[POWERPC] pasemi: Add flag management functions to dma_lib
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / include / asm-powerpc / mmu-hash64.h
CommitLineData
8d2169e8
DG
1#ifndef _ASM_POWERPC_MMU_HASH64_H_
2#define _ASM_POWERPC_MMU_HASH64_H_
3/*
4 * PowerPC64 memory management structures
5 *
6 * Dave Engebretsen & Mike Corrigan <{engebret|mikejc}@us.ibm.com>
7 * PPC64 rework.
8 *
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation; either version
12 * 2 of the License, or (at your option) any later version.
13 */
14
15#include <asm/asm-compat.h>
16#include <asm/page.h>
17
18/*
19 * Segment table
20 */
21
22#define STE_ESID_V 0x80
23#define STE_ESID_KS 0x20
24#define STE_ESID_KP 0x10
25#define STE_ESID_N 0x08
26
27#define STE_VSID_SHIFT 12
28
29/* Location of cpu0's segment table */
30#define STAB0_PAGE 0x6
31#define STAB0_OFFSET (STAB0_PAGE << 12)
32#define STAB0_PHYS_ADDR (STAB0_OFFSET + PHYSICAL_START)
33
34#ifndef __ASSEMBLY__
35extern char initial_stab[];
36#endif /* ! __ASSEMBLY */
37
38/*
39 * SLB
40 */
41
42#define SLB_NUM_BOLTED 3
43#define SLB_CACHE_ENTRIES 8
44
45/* Bits in the SLB ESID word */
46#define SLB_ESID_V ASM_CONST(0x0000000008000000) /* valid */
47
48/* Bits in the SLB VSID word */
49#define SLB_VSID_SHIFT 12
1189be65
PM
50#define SLB_VSID_SHIFT_1T 24
51#define SLB_VSID_SSIZE_SHIFT 62
8d2169e8
DG
52#define SLB_VSID_B ASM_CONST(0xc000000000000000)
53#define SLB_VSID_B_256M ASM_CONST(0x0000000000000000)
54#define SLB_VSID_B_1T ASM_CONST(0x4000000000000000)
55#define SLB_VSID_KS ASM_CONST(0x0000000000000800)
56#define SLB_VSID_KP ASM_CONST(0x0000000000000400)
57#define SLB_VSID_N ASM_CONST(0x0000000000000200) /* no-execute */
58#define SLB_VSID_L ASM_CONST(0x0000000000000100)
59#define SLB_VSID_C ASM_CONST(0x0000000000000080) /* class */
60#define SLB_VSID_LP ASM_CONST(0x0000000000000030)
61#define SLB_VSID_LP_00 ASM_CONST(0x0000000000000000)
62#define SLB_VSID_LP_01 ASM_CONST(0x0000000000000010)
63#define SLB_VSID_LP_10 ASM_CONST(0x0000000000000020)
64#define SLB_VSID_LP_11 ASM_CONST(0x0000000000000030)
65#define SLB_VSID_LLP (SLB_VSID_L|SLB_VSID_LP)
66
67#define SLB_VSID_KERNEL (SLB_VSID_KP)
68#define SLB_VSID_USER (SLB_VSID_KP|SLB_VSID_KS|SLB_VSID_C)
69
70#define SLBIE_C (0x08000000)
1189be65 71#define SLBIE_SSIZE_SHIFT 25
8d2169e8
DG
72
73/*
74 * Hash table
75 */
76
77#define HPTES_PER_GROUP 8
78
2454c7e9 79#define HPTE_V_SSIZE_SHIFT 62
8d2169e8 80#define HPTE_V_AVPN_SHIFT 7
2454c7e9 81#define HPTE_V_AVPN ASM_CONST(0x3fffffffffffff80)
8d2169e8 82#define HPTE_V_AVPN_VAL(x) (((x) & HPTE_V_AVPN) >> HPTE_V_AVPN_SHIFT)
91bbbe22 83#define HPTE_V_COMPARE(x,y) (!(((x) ^ (y)) & 0xffffffffffffff80UL))
8d2169e8
DG
84#define HPTE_V_BOLTED ASM_CONST(0x0000000000000010)
85#define HPTE_V_LOCK ASM_CONST(0x0000000000000008)
86#define HPTE_V_LARGE ASM_CONST(0x0000000000000004)
87#define HPTE_V_SECONDARY ASM_CONST(0x0000000000000002)
88#define HPTE_V_VALID ASM_CONST(0x0000000000000001)
89
90#define HPTE_R_PP0 ASM_CONST(0x8000000000000000)
91#define HPTE_R_TS ASM_CONST(0x4000000000000000)
92#define HPTE_R_RPN_SHIFT 12
93#define HPTE_R_RPN ASM_CONST(0x3ffffffffffff000)
94#define HPTE_R_FLAGS ASM_CONST(0x00000000000003ff)
95#define HPTE_R_PP ASM_CONST(0x0000000000000003)
96#define HPTE_R_N ASM_CONST(0x0000000000000004)
