xfs: kill xfs_fs_repair_cmn_err() macro
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / xfs / xfs_mount.c
CommitLineData
1da177e4 1/*
7b718769
NS
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
a844f451 19#include "xfs_fs.h"
1da177e4 20#include "xfs_types.h"
a844f451 21#include "xfs_bit.h"
1da177e4 22#include "xfs_log.h"
a844f451 23#include "xfs_inum.h"
1da177e4
LT
24#include "xfs_trans.h"
25#include "xfs_sb.h"
26#include "xfs_ag.h"
1da177e4 27#include "xfs_dir2.h"
1da177e4 28#include "xfs_mount.h"
1da177e4 29#include "xfs_bmap_btree.h"
a844f451 30#include "xfs_alloc_btree.h"
1da177e4 31#include "xfs_ialloc_btree.h"
1da177e4
LT
32#include "xfs_dinode.h"
33#include "xfs_inode.h"
a844f451
NS
34#include "xfs_btree.h"
35#include "xfs_ialloc.h"
1da177e4
LT
36#include "xfs_alloc.h"
37#include "xfs_rtalloc.h"
38#include "xfs_bmap.h"
39#include "xfs_error.h"
1da177e4
LT
40#include "xfs_rw.h"
41#include "xfs_quota.h"
42#include "xfs_fsops.h"
43355099 43#include "xfs_utils.h"
0b1b213f
CH
44#include "xfs_trace.h"
45
1da177e4 46
ba0f32d4 47STATIC void xfs_unmountfs_wait(xfs_mount_t *);
1da177e4 48
8d280b98
DC
49
50#ifdef HAVE_PERCPU_SB
20f4ebf2 51STATIC void xfs_icsb_balance_counter(xfs_mount_t *, xfs_sb_field_t,
45af6c6d
CH
52 int);
53STATIC void xfs_icsb_balance_counter_locked(xfs_mount_t *, xfs_sb_field_t,
54 int);
36fbe6e6 55STATIC void xfs_icsb_disable_counter(xfs_mount_t *, xfs_sb_field_t);
8d280b98
DC
56#else
57
45af6c6d
CH
58#define xfs_icsb_balance_counter(mp, a, b) do { } while (0)
59#define xfs_icsb_balance_counter_locked(mp, a, b) do { } while (0)
8d280b98
DC
60#endif
61
1df84c93 62static const struct {
8d280b98
DC
63 short offset;
64 short type; /* 0 = integer
65 * 1 = binary / string (no translation)
66 */
1da177e4
LT
67} xfs_sb_info[] = {
68 { offsetof(xfs_sb_t, sb_magicnum), 0 },
69 { offsetof(xfs_sb_t, sb_blocksize), 0 },
70 { offsetof(xfs_sb_t, sb_dblocks), 0 },
71 { offsetof(xfs_sb_t, sb_rblocks), 0 },
72 { offsetof(xfs_sb_t, sb_rextents), 0 },
73 { offsetof(xfs_sb_t, sb_uuid), 1 },
74 { offsetof(xfs_sb_t, sb_logstart), 0 },
75 { offsetof(xfs_sb_t, sb_rootino), 0 },
76 { offsetof(xfs_sb_t, sb_rbmino), 0 },
77 { offsetof(xfs_sb_t, sb_rsumino), 0 },
78 { offsetof(xfs_sb_t, sb_rextsize), 0 },
79 { offsetof(xfs_sb_t, sb_agblocks), 0 },
80 { offsetof(xfs_sb_t, sb_agcount), 0 },
81 { offsetof(xfs_sb_t, sb_rbmblocks), 0 },
82 { offsetof(xfs_sb_t, sb_logblocks), 0 },
83 { offsetof(xfs_sb_t, sb_versionnum), 0 },
84 { offsetof(xfs_sb_t, sb_sectsize), 0 },
85 { offsetof(xfs_sb_t, sb_inodesize), 0 },
86 { offsetof(xfs_sb_t, sb_inopblock), 0 },
87 { offsetof(xfs_sb_t, sb_fname[0]), 1 },
88 { offsetof(xfs_sb_t, sb_blocklog), 0 },
89 { offsetof(xfs_sb_t, sb_sectlog), 0 },
90 { offsetof(xfs_sb_t, sb_inodelog), 0 },
91 { offsetof(xfs_sb_t, sb_inopblog), 0 },
92 { offsetof(xfs_sb_t, sb_agblklog), 0 },
93 { offsetof(xfs_sb_t, sb_rextslog), 0 },
94 { offsetof(xfs_sb_t, sb_inprogress), 0 },
95 { offsetof(xfs_sb_t, sb_imax_pct), 0 },
96 { offsetof(xfs_sb_t, sb_icount), 0 },
97 { offsetof(xfs_sb_t, sb_ifree), 0 },
98 { offsetof(xfs_sb_t, sb_fdblocks), 0 },
99 { offsetof(xfs_sb_t, sb_frextents), 0 },
100 { offsetof(xfs_sb_t, sb_uquotino), 0 },
101 { offsetof(xfs_sb_t, sb_gquotino), 0 },
102 { offsetof(xfs_sb_t, sb_qflags), 0 },
103 { offsetof(xfs_sb_t, sb_flags), 0 },
104 { offsetof(xfs_sb_t, sb_shared_vn), 0 },
105 { offsetof(xfs_sb_t, sb_inoalignmt), 0 },
106 { offsetof(xfs_sb_t, sb_unit), 0 },
107 { offsetof(xfs_sb_t, sb_width), 0 },
108 { offsetof(xfs_sb_t, sb_dirblklog), 0 },
109 { offsetof(xfs_sb_t, sb_logsectlog), 0 },
110 { offsetof(xfs_sb_t, sb_logsectsize),0 },
111 { offsetof(xfs_sb_t, sb_logsunit), 0 },
112 { offsetof(xfs_sb_t, sb_features2), 0 },
ee1c0908 113 { offsetof(xfs_sb_t, sb_bad_features2), 0 },
1da177e4
LT
114 { sizeof(xfs_sb_t), 0 }
115};
116
27174203
CH
117static DEFINE_MUTEX(xfs_uuid_table_mutex);
118static int xfs_uuid_table_size;
119static uuid_t *xfs_uuid_table;
120
121/*
122 * See if the UUID is unique among mounted XFS filesystems.
123 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
124 */
125STATIC int
126xfs_uuid_mount(
127 struct xfs_mount *mp)
128{
129 uuid_t *uuid = &mp->m_sb.sb_uuid;
130 int hole, i;
131
132 if (mp->m_flags & XFS_MOUNT_NOUUID)
133 return 0;
134
135 if (uuid_is_nil(uuid)) {
136 cmn_err(CE_WARN,
137 "XFS: Filesystem %s has nil UUID - can't mount",
138 mp->m_fsname);
139 return XFS_ERROR(EINVAL);
140 }
141
142 mutex_lock(&xfs_uuid_table_mutex);
143 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
144 if (uuid_is_nil(&xfs_uuid_table[i])) {
145 hole = i;
146 continue;
147 }
148 if (uuid_equal(uuid, &xfs_uuid_table[i]))
149 goto out_duplicate;
150 }
151
152 if (hole < 0) {
153 xfs_uuid_table = kmem_realloc(xfs_uuid_table,
154 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
155 xfs_uuid_table_size * sizeof(*xfs_uuid_table),
156 KM_SLEEP);
157 hole = xfs_uuid_table_size++;
158 }
159 xfs_uuid_table[hole] = *uuid;
160 mutex_unlock(&xfs_uuid_table_mutex);
161
162 return 0;
163
164 out_duplicate:
165 mutex_unlock(&xfs_uuid_table_mutex);
166 cmn_err(CE_WARN, "XFS: Filesystem %s has duplicate UUID - can't mount",
167 mp->m_fsname);
168 return XFS_ERROR(EINVAL);
169}
170
171STATIC void
172xfs_uuid_unmount(
173 struct xfs_mount *mp)
174{
175 uuid_t *uuid = &mp->m_sb.sb_uuid;
176 int i;
177
178 if (mp->m_flags & XFS_MOUNT_NOUUID)
179 return;
180
181 mutex_lock(&xfs_uuid_table_mutex);
182 for (i = 0; i < xfs_uuid_table_size; i++) {
183 if (uuid_is_nil(&xfs_uuid_table[i]))
184 continue;
185 if (!uuid_equal(uuid, &xfs_uuid_table[i]))
186 continue;
187 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
188 break;
189 }
190 ASSERT(i < xfs_uuid_table_size);
191 mutex_unlock(&xfs_uuid_table_mutex);
192}
193
194
0fa800fb
DC
195/*
196 * Reference counting access wrappers to the perag structures.
e176579e
DC
197 * Because we never free per-ag structures, the only thing we
198 * have to protect against changes is the tree structure itself.
0fa800fb
DC
199 */
200struct xfs_perag *
201xfs_perag_get(struct xfs_mount *mp, xfs_agnumber_t agno)
202{
203 struct xfs_perag *pag;
204 int ref = 0;
205
e176579e 206 rcu_read_lock();
0fa800fb
DC
207 pag = radix_tree_lookup(&mp->m_perag_tree, agno);
208 if (pag) {
209 ASSERT(atomic_read(&pag->pag_ref) >= 0);
0fa800fb
DC
210 ref = atomic_inc_return(&pag->pag_ref);
211 }
e176579e 212 rcu_read_unlock();
0fa800fb
DC
213 trace_xfs_perag_get(mp, agno, ref, _RET_IP_);
214 return pag;
215}
216
65d0f205
DC
217/*
218 * search from @first to find the next perag with the given tag set.
219 */
220struct xfs_perag *
221xfs_perag_get_tag(
222 struct xfs_mount *mp,
223 xfs_agnumber_t first,
224 int tag)
225{
226 struct xfs_perag *pag;
227 int found;
228 int ref;
229
230 rcu_read_lock();
231 found = radix_tree_gang_lookup_tag(&mp->m_perag_tree,
232 (void **)&pag, first, 1, tag);
233 if (found <= 0) {
234 rcu_read_unlock();
235 return NULL;
236 }
237 ref = atomic_inc_return(&pag->pag_ref);
238 rcu_read_unlock();
239 trace_xfs_perag_get_tag(mp, pag->pag_agno, ref, _RET_IP_);
240 return pag;
241}
242
0fa800fb
DC
243void
244xfs_perag_put(struct xfs_perag *pag)
245{
246 int ref;
247
248 ASSERT(atomic_read(&pag->pag_ref) > 0);
249 ref = atomic_dec_return(&pag->pag_ref);
250 trace_xfs_perag_put(pag->pag_mount, pag->pag_agno, ref, _RET_IP_);
251}
252
e176579e
DC
253STATIC void
254__xfs_free_perag(
255 struct rcu_head *head)
256{
257 struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
258
259 ASSERT(atomic_read(&pag->pag_ref) == 0);
260 kmem_free(pag);
261}
262
1da177e4 263/*
e176579e 264 * Free up the per-ag resources associated with the mount structure.
1da177e4 265 */
c962fb79 266STATIC void
ff4f038c 267xfs_free_perag(
745f6919 268 xfs_mount_t *mp)
1da177e4 269{
1c1c6ebc
DC
270 xfs_agnumber_t agno;
271 struct xfs_perag *pag;
272
273 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
274 spin_lock(&mp->m_perag_lock);
275 pag = radix_tree_delete(&mp->m_perag_tree, agno);
276 spin_unlock(&mp->m_perag_lock);
e176579e 277 ASSERT(pag);
f83282a8 278 ASSERT(atomic_read(&pag->pag_ref) == 0);
e176579e 279 call_rcu(&pag->rcu_head, __xfs_free_perag);
1da177e4 280 }
1da177e4
LT
281}
282
4cc929ee
NS
283/*
284 * Check size of device based on the (data/realtime) block count.
