[MIPS] Make irq number allocator generally available for fixing EV64120.
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / include / asm-sh64 / pgtable.h
CommitLineData
1da177e4
LT
1#ifndef __ASM_SH64_PGTABLE_H
2#define __ASM_SH64_PGTABLE_H
3
4#include <asm-generic/4level-fixup.h>
5
6/*
7 * This file is subject to the terms and conditions of the GNU General Public
8 * License. See the file "COPYING" in the main directory of this archive
9 * for more details.
10 *
11 * include/asm-sh64/pgtable.h
12 *
13 * Copyright (C) 2000, 2001 Paolo Alberelli
14 * Copyright (C) 2003, 2004 Paul Mundt
15 * Copyright (C) 2003, 2004 Richard Curnow
16 *
17 * This file contains the functions and defines necessary to modify and use
18 * the SuperH page table tree.
19 */
20
21#ifndef __ASSEMBLY__
22#include <asm/processor.h>
23#include <asm/page.h>
24#include <linux/threads.h>
1da177e4 25
8c65b4a6
TS
26struct vm_area_struct;
27
1da177e4
LT
28extern void paging_init(void);
29
30/* We provide our own get_unmapped_area to avoid cache synonym issue */
31#define HAVE_ARCH_UNMAPPED_AREA
32
33/*
34 * Basically we have the same two-level (which is the logical three level
35 * Linux page table layout folded) page tables as the i386.
36 */
37
38/*
39 * ZERO_PAGE is a global shared page that is always zero: used
40 * for zero-mapped memory areas etc..
41 */
42extern unsigned char empty_zero_page[PAGE_SIZE];
43#define ZERO_PAGE(vaddr) (mem_map + MAP_NR(empty_zero_page))
44
45#endif /* !__ASSEMBLY__ */
46
47/*
48 * NEFF and NPHYS related defines.
49 * FIXME : These need to be model-dependent. For now this is OK, SH5-101 and SH5-103
50 * implement 32 bits effective and 32 bits physical. But future implementations may
51 * extend beyond this.
52 */
53#define NEFF 32
54#define NEFF_SIGN (1LL << (NEFF - 1))
55#define NEFF_MASK (-1LL << NEFF)
56
57#define NPHYS 32
58#define NPHYS_SIGN (1LL << (NPHYS - 1))
59#define NPHYS_MASK (-1LL << NPHYS)
60
61/* Typically 2-level is sufficient up to 32 bits of virtual address space, beyond
62 that 3-level would be appropriate. */
63#if defined(CONFIG_SH64_PGTABLE_2_LEVEL)
64/* For 4k pages, this contains 512 entries, i.e. 9 bits worth of address. */
65#define PTRS_PER_PTE ((1<<PAGE_SHIFT)/sizeof(unsigned long long))
66#define PTE_MAGNITUDE 3 /* sizeof(unsigned long long) magnit. */
67#define PTE_SHIFT PAGE_SHIFT
68#define PTE_BITS (PAGE_SHIFT - PTE_MAGNITUDE)
69
70/* top level: PMD. */
71#define PGDIR_SHIFT (PTE_SHIFT + PTE_BITS)
72#define PGD_BITS (NEFF - PGDIR_SHIFT)
73#define PTRS_PER_PGD (1<<PGD_BITS)
74
75/* middle level: PMD. This doesn't do anything for the 2-level case. */
76#define PTRS_PER_PMD (1)
77
78#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
79#define PGDIR_MASK (~(PGDIR_SIZE-1))
80#define PMD_SHIFT PGDIR_SHIFT
81#define PMD_SIZE PGDIR_SIZE
82#define PMD_MASK PGDIR_MASK
83
84#elif defined(CONFIG_SH64_PGTABLE_3_LEVEL)
85/*
86 * three-level asymmetric paging structure: PGD is top level.
87 * The asymmetry comes from 32-bit pointers and 64-bit PTEs.
