Merge git://git.kernel.org/pub/scm/linux/kernel/git/aegl/linux-2.6
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / include / asm-i386 / system.h
CommitLineData
1da177e4
LT
1#ifndef __ASM_SYSTEM_H
2#define __ASM_SYSTEM_H
3
1da177e4
LT
4#include <linux/kernel.h>
5#include <asm/segment.h>
6#include <asm/cpufeature.h>
7#include <linux/bitops.h> /* for LOCK_PREFIX */
8
9#ifdef __KERNEL__
10
11struct task_struct; /* one of the stranger aspects of C forward declarations.. */
12extern struct task_struct * FASTCALL(__switch_to(struct task_struct *prev, struct task_struct *next));
13
47a5c6fa
LT
14/*
15 * Saving eflags is important. It switches not only IOPL between tasks,
16 * it also protects other tasks from NT leaking through sysenter etc.
17 */
1da177e4
LT
18#define switch_to(prev,next,last) do { \
19 unsigned long esi,edi; \
47a5c6fa
LT
20 asm volatile("pushfl\n\t" /* Save flags */ \
21 "pushl %%ebp\n\t" \
1da177e4
LT
22 "movl %%esp,%0\n\t" /* save ESP */ \
23 "movl %5,%%esp\n\t" /* restore ESP */ \
24 "movl $1f,%1\n\t" /* save EIP */ \
25 "pushl %6\n\t" /* restore EIP */ \
26 "jmp __switch_to\n" \
27 "1:\t" \
28 "popl %%ebp\n\t" \
47a5c6fa 29 "popfl" \
1da177e4
LT
30 :"=m" (prev->thread.esp),"=m" (prev->thread.eip), \
31 "=a" (last),"=S" (esi),"=D" (edi) \
32 :"m" (next->thread.esp),"m" (next->thread.eip), \
33 "2" (prev), "d" (next)); \
34} while (0)
35
36#define _set_base(addr,base) do { unsigned long __pr; \
37__asm__ __volatile__ ("movw %%dx,%1\n\t" \
38 "rorl $16,%%edx\n\t" \
39 "movb %%dl,%2\n\t" \
40 "movb %%dh,%3" \
41 :"=&d" (__pr) \
42 :"m" (*((addr)+2)), \
43 "m" (*((addr)+4)), \
44 "m" (*((addr)+7)), \
45 "0" (base) \
46 ); } while(0)
47
48#define _set_limit(addr,limit) do { unsigned long __lr; \
49__asm__ __volatile__ ("movw %%dx,%1\n\t" \
50 "rorl $16,%%edx\n\t" \
51 "movb %2,%%dh\n\t" \
52 "andb $0xf0,%%dh\n\t" \
53 "orb %%dh,%%dl\n\t" \
54 "movb %%dl,%2" \
55 :"=&d" (__lr) \
56 :"m" (*(addr)), \
57 "m" (*((addr)+6)), \
58 "0" (limit) \
59 ); } while(0)
60
61#define set_base(ldt,base) _set_base( ((char *)&(ldt)) , (base) )
5fe9fe3c 62#define set_limit(ldt,limit) _set_limit( ((char *)&(ldt)) , ((limit)-1) )
1da177e4 63
1da177e4
LT
64/*
65 * Load a segment. Fall back on loading the zero
66 * segment if something goes wrong..