285 * Note: this check is used by the growfs code as well as mount.
286 */
287int
288xfs_sb_validate_fsb_count(
289 xfs_sb_t *sbp,
290 __uint64_t nblocks)
291{
292 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
293 ASSERT(sbp->sb_blocklog >= BBSHIFT);
294
295#if XFS_BIG_BLKNOS /* Limited by ULONG_MAX of page cache index */
296 if (nblocks >> (PAGE_CACHE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
657a4cff 297 return EFBIG;
4cc929ee
NS
298#else /* Limited by UINT_MAX of sectors */
299 if (nblocks << (sbp->sb_blocklog - BBSHIFT) > UINT_MAX)
657a4cff 300 return EFBIG;
4cc929ee
NS
301#endif
302 return 0;
303}
1da177e4
LT
304
305/*
306 * Check the validity of the SB found.
307 */
308STATIC int
309xfs_mount_validate_sb(
310 xfs_mount_t *mp,
764d1f89
NS
311 xfs_sb_t *sbp,
312 int flags)
1da177e4
LT
313{
314 /*
315 * If the log device and data device have the
316 * same device number, the log is internal.
317 * Consequently, the sb_logstart should be non-zero. If
318 * we have a zero sb_logstart in this case, we may be trying to mount
319 * a volume filesystem in a non-volume manner.
320 */
321 if (sbp->sb_magicnum != XFS_SB_MAGIC) {
764d1f89 322 xfs_fs_mount_cmn_err(flags, "bad magic number");
1da177e4
LT
323 return XFS_ERROR(EWRONGFS);
324 }
325
62118709 326 if (!xfs_sb_good_version(sbp)) {
764d1f89 327 xfs_fs_mount_cmn_err(flags, "bad version");
1da177e4
LT
328 return XFS_ERROR(EWRONGFS);
329 }
330
331 if (unlikely(
332 sbp->sb_logstart == 0 && mp->m_logdev_targp == mp->m_ddev_targp)) {
764d1f89
NS
333 xfs_fs_mount_cmn_err(flags,
334 "filesystem is marked as having an external log; "
335 "specify logdev on the\nmount command line.");
336 return XFS_ERROR(EINVAL);
1da177e4
LT
337 }
338
339 if (unlikely(
340 sbp->sb_logstart != 0 && mp->m_logdev_targp != mp->m_ddev_targp)) {
764d1f89
NS
341 xfs_fs_mount_cmn_err(flags,
342 "filesystem is marked as having an internal log; "
343 "do not specify logdev on\nthe mount command line.");
344 return XFS_ERROR(EINVAL);
1da177e4
LT
345 }
346
347 /*
348 * More sanity checking. These were stolen directly from
349 * xfs_repair.
350 */
351 if (unlikely(
352 sbp->sb_agcount <= 0 ||
353 sbp->sb_sectsize < XFS_MIN_SECTORSIZE ||
354 sbp->sb_sectsize > XFS_MAX_SECTORSIZE ||
355 sbp->sb_sectlog < XFS_MIN_SECTORSIZE_LOG ||
356 sbp->sb_sectlog > XFS_MAX_SECTORSIZE_LOG ||
2ac00af7 357 sbp->sb_sectsize != (1 << sbp->sb_sectlog) ||
1da177e4
LT
358 sbp->sb_blocksize < XFS_MIN_BLOCKSIZE ||
359 sbp->sb_blocksize > XFS_MAX_BLOCKSIZE ||
360 sbp->sb_blocklog < XFS_MIN_BLOCKSIZE_LOG ||
361 sbp->sb_blocklog > XFS_MAX_BLOCKSIZE_LOG ||
2ac00af7 362 sbp->sb_blocksize != (1 << sbp->sb_blocklog) ||
1da177e4
LT
363 sbp->sb_inodesize < XFS_DINODE_MIN_SIZE ||
364 sbp->sb_inodesize > XFS_DINODE_MAX_SIZE ||
9f989c94
NS
365 sbp->sb_inodelog < XFS_DINODE_MIN_LOG ||
366 sbp->sb_inodelog > XFS_DINODE_MAX_LOG ||
2ac00af7 367 sbp->sb_inodesize != (1 << sbp->sb_inodelog) ||
9f989c94 368 (sbp->sb_blocklog - sbp->sb_inodelog != sbp->sb_inopblog) ||
1da177e4
LT
369 (sbp->sb_rextsize * sbp->sb_blocksize > XFS_MAX_RTEXTSIZE) ||
370 (sbp->sb_rextsize * sbp->sb_blocksize < XFS_MIN_RTEXTSIZE) ||
e50bd16f 371 (sbp->sb_imax_pct > 100 /* zero sb_imax_pct is valid */))) {
764d1f89 372 xfs_fs_mount_cmn_err(flags, "SB sanity check 1 failed");
1da177e4
LT
373 return XFS_ERROR(EFSCORRUPTED);
374 }
375
376 /*
377 * Sanity check AG count, size fields against data size field
378 */
379 if (unlikely(
380 sbp->sb_dblocks == 0 ||
381 sbp->sb_dblocks >
382 (xfs_drfsbno_t)sbp->sb_agcount * sbp->sb_agblocks ||
383 sbp->sb_dblocks < (xfs_drfsbno_t)(sbp->sb_agcount - 1) *
384 sbp->sb_agblocks + XFS_MIN_AG_BLOCKS)) {
764d1f89 385 xfs_fs_mount_cmn_err(flags, "SB sanity check 2 failed");
1da177e4
LT
386 return XFS_ERROR(EFSCORRUPTED);
387 }
388
2edbddd5
LM
389 /*
390 * Until this is fixed only page-sized or smaller data blocks work.
391 */
392 if (unlikely(sbp->sb_blocksize > PAGE_SIZE)) {
393 xfs_fs_mount_cmn_err(flags,
394 "file system with blocksize %d bytes",
395 sbp->sb_blocksize);
396 xfs_fs_mount_cmn_err(flags,
397 "only pagesize (%ld) or less will currently work.",
398 PAGE_SIZE);
399 return XFS_ERROR(ENOSYS);
400 }
401
1a5902c5
CH
402 /*
403 * Currently only very few inode sizes are supported.
404 */
405 switch (sbp->sb_inodesize) {
406 case 256:
407 case 512:
408 case 1024:
409 case 2048:
410 break;
411 default:
412 xfs_fs_mount_cmn_err(flags,
413 "inode size of %d bytes not supported",
414 sbp->sb_inodesize);
415 return XFS_ERROR(ENOSYS);
416 }
417
4cc929ee
NS
418 if (xfs_sb_validate_fsb_count(sbp, sbp->sb_dblocks) ||
419 xfs_sb_validate_fsb_count(sbp, sbp->sb_rblocks)) {
764d1f89
NS
420 xfs_fs_mount_cmn_err(flags,
421 "file system too large to be mounted on this system.");
657a4cff 422 return XFS_ERROR(EFBIG);
1da177e4
LT
423 }
424
425 if (unlikely(sbp->sb_inprogress)) {
764d1f89 426 xfs_fs_mount_cmn_err(flags, "file system busy");
1da177e4
LT
427 return XFS_ERROR(EFSCORRUPTED);
428 }
429
de20614b
NS
430 /*
431 * Version 1 directory format has never worked on Linux.
432 */
62118709 433 if (unlikely(!xfs_sb_version_hasdirv2(sbp))) {
764d1f89
NS
434 xfs_fs_mount_cmn_err(flags,
435 "file system using version 1 directory format");
de20614b
NS
436 return XFS_ERROR(ENOSYS);
437 }
438
1da177e4
LT
439 return 0;
440}
441
1c1c6ebc 442int
c11e2c36 443xfs_initialize_perag(
c11e2c36 444 xfs_mount_t *mp,
1c1c6ebc
DC
445 xfs_agnumber_t agcount,
446 xfs_agnumber_t *maxagi)
1da177e4
LT
447{
448 xfs_agnumber_t index, max_metadata;
8b26c582 449 xfs_agnumber_t first_initialised = 0;
1da177e4
LT
450 xfs_perag_t *pag;
451 xfs_agino_t agino;
452 xfs_ino_t ino;
453 xfs_sb_t *sbp = &mp->m_sb;
8b26c582 454 int error = -ENOMEM;
1da177e4 455
1c1c6ebc
DC
456 /*
457 * Walk the current per-ag tree so we don't try to initialise AGs
458 * that already exist (growfs case). Allocate and insert all the
459 * AGs we don't find ready for initialisation.
460 */
461 for (index = 0; index < agcount; index++) {
462 pag = xfs_perag_get(mp, index);
463 if (pag) {
464 xfs_perag_put(pag);
465 continue;
466 }
8b26c582
DC
467 if (!first_initialised)
468 first_initialised = index;
fb3b504a 469
1c1c6ebc
DC
470 pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
471 if (!pag)
8b26c582 472 goto out_unwind;
fb3b504a
CH
473 pag->pag_agno = index;
474 pag->pag_mount = mp;
1a427ab0 475 spin_lock_init(&pag->pag_ici_lock);
69b491c2 476 mutex_init(&pag->pag_ici_reclaim_lock);
fb3b504a 477 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
74f75a0c
DC
478 spin_lock_init(&pag->pag_buf_lock);
479 pag->pag_buf_tree = RB_ROOT;
fb3b504a 480
1c1c6ebc 481 if (radix_tree_preload(GFP_NOFS))
8b26c582 482 goto out_unwind;
fb3b504a 483
1c1c6ebc
DC
484 spin_lock(&mp->m_perag_lock);
485 if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
486 BUG();
487 spin_unlock(&mp->m_perag_lock);
8b26c582
DC
488 radix_tree_preload_end();
489 error = -EEXIST;
490 goto out_unwind;
1c1c6ebc
DC
491 }
492 spin_unlock(&mp->m_perag_lock);
493 radix_tree_preload_end();
494 }
495
fb3b504a
CH
496 /*
497 * If we mount with the inode64 option, or no inode overflows
498 * the legacy 32-bit address space clear the inode32 option.
1da177e4 499 */
fb3b504a
CH
500 agino = XFS_OFFBNO_TO_AGINO(mp, sbp->sb_agblocks - 1, 0);
501 ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino);
502
503 if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && ino > XFS_MAXINUMBER_32)
1da177e4 504 mp->m_flags |= XFS_MOUNT_32BITINODES;
fb3b504a 505 else
1da177e4 506 mp->m_flags &= ~XFS_MOUNT_32BITINODES;
1da177e4 507
1da177e4 508 if (mp->m_flags & XFS_MOUNT_32BITINODES) {
fb3b504a
CH
509 /*
510 * Calculate how much should be reserved for inodes to meet
511 * the max inode percentage.