88 */
89/* bottom level: PTE. It's 9 bits = 512 pointers */
90#define PTRS_PER_PTE ((1<<PAGE_SHIFT)/sizeof(unsigned long long))
91#define PTE_MAGNITUDE 3 /* sizeof(unsigned long long) magnit. */
92#define PTE_SHIFT PAGE_SHIFT
93#define PTE_BITS (PAGE_SHIFT - PTE_MAGNITUDE)
94
95/* middle level: PMD. It's 10 bits = 1024 pointers */
96#define PTRS_PER_PMD ((1<<PAGE_SHIFT)/sizeof(unsigned long long *))
97#define PMD_MAGNITUDE 2 /* sizeof(unsigned long long *) magnit. */
98#define PMD_SHIFT (PTE_SHIFT + PTE_BITS)
99#define PMD_BITS (PAGE_SHIFT - PMD_MAGNITUDE)
100
101/* top level: PMD. It's 1 bit = 2 pointers */
102#define PGDIR_SHIFT (PMD_SHIFT + PMD_BITS)
103#define PGD_BITS (NEFF - PGDIR_SHIFT)
104#define PTRS_PER_PGD (1<<PGD_BITS)
105
106#define PMD_SIZE (1UL << PMD_SHIFT)
107#define PMD_MASK (~(PMD_SIZE-1))
108#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
109#define PGDIR_MASK (~(PGDIR_SIZE-1))
110
111#else
112#error "No defined number of page table levels"
113#endif
114
115/*
116 * Error outputs.
117 */
118#define pte_ERROR(e) \
119 printk("%s:%d: bad pte %016Lx.\n", __FILE__, __LINE__, pte_val(e))
120#define pmd_ERROR(e) \
121 printk("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e))
122#define pgd_ERROR(e) \
123 printk("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
124
125/*
126 * Table setting routines. Used within arch/mm only.
127 */
128#define set_pgd(pgdptr, pgdval) (*(pgdptr) = pgdval)
129#define set_pmd(pmdptr, pmdval) (*(pmdptr) = pmdval)
130
131static __inline__ void set_pte(pte_t *pteptr, pte_t pteval)
132{
133 unsigned long long x = ((unsigned long long) pteval.pte);
134 unsigned long long *xp = (unsigned long long *) pteptr;
135 /*
136 * Sign-extend based on NPHYS.
137 */
138 *(xp) = (x & NPHYS_SIGN) ? (x | NPHYS_MASK) : x;
139}
140#define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval)
141
142static __inline__ void pmd_set(pmd_t *pmdp,pte_t *ptep)
143{
144 pmd_val(*pmdp) = (unsigned long) ptep;
145}
146
147/*
148 * PGD defines. Top level.
149 */
150
151/* To find an entry in a generic PGD. */
152#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
153#define __pgd_offset(address) pgd_index(address)
154#define pgd_offset(mm, address) ((mm)->pgd+pgd_index(address))
155
156/* To find an entry in a kernel PGD. */
157#define pgd_offset_k(address) pgd_offset(&init_mm, address)
158
159/*
160 * PGD level access routines.
161 *
162 * Note1:
163 * There's no need to use physical addresses since the tree walk is all
164 * in performed in software, until the PTE translation.
165 *
166 * Note 2:
167 * A PGD entry can be uninitialized (_PGD_UNUSED), generically bad,
168 * clear (_PGD_EMPTY), present. When present, lower 3 nibbles contain
169 * _KERNPG_TABLE. Being a kernel virtual pointer also bit 31 must
170 * be 1. Assuming an arbitrary clear value of bit 31 set to 0 and
171 * lower 3 nibbles set to 0xFFF (_PGD_EMPTY) any other value is a
172 * bad pgd that must be notified via printk().
173 *
174 */
175#define _PGD_EMPTY 0x0
176
177#if defined(CONFIG_SH64_PGTABLE_2_LEVEL)
178static inline int pgd_none(pgd_t pgd) { return 0; }
179static inline int pgd_bad(pgd_t pgd) { return 0; }
180#define pgd_present(pgd) ((pgd_val(pgd) & _PAGE_PRESENT) ? 1 : 0)
181#define pgd_clear(xx) do { } while(0)
182
183#elif defined(CONFIG_SH64_PGTABLE_3_LEVEL)
184#define pgd_present(pgd_entry) (1)
185#define pgd_none(pgd_entry) (pgd_val((pgd_entry)) == _PGD_EMPTY)
186/* TODO: Think later about what a useful definition of 'bad' would be now. */
187#define pgd_bad(pgd_entry) (0)
188#define pgd_clear(pgd_entry_p) (set_pgd((pgd_entry_p), __pgd(_PGD_EMPTY)))
189
190#endif
191
192
46a82b2d
DM
193#define pgd_page_vaddr(pgd_entry) ((unsigned long) (pgd_val(pgd_entry) & PAGE_MASK))
194#define pgd_page(pgd) (virt_to_page(pgd_val(pgd)))
195
1da177e4
LT
196
197/*
198 * PMD defines. Middle level.
