[PATCH] Shut up warnings in ipc/shm.c
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / include / linux / mmzone.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_MMZONE_H
2#define _LINUX_MMZONE_H
3
4#ifdef __KERNEL__
5#ifndef __ASSEMBLY__
6
7#include <linux/config.h>
8#include <linux/spinlock.h>
9#include <linux/list.h>
10#include <linux/wait.h>
11#include <linux/cache.h>
12#include <linux/threads.h>
13#include <linux/numa.h>
14#include <linux/init.h>
bdc8cb98 15#include <linux/seqlock.h>
1da177e4
LT
16#include <asm/atomic.h>
17
18/* Free memory management - zoned buddy allocator. */
19#ifndef CONFIG_FORCE_MAX_ZONEORDER
20#define MAX_ORDER 11
21#else
22#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
23#endif
24
25struct free_area {
26 struct list_head free_list;
27 unsigned long nr_free;
28};
29
30struct pglist_data;
31
32/*
33 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
34 * So add a wild amount of padding here to ensure that they fall into separate
35 * cachelines. There are very few zone structures in the machine, so space
36 * consumption is not a concern here.
37 */
38#if defined(CONFIG_SMP)
39struct zone_padding {
40 char x[0];
41} ____cacheline_maxaligned_in_smp;
42#define ZONE_PADDING(name) struct zone_padding name;
43#else
44#define ZONE_PADDING(name)
45#endif
46
47struct per_cpu_pages {
48 int count; /* number of pages in the list */
49 int low; /* low watermark, refill needed */
50 int high; /* high watermark, emptying needed */
51 int batch; /* chunk size for buddy add/remove */
52 struct list_head list; /* the list of pages */
53};
54
55struct per_cpu_pageset {
56 struct per_cpu_pages pcp[2]; /* 0: hot. 1: cold */
57#ifdef CONFIG_NUMA
58 unsigned long numa_hit; /* allocated in intended node */
59 unsigned long numa_miss; /* allocated in non intended node */
60 unsigned long numa_foreign; /* was intended here, hit elsewhere */
61 unsigned long interleave_hit; /* interleaver prefered this zone */
62 unsigned long local_node; /* allocation from local node */
63 unsigned long other_node; /* allocation from other node */
64#endif
65} ____cacheline_aligned_in_smp;
66
e7c8d5c9
CL
67#ifdef CONFIG_NUMA
68#define zone_pcp(__z, __cpu) ((__z)->pageset[(__cpu)])
69#else
70#define zone_pcp(__z, __cpu) (&(__z)->pageset[(__cpu)])
71#endif
72
1da177e4 73#define ZONE_DMA 0
a2f1b424
AK
74#define ZONE_DMA32 1
75#define ZONE_NORMAL 2
76#define ZONE_HIGHMEM 3
1da177e4 77
a2f1b424 78#define MAX_NR_ZONES 4 /* Sync this with ZONES_SHIFT */
1da177e4
LT
79#define ZONES_SHIFT 2 /* ceil(log2(MAX_NR_ZONES)) */
80
81
82/*
83 * When a memory allocation must conform to specific limitations (such
84 * as being suitable for DMA) the caller will pass in hints to the
85 * allocator in the gfp_mask, in the zone modifier bits. These bits
86 * are used to select a priority ordered list of memory zones which
87 * match the requested limits. GFP_ZONEMASK defines which bits within
88 * the gfp_mask should be considered as zone modifiers. Each valid
89 * combination of the zone modifier bits has a corresponding list
90 * of zones (in node_zonelists). Thus for two zone modifiers there
91 * will be a maximum of 4 (2 ** 2) zonelists, for 3 modifiers there will
92 * be 8 (2 ** 3) zonelists. GFP_ZONETYPES defines the number of possible
93 * combinations of zone modifiers in "zone modifier space".
ac3461ad
LT
94 *
95 * NOTE! Make sure this matches the zones in <linux/gfp.h>
1da177e4 96 */
ac3461ad
LT
97#define GFP_ZONEMASK 0x07
98#define GFP_ZONETYPES 5
1da177e4
LT
99
100/*
101 * On machines where it is needed (eg PCs) we divide physical memory
a2f1b424 102 * into multiple physical zones. On a PC we have 4 zones:
1da177e4
LT
103 *
104 * ZONE_DMA < 16 MB ISA DMA capable memory
a2f1b424 105 * ZONE_DMA32 0 MB Empty
1da177e4
LT
106 * ZONE_NORMAL 16-896 MB direct mapped by the kernel
107 * ZONE_HIGHMEM > 896 MB only page cache and user processes
108 */
109
110struct zone {
111 /* Fields commonly accessed by the page allocator */
112 unsigned long free_pages;
113 unsigned long pages_min, pages_low, pages_high;
114 /*
115 * We don't know if the memory that we're going to allocate will be freeable
116 * or/and it will be released eventually, so to avoid totally wasting several
117 * GB of ram we must reserve some of the lower zone memory (otherwise we risk
118 * to run OOM on the lower zones despite there's tons of freeable ram
119 * on the higher zones). This array is recalculated at runtime if the
120 * sysctl_lowmem_reserve_ratio sysctl changes.