67 */
68#define loadsegment(seg,value) \
69 asm volatile("\n" \
70 "1:\t" \
fd51f666 71 "mov %0,%%" #seg "\n" \
1da177e4
LT
72 "2:\n" \
73 ".section .fixup,\"ax\"\n" \
74 "3:\t" \
75 "pushl $0\n\t" \
76 "popl %%" #seg "\n\t" \
77 "jmp 2b\n" \
78 ".previous\n" \
79 ".section __ex_table,\"a\"\n\t" \
80 ".align 4\n\t" \
81 ".long 1b,3b\n" \
82 ".previous" \
4d37e7e3 83 : :"rm" (value))
1da177e4
LT
84
85/*
86 * Save a segment register away
87 */
88#define savesegment(seg, value) \
4d37e7e3 89 asm volatile("mov %%" #seg ",%0":"=rm" (value))
1da177e4 90
90a0a06a
RR
91
92static inline void native_clts(void)
93{
94 asm volatile ("clts");
95}
96
97static inline unsigned long native_read_cr0(void)
98{
99 unsigned long val;
100 asm volatile("movl %%cr0,%0\n\t" :"=r" (val));
101 return val;
102}
103
104static inline void native_write_cr0(unsigned long val)
105{
106 asm volatile("movl %0,%%cr0": :"r" (val));
107}
108
109static inline unsigned long native_read_cr2(void)
110{
111 unsigned long val;
112 asm volatile("movl %%cr2,%0\n\t" :"=r" (val));
113 return val;
114}
115
116static inline void native_write_cr2(unsigned long val)
117{
118 asm volatile("movl %0,%%cr2": :"r" (val));
119}
120
121static inline unsigned long native_read_cr3(void)
122{
123 unsigned long val;
124 asm volatile("movl %%cr3,%0\n\t" :"=r" (val));
125 return val;
126}
127
128static inline void native_write_cr3(unsigned long val)
129{
130 asm volatile("movl %0,%%cr3": :"r" (val));
131}
132
133static inline unsigned long native_read_cr4(void)
134{
135 unsigned long val;
136 asm volatile("movl %%cr4,%0\n\t" :"=r" (val));
137 return val;
138}
139
140static inline unsigned long native_read_cr4_safe(void)
141{
142 unsigned long val;
143 /* This could fault if %cr4 does not exist */
144 asm("1: movl %%cr4, %0 \n"
145 "2: \n"
146 ".section __ex_table,\"a\" \n"
147 ".long 1b,2b \n"
148 ".previous \n"
149 : "=r" (val): "0" (0));
150 return val;
151}
152
153static inline void native_write_cr4(unsigned long val)
154{
155 asm volatile("movl %0,%%cr4": :"r" (val));
156}
157
158static inline void native_wbinvd(void)
159{
160 asm volatile("wbinvd": : :"memory");
161}
162
163
d3561b7f
RR
164#ifdef CONFIG_PARAVIRT
165#include <asm/paravirt.h>
166#else
90a0a06a
RR
167#define read_cr0() (native_read_cr0())
168#define write_cr0(x) (native_write_cr0(x))
169#define read_cr2() (native_read_cr2())
170#define write_cr2(x) (native_write_cr2(x))
171#define read_cr3() (native_read_cr3())
172#define write_cr3(x) (native_write_cr3(x))
173#define read_cr4() (native_read_cr4())
174#define read_cr4_safe() (native_read_cr4_safe())
175#define write_cr4(x) (native_write_cr4(x))
176#define wbinvd() (native_wbinvd())
d3561b7f
RR
177
178/* Clear the 'TS' bit */
90a0a06a
RR
179#define clts() (native_clts())
180
d3561b7f
RR
181#endif/* CONFIG_PARAVIRT */
182
183/* Set the 'TS' bit */
1da177e4
LT
184#define stts() write_cr0(8 | read_cr0())
185
186#endif /* __KERNEL__ */
187
1da177e4
LT
188static inline unsigned long get_limit(unsigned long segment)
189{
190 unsigned long __limit;
191 __asm__("lsll %1,%0"
192 :"=r" (__limit):"r" (segment));
193 return __limit+1;
194}
195
196#define nop() __asm__ __volatile__ ("nop")
197
198#define xchg(ptr,v) ((__typeof__(*(ptr)))__xchg((unsigned long)(v),(ptr),sizeof(*(ptr))))
199
200#define tas(ptr) (xchg((ptr),1))
201
202struct __xchg_dummy { unsigned long a[100]; };
203#define __xg(x) ((struct __xchg_dummy *)(x))
204
205
8896fab3
JB
206#ifdef CONFIG_X86_CMPXCHG64
207
1da177e4
LT
208/*
209 * The semantics of XCHGCMP8B are a bit strange, this is why
210 * there is a loop and the loading of %%eax and %%edx has to
211 * be inside. This inlines well in most cases, the cached
212 * cost is around ~38 cycles. (in the future we might want
213 * to do an SIMD/3DNOW!/MMX/FPU 64-bit store here, but that
214 * might have an implicit FPU-save as a cost, so it's not
215 * clear which path to go.)
216 *
217 * cmpxchg8b must be used with the lock prefix here to allow
218 * the instruction to be executed atomically, see page 3-102
219 * of the instruction set reference 24319102.pdf. We need
220 * the reader side to see the coherent 64bit value.
