdat = pgdat->node_next)
358 * for (i = 0; i < MAX_NR_ZONES; ++i) {
359 * struct zone * z = pgdat->node_zones + i;
360 * ...
361 * }
362 * }
363 */
364#define for_each_zone(zone) \
365 for (zone = pgdat_list->node_zones; zone; zone = next_zone(zone))
366
367static inline int is_highmem_idx(int idx)
368{
369 return (idx == ZONE_HIGHMEM);
370}
371
372static inline int is_normal_idx(int idx)
373{
374 return (idx == ZONE_NORMAL);
375}
376/**
377 * is_highmem - helper function to quickly check if a struct zone is a
378 * highmem zone or not. This is an attempt to keep references
379 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
380 * @zone - pointer to struct zone variable
381 */
382static inline int is_highmem(struct zone *zone)
383{
384 return zone == zone->zone_pgdat->node_zones + ZONE_HIGHMEM;
385}
386
387static inline int is_normal(struct zone *zone)
388{
389 return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
390}
391
392/* These two functions are used to setup the per zone pages min values */
393struct ctl_table;
394struct file;
395int min_free_kbytes_sysctl_handler(struct ctl_table *, int, struct file *,
396 void __user *, size_t *, loff_t *);
397extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
398int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, struct file *,
399 void __user *, size_t *, loff_t *);
400
401#include <linux/topology.h>
402/* Returns the number of the current Node. */
39c715b7 403#define numa_node_id() (cpu_to_node(raw_smp_processor_id()))
1da177e4 404
93b7504e 405#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
406
407extern struct pglist_data contig_page_data;
408#define NODE_DATA(nid) (&contig_page_data)
409#define NODE_MEM_MAP(nid) mem_map
410#define MAX_NODES_SHIFT 1
411#define pfn_to_nid(pfn) (0)
412
93b7504e 413#else /* CONFIG_NEED_MULTIPLE_NODES */
1da177e4
LT
414
415#include <asm/mmzone.h>
416
93b7504e 417#endif /* !CONFIG_NEED_MULTIPLE_NODES */
348f8b6c 418
1da177e4
LT
419#if BITS_PER_LONG == 32 || defined(ARCH_HAS_ATOMIC_UNSIGNED)
420/*
421 * with 32 bit page->flags field, we reserve 8 bits for node/zone info.
422 * there are 3 zones (2 bits) and this leaves 8-2=6 bits for nodes.
423 */
348f8b6c
DH
424#define FLAGS_RESERVED 8
425
1da177e4
LT
426#elif BITS_PER_LONG == 64
427/*
428 * with 64 bit flags field, there's plenty of room.
429 */
348f8b6c 430#define FLAGS_RESERVED 32
1da177e4 431
348f8b6c 432#else
1da177e4 433
348f8b6c 434#error BITS_PER_LONG not defined
1da177e4 435
1da177e4
LT
436#endif
437
438#endif /* !__ASSEMBLY__ */
439#endif /* __KERNEL__ */
440#endif /* _LINUX_MMZONE_H */