199 */
200
201/* PGD to PMD dereferencing */
202#if defined(CONFIG_SH64_PGTABLE_2_LEVEL)
203static inline pmd_t * pmd_offset(pgd_t * dir, unsigned long address)
204{
205 return (pmd_t *) dir;
206}
207#elif defined(CONFIG_SH64_PGTABLE_3_LEVEL)
208#define __pmd_offset(address) \
209 (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
210#define pmd_offset(dir, addr) \
211 ((pmd_t *) ((pgd_val(*(dir))) & PAGE_MASK) + __pmd_offset((addr)))
212#endif
213
214/*
215 * PMD level access routines. Same notes as above.
216 */
217#define _PMD_EMPTY 0x0
218/* Either the PMD is empty or present, it's not paged out */
219#define pmd_present(pmd_entry) (pmd_val(pmd_entry) & _PAGE_PRESENT)
220#define pmd_clear(pmd_entry_p) (set_pmd((pmd_entry_p), __pmd(_PMD_EMPTY)))
221#define pmd_none(pmd_entry) (pmd_val((pmd_entry)) == _PMD_EMPTY)
222#define pmd_bad(pmd_entry) ((pmd_val(pmd_entry) & (~PAGE_MASK & ~_PAGE_USER)) != _KERNPG_TABLE)
223
46a82b2d 224#define pmd_page_vaddr(pmd_entry) \
1da177e4
LT
225 ((unsigned long) __va(pmd_val(pmd_entry) & PAGE_MASK))
226
227#define pmd_page(pmd) \
228 (virt_to_page(pmd_val(pmd)))
229
230/* PMD to PTE dereferencing */
231#define pte_index(address) \
232 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
233
234#define pte_offset_kernel(dir, addr) \
235 ((pte_t *) ((pmd_val(*(dir))) & PAGE_MASK) + pte_index((addr)))
236
237#define pte_offset_map(dir,addr) pte_offset_kernel(dir, addr)
238#define pte_offset_map_nested(dir,addr) pte_offset_kernel(dir, addr)
239#define pte_unmap(pte) do { } while (0)
240#define pte_unmap_nested(pte) do { } while (0)
241
242/* Round it up ! */
243#define USER_PTRS_PER_PGD ((TASK_SIZE+PGDIR_SIZE-1)/PGDIR_SIZE)
d455a369 244#define FIRST_USER_ADDRESS 0
1da177e4
LT
245
246#ifndef __ASSEMBLY__
247#define VMALLOC_END 0xff000000
248#define VMALLOC_START 0xf0000000
249#define VMALLOC_VMADDR(x) ((unsigned long)(x))
250
251#define IOBASE_VADDR 0xff000000
252#define IOBASE_END 0xffffffff
253
254/*
255 * PTEL coherent flags.
256 * See Chapter 17 ST50 CPU Core Volume 1, Architecture.
257 */
258/* The bits that are required in the SH-5 TLB are placed in the h/w-defined
259 positions, to avoid expensive bit shuffling on every refill. The remaining
260 bits are used for s/w purposes and masked out on each refill.