97#define HPTE_R_C ASM_CONST(0x0000000000000080)
98#define HPTE_R_R ASM_CONST(0x0000000000000100)
99
b7abc5c5
SS
100#define HPTE_V_1TB_SEG ASM_CONST(0x4000000000000000)
101#define HPTE_V_VRMA_MASK ASM_CONST(0x4001ffffff000000)
102
8d2169e8
DG
103/* Values for PP (assumes Ks=0, Kp=1) */
104/* pp0 will always be 0 for linux */
105#define PP_RWXX 0 /* Supervisor read/write, User none */
106#define PP_RWRX 1 /* Supervisor read/write, User read */
107#define PP_RWRW 2 /* Supervisor read/write, User read/write */
108#define PP_RXRX 3 /* Supervisor read, User read */
109
110#ifndef __ASSEMBLY__
111
8e561e7e 112struct hash_pte {
8d2169e8
DG
113 unsigned long v;
114 unsigned long r;
8e561e7e 115};
8d2169e8 116
8e561e7e 117extern struct hash_pte *htab_address;
8d2169e8
DG
118extern unsigned long htab_size_bytes;
119extern unsigned long htab_hash_mask;
120
121/*
122 * Page size definition
123 *
124 * shift : is the "PAGE_SHIFT" value for that page size
125 * sllp : is a bit mask with the value of SLB L || LP to be or'ed
126 * directly to a slbmte "vsid" value
127 * penc : is the HPTE encoding mask for the "LP" field:
128 *
129 */
130struct mmu_psize_def
131{
132 unsigned int shift; /* number of bits */
133 unsigned int penc; /* HPTE encoding */
134 unsigned int tlbiel; /* tlbiel supported for that page size */
135 unsigned long avpnm; /* bits to mask out in AVPN in the HPTE */
136 unsigned long sllp; /* SLB L||LP (exact mask to use in slbmte) */
137};
138
139#endif /* __ASSEMBLY__ */
140
141/*
142 * The kernel use the constants below to index in the page sizes array.
143 * The use of fixed constants for this purpose is better for performances
144 * of the low level hash refill handlers.
145 *
146 * A non supported page size has a "shift" field set to 0
147 *
148 * Any new page size being implemented can get a new entry in here. Whether
149 * the kernel will use it or not is a different matter though. The actual page
150 * size used by hugetlbfs is not defined here and may be made variable
151 */
152
153#define MMU_PAGE_4K 0 /* 4K */
154#define MMU_PAGE_64K 1 /* 64K */
155#define MMU_PAGE_64K_AP 2 /* 64K Admixed (in a 4K segment) */
156#define MMU_PAGE_1M 3 /* 1M */
157#define MMU_PAGE_16M 4 /* 16M */
158#define MMU_PAGE_16G 5 /* 16G */
159#define MMU_PAGE_COUNT 6
160
2454c7e9
PM
161/*
162 * Segment sizes.
163 * These are the values used by hardware in the B field of
164 * SLB entries and the first dword of MMU hashtable entries.
165 * The B field is 2 bits; the values 2 and 3 are unused and reserved.
166 */
167#define MMU_SEGSIZE_256M 0
168#define MMU_SEGSIZE_1T 1
169
1189be65 170
8d2169e8
DG
171#ifndef __ASSEMBLY__
172
173/*
1189be65 174 * The current system page and segment sizes
8d2169e8
DG
175 */
176extern struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT];
177extern int mmu_linear_psize;
178extern int mmu_virtual_psize;
179extern int mmu_vmalloc_psize;
180extern int mmu_io_psize;
1189be65
PM
181extern int mmu_kernel_ssize;
182extern int mmu_highuser_ssize;
584f8b71 183extern u16 mmu_slb_size;
8d2169e8
DG
184
185/*
186 * If the processor supports 64k normal pages but not 64k cache
187 * inhibited pages, we have to be prepared to switch processes
188 * to use 4k pages when they create cache-inhibited mappings.