1da177e4
LT
512 */
513 if (mp->m_maxicount) {
514 __uint64_t icount;
515
516 icount = sbp->sb_dblocks * sbp->sb_imax_pct;
517 do_div(icount, 100);
518 icount += sbp->sb_agblocks - 1;
a749ee86 519 do_div(icount, sbp->sb_agblocks);
1da177e4
LT
520 max_metadata = icount;
521 } else {
522 max_metadata = agcount;
523 }
fb3b504a 524
1da177e4
LT
525 for (index = 0; index < agcount; index++) {
526 ino = XFS_AGINO_TO_INO(mp, index, agino);
fb3b504a 527 if (ino > XFS_MAXINUMBER_32) {
1da177e4
LT
528 index++;
529 break;
530 }
531
44b56e0a 532 pag = xfs_perag_get(mp, index);
1da177e4
LT
533 pag->pagi_inodeok = 1;
534 if (index < max_metadata)
535 pag->pagf_metadata = 1;
44b56e0a 536 xfs_perag_put(pag);
1da177e4
LT
537 }
538 } else {
1da177e4 539 for (index = 0; index < agcount; index++) {
44b56e0a 540 pag = xfs_perag_get(mp, index);
1da177e4 541 pag->pagi_inodeok = 1;
44b56e0a 542 xfs_perag_put(pag);
1da177e4
LT
543 }
544 }
fb3b504a 545
1c1c6ebc
DC
546 if (maxagi)
547 *maxagi = index;
548 return 0;
8b26c582
DC
549
550out_unwind:
551 kmem_free(pag);
552 for (; index > first_initialised; index--) {
553 pag = radix_tree_delete(&mp->m_perag_tree, index);
554 kmem_free(pag);
555 }
556 return error;
1da177e4
LT
557}
558
2bdf7cd0
CH
559void
560xfs_sb_from_disk(
561 xfs_sb_t *to,
562 xfs_dsb_t *from)
563{
564 to->sb_magicnum = be32_to_cpu(from->sb_magicnum);
565 to->sb_blocksize = be32_to_cpu(from->sb_blocksize);
566 to->sb_dblocks = be64_to_cpu(from->sb_dblocks);
567 to->sb_rblocks = be64_to_cpu(from->sb_rblocks);
568 to->sb_rextents = be64_to_cpu(from->sb_rextents);
569 memcpy(&to->sb_uuid, &from->sb_uuid, sizeof(to->sb_uuid));
570 to->sb_logstart = be64_to_cpu(from->sb_logstart);
571 to->sb_rootino = be64_to_cpu(from->sb_rootino);
572 to->sb_rbmino = be64_to_cpu(from->sb_rbmino);
573 to->sb_rsumino = be64_to_cpu(from->sb_rsumino);
574 to->sb_rextsize = be32_to_cpu(from->sb_rextsize);
575 to->sb_agblocks = be32_to_cpu(from->sb_agblocks);
576 to->sb_agcount = be32_to_cpu(from->sb_agcount);
577 to->sb_rbmblocks = be32_to_cpu(from->sb_rbmblocks);
578 to->sb_logblocks = be32_to_cpu(from->sb_logblocks);
579 to->sb_versionnum = be16_to_cpu(from->sb_versionnum);
580 to->sb_sectsize = be16_to_cpu(from->sb_sectsize);
581 to->sb_inodesize = be16_to_cpu(from->sb_inodesize);
582 to->sb_inopblock = be16_to_cpu(from->sb_inopblock);
583 memcpy(&to->sb_fname, &from->sb_fname, sizeof(to->sb_fname));
584 to->sb_blocklog = from->sb_blocklog;
585 to->sb_sectlog = from->sb_sectlog;
586 to->sb_inodelog = from->sb_inodelog;
587 to->sb_inopblog = from->sb_inopblog;
588 to->sb_agblklog = from->sb_agblklog;
589 to->sb_rextslog = from->sb_rextslog;
590 to->sb_inprogress = from->sb_inprogress;
591 to->sb_imax_pct = from->sb_imax_pct;
592 to->sb_icount = be64_to_cpu(from->sb_icount);
593 to->sb_ifree = be64_to_cpu(from->sb_ifree);
594 to->sb_fdblocks = be64_to_cpu(from->sb_fdblocks);
595 to->sb_frextents = be64_to_cpu(from->sb_frextents);
596 to->sb_uquotino = be64_to_cpu(from->sb_uquotino);
597 to->sb_gquotino = be64_to_cpu(from->sb_gquotino);
598 to->sb_qflags = be16_to_cpu(from->sb_qflags);
599 to->sb_flags = from->sb_flags;
600 to->sb_shared_vn = from->sb_shared_vn;
601 to->sb_inoalignmt = be32_to_cpu(from->sb_inoalignmt);
602 to->sb_unit = be32_to_cpu(from->sb_unit);
603 to->sb_width = be32_to_cpu(from->sb_width);
604 to->sb_dirblklog = from->sb_dirblklog;
605 to->sb_logsectlog = from->sb_logsectlog;
606 to->sb_logsectsize = be16_to_cpu(from->sb_logsectsize);
607 to->sb_logsunit = be32_to_cpu(from->sb_logsunit);
608 to->sb_features2 = be32_to_cpu(from->sb_features2);
ee1c0908 609 to->sb_bad_features2 = be32_to_cpu(from->sb_bad_features2);
2bdf7cd0
CH
610}
611
1da177e4 612/*
2bdf7cd0 613 * Copy in core superblock to ondisk one.
1da177e4 614 *
2bdf7cd0 615 * The fields argument is mask of superblock fields to copy.
1da177e4
LT
616 */
617void
2bdf7cd0
CH
618xfs_sb_to_disk(
619 xfs_dsb_t *to,
620 xfs_sb_t *from,
1da177e4
LT
621 __int64_t fields)
622{
2bdf7cd0
CH
623 xfs_caddr_t to_ptr = (xfs_caddr_t)to;
624 xfs_caddr_t from_ptr = (xfs_caddr_t)from;
1da177e4
LT
625 xfs_sb_field_t f;
626 int first;
627 int size;
628
1da177e4 629 ASSERT(fields);
1da177e4
LT
630 if (!fields)
631 return;
632
1da177e4
LT
633 while (fields) {
634 f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields);
635 first = xfs_sb_info[f].offset;
636 size = xfs_sb_info[f + 1].offset - first;
637
638 ASSERT(xfs_sb_info[f].type == 0 || xfs_sb_info[f].type == 1);
639
640 if (size == 1 || xfs_sb_info[f].type == 1) {
2bdf7cd0 641 memcpy(to_ptr + first, from_ptr + first, size);
1da177e4
LT
642 } else {
643 switch (size) {
644 case 2:
2bdf7cd0
CH
645 *(__be16 *)(to_ptr + first) =
646 cpu_to_be16(*(__u16 *)(from_ptr + first));
1da177e4
LT
647 break;
648 case 4:
2bdf7cd0
CH
649 *(__be32 *)(to_ptr + first) =
650 cpu_to_be32(*(__u32 *)(from_ptr + first));
1da177e4
LT
651 break;
652 case 8:
2bdf7cd0
CH
653 *(__be64 *)(to_ptr + first) =
654 cpu_to_be64(*(__u64 *)(from_ptr + first));
1da177e4
LT
655 break;
656 default:
657 ASSERT(0);
658 }
659 }
660
661 fields &= ~(1LL << f);
662 }
663}
664
665/*
666 * xfs_readsb
667 *
668 * Does the initial read of the superblock.
669 */
670int
764d1f89 671xfs_readsb(xfs_mount_t *mp, int flags)
1da177e4
LT
672{
673 unsigned int sector_size;
1da177e4 674 xfs_buf_t *bp;
1da177e4
LT
675 int error;
676
677 ASSERT(mp->m_sb_bp == NULL);
678 ASSERT(mp->m_ddev_targp != NULL);
679
680 /*
681 * Allocate a (locked) buffer to hold the superblock.
682 * This will be kept around at all times to optimize
683 * access to the superblock.
684 */
685 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
26af6552
DC
686
687reread:
688 bp = xfs_buf_read_uncached(mp, mp->m_ddev_targp,
689 XFS_SB_DADDR, sector_size, 0);
690 if (!bp) {
691 xfs_fs_mount_cmn_err(flags, "SB buffer read failed");
692 return EIO;
1da177e4 693 }
1da177e4
LT
694
695 /*
696 * Initialize the mount structure from the superblock.
697 * But first do some basic consistency checking.
698 */
2bdf7cd0 699 xfs_sb_from_disk(&mp->m_sb, XFS_BUF_TO_SBP(bp));
764d1f89 700 error = xfs_mount_validate_sb(mp, &(mp->m_sb), flags);
1da177e4 701 if (error) {
764d1f89 702 xfs_fs_mount_cmn_err(flags, "SB validate failed");
26af6552 703 goto release_buf;
1da177e4
LT
704 }
705
706 /*
707 * We must be able to do sector-sized and sector-aligned IO.
708 */
709 if (sector_size > mp->m_sb.sb_sectsize) {
764d1f89
NS
710 xfs_fs_mount_cmn_err(flags,
711 "device supports only %u byte sectors (not %u)",
1da177e4
LT
712 sector_size, mp->m_sb.sb_sectsize);
713 error = ENOSYS;
26af6552 714 goto release_buf;
1da177e4
LT
715 }
716
717 /*
718 * If device sector size is smaller than the superblock size,
719 * re-read the superblock so the buffer is correctly sized.
720 */
721 if (sector_size < mp->m_sb.sb_sectsize) {
1da177e4
LT
722 xfs_buf_relse(bp);
723 sector_size = mp->m_sb.sb_sectsize;
26af6552 724 goto reread;
1da177e4
LT
725 }
726
5478eead
LM
727 /* Initialize per-cpu counters */
728 xfs_icsb_reinit_counters(mp);
8d280b98 729
1da177e4 730 mp->m_sb_bp = bp;
26af6552 731 xfs_buf_unlock(bp);
1da177e4
LT
732 return 0;
733
26af6552
DC
734release_buf:
735 xfs_buf_relse(bp);
1da177e4
LT
736 return error;
737}
738
739
740/*
741 * xfs_mount_common
742 *
743 * Mount initialization code establishing various mount
744 * fields from the superblock associated with the given
745 * mount structure
746 */
ba0f32d4 747STATIC void
1da177e4
LT
748xfs_mount_common(xfs_mount_t *mp, xfs_sb_t *sbp)
749{
1da177e4 750 mp->m_agfrotor = mp->m_agirotor = 0;
007c61c6 751 spin_lock_init(&mp->m_agirotor_lock);
1da177e4
LT
752 mp->m_maxagi = mp->m_sb.sb_agcount;
753 mp->m_blkbit_log = sbp->sb_blocklog + XFS_NBBYLOG;
754 mp->m_blkbb_log = sbp->sb_blocklog - BBSHIFT;
755 mp->m_sectbb_log = sbp->sb_sectlog - BBSHIFT;
756 mp->m_agno_log = xfs_highbit32(sbp->sb_agcount - 1) + 1;
757 mp->m_agino_log = sbp->sb_inopblog + sbp->sb_agblklog;
1da177e4
LT
758 mp->m_blockmask = sbp->sb_blocksize - 1;
759 mp->m_blockwsize = sbp->sb_blocksize >> XFS_WORDLOG;
760 mp->m_blockwmask = mp->m_blockwsize - 1;
1da177e4 761
60197e8d
CH
762 mp->m_alloc_mxr[0] = xfs_allocbt_maxrecs(mp, sbp->sb_blocksize, 1);
763 mp->m_alloc_mxr[1] = xfs_allocbt_maxrecs(mp, sbp->sb_blocksize, 0);
764 mp->m_alloc_mnr[0] = mp->m_alloc_mxr[0] / 2;
765 mp->m_alloc_mnr[1] = mp->m_alloc_mxr[1] / 2;
766
767 mp->m_inobt_mxr[0] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 1);
768 mp->m_inobt_mxr[1] = xfs_inobt_maxrecs(mp, sbp->sb_blocksize, 0);
769 mp->m_inobt_mnr[0] = mp->m_inobt_mxr[0] / 2;
770 mp->m_inobt_mnr[1] = mp->m_inobt_mxr[1] / 2;
771
772 mp->m_bmap_dmxr[0] = xfs_bmbt_maxrecs(mp, sbp->sb_blocksize, 1);
773 mp->m_bmap_dmxr[1] = xfs_bmbt_maxrecs(mp, sbp->sb_blocksize, 0);
774 mp->m_bmap_dmnr[0] = mp->m_bmap_dmxr[0] / 2;
775 mp->m_bmap_dmnr[1] = mp->m_bmap_dmxr[1] / 2;
1da177e4
LT
776
777 mp->m_bsize = XFS_FSB_TO_BB(mp, 1);
778 mp->m_ialloc_inos = (int)MAX((__uint16_t)XFS_INODES_PER_CHUNK,
779 sbp->sb_inopblock);
780 mp->m_ialloc_blks = mp->m_ialloc_inos >> sbp->sb_inopblog;
781}
92821e2b
DC
782
783/*
784 * xfs_initialize_perag_data
785 *
786 * Read in each per-ag structure so we can count up the number of
787 * allocated inodes, free inodes and used filesystem blocks as this
788 * information is no longer persistent in the superblock. Once we have
789 * this information, write it into the in-core superblock structure.