261
262 Note, the PTE slots are used to hold data of type swp_entry_t when a page is
263 swapped out. Only the _PAGE_PRESENT flag is significant when the page is
264 swapped out, and it must be placed so that it doesn't overlap either the
265 type or offset fields of swp_entry_t. For x86, offset is at [31:8] and type
266 at [6:1], with _PAGE_PRESENT at bit 0 for both pte_t and swp_entry_t. This
267 scheme doesn't map to SH-5 because bit [0] controls cacheability. So bit
268 [2] is used for _PAGE_PRESENT and the type field of swp_entry_t is split
269 into 2 pieces. That is handled by SWP_ENTRY and SWP_TYPE below. */
270#define _PAGE_WT 0x001 /* CB0: if cacheable, 1->write-thru, 0->write-back */
271#define _PAGE_DEVICE 0x001 /* CB0: if uncacheable, 1->device (i.e. no write-combining or reordering at bus level) */
272#define _PAGE_CACHABLE 0x002 /* CB1: uncachable/cachable */
273#define _PAGE_PRESENT 0x004 /* software: page referenced */
274#define _PAGE_FILE 0x004 /* software: only when !present */
275#define _PAGE_SIZE0 0x008 /* SZ0-bit : size of page */
276#define _PAGE_SIZE1 0x010 /* SZ1-bit : size of page */
277#define _PAGE_SHARED 0x020 /* software: reflects PTEH's SH */
278#define _PAGE_READ 0x040 /* PR0-bit : read access allowed */
279#define _PAGE_EXECUTE 0x080 /* PR1-bit : execute access allowed */
280#define _PAGE_WRITE 0x100 /* PR2-bit : write access allowed */
281#define _PAGE_USER 0x200 /* PR3-bit : user space access allowed */
282#define _PAGE_DIRTY 0x400 /* software: page accessed in write */
283#define _PAGE_ACCESSED 0x800 /* software: page referenced */
284
285/* Mask which drops software flags */
286#define _PAGE_FLAGS_HARDWARE_MASK 0xfffffffffffff3dbLL
287
288/*
289 * HugeTLB support
290 */
291#if defined(CONFIG_HUGETLB_PAGE_SIZE_64K)
292#define _PAGE_SZHUGE (_PAGE_SIZE0)
293#elif defined(CONFIG_HUGETLB_PAGE_SIZE_1MB)
294#define _PAGE_SZHUGE (_PAGE_SIZE1)
295#elif defined(CONFIG_HUGETLB_PAGE_SIZE_512MB)
296#define _PAGE_SZHUGE (_PAGE_SIZE0 | _PAGE_SIZE1)
297#endif
298
299/*
300 * Default flags for a Kernel page.
301 * This is fundametally also SHARED because the main use of this define
302 * (other than for PGD/PMD entries) is for the VMALLOC pool which is
303 * contextless.
304 *
305 * _PAGE_EXECUTE is required for modules
306 *
307 */
308#define _KERNPG_TABLE (_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
309 _PAGE_EXECUTE | \
310 _PAGE_CACHABLE | _PAGE_ACCESSED | _PAGE_DIRTY | \
311 _PAGE_SHARED)
312
313/* Default flags for a User page */
314#define _PAGE_TABLE (_KERNPG_TABLE | _PAGE_USER)
315
316#define _PAGE_CHG_MASK (PTE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
317
318#define PAGE_NONE __pgprot(_PAGE_CACHABLE | _PAGE_ACCESSED)
319#define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
320 _PAGE_CACHABLE | _PAGE_ACCESSED | _PAGE_USER | \
321 _PAGE_SHARED)
322/* We need to include PAGE_EXECUTE in PAGE_COPY because it is the default
323 * protection mode for the stack. */
324#define PAGE_COPY __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_CACHABLE | \
325 _PAGE_ACCESSED | _PAGE_USER | _PAGE_EXECUTE)
326#define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_CACHABLE | \
327 _PAGE_ACCESSED | _PAGE_USER)
328#define PAGE_KERNEL __pgprot(_KERNPG_TABLE)
329
330
331/*
332 * In ST50 we have full permissions (Read/Write/Execute/Shared).
333 * Just match'em all. These are for mmap(), therefore all at least
334 * User/Cachable/Present/Accessed. No point in making Fault on Write.