189 * If this is the case, mmu_ci_restrictions will be set to 1.
190 */
191extern int mmu_ci_restrictions;
192
193#ifdef CONFIG_HUGETLB_PAGE
194/*
195 * The page size index of the huge pages for use by hugetlbfs
196 */
197extern int mmu_huge_psize;
198
199#endif /* CONFIG_HUGETLB_PAGE */
200
201/*
202 * This function sets the AVPN and L fields of the HPTE appropriately
203 * for the page size
204 */
1189be65
PM
205static inline unsigned long hpte_encode_v(unsigned long va, int psize,
206 int ssize)
8d2169e8 207{
1189be65 208 unsigned long v;
8d2169e8
DG
209 v = (va >> 23) & ~(mmu_psize_defs[psize].avpnm);
210 v <<= HPTE_V_AVPN_SHIFT;
211 if (psize != MMU_PAGE_4K)
212 v |= HPTE_V_LARGE;
1189be65 213 v |= ((unsigned long) ssize) << HPTE_V_SSIZE_SHIFT;
8d2169e8
DG
214 return v;
215}
216
217/*
218 * This function sets the ARPN, and LP fields of the HPTE appropriately
219 * for the page size. We assume the pa is already "clean" that is properly
220 * aligned for the requested page size
221 */
222static inline unsigned long hpte_encode_r(unsigned long pa, int psize)
223{
224 unsigned long r;
225
226 /* A 4K page needs no special encoding */
227 if (psize == MMU_PAGE_4K)
228 return pa & HPTE_R_RPN;
229 else {
230 unsigned int penc = mmu_psize_defs[psize].penc;
231 unsigned int shift = mmu_psize_defs[psize].shift;
232 return (pa & ~((1ul << shift) - 1)) | (penc << 12);
233 }
234 return r;
235}
236
237/*
1189be65 238 * Build a VA given VSID, EA and segment size
8d2169e8 239 */
1189be65
PM
240static inline unsigned long hpt_va(unsigned long ea, unsigned long vsid,
241 int ssize)
242{
243 if (ssize == MMU_SEGSIZE_256M)
244 return (vsid << 28) | (ea & 0xfffffffUL);
245 return (vsid << 40) | (ea & 0xffffffffffUL);
246}
8d2169e8 247
1189be65
PM
248/*
249 * This hashes a virtual address
250 */
251
252static inline unsigned long hpt_hash(unsigned long va, unsigned int shift,
253 int ssize)
8d2169e8 254{
1189be65
PM
255 unsigned long hash, vsid;
256
257 if (ssize == MMU_SEGSIZE_256M) {
258 hash = (va >> 28) ^ ((va & 0x0fffffffUL) >> shift);
259 } else {
260 vsid = va >> 40;
261 hash = vsid ^ (vsid << 25) ^ ((va & 0xffffffffffUL) >> shift);
262 }
263 return hash & 0x7fffffffffUL;
8d2169e8
DG
264}
265
266extern int __hash_page_4K(unsigned long ea, unsigned long access,
267 unsigned long vsid, pte_t *ptep, unsigned long trap,
fa28237c 268 unsigned int local, int ssize, int subpage_prot);
8d2169e8
DG
269extern int __hash_page_64K(unsigned long ea, unsigned long access,
270 unsigned long vsid, pte_t *ptep, unsigned long trap,
1189be65 271 unsigned int local, int ssize);
8d2169e8
DG
272struct mm_struct;
273extern int hash_page(unsigned long ea, unsigned long access, unsigned long trap);
274extern int hash_huge_page(struct mm_struct *mm, unsigned long access,
275 unsigned long ea, unsigned long vsid, int local,
276 unsigned long trap);
277
278extern int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
279 unsigned long pstart, unsigned long mode,
1189be65 280 int psize, int ssize);
4ec161cf 281extern void set_huge_psize(int psize);
fa28237c 282extern void demote_segment_4k(struct mm_struct *mm, unsigned long addr);
8d2169e8
DG
283
284extern void htab_initialize(void);
285extern void htab_initialize_secondary(void);
286extern void hpte_init_native(void);
287extern void hpte_init_lpar(void);
288extern void hpte_init_iSeries(void);
289extern void hpte_init_beat(void);
7f2c8577 290extern void hpte_init_beat_v3(void);
8d2169e8
DG
291
292extern void stabs_alloc(void);
293extern void slb_initialize(void);
294extern void slb_flush_and_rebolt(void);
295extern void stab_initialize(unsigned long stab);
296
67439b76 297extern void slb_vmalloc_update(void);
8d2169e8
DG
298#endif /* __ASSEMBLY__ */
299
300/*
301 * VSID allocation
302 *
303 * We first generate a 36-bit "proto-VSID". For kernel addresses this
304 * is equal to the ESID, for user addresses it is:
305 * (context << 15) | (esid & 0x7fff)
306 *
307 * The two forms are distinguishable because the top bit is 0 for user
308 * addresses, whereas the top two bits are 1 for kernel addresses.