790 */
791STATIC int
792xfs_initialize_perag_data(xfs_mount_t *mp, xfs_agnumber_t agcount)
793{
794 xfs_agnumber_t index;
795 xfs_perag_t *pag;
796 xfs_sb_t *sbp = &mp->m_sb;
797 uint64_t ifree = 0;
798 uint64_t ialloc = 0;
799 uint64_t bfree = 0;
800 uint64_t bfreelst = 0;
801 uint64_t btree = 0;
802 int error;
92821e2b
DC
803
804 for (index = 0; index < agcount; index++) {
805 /*
806 * read the agf, then the agi. This gets us
9da096fd 807 * all the information we need and populates the
92821e2b
DC
808 * per-ag structures for us.
809 */
810 error = xfs_alloc_pagf_init(mp, NULL, index, 0);
811 if (error)
812 return error;
813
814 error = xfs_ialloc_pagi_init(mp, NULL, index);
815 if (error)
816 return error;
44b56e0a 817 pag = xfs_perag_get(mp, index);
92821e2b
DC
818 ifree += pag->pagi_freecount;
819 ialloc += pag->pagi_count;
820 bfree += pag->pagf_freeblks;
821 bfreelst += pag->pagf_flcount;
822 btree += pag->pagf_btreeblks;
44b56e0a 823 xfs_perag_put(pag);
92821e2b
DC
824 }
825 /*
826 * Overwrite incore superblock counters with just-read data
827 */
3685c2a1 828 spin_lock(&mp->m_sb_lock);
92821e2b
DC
829 sbp->sb_ifree = ifree;
830 sbp->sb_icount = ialloc;
831 sbp->sb_fdblocks = bfree + bfreelst + btree;
3685c2a1 832 spin_unlock(&mp->m_sb_lock);
92821e2b
DC
833
834 /* Fixup the per-cpu counters as well. */
835 xfs_icsb_reinit_counters(mp);
836
837 return 0;
838}
839
1da177e4 840/*
0771fb45 841 * Update alignment values based on mount options and sb values
1da177e4 842 */
0771fb45 843STATIC int
7884bc86 844xfs_update_alignment(xfs_mount_t *mp)
1da177e4 845{
1da177e4 846 xfs_sb_t *sbp = &(mp->m_sb);
1da177e4 847
4249023a 848 if (mp->m_dalign) {
1da177e4
LT
849 /*
850 * If stripe unit and stripe width are not multiples
851 * of the fs blocksize turn off alignment.
852 */
853 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
854 (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
855 if (mp->m_flags & XFS_MOUNT_RETERR) {
856 cmn_err(CE_WARN,
857 "XFS: alignment check 1 failed");
0771fb45 858 return XFS_ERROR(EINVAL);
1da177e4
LT
859 }
860 mp->m_dalign = mp->m_swidth = 0;
861 } else {
862 /*
863 * Convert the stripe unit and width to FSBs.
864 */
865 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
866 if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
867 if (mp->m_flags & XFS_MOUNT_RETERR) {
0771fb45 868 return XFS_ERROR(EINVAL);
1da177e4
LT
869 }
870 xfs_fs_cmn_err(CE_WARN, mp,
871"stripe alignment turned off: sunit(%d)/swidth(%d) incompatible with agsize(%d)",
872 mp->m_dalign, mp->m_swidth,
873 sbp->sb_agblocks);
874
875 mp->m_dalign = 0;
876 mp->m_swidth = 0;
877 } else if (mp->m_dalign) {
878 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
879 } else {
880 if (mp->m_flags & XFS_MOUNT_RETERR) {
881 xfs_fs_cmn_err(CE_WARN, mp,
882"stripe alignment turned off: sunit(%d) less than bsize(%d)",
883 mp->m_dalign,
884 mp->m_blockmask +1);
0771fb45 885 return XFS_ERROR(EINVAL);
1da177e4
LT
886 }
887 mp->m_swidth = 0;
888 }
889 }
890
891 /*
892 * Update superblock with new values
893 * and log changes
894 */
62118709 895 if (xfs_sb_version_hasdalign(sbp)) {
1da177e4
LT
896 if (sbp->sb_unit != mp->m_dalign) {
897 sbp->sb_unit = mp->m_dalign;
7884bc86 898 mp->m_update_flags |= XFS_SB_UNIT;
1da177e4
LT
899 }
900 if (sbp->sb_width != mp->m_swidth) {
901 sbp->sb_width = mp->m_swidth;
7884bc86 902 mp->m_update_flags |= XFS_SB_WIDTH;
1da177e4
LT
903 }
904 }
905 } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
62118709 906 xfs_sb_version_hasdalign(&mp->m_sb)) {
1da177e4
LT
907 mp->m_dalign = sbp->sb_unit;
908 mp->m_swidth = sbp->sb_width;
909 }
910
0771fb45
ES
911 return 0;
912}
1da177e4 913
0771fb45
ES
914/*
915 * Set the maximum inode count for this filesystem
916 */
917STATIC void
918xfs_set_maxicount(xfs_mount_t *mp)
919{
920 xfs_sb_t *sbp = &(mp->m_sb);
921 __uint64_t icount;
1da177e4 922
0771fb45
ES
923 if (sbp->sb_imax_pct) {
924 /*
925 * Make sure the maximum inode count is a multiple
926 * of the units we allocate inodes in.
1da177e4 927 */
1da177e4
LT
928 icount = sbp->sb_dblocks * sbp->sb_imax_pct;
929 do_div(icount, 100);
930 do_div(icount, mp->m_ialloc_blks);
931 mp->m_maxicount = (icount * mp->m_ialloc_blks) <<
932 sbp->sb_inopblog;
0771fb45 933 } else {
1da177e4 934 mp->m_maxicount = 0;
1da177e4 935 }
0771fb45
ES
936}
937
938/*
939 * Set the default minimum read and write sizes unless
940 * already specified in a mount option.
941 * We use smaller I/O sizes when the file system
942 * is being used for NFS service (wsync mount option).
943 */
944STATIC void
945xfs_set_rw_sizes(xfs_mount_t *mp)
946{
947 xfs_sb_t *sbp = &(mp->m_sb);
948 int readio_log, writeio_log;
1da177e4 949
1da177e4
LT
950 if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
951 if (mp->m_flags & XFS_MOUNT_WSYNC) {
952 readio_log = XFS_WSYNC_READIO_LOG;
953 writeio_log = XFS_WSYNC_WRITEIO_LOG;
954 } else {
955 readio_log = XFS_READIO_LOG_LARGE;
956 writeio_log = XFS_WRITEIO_LOG_LARGE;
957 }
958 } else {
959 readio_log = mp->m_readio_log;
960 writeio_log = mp->m_writeio_log;
961 }
962
1da177e4
LT
963 if (sbp->sb_blocklog > readio_log) {
964 mp->m_readio_log = sbp->sb_blocklog;
965 } else {
966 mp->m_readio_log = readio_log;
967 }
968 mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
969 if (sbp->sb_blocklog > writeio_log) {
970 mp->m_writeio_log = sbp->sb_blocklog;
971 } else {
972 mp->m_writeio_log = writeio_log;
973 }
974 mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
0771fb45 975}
1da177e4 976
055388a3
DC
977/*
978 * precalculate the low space thresholds for dynamic speculative preallocation.
979 */
980void
981xfs_set_low_space_thresholds(
982 struct xfs_mount *mp)
983{
984 int i;
985
986 for (i = 0; i < XFS_LOWSP_MAX; i++) {
987 __uint64_t space = mp->m_sb.sb_dblocks;
988
989 do_div(space, 100);
990 mp->m_low_space[i] = space * (i + 1);
991 }
992}
993
994
0771fb45
ES
995/*
996 * Set whether we're using inode alignment.
997 */
998STATIC void
999xfs_set_inoalignment(xfs_mount_t *mp)
1000{
62118709 1001 if (xfs_sb_version_hasalign(&mp->m_sb) &&
1da177e4
LT
1002 mp->m_sb.sb_inoalignmt >=
1003 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size))
1004 mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1;
1005 else
1006 mp->m_inoalign_mask = 0;
1007 /*
1008 * If we are using stripe alignment, check whether
1009 * the stripe unit is a multiple of the inode alignment
1010 */
1011 if (mp->m_dalign && mp->m_inoalign_mask &&
1012 !(mp->m_dalign & mp->m_inoalign_mask))
1013 mp->m_sinoalign = mp->m_dalign;
1014 else
1015 mp->m_sinoalign = 0;
0771fb45
ES
1016}
1017
1018/*
1019 * Check that the data (and log if separate) are an ok size.
1020 */
1021STATIC int
4249023a 1022xfs_check_sizes(xfs_mount_t *mp)
0771fb45
ES
1023{
1024 xfs_buf_t *bp;
1025 xfs_daddr_t d;
0771fb45 1026
1da177e4
LT
1027 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
1028 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
1922c949 1029 cmn_err(CE_WARN, "XFS: filesystem size mismatch detected");
657a4cff 1030 return XFS_ERROR(EFBIG);
1da177e4 1031 }
1922c949
DC
1032 bp = xfs_buf_read_uncached(mp, mp->m_ddev_targp,
1033 d - XFS_FSS_TO_BB(mp, 1),
1034 BBTOB(XFS_FSS_TO_BB(mp, 1)), 0);
1035 if (!bp) {
1036 cmn_err(CE_WARN, "XFS: last sector read failed");
1037 return EIO;
1da177e4 1038 }
1922c949 1039 xfs_buf_relse(bp);
1da177e4 1040
4249023a 1041 if (mp->m_logdev_targp != mp->m_ddev_targp) {
1da177e4
LT
1042 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
1043 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
1922c949 1044 cmn_err(CE_WARN, "XFS: log size mismatch detected");
657a4cff 1045 return XFS_ERROR(EFBIG);
1da177e4 1046 }
1922c949
DC
1047 bp = xfs_buf_read_uncached(mp, mp->m_logdev_targp,
1048 d - XFS_FSB_TO_BB(mp, 1),
1049 XFS_FSB_TO_B(mp, 1), 0);
1050 if (!bp) {
1051 cmn_err(CE_WARN, "XFS: log device read failed");
1052 return EIO;
0771fb45 1053 }
1922c949 1054 xfs_buf_relse(bp);
0771fb45
ES
1055 }
1056 return 0;
1057}
1058
7d095257
CH
1059/*
1060 * Clear the quotaflags in memory and in the superblock.