335 */
336#define __MMAP_COMMON (_PAGE_PRESENT | _PAGE_USER | _PAGE_CACHABLE | _PAGE_ACCESSED)
337 /* sxwr */
338#define __P000 __pgprot(__MMAP_COMMON)
339#define __P001 __pgprot(__MMAP_COMMON | _PAGE_READ)
340#define __P010 __pgprot(__MMAP_COMMON)
341#define __P011 __pgprot(__MMAP_COMMON | _PAGE_READ)
342#define __P100 __pgprot(__MMAP_COMMON | _PAGE_EXECUTE)
343#define __P101 __pgprot(__MMAP_COMMON | _PAGE_EXECUTE | _PAGE_READ)
344#define __P110 __pgprot(__MMAP_COMMON | _PAGE_EXECUTE)
345#define __P111 __pgprot(__MMAP_COMMON | _PAGE_EXECUTE | _PAGE_READ)
346
347#define __S000 __pgprot(__MMAP_COMMON | _PAGE_SHARED)
348#define __S001 __pgprot(__MMAP_COMMON | _PAGE_SHARED | _PAGE_READ)
349#define __S010 __pgprot(__MMAP_COMMON | _PAGE_SHARED | _PAGE_WRITE)
350#define __S011 __pgprot(__MMAP_COMMON | _PAGE_SHARED | _PAGE_READ | _PAGE_WRITE)
351#define __S100 __pgprot(__MMAP_COMMON | _PAGE_SHARED | _PAGE_EXECUTE)
352#define __S101 __pgprot(__MMAP_COMMON | _PAGE_SHARED | _PAGE_EXECUTE | _PAGE_READ)
353#define __S110 __pgprot(__MMAP_COMMON | _PAGE_SHARED | _PAGE_EXECUTE | _PAGE_WRITE)
354#define __S111 __pgprot(__MMAP_COMMON | _PAGE_SHARED | _PAGE_EXECUTE | _PAGE_READ | _PAGE_WRITE)
355
356/* Make it a device mapping for maximum safety (e.g. for mapping device
357 registers into user-space via /dev/map). */
358#define pgprot_noncached(x) __pgprot(((x).pgprot & ~(_PAGE_CACHABLE)) | _PAGE_DEVICE)
359#define pgprot_writecombine(prot) __pgprot(pgprot_val(prot) & ~_PAGE_CACHABLE)
360
361/*
362 * Handling allocation failures during page table setup.
363 */
364extern void __handle_bad_pmd_kernel(pmd_t * pmd);
365#define __handle_bad_pmd(x) __handle_bad_pmd_kernel(x)
366
367/*
368 * PTE level access routines.
369 *
370 * Note1:
371 * It's the tree walk leaf. This is physical address to be stored.
372 *
373 * Note 2:
374 * Regarding the choice of _PTE_EMPTY:
375
376 We must choose a bit pattern that cannot be valid, whether or not the page
377 is present. bit[2]==1 => present, bit[2]==0 => swapped out. If swapped
378 out, bits [31:8], [6:3], [1:0] are under swapper control, so only bit[7] is
379 left for us to select. If we force bit[7]==0 when swapped out, we could use
380 the combination bit[7,2]=2'b10 to indicate an empty PTE. Alternatively, if
381 we force bit[7]==1 when swapped out, we can use all zeroes to indicate
382 empty. This is convenient, because the page tables get cleared to zero
383 when they are allocated.
384
385 */
386#define _PTE_EMPTY 0x0
387#define pte_present(x) (pte_val(x) & _PAGE_PRESENT)
388#define pte_clear(mm,addr,xp) (set_pte_at(mm, addr, xp, __pte(_PTE_EMPTY)))
389#define pte_none(x) (pte_val(x) == _PTE_EMPTY)
390
391/*
392 * Some definitions to translate between mem_map, PTEs, and page
393 * addresses:
394 */
395
396/*
397 * Given a PTE, return the index of the mem_map[] entry corresponding
398 * to the page frame the PTE. Get the absolute physical address, make
399 * a relative physical address and translate it to an index.
400 */
401#define pte_pagenr(x) (((unsigned long) (pte_val(x)) - \
402 __MEMORY_START) >> PAGE_SHIFT)
403
404/*
405 * Given a PTE, return the "struct page *".
406 */
407#define pte_page(x) (mem_map + pte_pagenr(x))
408
409/*
410 * Return number of (down rounded) MB corresponding to x pages.
411 */
412#define pages_to_mb(x) ((x) >> (20-PAGE_SHIFT))
413
414
415/*
416 * The following have defined behavior only work if pte_present() is true.