309 * Proto-VSIDs with the top two bits equal to 0b10 are reserved for
310 * now.
311 *
312 * The proto-VSIDs are then scrambled into real VSIDs with the
313 * multiplicative hash:
314 *
315 * VSID = (proto-VSID * VSID_MULTIPLIER) % VSID_MODULUS
316 * where VSID_MULTIPLIER = 268435399 = 0xFFFFFC7
317 * VSID_MODULUS = 2^36-1 = 0xFFFFFFFFF
318 *
319 * This scramble is only well defined for proto-VSIDs below
320 * 0xFFFFFFFFF, so both proto-VSID and actual VSID 0xFFFFFFFFF are
321 * reserved. VSID_MULTIPLIER is prime, so in particular it is
322 * co-prime to VSID_MODULUS, making this a 1:1 scrambling function.
323 * Because the modulus is 2^n-1 we can compute it efficiently without
324 * a divide or extra multiply (see below).
325 *
326 * This scheme has several advantages over older methods:
327 *
328 * - We have VSIDs allocated for every kernel address
329 * (i.e. everything above 0xC000000000000000), except the very top
330 * segment, which simplifies several things.
331 *
332 * - We allow for 15 significant bits of ESID and 20 bits of
333 * context for user addresses. i.e. 8T (43 bits) of address space for
334 * up to 1M contexts (although the page table structure and context
335 * allocation will need changes to take advantage of this).
336 *
337 * - The scramble function gives robust scattering in the hash
338 * table (at least based on some initial results). The previous
339 * method was more susceptible to pathological cases giving excessive
340 * hash collisions.
341 */
342/*
343 * WARNING - If you change these you must make sure the asm
344 * implementations in slb_allocate (slb_low.S), do_stab_bolted
345 * (head.S) and ASM_VSID_SCRAMBLE (below) are changed accordingly.
346 *
347 * You'll also need to change the precomputed VSID values in head.S
348 * which are used by the iSeries firmware.
349 */
350
1189be65
PM
351#define VSID_MULTIPLIER_256M ASM_CONST(200730139) /* 28-bit prime */
352#define VSID_BITS_256M 36
353#define VSID_MODULUS_256M ((1UL<<VSID_BITS_256M)-1)
8d2169e8 354
1189be65
PM
355#define VSID_MULTIPLIER_1T ASM_CONST(12538073) /* 24-bit prime */
356#define VSID_BITS_1T 24
357#define VSID_MODULUS_1T ((1UL<<VSID_BITS_1T)-1)
358
359#define CONTEXT_BITS 19
360#define USER_ESID_BITS 16
361#define USER_ESID_BITS_1T 4
8d2169e8
DG
362
363#define USER_VSID_RANGE (1UL << (USER_ESID_BITS + SID_SHIFT))
364
365/*
366 * This macro generates asm code to compute the VSID scramble
367 * function. Used in slb_allocate() and do_stab_bolted. The function
368 * computed is: (protovsid*VSID_MULTIPLIER) % VSID_MODULUS
369 *
370 * rt = register continaing the proto-VSID and into which the
371 * VSID will be stored
372 * rx = scratch register (clobbered)
373 *
374 * - rt and rx must be different registers
1189be65 375 * - The answer will end up in the low VSID_BITS bits of rt. The higher
8d2169e8
DG
376 * bits may contain other garbage, so you may need to mask the
377 * result.