1061 */
1062int
1063xfs_mount_reset_sbqflags(
1064 struct xfs_mount *mp)
1065{
1066 int error;
1067 struct xfs_trans *tp;
1068
1069 mp->m_qflags = 0;
1070
1071 /*
1072 * It is OK to look at sb_qflags here in mount path,
1073 * without m_sb_lock.
1074 */
1075 if (mp->m_sb.sb_qflags == 0)
1076 return 0;
1077 spin_lock(&mp->m_sb_lock);
1078 mp->m_sb.sb_qflags = 0;
1079 spin_unlock(&mp->m_sb_lock);
1080
1081 /*
1082 * If the fs is readonly, let the incore superblock run
1083 * with quotas off but don't flush the update out to disk
1084 */
1085 if (mp->m_flags & XFS_MOUNT_RDONLY)
1086 return 0;
1087
1088#ifdef QUOTADEBUG
1089 xfs_fs_cmn_err(CE_NOTE, mp, "Writing superblock quota changes");
1090#endif
1091
1092 tp = xfs_trans_alloc(mp, XFS_TRANS_QM_SBCHANGE);
1093 error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0,
1094 XFS_DEFAULT_LOG_COUNT);
1095 if (error) {
1096 xfs_trans_cancel(tp, 0);
1097 xfs_fs_cmn_err(CE_ALERT, mp,
1098 "xfs_mount_reset_sbqflags: Superblock update failed!");
1099 return error;
1100 }
1101
1102 xfs_mod_sb(tp, XFS_SB_QFLAGS);
1103 return xfs_trans_commit(tp, 0);
1104}
1105
d5db0f97
ES
1106__uint64_t
1107xfs_default_resblks(xfs_mount_t *mp)
1108{
1109 __uint64_t resblks;
1110
1111 /*
8babd8a2
DC
1112 * We default to 5% or 8192 fsbs of space reserved, whichever is
1113 * smaller. This is intended to cover concurrent allocation
1114 * transactions when we initially hit enospc. These each require a 4
1115 * block reservation. Hence by default we cover roughly 2000 concurrent
1116 * allocation reservations.
d5db0f97
ES
1117 */
1118 resblks = mp->m_sb.sb_dblocks;
1119 do_div(resblks, 20);
8babd8a2 1120 resblks = min_t(__uint64_t, resblks, 8192);
d5db0f97
ES
1121 return resblks;
1122}
1123
0771fb45 1124/*
0771fb45
ES
1125 * This function does the following on an initial mount of a file system:
1126 * - reads the superblock from disk and init the mount struct
1127 * - if we're a 32-bit kernel, do a size check on the superblock
1128 * so we don't mount terabyte filesystems
1129 * - init mount struct realtime fields
1130 * - allocate inode hash table for fs
1131 * - init directory manager
1132 * - perform recovery and init the log manager
1133 */
1134int
1135xfs_mountfs(
4249023a 1136 xfs_mount_t *mp)
0771fb45
ES
1137{
1138 xfs_sb_t *sbp = &(mp->m_sb);
1139 xfs_inode_t *rip;
0771fb45 1140 __uint64_t resblks;
7d095257
CH
1141 uint quotamount = 0;
1142 uint quotaflags = 0;
0771fb45
ES
1143 int error = 0;
1144
0771fb45
ES
1145 xfs_mount_common(mp, sbp);
1146
ee1c0908 1147 /*
e6957ea4
ES
1148 * Check for a mismatched features2 values. Older kernels
1149 * read & wrote into the wrong sb offset for sb_features2
1150 * on some platforms due to xfs_sb_t not being 64bit size aligned
1151 * when sb_features2 was added, which made older superblock
1152 * reading/writing routines swap it as a 64-bit value.
ee1c0908 1153 *
e6957ea4
ES
1154 * For backwards compatibility, we make both slots equal.
1155 *
1156 * If we detect a mismatched field, we OR the set bits into the
1157 * existing features2 field in case it has already been modified; we
1158 * don't want to lose any features. We then update the bad location
1159 * with the ORed value so that older kernels will see any features2
1160 * flags, and mark the two fields as needing updates once the
1161 * transaction subsystem is online.
ee1c0908 1162 */
e6957ea4 1163 if (xfs_sb_has_mismatched_features2(sbp)) {
ee1c0908
DC
1164 cmn_err(CE_WARN,
1165 "XFS: correcting sb_features alignment problem");
1166 sbp->sb_features2 |= sbp->sb_bad_features2;
e6957ea4 1167 sbp->sb_bad_features2 = sbp->sb_features2;
7884bc86 1168 mp->m_update_flags |= XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2;
e6957ea4
ES
1169
1170 /*
1171 * Re-check for ATTR2 in case it was found in bad_features2
1172 * slot.
1173 */
7c12f296
TS
1174 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
1175 !(mp->m_flags & XFS_MOUNT_NOATTR2))
e6957ea4 1176 mp->m_flags |= XFS_MOUNT_ATTR2;
7c12f296
TS
1177 }
1178
1179 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
1180 (mp->m_flags & XFS_MOUNT_NOATTR2)) {
1181 xfs_sb_version_removeattr2(&mp->m_sb);
7884bc86 1182 mp->m_update_flags |= XFS_SB_FEATURES2;
e6957ea4 1183
7c12f296
TS
1184 /* update sb_versionnum for the clearing of the morebits */
1185 if (!sbp->sb_features2)
7884bc86 1186 mp->m_update_flags |= XFS_SB_VERSIONNUM;
ee1c0908
DC
1187 }
1188
0771fb45
ES
1189 /*
1190 * Check if sb_agblocks is aligned at stripe boundary
1191 * If sb_agblocks is NOT aligned turn off m_dalign since
1192 * allocator alignment is within an ag, therefore ag has
1193 * to be aligned at stripe boundary.
1194 */
7884bc86 1195 error = xfs_update_alignment(mp);
0771fb45 1196 if (error)
f9057e3d 1197 goto out;
0771fb45
ES
1198
1199 xfs_alloc_compute_maxlevels(mp);
1200 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
1201 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
1202 xfs_ialloc_compute_maxlevels(mp);
1203
1204 xfs_set_maxicount(mp);
1205
1206 mp->m_maxioffset = xfs_max_file_offset(sbp->sb_blocklog);
1207
27174203
CH
1208 error = xfs_uuid_mount(mp);
1209 if (error)
1210 goto out;
1da177e4 1211
0771fb45
ES
1212 /*
1213 * Set the minimum read and write sizes
1214 */
1215 xfs_set_rw_sizes(mp);
1216
055388a3
DC
1217 /* set the low space thresholds for dynamic preallocation */
1218 xfs_set_low_space_thresholds(mp);
1219
0771fb45
ES
1220 /*
1221 * Set the inode cluster size.
1222 * This may still be overridden by the file system
1223 * block size if it is larger than the chosen cluster size.
1224 */
1225 mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE;
1226
1227 /*
1228 * Set inode alignment fields
1229 */
1230 xfs_set_inoalignment(mp);
1231
1232 /*
1233 * Check that the data (and log if separate) are an ok size.
1234 */
4249023a 1235 error = xfs_check_sizes(mp);
0771fb45 1236 if (error)
f9057e3d 1237 goto out_remove_uuid;
0771fb45 1238
1da177e4
LT
1239 /*
1240 * Initialize realtime fields in the mount structure
1241 */
0771fb45
ES
1242 error = xfs_rtmount_init(mp);
1243 if (error) {
1da177e4 1244 cmn_err(CE_WARN, "XFS: RT mount failed");
f9057e3d 1245 goto out_remove_uuid;
1da177e4
LT
1246 }
1247
1da177e4
LT
1248 /*
1249 * Copies the low order bits of the timestamp and the randomly
1250 * set "sequence" number out of a UUID.
1251 */
1252 uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid);
1253
1da177e4
LT
1254 mp->m_dmevmask = 0; /* not persistent; set after each mount */
1255
f6c2d1fa 1256 xfs_dir_mount(mp);
1da177e4
LT
1257
1258 /*
1259 * Initialize the attribute manager's entries.
1260 */
1261 mp->m_attr_magicpct = (mp->m_sb.sb_blocksize * 37) / 100;
1262
1263 /*
1264 * Initialize the precomputed transaction reservations values.
1265 */
1266 xfs_trans_init(mp);
1267
1da177e4
LT
1268 /*
1269 * Allocate and initialize the per-ag data.
1270 */
1c1c6ebc 1271 spin_lock_init(&mp->m_perag_lock);
9b98b6f3 1272 INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC);
1c1c6ebc
DC
1273 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
1274 if (error) {
1275 cmn_err(CE_WARN, "XFS: Failed per-ag init: %d", error);
f9057e3d 1276 goto out_remove_uuid;
1c1c6ebc 1277 }
1da177e4 1278
f9057e3d
CH
1279 if (!sbp->sb_logblocks) {
1280 cmn_err(CE_WARN, "XFS: no log defined");
1281 XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp);
1282 error = XFS_ERROR(EFSCORRUPTED);
1283 goto out_free_perag;
1284 }
1285
1da177e4
LT
1286 /*
1287 * log's mount-time initialization. Perform 1st part recovery if needed
1288 */
f9057e3d
CH
1289 error = xfs_log_mount(mp, mp->m_logdev_targp,
1290 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
1291 XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
1292 if (error) {
1293 cmn_err(CE_WARN, "XFS: log mount failed");
1294 goto out_free_perag;
1da177e4
LT
1295 }
1296
92821e2b
DC
1297 /*
1298 * Now the log is mounted, we know if it was an unclean shutdown or
1299 * not. If it was, with the first phase of recovery has completed, we
1300 * have consistent AG blocks on disk. We have not recovered EFIs yet,
1301 * but they are recovered transactionally in the second recovery phase
1302 * later.
1303 *
1304 * Hence we can safely re-initialise incore superblock counters from
1305 * the per-ag data. These may not be correct if the filesystem was not
1306 * cleanly unmounted, so we need to wait for recovery to finish before
1307 * doing this.
1308 *
1309 * If the filesystem was cleanly unmounted, then we can trust the
1310 * values in the superblock to be correct and we don't need to do
1311 * anything here.
1312 *
1313 * If we are currently making the filesystem, the initialisation will
1314 * fail as the perag data is in an undefined state.
1315 */
92821e2b
DC
1316 if (xfs_sb_version_haslazysbcount(&mp->m_sb) &&
1317 !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
1318 !mp->m_sb.sb_inprogress) {
1319 error = xfs_initialize_perag_data(mp, sbp->sb_agcount);
f9057e3d
CH
1320 if (error)
1321 goto out_free_perag;
92821e2b 1322 }
f9057e3d 1323
1da177e4
LT
1324 /*
1325 * Get and sanity-check the root inode.
1326 * Save the pointer to it in the mount structure.
1327 */
7b6259e7 1328 error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip);
1da177e4
LT
1329 if (error) {
1330 cmn_err(CE_WARN, "XFS: failed to read root inode");
f9057e3d 1331 goto out_log_dealloc;
1da177e4
LT
1332 }
1333
1334 ASSERT(rip != NULL);
1da177e4
LT
1335
1336 if (unlikely((rip->i_d.di_mode & S_IFMT) != S_IFDIR)) {
1337 cmn_err(CE_WARN, "XFS: corrupted root inode");
b6574520
NS
1338 cmn_err(CE_WARN, "Device %s - root %llu is not a directory",
1339 XFS_BUFTARG_NAME(mp->m_ddev_targp),
1340 (unsigned long long)rip->i_ino);
1da177e4
LT
1341 xfs_iunlock(rip, XFS_ILOCK_EXCL);
1342 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
1343 mp);
1344 error = XFS_ERROR(EFSCORRUPTED);
f9057e3d 1345 goto out_rele_rip;
1da177e4
LT
1346 }
1347 mp->m_rootip = rip; /* save it */
1348
1349 xfs_iunlock(rip, XFS_ILOCK_EXCL);
1350
1351 /*
1352 * Initialize realtime inode pointers in the mount structure
1353 */
0771fb45
ES
1354 error = xfs_rtmount_inodes(mp);
1355 if (error) {
1da177e4
LT
1356 /*
1357 * Free up the root inode.