121 */
122 unsigned long lowmem_reserve[MAX_NR_ZONES];
123
e7c8d5c9
CL
124#ifdef CONFIG_NUMA
125 struct per_cpu_pageset *pageset[NR_CPUS];
126#else
1da177e4 127 struct per_cpu_pageset pageset[NR_CPUS];
e7c8d5c9 128#endif
1da177e4
LT
129 /*
130 * free areas of different sizes
131 */
132 spinlock_t lock;
bdc8cb98
DH
133#ifdef CONFIG_MEMORY_HOTPLUG
134 /* see spanned/present_pages for more description */
135 seqlock_t span_seqlock;
136#endif
1da177e4
LT
137 struct free_area free_area[MAX_ORDER];
138
139
140 ZONE_PADDING(_pad1_)
141
142 /* Fields commonly accessed by the page reclaim scanner */
143 spinlock_t lru_lock;
144 struct list_head active_list;
145 struct list_head inactive_list;
146 unsigned long nr_scan_active;
147 unsigned long nr_scan_inactive;
148 unsigned long nr_active;
149 unsigned long nr_inactive;
150 unsigned long pages_scanned; /* since last reclaim */
151 int all_unreclaimable; /* All pages pinned */
152
753ee728
MH
153 /*
154 * Does the allocator try to reclaim pages from the zone as soon
155 * as it fails a watermark_ok() in __alloc_pages?
156 */
157 int reclaim_pages;
1e7e5a90
MH
158 /* A count of how many reclaimers are scanning this zone */
159 atomic_t reclaim_in_progress;
753ee728 160
1da177e4
LT
161 /*
162 * prev_priority holds the scanning priority for this zone. It is
163 * defined as the scanning priority at which we achieved our reclaim
164 * target at the previous try_to_free_pages() or balance_pgdat()
165 * invokation.
166 *
167 * We use prev_priority as a measure of how much stress page reclaim is
168 * under - it drives the swappiness decision: whether to unmap mapped
169 * pages.
170 *
171 * temp_priority is used to remember the scanning priority at which
172 * this zone was successfully refilled to free_pages == pages_high.
173 *
174 * Access to both these fields is quite racy even on uniprocessor. But
175 * it is expected to average out OK.
176 */
177 int temp_priority;
178 int prev_priority;
179
180
181 ZONE_PADDING(_pad2_)
182 /* Rarely used or read-mostly fields */
183
184 /*
185 * wait_table -- the array holding the hash table
186 * wait_table_size -- the size of the hash table array
187 * wait_table_bits -- wait_table_size == (1 << wait_table_bits)
188 *
189 * The purpose of all these is to keep track of the people
190 * waiting for a page to become available and make them
191 * runnable again when possible. The trouble is that this
192 * consumes a lot of space, especially when so few things
193 * wait on pages at a given time. So instead of using
194 * per-page waitqueues, we use a waitqueue hash table.
195 *
196 * The bucket discipline is to sleep on the same queue when
197 * colliding and wake all in that wait queue when removing.
198 * When something wakes, it must check to be sure its page is
199 * truly available, a la thundering herd. The cost of a
200 * collision is great, but given the expected load of the
201 * table, they should be so rare as to be outweighed by the
202 * benefits from the saved space.
203 *
204 * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
205 * primary users of these fields, and in mm/page_alloc.c
206 * free_area_init_core() performs the initialization of them.
207 */
208 wait_queue_head_t * wait_table;
209 unsigned long wait_table_size;
210 unsigned long wait_table_bits;
211
212 /*
213 * Discontig memory support fields.
214 */
215 struct pglist_data *zone_pgdat;
216 struct page *zone_mem_map;
217 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
218 unsigned long zone_start_pfn;
219
bdc8cb98
DH
220 /*
221 * zone_start_pfn, spanned_pages and present_pages are all
222 * protected by span_seqlock. It is a seqlock because it has
223 * to be read outside of zone->lock, and it is done in the main
224 * allocator path. But, it is written quite infrequently.