221 */
222static inline void __set_64bit (unsigned long long * ptr,
223 unsigned int low, unsigned int high)
224{
225 __asm__ __volatile__ (
226 "\n1:\t"
227 "movl (%0), %%eax\n\t"
228 "movl 4(%0), %%edx\n\t"
229 "lock cmpxchg8b (%0)\n\t"
230 "jnz 1b"
231 : /* no outputs */
232 : "D"(ptr),
233 "b"(low),
234 "c"(high)
235 : "ax","dx","memory");
236}
237
238static inline void __set_64bit_constant (unsigned long long *ptr,
239 unsigned long long value)
240{
241 __set_64bit(ptr,(unsigned int)(value), (unsigned int)((value)>>32ULL));
242}
243#define ll_low(x) *(((unsigned int*)&(x))+0)
244#define ll_high(x) *(((unsigned int*)&(x))+1)
245
246static inline void __set_64bit_var (unsigned long long *ptr,
247 unsigned long long value)
248{
249 __set_64bit(ptr,ll_low(value), ll_high(value));
250}
251
252#define set_64bit(ptr,value) \
253(__builtin_constant_p(value) ? \
254 __set_64bit_constant(ptr, value) : \
255 __set_64bit_var(ptr, value) )
256
257#define _set_64bit(ptr,value) \
258(__builtin_constant_p(value) ? \
259 __set_64bit(ptr, (unsigned int)(value), (unsigned int)((value)>>32ULL) ) : \
260 __set_64bit(ptr, ll_low(value), ll_high(value)) )
261
8896fab3
JB
262#endif
263
1da177e4
LT
264/*
265 * Note: no "lock" prefix even on SMP: xchg always implies lock anyway
266 * Note 2: xchg has side effect, so that attribute volatile is necessary,
267 * but generally the primitive is invalid, *ptr is output argument. --ANK
268 */
269static inline unsigned long __xchg(unsigned long x, volatile void * ptr, int size)
270{
271 switch (size) {
272 case 1:
273 __asm__ __volatile__("xchgb %b0,%1"
274 :"=q" (x)
275 :"m" (*__xg(ptr)), "0" (x)
276 :"memory");
277 break;
278 case 2:
279 __asm__ __volatile__("xchgw %w0,%1"
280 :"=r" (x)
281 :"m" (*__xg(ptr)), "0" (x)
282 :"memory");
283 break;
284 case 4:
285 __asm__ __volatile__("xchgl %0,%1"
286 :"=r" (x)
287 :"m" (*__xg(ptr)), "0" (x)
288 :"memory");
289 break;
290 }
291 return x;
292}
293
294/*
295 * Atomic compare and exchange. Compare OLD with MEM, if identical,
296 * store NEW in MEM. Return the initial value in MEM. Success is
297 * indicated by comparing RETURN with OLD.
298 */
299
300#ifdef CONFIG_X86_CMPXCHG
301#define __HAVE_ARCH_CMPXCHG 1
53e86b91
NP
302#define cmpxchg(ptr,o,n)\
303 ((__typeof__(*(ptr)))__cmpxchg((ptr),(unsigned long)(o),\
304 (unsigned long)(n),sizeof(*(ptr))))
027a8c7e
CW
305#define sync_cmpxchg(ptr,o,n)\
306 ((__typeof__(*(ptr)))__sync_cmpxchg((ptr),(unsigned long)(o),\
307 (unsigned long)(n),sizeof(*(ptr))))
53e86b91 308#endif
1da177e4
LT
309
310static inline unsigned long __cmpxchg(volatile void *ptr, unsigned long old,
311 unsigned long new, int size)
312{
313 unsigned long prev;
314 switch (size) {
315 case 1:
316 __asm__ __volatile__(LOCK_PREFIX "cmpxchgb %b1,%2"
317 : "=a"(prev)
318 : "q"(new), "m"(*__xg(ptr)), "0"(old)
319 : "memory");
320 return prev;
321 case 2:
322 __asm__ __volatile__(LOCK_PREFIX "cmpxchgw %w1,%2"
323 : "=a"(prev)
8896fab3 324 : "r"(new), "m"(*__xg(ptr)), "0"(old)
1da177e4
LT
325 : "memory");
326 return prev;
327 case 4:
328 __asm__ __volatile__(LOCK_PREFIX "cmpxchgl %1,%2"
329 : "=a"(prev)
8896fab3 330 : "r"(new), "m"(*__xg(ptr)), "0"(old)
1da177e4
LT
331 : "memory");
332 return prev;
333 }
334 return old;
335}
336
027a8c7e
CW
337/*
338 * Always use locked operations when touching memory shared with a
339 * hypervisor, since the system may be SMP even if the guest kernel
340 * isn't.