1358 */
1359 cmn_err(CE_WARN, "XFS: failed to read RT inodes");
f9057e3d 1360 goto out_rele_rip;
1da177e4
LT
1361 }
1362
1363 /*
7884bc86
CH
1364 * If this is a read-only mount defer the superblock updates until
1365 * the next remount into writeable mode. Otherwise we would never
1366 * perform the update e.g. for the root filesystem.
1da177e4 1367 */
7884bc86
CH
1368 if (mp->m_update_flags && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
1369 error = xfs_mount_log_sb(mp, mp->m_update_flags);
e5720eec
DC
1370 if (error) {
1371 cmn_err(CE_WARN, "XFS: failed to write sb changes");
b93b6e43 1372 goto out_rtunmount;
e5720eec
DC
1373 }
1374 }
1da177e4
LT
1375
1376 /*
1377 * Initialise the XFS quota management subsystem for this mount
1378 */
7d095257
CH
1379 if (XFS_IS_QUOTA_RUNNING(mp)) {
1380 error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
1381 if (error)
1382 goto out_rtunmount;
1383 } else {
1384 ASSERT(!XFS_IS_QUOTA_ON(mp));
1385
1386 /*
1387 * If a file system had quotas running earlier, but decided to
1388 * mount without -o uquota/pquota/gquota options, revoke the
1389 * quotachecked license.
1390 */
1391 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
1392 cmn_err(CE_NOTE,
1393 "XFS: resetting qflags for filesystem %s",
1394 mp->m_fsname);
1395
1396 error = xfs_mount_reset_sbqflags(mp);
1397 if (error)
1398 return error;
1399 }
1400 }
1da177e4
LT
1401
1402 /*
1403 * Finish recovering the file system. This part needed to be
1404 * delayed until after the root and real-time bitmap inodes
1405 * were consistently read in.
1406 */
4249023a 1407 error = xfs_log_mount_finish(mp);
1da177e4
LT
1408 if (error) {
1409 cmn_err(CE_WARN, "XFS: log mount finish failed");
b93b6e43 1410 goto out_rtunmount;
1da177e4
LT
1411 }
1412
1413 /*
1414 * Complete the quota initialisation, post-log-replay component.
1415 */
7d095257
CH
1416 if (quotamount) {
1417 ASSERT(mp->m_qflags == 0);
1418 mp->m_qflags = quotaflags;
1419
1420 xfs_qm_mount_quotas(mp);
1421 }
1422
84e1e99f
DC
1423 /*
1424 * Now we are mounted, reserve a small amount of unused space for
1425 * privileged transactions. This is needed so that transaction
1426 * space required for critical operations can dip into this pool
1427 * when at ENOSPC. This is needed for operations like create with
1428 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
1429 * are not allowed to use this reserved space.
8babd8a2
DC
1430 *
1431 * This may drive us straight to ENOSPC on mount, but that implies
1432 * we were already there on the last unmount. Warn if this occurs.
84e1e99f 1433 */
d5db0f97
ES
1434 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
1435 resblks = xfs_default_resblks(mp);
1436 error = xfs_reserve_blocks(mp, &resblks, NULL);
1437 if (error)
1438 cmn_err(CE_WARN, "XFS: Unable to allocate reserve "
1439 "blocks. Continuing without a reserve pool.");
1440 }
84e1e99f 1441
1da177e4
LT
1442 return 0;
1443
b93b6e43
CH
1444 out_rtunmount:
1445 xfs_rtunmount_inodes(mp);
f9057e3d 1446 out_rele_rip:
43355099 1447 IRELE(rip);
f9057e3d 1448 out_log_dealloc:
21b699c8 1449 xfs_log_unmount(mp);
f9057e3d 1450 out_free_perag:
ff4f038c 1451 xfs_free_perag(mp);
f9057e3d 1452 out_remove_uuid:
27174203 1453 xfs_uuid_unmount(mp);
f9057e3d 1454 out:
1da177e4
LT
1455 return error;
1456}
1457
1458/*
1da177e4
LT
1459 * This flushes out the inodes,dquots and the superblock, unmounts the
1460 * log and makes sure that incore structures are freed.
1461 */
41b5c2e7
CH
1462void
1463xfs_unmountfs(
1464 struct xfs_mount *mp)
1da177e4 1465{
41b5c2e7
CH
1466 __uint64_t resblks;
1467 int error;
1da177e4 1468
7d095257 1469 xfs_qm_unmount_quotas(mp);
b93b6e43 1470 xfs_rtunmount_inodes(mp);
77508ec8
CH
1471 IRELE(mp->m_rootip);
1472
641c56fb
DC
1473 /*
1474 * We can potentially deadlock here if we have an inode cluster
9da096fd 1475 * that has been freed has its buffer still pinned in memory because
641c56fb
DC
1476 * the transaction is still sitting in a iclog. The stale inodes
1477 * on that buffer will have their flush locks held until the
1478 * transaction hits the disk and the callbacks run. the inode
1479 * flush takes the flush lock unconditionally and with nothing to
1480 * push out the iclog we will never get that unlocked. hence we
1481 * need to force the log first.
1482 */
a14a348b 1483 xfs_log_force(mp, XFS_LOG_SYNC);
c854363e
DC
1484
1485 /*
1486 * Do a delwri reclaim pass first so that as many dirty inodes are
1487 * queued up for IO as possible. Then flush the buffers before making
1488 * a synchronous path to catch all the remaining inodes are reclaimed.
1489 * This makes the reclaim process as quick as possible by avoiding
1490 * synchronous writeout and blocking on inodes already in the delwri
1491 * state as much as possible.
1492 */
1493 xfs_reclaim_inodes(mp, 0);
1494 XFS_bflush(mp->m_ddev_targp);
1495 xfs_reclaim_inodes(mp, SYNC_WAIT);
1da177e4 1496
7d095257 1497 xfs_qm_unmount(mp);
a357a121 1498
1da177e4
LT
1499 /*
1500 * Flush out the log synchronously so that we know for sure
1501 * that nothing is pinned. This is important because bflush()
1502 * will skip pinned buffers.
1503 */
a14a348b 1504 xfs_log_force(mp, XFS_LOG_SYNC);
1da177e4
LT
1505
1506 xfs_binval(mp->m_ddev_targp);
1507 if (mp->m_rtdev_targp) {
1508 xfs_binval(mp->m_rtdev_targp);
1509 }
1510
84e1e99f
DC
1511 /*
1512 * Unreserve any blocks we have so that when we unmount we don't account
1513 * the reserved free space as used. This is really only necessary for
1514 * lazy superblock counting because it trusts the incore superblock
9da096fd 1515 * counters to be absolutely correct on clean unmount.
84e1e99f
DC
1516 *
1517 * We don't bother correcting this elsewhere for lazy superblock
1518 * counting because on mount of an unclean filesystem we reconstruct the
1519 * correct counter value and this is irrelevant.
1520 *
1521 * For non-lazy counter filesystems, this doesn't matter at all because
1522 * we only every apply deltas to the superblock and hence the incore
1523 * value does not matter....
1524 */
1525 resblks = 0;
714082bc
DC
1526 error = xfs_reserve_blocks(mp, &resblks, NULL);
1527 if (error)
1528 cmn_err(CE_WARN, "XFS: Unable to free reserved block pool. "
1529 "Freespace may not be correct on next mount.");
1530
e5720eec
DC
1531 error = xfs_log_sbcount(mp, 1);
1532 if (error)
1533 cmn_err(CE_WARN, "XFS: Unable to update superblock counters. "
1534 "Freespace may not be correct on next mount.");
1da177e4 1535 xfs_unmountfs_writesb(mp);
1da177e4 1536 xfs_unmountfs_wait(mp); /* wait for async bufs */
21b699c8
CH
1537 xfs_log_unmount_write(mp);
1538 xfs_log_unmount(mp);
27174203 1539 xfs_uuid_unmount(mp);
1da177e4 1540
1550d0b0 1541#if defined(DEBUG)
0ce4cfd4 1542 xfs_errortag_clearall(mp, 0);
1da177e4 1543#endif
ff4f038c 1544 xfs_free_perag(mp);
1da177e4
LT
1545}
1546
ba0f32d4 1547STATIC void
1da177e4
LT
1548xfs_unmountfs_wait(xfs_mount_t *mp)
1549{
1550 if (mp->m_logdev_targp != mp->m_ddev_targp)
1551 xfs_wait_buftarg(mp->m_logdev_targp);
1552 if (mp->m_rtdev_targp)
1553 xfs_wait_buftarg(mp->m_rtdev_targp);
1554 xfs_wait_buftarg(mp->m_ddev_targp);
1555}
1556
92821e2b
DC
1557int
1558xfs_fs_writable(xfs_mount_t *mp)
1559{
b267ce99 1560 return !(xfs_test_for_freeze(mp) || XFS_FORCED_SHUTDOWN(mp) ||
bd186aa9 1561 (mp->m_flags & XFS_MOUNT_RDONLY));
92821e2b
DC
1562}
1563
1564/*
1565 * xfs_log_sbcount
1566 *
1567 * Called either periodically to keep the on disk superblock values
1568 * roughly up to date or from unmount to make sure the values are
1569 * correct on a clean unmount.
1570 *
1571 * Note this code can be called during the process of freezing, so
1572 * we may need to use the transaction allocator which does not not
1573 * block when the transaction subsystem is in its frozen state.
1574 */
1575int
1576xfs_log_sbcount(
1577 xfs_mount_t *mp,
1578 uint sync)
1579{
1580 xfs_trans_t *tp;
1581 int error;
1582
1583 if (!xfs_fs_writable(mp))
1584 return 0;
1585
d4d90b57 1586 xfs_icsb_sync_counters(mp, 0);
92821e2b
DC
1587
1588 /*
1589 * we don't need to do this if we are updating the superblock
1590 * counters on every modification.
1591 */
1592 if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1593 return 0;
1594
80641dc6 1595 tp = _xfs_trans_alloc(mp, XFS_TRANS_SB_COUNT, KM_SLEEP);
92821e2b
DC
1596 error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0,
1597 XFS_DEFAULT_LOG_COUNT);
1598 if (error) {
1599 xfs_trans_cancel(tp, 0);
1600 return error;
1601 }
1602
1603 xfs_mod_sb(tp, XFS_SB_IFREE | XFS_SB_ICOUNT | XFS_SB_FDBLOCKS);
1604 if (sync)
1605 xfs_trans_set_sync(tp);
e5720eec
DC
1606 error = xfs_trans_commit(tp, 0);
1607 return error;
92821e2b
DC
1608}
1609
1da177e4
LT
1610int
1611xfs_unmountfs_writesb(xfs_mount_t *mp)
1612{
1613 xfs_buf_t *sbp;
1da177e4
LT
1614 int error = 0;
1615
1616 /*
1617 * skip superblock write if fs is read-only, or
1618 * if we are doing a forced umount.