378 */
1189be65
PM
379#define ASM_VSID_SCRAMBLE(rt, rx, size) \
380 lis rx,VSID_MULTIPLIER_##size@h; \
381 ori rx,rx,VSID_MULTIPLIER_##size@l; \
8d2169e8
DG
382 mulld rt,rt,rx; /* rt = rt * MULTIPLIER */ \
383 \
1189be65
PM
384 srdi rx,rt,VSID_BITS_##size; \
385 clrldi rt,rt,(64-VSID_BITS_##size); \
8d2169e8
DG
386 add rt,rt,rx; /* add high and low bits */ \
387 /* Now, r3 == VSID (mod 2^36-1), and lies between 0 and \
388 * 2^36-1+2^28-1. That in particular means that if r3 >= \
389 * 2^36-1, then r3+1 has the 2^36 bit set. So, if r3+1 has \
390 * the bit clear, r3 already has the answer we want, if it \
391 * doesn't, the answer is the low 36 bits of r3+1. So in all \
392 * cases the answer is the low 36 bits of (r3 + ((r3+1) >> 36))*/\
393 addi rx,rt,1; \
1189be65 394 srdi rx,rx,VSID_BITS_##size; /* extract 2^VSID_BITS bit */ \
8d2169e8
DG
395 add rt,rt,rx
396
397
398#ifndef __ASSEMBLY__
399
400typedef unsigned long mm_context_id_t;
401
402typedef struct {
403 mm_context_id_t id;
d0f13e3c
BH
404 u16 user_psize; /* page size index */
405
406#ifdef CONFIG_PPC_MM_SLICES
407 u64 low_slices_psize; /* SLB page size encodings */
408 u64 high_slices_psize; /* 4 bits per slice for now */
409#else
410 u16 sllp; /* SLB page size encoding */
8d2169e8
DG
411#endif
412 unsigned long vdso_base;
413} mm_context_t;
414
415
8d2169e8 416#if 0
1189be65
PM
417/*
418 * The code below is equivalent to this function for arguments
419 * < 2^VSID_BITS, which is all this should ever be called
420 * with. However gcc is not clever enough to compute the
421 * modulus (2^n-1) without a second multiply.
422 */
423#define vsid_scrample(protovsid, size) \
424 ((((protovsid) * VSID_MULTIPLIER_##size) % VSID_MODULUS_##size))
8d2169e8 425
1189be65
PM
426#else /* 1 */
427#define vsid_scramble(protovsid, size) \
428 ({ \
429 unsigned long x; \
430 x = (protovsid) * VSID_MULTIPLIER_##size; \
431 x = (x >> VSID_BITS_##size) + (x & VSID_MODULUS_##size); \
432 (x + ((x+1) >> VSID_BITS_##size)) & VSID_MODULUS_##size; \
433 })
8d2169e8 434#endif /* 1 */
8d2169e8
DG
435
436/* This is only valid for addresses >= KERNELBASE */
1189be65 437static inline unsigned long get_kernel_vsid(unsigned long ea, int ssize)
8d2169e8 438{
1189be65
PM
439 if (ssize == MMU_SEGSIZE_256M)
440 return vsid_scramble(ea >> SID_SHIFT, 256M);
441 return vsid_scramble(ea >> SID_SHIFT_1T, 1T);
8d2169e8
DG
442}
443
1189be65
PM
444/* Returns the segment size indicator for a user address */
445static inline int user_segment_size(unsigned long addr)
8d2169e8 446{
1189be65
PM
447 /* Use 1T segments if possible for addresses >= 1T */
448 if (addr >= (1UL << SID_SHIFT_1T))
449 return mmu_highuser_ssize;
450 return MMU_SEGSIZE_256M;
8d2169e8
DG
451}
452
1189be65
PM
453/* This is only valid for user addresses (which are below 2^44) */
454static inline unsigned long get_vsid(unsigned long context, unsigned long ea,
455 int ssize)
456{
457 if (ssize == MMU_SEGSIZE_256M)
458 return vsid_scramble((context << USER_ESID_BITS)
459 | (ea >> SID_SHIFT), 256M);
460 return vsid_scramble((context << USER_ESID_BITS_1T)
461 | (ea >> SID_SHIFT_1T), 1T);
462}
463
464/*
465 * This is only used on legacy iSeries in lparmap.c,
466 * hence the 256MB segment assumption.
467 */
468#define VSID_SCRAMBLE(pvsid) (((pvsid) * VSID_MULTIPLIER_256M) % \
469 VSID_MODULUS_256M)
8d2169e8
DG
470#define KERNEL_VSID(ea) VSID_SCRAMBLE(GET_ESID(ea))
471
472/* Physical address used by some IO functions */
473typedef unsigned long phys_addr_t;
474
475#endif /* __ASSEMBLY__ */
476
477#endif /* _ASM_POWERPC_MMU_HASH64_H_ */