417 */
418static inline int pte_read(pte_t pte) { return pte_val(pte) & _PAGE_READ; }
419static inline int pte_exec(pte_t pte) { return pte_val(pte) & _PAGE_EXECUTE; }
420static inline int pte_dirty(pte_t pte){ return pte_val(pte) & _PAGE_DIRTY; }
421static inline int pte_young(pte_t pte){ return pte_val(pte) & _PAGE_ACCESSED; }
422static inline int pte_file(pte_t pte) { return pte_val(pte) & _PAGE_FILE; }
423static inline int pte_write(pte_t pte){ return pte_val(pte) & _PAGE_WRITE; }
424
ca5ed2f5
AB
425static inline pte_t pte_rdprotect(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_READ)); return pte; }
426static inline pte_t pte_wrprotect(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_WRITE)); return pte; }
427static inline pte_t pte_exprotect(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_EXECUTE)); return pte; }
428static inline pte_t pte_mkclean(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_DIRTY)); return pte; }
429static inline pte_t pte_mkold(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_ACCESSED)); return pte; }
1da177e4 430
ca5ed2f5
AB
431static inline pte_t pte_mkread(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) | _PAGE_READ)); return pte; }
432static inline pte_t pte_mkwrite(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) | _PAGE_WRITE)); return pte; }
433static inline pte_t pte_mkexec(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) | _PAGE_EXECUTE)); return pte; }
434static inline pte_t pte_mkdirty(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) | _PAGE_DIRTY)); return pte; }
435static inline pte_t pte_mkyoung(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) | _PAGE_ACCESSED)); return pte; }
436static inline pte_t pte_mkhuge(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) | _PAGE_SZHUGE)); return pte; }
63551ae0 437
1da177e4
LT
438
439/*
440 * Conversion functions: convert a page and protection to a page entry.
441 *
442 * extern pte_t mk_pte(struct page *page, pgprot_t pgprot)
443 */
444#define mk_pte(page,pgprot) \
445({ \
446 pte_t __pte; \
447 \
448 set_pte(&__pte, __pte((((page)-mem_map) << PAGE_SHIFT) | \
449 __MEMORY_START | pgprot_val((pgprot)))); \
450 __pte; \
451})
452
453/*
454 * This takes a (absolute) physical page address that is used
455 * by the remapping functions
456 */
457#define mk_pte_phys(physpage, pgprot) \
458({ pte_t __pte; set_pte(&__pte, __pte(physpage | pgprot_val(pgprot))); __pte; })
459
ca5ed2f5 460static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
1da177e4
LT
461{ set_pte(&pte, __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot))); return pte; }
462
1da177e4
LT
463typedef pte_t *pte_addr_t;
464#define pgtable_cache_init() do { } while (0)
465
466extern void update_mmu_cache(struct vm_area_struct * vma,
467 unsigned long address, pte_t pte);
468
469/* Encode and decode a swap entry */
470#define __swp_type(x) (((x).val & 3) + (((x).val >> 1) & 0x3c))
471#define __swp_offset(x) ((x).val >> 8)
472#define __swp_entry(type, offset) ((swp_entry_t) { ((offset << 8) + ((type & 0x3c) << 1) + (type & 3)) })
473#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
474#define __swp_entry_to_pte(x) ((pte_t) { (x).val })
475
476/* Encode and decode a nonlinear file mapping entry */
477#define PTE_FILE_MAX_BITS 29
478#define pte_to_pgoff(pte) (pte_val(pte))
479#define pgoff_to_pte(off) ((pte_t) { (off) | _PAGE_FILE })
480
481/* Needs to be defined here and not in linux/mm.h, as it is arch dependent */
482#define PageSkip(page) (0)
483#define kern_addr_valid(addr) (1)
484
1da177e4
LT
485#define io_remap_pfn_range(vma, vaddr, pfn, size, prot) \
486 remap_pfn_range(vma, vaddr, pfn, size, prot)
487
488#define MK_IOSPACE_PFN(space, pfn) (pfn)
489#define GET_IOSPACE(pfn) 0
490#define GET_PFN(pfn) (pfn)
491
492#endif /* !__ASSEMBLY__ */
493
494/*
495 * No page table caches to initialise
496 */
497#define pgtable_cache_init() do { } while (0)
498
499#define pte_pfn(x) (((unsigned long)((x).pte)) >> PAGE_SHIFT)
500#define pfn_pte(pfn, prot) __pte(((pfn) << PAGE_SHIFT) | pgprot_val(prot))
501#define pfn_pmd(pfn, prot) __pmd(((pfn) << PAGE_SHIFT) | pgprot_val(prot))
502
503extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
504
505#include <asm-generic/pgtable.h>
506
507#endif /* __ASM_SH64_PGTABLE_H */