1619 */
bd186aa9 1620 if (!((mp->m_flags & XFS_MOUNT_RDONLY) ||
1da177e4 1621 XFS_FORCED_SHUTDOWN(mp))) {
8d280b98 1622
92821e2b 1623 sbp = xfs_getsb(mp, 0);
8d280b98 1624
1da177e4
LT
1625 XFS_BUF_UNDONE(sbp);
1626 XFS_BUF_UNREAD(sbp);
1627 XFS_BUF_UNDELAYWRITE(sbp);
1628 XFS_BUF_WRITE(sbp);
1629 XFS_BUF_UNASYNC(sbp);
1630 ASSERT(XFS_BUF_TARGET(sbp) == mp->m_ddev_targp);
1631 xfsbdstrat(mp, sbp);
1a1a3e97 1632 error = xfs_buf_iowait(sbp);
1da177e4
LT
1633 if (error)
1634 xfs_ioerror_alert("xfs_unmountfs_writesb",
1635 mp, sbp, XFS_BUF_ADDR(sbp));
92821e2b 1636 xfs_buf_relse(sbp);
1da177e4 1637 }
014c2544 1638 return error;
1da177e4
LT
1639}
1640
1641/*
1642 * xfs_mod_sb() can be used to copy arbitrary changes to the
1643 * in-core superblock into the superblock buffer to be logged.
1644 * It does not provide the higher level of locking that is
1645 * needed to protect the in-core superblock from concurrent
1646 * access.
1647 */
1648void
1649xfs_mod_sb(xfs_trans_t *tp, __int64_t fields)
1650{
1651 xfs_buf_t *bp;
1652 int first;
1653 int last;
1654 xfs_mount_t *mp;
1da177e4
LT
1655 xfs_sb_field_t f;
1656
1657 ASSERT(fields);
1658 if (!fields)
1659 return;
1660 mp = tp->t_mountp;
1661 bp = xfs_trans_getsb(tp, mp, 0);
1da177e4
LT
1662 first = sizeof(xfs_sb_t);
1663 last = 0;
1664
1665 /* translate/copy */
1666
2bdf7cd0 1667 xfs_sb_to_disk(XFS_BUF_TO_SBP(bp), &mp->m_sb, fields);
1da177e4
LT
1668
1669 /* find modified range */
587aa0fe
DC
1670 f = (xfs_sb_field_t)xfs_highbit64((__uint64_t)fields);
1671 ASSERT((1LL << f) & XFS_SB_MOD_BITS);
1672 last = xfs_sb_info[f + 1].offset - 1;
1da177e4
LT
1673
1674 f = (xfs_sb_field_t)xfs_lowbit64((__uint64_t)fields);
1675 ASSERT((1LL << f) & XFS_SB_MOD_BITS);
1676 first = xfs_sb_info[f].offset;
1677
1da177e4
LT
1678 xfs_trans_log_buf(tp, bp, first, last);
1679}
d210a28c 1680
d210a28c 1681
1da177e4
LT
1682/*
1683 * xfs_mod_incore_sb_unlocked() is a utility routine common used to apply
1684 * a delta to a specified field in the in-core superblock. Simply
1685 * switch on the field indicated and apply the delta to that field.
1686 * Fields are not allowed to dip below zero, so if the delta would
1687 * do this do not apply it and return EINVAL.
1688 *
3685c2a1 1689 * The m_sb_lock must be held when this routine is called.
1da177e4 1690 */
d96f8f89 1691STATIC int
20f4ebf2
DC
1692xfs_mod_incore_sb_unlocked(
1693 xfs_mount_t *mp,
1694 xfs_sb_field_t field,
1695 int64_t delta,
1696 int rsvd)
1da177e4
LT
1697{
1698 int scounter; /* short counter for 32 bit fields */
1699 long long lcounter; /* long counter for 64 bit fields */
1700 long long res_used, rem;
1701
1702 /*
1703 * With the in-core superblock spin lock held, switch
1704 * on the indicated field. Apply the delta to the
1705 * proper field. If the fields value would dip below
1706 * 0, then do not apply the delta and return EINVAL.
1707 */
1708 switch (field) {
1709 case XFS_SBS_ICOUNT:
1710 lcounter = (long long)mp->m_sb.sb_icount;
1711 lcounter += delta;
1712 if (lcounter < 0) {
1713 ASSERT(0);
014c2544 1714 return XFS_ERROR(EINVAL);
1da177e4
LT
1715 }
1716 mp->m_sb.sb_icount = lcounter;
014c2544 1717 return 0;
1da177e4
LT
1718 case XFS_SBS_IFREE:
1719 lcounter = (long long)mp->m_sb.sb_ifree;
1720 lcounter += delta;
1721 if (lcounter < 0) {
1722 ASSERT(0);
014c2544 1723 return XFS_ERROR(EINVAL);
1da177e4
LT
1724 }
1725 mp->m_sb.sb_ifree = lcounter;
014c2544 1726 return 0;
1da177e4 1727 case XFS_SBS_FDBLOCKS:
4be536de
DC
1728 lcounter = (long long)
1729 mp->m_sb.sb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
1da177e4
LT
1730 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1731
1732 if (delta > 0) { /* Putting blocks back */
1733 if (res_used > delta) {
1734 mp->m_resblks_avail += delta;
1735 } else {
1736 rem = delta - res_used;
1737 mp->m_resblks_avail = mp->m_resblks;
1738 lcounter += rem;
1739 }
1740 } else { /* Taking blocks away */
1da177e4 1741 lcounter += delta;
8babd8a2
DC
1742 if (lcounter >= 0) {
1743 mp->m_sb.sb_fdblocks = lcounter +
1744 XFS_ALLOC_SET_ASIDE(mp);
1745 return 0;
1746 }
1da177e4 1747
8babd8a2
DC
1748 /*
1749 * We are out of blocks, use any available reserved
1750 * blocks if were allowed to.
1751 */
1752 if (!rsvd)
1753 return XFS_ERROR(ENOSPC);
1da177e4 1754
8babd8a2
DC
1755 lcounter = (long long)mp->m_resblks_avail + delta;
1756 if (lcounter >= 0) {
1757 mp->m_resblks_avail = lcounter;
1758 return 0;
1da177e4 1759 }
8babd8a2
DC
1760 printk_once(KERN_WARNING
1761 "Filesystem \"%s\": reserve blocks depleted! "
1762 "Consider increasing reserve pool size.",
1763 mp->m_fsname);
1764 return XFS_ERROR(ENOSPC);
1da177e4
LT
1765 }
1766
4be536de 1767 mp->m_sb.sb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
014c2544 1768 return 0;
1da177e4
LT
1769 case XFS_SBS_FREXTENTS:
1770 lcounter = (long long)mp->m_sb.sb_frextents;
1771 lcounter += delta;
1772 if (lcounter < 0) {
014c2544 1773 return XFS_ERROR(ENOSPC);
1da177e4
LT
1774 }
1775 mp->m_sb.sb_frextents = lcounter;
014c2544 1776 return 0;
1da177e4
LT
1777 case XFS_SBS_DBLOCKS:
1778 lcounter = (long long)mp->m_sb.sb_dblocks;
1779 lcounter += delta;
1780 if (lcounter < 0) {
1781 ASSERT(0);
014c2544 1782 return XFS_ERROR(EINVAL);
1da177e4
LT
1783 }
1784 mp->m_sb.sb_dblocks = lcounter;
014c2544 1785 return 0;
1da177e4
LT
1786 case XFS_SBS_AGCOUNT:
1787 scounter = mp->m_sb.sb_agcount;
1788 scounter += delta;
1789 if (scounter < 0) {
1790 ASSERT(0);
014c2544 1791 return XFS_ERROR(EINVAL);
1da177e4
LT
1792 }
1793 mp->m_sb.sb_agcount = scounter;
014c2544 1794 return 0;
1da177e4
LT
1795 case XFS_SBS_IMAX_PCT:
1796 scounter = mp->m_sb.sb_imax_pct;
1797 scounter += delta;
1798 if (scounter < 0) {
1799 ASSERT(0);
014c2544 1800 return XFS_ERROR(EINVAL);
1da177e4
LT
1801 }
1802 mp->m_sb.sb_imax_pct = scounter;
014c2544 1803 return 0;
1da177e4
LT
1804 case XFS_SBS_REXTSIZE:
1805 scounter = mp->m_sb.sb_rextsize;
1806 scounter += delta;
1807 if (scounter < 0) {
1808 ASSERT(0);
014c2544 1809 return XFS_ERROR(EINVAL);
1da177e4
LT
1810 }
1811 mp->m_sb.sb_rextsize = scounter;
014c2544 1812 return 0;
1da177e4
LT
1813 case XFS_SBS_RBMBLOCKS:
1814 scounter = mp->m_sb.sb_rbmblocks;
1815 scounter += delta;
1816 if (scounter < 0) {
1817 ASSERT(0);
014c2544 1818 return XFS_ERROR(EINVAL);
1da177e4
LT
1819 }
1820 mp->m_sb.sb_rbmblocks = scounter;
014c2544 1821 return 0;
1da177e4
LT
1822 case XFS_SBS_RBLOCKS:
1823 lcounter = (long long)mp->m_sb.sb_rblocks;
1824 lcounter += delta;
1825 if (lcounter < 0) {
1826 ASSERT(0);
014c2544 1827 return XFS_ERROR(EINVAL);
1da177e4
LT
1828 }
1829 mp->m_sb.sb_rblocks = lcounter;
014c2544 1830 return 0;
1da177e4
LT
1831 case XFS_SBS_REXTENTS:
1832 lcounter = (long long)mp->m_sb.sb_rextents;
1833 lcounter += delta;
1834 if (lcounter < 0) {
1835 ASSERT(0);
014c2544 1836 return XFS_ERROR(EINVAL);
1da177e4
LT
1837 }
1838 mp->m_sb.sb_rextents = lcounter;
014c2544 1839 return 0;
1da177e4
LT
1840 case XFS_SBS_REXTSLOG:
1841 scounter = mp->m_sb.sb_rextslog;
1842 scounter += delta;
1843 if (scounter < 0) {
1844 ASSERT(0);
014c2544 1845 return XFS_ERROR(EINVAL);
1da177e4
LT
1846 }
1847 mp->m_sb.sb_rextslog = scounter;
014c2544 1848 return 0;
1da177e4
LT
1849 default:
1850 ASSERT(0);
014c2544 1851 return XFS_ERROR(EINVAL);
1da177e4
LT
1852 }
1853}
1854
1855/*
1856 * xfs_mod_incore_sb() is used to change a field in the in-core
1857 * superblock structure by the specified delta. This modification
3685c2a1 1858 * is protected by the m_sb_lock. Just use the xfs_mod_incore_sb_unlocked()
1da177e4
LT
1859 * routine to do the work.
1860 */
1861int
20f4ebf2 1862xfs_mod_incore_sb(
96540c78
CH
1863 struct xfs_mount *mp,
1864 xfs_sb_field_t field,
1865 int64_t delta,
1866 int rsvd)
1da177e4 1867{
96540c78 1868 int status;
1da177e4 1869
8d280b98 1870#ifdef HAVE_PERCPU_SB
96540c78 1871 ASSERT(field < XFS_SBS_ICOUNT || field > XFS_SBS_FDBLOCKS);
8d280b98 1872#endif
96540c78
CH
1873 spin_lock(&mp->m_sb_lock);
1874 status = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
1875 spin_unlock(&mp->m_sb_lock);
8d280b98 1876
014c2544 1877 return status;
1da177e4
LT
1878}
1879
1880/*
1b040712 1881 * Change more than one field in the in-core superblock structure at a time.
1da177e4 1882 *
1b040712
CH
1883 * The fields and changes to those fields are specified in the array of
1884 * xfs_mod_sb structures passed in. Either all of the specified deltas
1885 * will be applied or none of them will. If any modified field dips below 0,
1886 * then all modifications will be backed out and EINVAL will be returned.