225 *
226 * The lock is declared along with zone->lock because it is
227 * frequently read in proximity to zone->lock. It's good to
228 * give them a chance of being in the same cacheline.
229 */
1da177e4
LT
230 unsigned long spanned_pages; /* total size, including holes */
231 unsigned long present_pages; /* amount of memory (excluding holes) */
232
233 /*
234 * rarely used fields:
235 */
236 char *name;
237} ____cacheline_maxaligned_in_smp;
238
239
240/*
241 * The "priority" of VM scanning is how much of the queues we will scan in one
242 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
243 * queues ("queue_length >> 12") during an aging round.
244 */
245#define DEF_PRIORITY 12
246
247/*
248 * One allocation request operates on a zonelist. A zonelist
249 * is a list of zones, the first one is the 'goal' of the
250 * allocation, the other zones are fallback zones, in decreasing
251 * priority.
252 *
253 * Right now a zonelist takes up less than a cacheline. We never
254 * modify it apart from boot-up, and only a few indices are used,
255 * so despite the zonelist table being relatively big, the cache
256 * footprint of this construct is very small.
257 */
258struct zonelist {
259 struct zone *zones[MAX_NUMNODES * MAX_NR_ZONES + 1]; // NULL delimited
260};
261
262
263/*
264 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
265 * (mostly NUMA machines?) to denote a higher-level memory zone than the
266 * zone denotes.
267 *
268 * On NUMA machines, each NUMA node would have a pg_data_t to describe
269 * it's memory layout.
270 *
271 * Memory statistics and page replacement data structures are maintained on a
272 * per-zone basis.
273 */
274struct bootmem_data;
275typedef struct pglist_data {
276 struct zone node_zones[MAX_NR_ZONES];
277 struct zonelist node_zonelists[GFP_ZONETYPES];
278 int nr_zones;
d41dee36 279#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4 280 struct page *node_mem_map;
d41dee36 281#endif
1da177e4 282 struct bootmem_data *bdata;
208d54e5
DH
283#ifdef CONFIG_MEMORY_HOTPLUG
284 /*
285 * Must be held any time you expect node_start_pfn, node_present_pages
286 * or node_spanned_pages stay constant. Holding this will also
287 * guarantee that any pfn_valid() stays that way.
288 *
289 * Nests above zone->lock and zone->size_seqlock.
290 */
291 spinlock_t node_size_lock;
292#endif
1da177e4
LT
293 unsigned long node_start_pfn;
294 unsigned long node_present_pages; /* total number of physical pages */
295 unsigned long node_spanned_pages; /* total size of physical page
296 range, including holes */
297 int node_id;
298 struct pglist_data *pgdat_next;
299 wait_queue_head_t kswapd_wait;
300 struct task_struct *kswapd;
301 int kswapd_max_order;
302} pg_data_t;
303
304#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
305#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
d41dee36 306#ifdef CONFIG_FLAT_NODE_MEM_MAP
408fde81 307#define pgdat_page_nr(pgdat, pagenr) ((pgdat)->node_mem_map + (pagenr))
d41dee36
AW
308#else
309#define pgdat_page_nr(pgdat, pagenr) pfn_to_page((pgdat)->node_start_pfn + (pagenr))
310#endif
408fde81 311#define nid_page_nr(nid, pagenr) pgdat_page_nr(NODE_DATA(nid),(pagenr))
1da177e4 312
208d54e5
DH
313#include <linux/memory_hotplug.h>
314
1da177e4
LT
315extern struct pglist_data *pgdat_list;
316
317void __get_zone_counts(unsigned long *active, unsigned long *inactive,
318 unsigned long *free, struct pglist_data *pgdat);
319void get_zone_counts(unsigned long *active, unsigned long *inactive,
320 unsigned long *free);
321void build_all_zonelists(void);
322void wakeup_kswapd(struct zone *zone, int order);
323int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
7fb1d9fc 324 int classzone_idx, int alloc_flags);
1da177e4
LT
325
326#ifdef CONFIG_HAVE_MEMORY_PRESENT
327void memory_present(int nid, unsigned long start, unsigned long end);
328#else
329static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
330#endif
331
332#ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
333unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
334#endif
335
336/*
337 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
338 */
339#define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones)
340
341/**
342 * for_each_pgdat - helper macro to iterate over all nodes
343 * @pgdat - pointer to a pg_data_t variable
344 *
345 * Meant to help with common loops of the form
346 * pgdat = pgdat_list;
347 * while(pgdat) {
348 * ...