341 */
342static inline unsigned long __sync_cmpxchg(volatile void *ptr,
343 unsigned long old,
344 unsigned long new, int size)
345{
346 unsigned long prev;
347 switch (size) {
348 case 1:
349 __asm__ __volatile__("lock; cmpxchgb %b1,%2"
350 : "=a"(prev)
351 : "q"(new), "m"(*__xg(ptr)), "0"(old)
352 : "memory");
353 return prev;
354 case 2:
355 __asm__ __volatile__("lock; cmpxchgw %w1,%2"
356 : "=a"(prev)
357 : "r"(new), "m"(*__xg(ptr)), "0"(old)
358 : "memory");
359 return prev;
360 case 4:
361 __asm__ __volatile__("lock; cmpxchgl %1,%2"
362 : "=a"(prev)
363 : "r"(new), "m"(*__xg(ptr)), "0"(old)
364 : "memory");
365 return prev;
366 }
367 return old;
368}
369
53e86b91
NP
370#ifndef CONFIG_X86_CMPXCHG
371/*
372 * Building a kernel capable running on 80386. It may be necessary to
373 * simulate the cmpxchg on the 80386 CPU. For that purpose we define
374 * a function for each of the sizes we support.
375 */
8896fab3 376
53e86b91
NP
377extern unsigned long cmpxchg_386_u8(volatile void *, u8, u8);
378extern unsigned long cmpxchg_386_u16(volatile void *, u16, u16);
379extern unsigned long cmpxchg_386_u32(volatile void *, u32, u32);
380
381static inline unsigned long cmpxchg_386(volatile void *ptr, unsigned long old,
382 unsigned long new, int size)
383{
384 switch (size) {
385 case 1:
386 return cmpxchg_386_u8(ptr, old, new);
387 case 2:
388 return cmpxchg_386_u16(ptr, old, new);
389 case 4:
390 return cmpxchg_386_u32(ptr, old, new);
391 }
392 return old;
393}
394
395#define cmpxchg(ptr,o,n) \
396({ \
397 __typeof__(*(ptr)) __ret; \
398 if (likely(boot_cpu_data.x86 > 3)) \
399 __ret = __cmpxchg((ptr), (unsigned long)(o), \
400 (unsigned long)(n), sizeof(*(ptr))); \
401 else \
402 __ret = cmpxchg_386((ptr), (unsigned long)(o), \
403 (unsigned long)(n), sizeof(*(ptr))); \
404 __ret; \
405})
8896fab3
JB
406#endif
407
408#ifdef CONFIG_X86_CMPXCHG64
409
410static inline unsigned long long __cmpxchg64(volatile void *ptr, unsigned long long old,
411 unsigned long long new)
412{
413 unsigned long long prev;
414 __asm__ __volatile__(LOCK_PREFIX "cmpxchg8b %3"
415 : "=A"(prev)
416 : "b"((unsigned long)new),
417 "c"((unsigned long)(new >> 32)),
418 "m"(*__xg(ptr)),
419 "0"(old)
420 : "memory");
421 return prev;
422}
423
424#define cmpxchg64(ptr,o,n)\
425 ((__typeof__(*(ptr)))__cmpxchg64((ptr),(unsigned long long)(o),\
426 (unsigned long long)(n)))
427
428#endif
1da177e4 429
1da177e4
LT
430/*
431 * Force strict CPU ordering.
432 * And yes, this is required on UP too when we're talking
433 * to devices.
434 *
435 * For now, "wmb()" doesn't actually do anything, as all
436 * Intel CPU's follow what Intel calls a *Processor Order*,
437 * in which all writes are seen in the program order even
438 * outside the CPU.
439 *
440 * I expect future Intel CPU's to have a weaker ordering,
441 * but I'd also expect them to finally get their act together
442 * and add some real memory barriers if so.