349 * pgdat = pgdat->pgdat_next;
350 * }
351 */
352#define for_each_pgdat(pgdat) \
353 for (pgdat = pgdat_list; pgdat; pgdat = pgdat->pgdat_next)
354
355/*
356 * next_zone - helper magic for for_each_zone()
357 * Thanks to William Lee Irwin III for this piece of ingenuity.
358 */
359static inline struct zone *next_zone(struct zone *zone)
360{
361 pg_data_t *pgdat = zone->zone_pgdat;
362
363 if (zone < pgdat->node_zones + MAX_NR_ZONES - 1)
364 zone++;
365 else if (pgdat->pgdat_next) {
366 pgdat = pgdat->pgdat_next;
367 zone = pgdat->node_zones;
368 } else
369 zone = NULL;
370
371 return zone;
372}
373
374/**
375 * for_each_zone - helper macro to iterate over all memory zones
376 * @zone - pointer to struct zone variable
377 *
378 * The user only needs to declare the zone variable, for_each_zone
379 * fills it in. This basically means for_each_zone() is an
380 * easier to read version of this piece of code:
381 *
382 * for (pgdat = pgdat_list; pgdat; pgdat = pgdat->node_next)
383 * for (i = 0; i < MAX_NR_ZONES; ++i) {
384 * struct zone * z = pgdat->node_zones + i;
385 * ...
386 * }
387 * }
388 */
389#define for_each_zone(zone) \
390 for (zone = pgdat_list->node_zones; zone; zone = next_zone(zone))
391
392static inline int is_highmem_idx(int idx)
393{
394 return (idx == ZONE_HIGHMEM);
395}
396
397static inline int is_normal_idx(int idx)
398{
399 return (idx == ZONE_NORMAL);
400}
401/**
402 * is_highmem - helper function to quickly check if a struct zone is a
403 * highmem zone or not. This is an attempt to keep references
404 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
405 * @zone - pointer to struct zone variable
406 */
407static inline int is_highmem(struct zone *zone)
408{
409 return zone == zone->zone_pgdat->node_zones + ZONE_HIGHMEM;
410}
411
412static inline int is_normal(struct zone *zone)
413{
414 return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
415}
416
417/* These two functions are used to setup the per zone pages min values */
418struct ctl_table;
419struct file;
420int min_free_kbytes_sysctl_handler(struct ctl_table *, int, struct file *,
421 void __user *, size_t *, loff_t *);
422extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
423int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, struct file *,
424 void __user *, size_t *, loff_t *);
425
426#include <linux/topology.h>
427/* Returns the number of the current Node. */
69d81fcd 428#ifndef numa_node_id
39c715b7 429#define numa_node_id() (cpu_to_node(raw_smp_processor_id()))
69d81fcd 430#endif
1da177e4 431
93b7504e 432#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
433
434extern struct pglist_data contig_page_data;
435#define NODE_DATA(nid) (&contig_page_data)
436#define NODE_MEM_MAP(nid) mem_map
437#define MAX_NODES_SHIFT 1
438#define pfn_to_nid(pfn) (0)
439
93b7504e 440#else /* CONFIG_NEED_MULTIPLE_NODES */
1da177e4
LT
441
442#include <asm/mmzone.h>
443
93b7504e 444#endif /* !CONFIG_NEED_MULTIPLE_NODES */
348f8b6c 445
d41dee36
AW
446#ifdef CONFIG_SPARSEMEM
447#include <asm/sparsemem.h>
448#endif
449
07808b74 450#if BITS_PER_LONG == 32
1da177e4 451/*
a2f1b424
AK
452 * with 32 bit page->flags field, we reserve 9 bits for node/zone info.
453 * there are 4 zones (3 bits) and this leaves 9-3=6 bits for nodes.
1da177e4 454 */
a2f1b424 455#define FLAGS_RESERVED 9
348f8b6c 456
1da177e4
LT
457#elif BITS_PER_LONG == 64
458/*
459 * with 64 bit flags field, there's plenty of room.
460 */
348f8b6c 461#define FLAGS_RESERVED 32
1da177e4 462
348f8b6c 463#else
1da177e4 464
348f8b6c 465#error BITS_PER_LONG not defined
1da177e4 466
1da177e4
LT
467#endif
468
b159d43f
AW
469#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
470#define early_pfn_to_nid(nid) (0UL)
471#endif
472
d41dee36
AW
473#define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
474#define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
475
476#ifdef CONFIG_SPARSEMEM
477
478/*
479 * SECTION_SHIFT #bits space required to store a section #
480 *
481 * PA_SECTION_SHIFT physical address to/from section number
482 * PFN_SECTION_SHIFT pfn to/from section number
483 */
484#define SECTIONS_SHIFT (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)
485
486#define PA_SECTION_SHIFT (SECTION_SIZE_BITS)
487#define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT)
488
489#define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT)
490
491#define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT)
492#define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1))
493
494#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
495#error Allocator MAX_ORDER exceeds SECTION_SIZE
496#endif
497
498struct page;
499struct mem_section {
29751f69
AW
500 /*
501 * This is, logically, a pointer to an array of struct
502 * pages. However, it is stored with some other magic.
503 * (see sparse.c::sparse_init_one_section())
504 *
505 * Making it a UL at least makes someone do a cast
506 * before using it wrong.
507 */
508 unsigned long section_mem_map;
d41dee36
AW
509};
510
3e347261
BP
511#ifdef CONFIG_SPARSEMEM_EXTREME
512#define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section))
513#else
514#define SECTIONS_PER_ROOT 1
515#endif
802f192e 516
3e347261
BP
517#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
518#define NR_SECTION_ROOTS (NR_MEM_SECTIONS / SECTIONS_PER_ROOT)
519#define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1)
802f192e 520
3e347261
BP
521#ifdef CONFIG_SPARSEMEM_EXTREME
522extern struct mem_section *mem_section[NR_SECTION_ROOTS];
802f192e 523#else
3e347261
BP
524extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
525#endif
d41dee36 526
29751f69
AW
527static inline struct mem_section *__nr_to_section(unsigned long nr)
528{
3e347261
BP
529 if (!mem_section[SECTION_NR_TO_ROOT(nr)])
530 return NULL;
531 return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
29751f69 532}
4ca644d9 533extern int __section_nr(struct mem_section* ms);
29751f69
AW
534
535/*
536 * We use the lower bits of the mem_map pointer to store
537 * a little bit of information. There should be at least
538 * 3 bits here due to 32-bit alignment.
539 */
540#define SECTION_MARKED_PRESENT (1UL<<0)
541#define SECTION_HAS_MEM_MAP (1UL<<1)
542#define SECTION_MAP_LAST_BIT (1UL<<2)
543#define SECTION_MAP_MASK (~(SECTION_MAP_LAST_BIT-1))
544
545static inline struct page *__section_mem_map_addr(struct mem_section *section)
546{
547 unsigned long map = section->section_mem_map;
548 map &= SECTION_MAP_MASK;
549 return (struct page *)map;
550}
551
552static inline int valid_section(struct mem_section *section)
553{
802f192e 554 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
29751f69
AW
555}
556
557static inline int section_has_mem_map(struct mem_section *section)
558{
802f192e 559 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
29751f69
AW
560}
561
562static inline int valid_section_nr(unsigned long nr)
563{
564 return valid_section(__nr_to_section(nr));
565}
566
d41dee36
AW
567static inline struct mem_section *__pfn_to_section(unsigned long pfn)
568{
29751f69 569 return __nr_to_section(pfn_to_section_nr(pfn));
d41dee36
AW
570}
571
572#define pfn_to_page(pfn) \
573({ \
574 unsigned long __pfn = (pfn); \
29751f69 575 __section_mem_map_addr(__pfn_to_section(__pfn)) + __pfn; \
d41dee36
AW
576})
577#define page_to_pfn(page) \
578({ \
29751f69
AW
579 page - __section_mem_map_addr(__nr_to_section( \
580 page_to_section(page))); \
d41dee36
AW
581})
582
583static inline int pfn_valid(unsigned long pfn)
584{
585 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
586 return 0;
29751f69 587 return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
d41dee36
AW
588}
589
590/*
591 * These are _only_ used during initialisation, therefore they
592 * can use __initdata ... They could have names to indicate
593 * this restriction.
594 */
595#ifdef CONFIG_NUMA
596#define pfn_to_nid early_pfn_to_nid
597#endif
598
d41dee36
AW
599#define early_pfn_valid(pfn) pfn_valid(pfn)
600void sparse_init(void);
601#else
602#define sparse_init() do {} while (0)
28ae55c9 603#define sparse_index_init(_sec, _nid) do {} while (0)
d41dee36
AW
604#endif /* CONFIG_SPARSEMEM */
605
606#ifndef early_pfn_valid
607#define early_pfn_valid(pfn) (1)
608#endif
609
610void memory_present(int nid, unsigned long start, unsigned long end);
611unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
612
1da177e4
LT
613#endif /* !__ASSEMBLY__ */
614#endif /* __KERNEL__ */
615#endif /* _LINUX_MMZONE_H */