443 *
444 * Some non intel clones support out of order store. wmb() ceases to be a
445 * nop for these.
446 */
447
448
449/*
450 * Actually only lfence would be needed for mb() because all stores done
451 * by the kernel should be already ordered. But keep a full barrier for now.
452 */
453
454#define mb() alternative("lock; addl $0,0(%%esp)", "mfence", X86_FEATURE_XMM2)
455#define rmb() alternative("lock; addl $0,0(%%esp)", "lfence", X86_FEATURE_XMM2)
456
457/**
458 * read_barrier_depends - Flush all pending reads that subsequents reads
459 * depend on.
460 *
461 * No data-dependent reads from memory-like regions are ever reordered
462 * over this barrier. All reads preceding this primitive are guaranteed
463 * to access memory (but not necessarily other CPUs' caches) before any
464 * reads following this primitive that depend on the data return by
465 * any of the preceding reads. This primitive is much lighter weight than
466 * rmb() on most CPUs, and is never heavier weight than is
467 * rmb().
468 *
469 * These ordering constraints are respected by both the local CPU
470 * and the compiler.
471 *
472 * Ordering is not guaranteed by anything other than these primitives,
473 * not even by data dependencies. See the documentation for
474 * memory_barrier() for examples and URLs to more information.
475 *
476 * For example, the following code would force ordering (the initial
477 * value of "a" is zero, "b" is one, and "p" is "&a"):
478 *
479 * <programlisting>
480 * CPU 0 CPU 1
481 *
482 * b = 2;
483 * memory_barrier();
484 * p = &b; q = p;
485 * read_barrier_depends();
486 * d = *q;
487 * </programlisting>
488 *
489 * because the read of "*q" depends on the read of "p" and these
490 * two reads are separated by a read_barrier_depends(). However,
491 * the following code, with the same initial values for "a" and "b":
492 *
493 * <programlisting>
494 * CPU 0 CPU 1
495 *
496 * a = 2;
497 * memory_barrier();
498 * b = 3; y = b;
499 * read_barrier_depends();
500 * x = a;
501 * </programlisting>
502 *
503 * does not enforce ordering, since there is no data dependency between
504 * the read of "a" and the read of "b". Therefore, on some CPUs, such
505 * as Alpha, "y" could be set to 3 and "x" to 0. Use rmb()
d6e05edc 506 * in cases like this where there are no data dependencies.
1da177e4
LT
507 **/
508
509#define read_barrier_depends() do { } while(0)
510
511#ifdef CONFIG_X86_OOSTORE
512/* Actually there are no OOO store capable CPUs for now that do SSE,
513 but make it already an possibility. */
514#define wmb() alternative("lock; addl $0,0(%%esp)", "sfence", X86_FEATURE_XMM)
515#else
516#define wmb() __asm__ __volatile__ ("": : :"memory")
517#endif
518
519#ifdef CONFIG_SMP
520#define smp_mb() mb()
521#define smp_rmb() rmb()
522#define smp_wmb() wmb()
523#define smp_read_barrier_depends() read_barrier_depends()
911b0ad2 524#define set_mb(var, value) do { (void) xchg(&var, value); } while (0)
1da177e4
LT
525#else
526#define smp_mb() barrier()
527#define smp_rmb() barrier()
528#define smp_wmb() barrier()
529#define smp_read_barrier_depends() do { } while(0)
530#define set_mb(var, value) do { var = value; barrier(); } while (0)
531#endif
532
55f327fa 533#include <linux/irqflags.h>
1da177e4
LT
534
535/*
536 * disable hlt during certain critical i/o operations
537 */
538#define HAVE_DISABLE_HLT
539void disable_hlt(void);
540void enable_hlt(void);
541
542extern int es7000_plat;
543void cpu_idle_wait(void);
544
4dc7a0bb
IM
545/*
546 * On SMP systems, when the scheduler does migration-cost autodetection,
547 * it needs a way to flush as much of the CPU's caches as possible:
548 */
549static inline void sched_cacheflush(void)
550{
551 wbinvd();
552}
553
1da177e4 554extern unsigned long arch_align_stack(unsigned long sp);
9a0b5817 555extern void free_init_pages(char *what, unsigned long begin, unsigned long end);
1da177e4 556
cdb04527
AB
557void default_idle(void);
558
1da177e4 559#endif