1887 *
1888 * Note that this function may not be used for the superblock values that
1889 * are tracked with the in-memory per-cpu counters - a direct call to
1890 * xfs_icsb_modify_counters is required for these.
1da177e4
LT
1891 */
1892int
1b040712
CH
1893xfs_mod_incore_sb_batch(
1894 struct xfs_mount *mp,
1895 xfs_mod_sb_t *msb,
1896 uint nmsb,
1897 int rsvd)
1da177e4 1898{
1b040712
CH
1899 xfs_mod_sb_t *msbp = &msb[0];
1900 int error = 0;
1da177e4
LT
1901
1902 /*
1b040712
CH
1903 * Loop through the array of mod structures and apply each individually.
1904 * If any fail, then back out all those which have already been applied.
1905 * Do all of this within the scope of the m_sb_lock so that all of the
1906 * changes will be atomic.
1da177e4 1907 */
3685c2a1 1908 spin_lock(&mp->m_sb_lock);
1da177e4 1909 for (msbp = &msbp[0]; msbp < (msb + nmsb); msbp++) {
1b040712
CH
1910 ASSERT(msbp->msb_field < XFS_SBS_ICOUNT ||
1911 msbp->msb_field > XFS_SBS_FDBLOCKS);
8d280b98 1912
1b040712
CH
1913 error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field,
1914 msbp->msb_delta, rsvd);
1915 if (error)
1916 goto unwind;
1da177e4 1917 }
1b040712
CH
1918 spin_unlock(&mp->m_sb_lock);
1919 return 0;
1da177e4 1920
1b040712
CH
1921unwind:
1922 while (--msbp >= msb) {
1923 error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field,
1924 -msbp->msb_delta, rsvd);
1925 ASSERT(error == 0);
1da177e4 1926 }
3685c2a1 1927 spin_unlock(&mp->m_sb_lock);
1b040712 1928 return error;
1da177e4
LT
1929}
1930
1931/*
1932 * xfs_getsb() is called to obtain the buffer for the superblock.
1933 * The buffer is returned locked and read in from disk.
1934 * The buffer should be released with a call to xfs_brelse().
1935 *
1936 * If the flags parameter is BUF_TRYLOCK, then we'll only return
1937 * the superblock buffer if it can be locked without sleeping.
1938 * If it can't then we'll return NULL.
1939 */
1940xfs_buf_t *
1941xfs_getsb(
1942 xfs_mount_t *mp,
1943 int flags)
1944{
1945 xfs_buf_t *bp;
1946
1947 ASSERT(mp->m_sb_bp != NULL);
1948 bp = mp->m_sb_bp;
0cadda1c 1949 if (flags & XBF_TRYLOCK) {
1da177e4
LT
1950 if (!XFS_BUF_CPSEMA(bp)) {
1951 return NULL;
1952 }
1953 } else {
1954 XFS_BUF_PSEMA(bp, PRIBIO);
1955 }
1956 XFS_BUF_HOLD(bp);
1957 ASSERT(XFS_BUF_ISDONE(bp));
014c2544 1958 return bp;
1da177e4
LT
1959}
1960
1961/*
1962 * Used to free the superblock along various error paths.
1963 */
1964void
1965xfs_freesb(
26af6552 1966 struct xfs_mount *mp)
1da177e4 1967{
26af6552 1968 struct xfs_buf *bp = mp->m_sb_bp;
1da177e4 1969
26af6552 1970 xfs_buf_lock(bp);
1da177e4 1971 mp->m_sb_bp = NULL;
26af6552 1972 xfs_buf_relse(bp);
1da177e4
LT
1973}
1974
1da177e4
LT
1975/*
1976 * Used to log changes to the superblock unit and width fields which could
e6957ea4
ES
1977 * be altered by the mount options, as well as any potential sb_features2
1978 * fixup. Only the first superblock is updated.
1da177e4 1979 */
7884bc86 1980int
ee1c0908 1981xfs_mount_log_sb(
1da177e4
LT
1982 xfs_mount_t *mp,
1983 __int64_t fields)
1984{
1985 xfs_trans_t *tp;
e5720eec 1986 int error;
1da177e4 1987
ee1c0908 1988 ASSERT(fields & (XFS_SB_UNIT | XFS_SB_WIDTH | XFS_SB_UUID |
4b166de0
DC
1989 XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2 |
1990 XFS_SB_VERSIONNUM));
1da177e4
LT
1991
1992 tp = xfs_trans_alloc(mp, XFS_TRANS_SB_UNIT);
e5720eec
DC
1993 error = xfs_trans_reserve(tp, 0, mp->m_sb.sb_sectsize + 128, 0, 0,
1994 XFS_DEFAULT_LOG_COUNT);
1995 if (error) {
1da177e4 1996 xfs_trans_cancel(tp, 0);
e5720eec 1997 return error;
1da177e4
LT
1998 }
1999 xfs_mod_sb(tp, fields);
e5720eec
DC
2000 error = xfs_trans_commit(tp, 0);
2001 return error;
1da177e4 2002}
8d280b98 2003
dda35b8f
CH
2004/*
2005 * If the underlying (data/log/rt) device is readonly, there are some
2006 * operations that cannot proceed.
2007 */
2008int
2009xfs_dev_is_read_only(
2010 struct xfs_mount *mp,
2011 char *message)
2012{
2013 if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
2014 xfs_readonly_buftarg(mp->m_logdev_targp) ||
2015 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
2016 cmn_err(CE_NOTE,
2017 "XFS: %s required on read-only device.", message);
2018 cmn_err(CE_NOTE,
2019 "XFS: write access unavailable, cannot proceed.");
2020 return EROFS;
2021 }
2022 return 0;
2023}
8d280b98
DC
2024
2025#ifdef HAVE_PERCPU_SB
2026/*
2027 * Per-cpu incore superblock counters
2028 *
2029 * Simple concept, difficult implementation
2030 *
2031 * Basically, replace the incore superblock counters with a distributed per cpu
2032 * counter for contended fields (e.g. free block count).
2033 *
2034 * Difficulties arise in that the incore sb is used for ENOSPC checking, and
2035 * hence needs to be accurately read when we are running low on space. Hence
2036 * there is a method to enable and disable the per-cpu counters based on how
2037 * much "stuff" is available in them.
2038 *
2039 * Basically, a counter is enabled if there is enough free resource to justify
2040 * running a per-cpu fast-path. If the per-cpu counter runs out (i.e. a local
2041 * ENOSPC), then we disable the counters to synchronise all callers and
2042 * re-distribute the available resources.
2043 *
2044 * If, once we redistributed the available resources, we still get a failure,
2045 * we disable the per-cpu counter and go through the slow path.
2046 *
2047 * The slow path is the current xfs_mod_incore_sb() function. This means that
9da096fd 2048 * when we disable a per-cpu counter, we need to drain its resources back to
8d280b98
DC
2049 * the global superblock. We do this after disabling the counter to prevent
2050 * more threads from queueing up on the counter.
2051 *
2052 * Essentially, this means that we still need a lock in the fast path to enable
2053 * synchronisation between the global counters and the per-cpu counters. This
2054 * is not a problem because the lock will be local to a CPU almost all the time
2055 * and have little contention except when we get to ENOSPC conditions.
2056 *
2057 * Basically, this lock becomes a barrier that enables us to lock out the fast
2058 * path while we do things like enabling and disabling counters and
2059 * synchronising the counters.
2060 *
2061 * Locking rules:
2062 *
3685c2a1 2063 * 1. m_sb_lock before picking up per-cpu locks
8d280b98 2064 * 2. per-cpu locks always picked up via for_each_online_cpu() order
3685c2a1 2065 * 3. accurate counter sync requires m_sb_lock + per cpu locks
8d280b98 2066 * 4. modifying per-cpu counters requires holding per-cpu lock
3685c2a1
ES
2067 * 5. modifying global counters requires holding m_sb_lock
2068 * 6. enabling or disabling a counter requires holding the m_sb_lock
8d280b98
DC
2069 * and _none_ of the per-cpu locks.
2070 *
2071 * Disabled counters are only ever re-enabled by a balance operation
2072 * that results in more free resources per CPU than a given threshold.
2073 * To ensure counters don't remain disabled, they are rebalanced when
2074 * the global resource goes above a higher threshold (i.e. some hysteresis
2075 * is present to prevent thrashing).
e8234a68
DC
2076 */
2077
5a67e4c5 2078#ifdef CONFIG_HOTPLUG_CPU
e8234a68
DC
2079/*
2080 * hot-plug CPU notifier support.
8d280b98 2081 *
5a67e4c5
CS
2082 * We need a notifier per filesystem as we need to be able to identify
2083 * the filesystem to balance the counters out. This is achieved by
2084 * having a notifier block embedded in the xfs_mount_t and doing pointer
2085 * magic to get the mount pointer from the notifier block address.
8d280b98 2086 */
e8234a68
DC
2087STATIC int
2088xfs_icsb_cpu_notify(
2089 struct notifier_block *nfb,
2090 unsigned long action,
2091 void *hcpu)
2092{
2093 xfs_icsb_cnts_t *cntp;
2094 xfs_mount_t *mp;
e8234a68
DC
2095
2096 mp = (xfs_mount_t *)container_of(nfb, xfs_mount_t, m_icsb_notifier);
2097 cntp = (xfs_icsb_cnts_t *)
2098 per_cpu_ptr(mp->m_sb_cnts, (unsigned long)hcpu);
2099 switch (action) {
2100 case CPU_UP_PREPARE:
8bb78442 2101 case CPU_UP_PREPARE_FROZEN:
e8234a68
DC
2102 /* Easy Case - initialize the area and locks, and
2103 * then rebalance when online does everything else for us. */
01e1b69c 2104 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
e8234a68
DC
2105 break;
2106 case CPU_ONLINE:
8bb78442 2107 case CPU_ONLINE_FROZEN:
03135cf7 2108 xfs_icsb_lock(mp);
45af6c6d
CH
2109 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
2110 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
2111 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
03135cf7 2112 xfs_icsb_unlock(mp);
e8234a68
DC
2113 break;
2114 case CPU_DEAD:
8bb78442 2115 case CPU_DEAD_FROZEN:
e8234a68
DC
2116 /* Disable all the counters, then fold the dead cpu's
2117 * count into the total on the global superblock and
2118 * re-enable the counters. */
03135cf7 2119 xfs_icsb_lock(mp);
3685c2a1 2120 spin_lock(&mp->m_sb_lock);
e8234a68
DC
2121 xfs_icsb_disable_counter(mp, XFS_SBS_ICOUNT);
2122 xfs_icsb_disable_counter(mp, XFS_SBS_IFREE);
2123 xfs_icsb_disable_counter(mp, XFS_SBS_FDBLOCKS);
2124
2125 mp->m_sb.sb_icount += cntp->icsb_icount;
2126 mp->m_sb.sb_ifree += cntp->icsb_ifree;
2127 mp->m_sb.sb_fdblocks += cntp->icsb_fdblocks;
2128
01e1b69c 2129 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
e8234a68 2130
45af6c6d
CH
2131 xfs_icsb_balance_counter_locked(mp, XFS_SBS_ICOUNT, 0);
2132 xfs_icsb_balance_counter_locked(mp, XFS_SBS_IFREE, 0);
2133 xfs_icsb_balance_counter_locked(mp, XFS_SBS_FDBLOCKS, 0);
3685c2a1 2134 spin_unlock(&mp->m_sb_lock);
03135cf7 2135 xfs_icsb_unlock(mp);
e8234a68
DC
2136 break;
2137 }
2138
2139 return NOTIFY_OK;
2140}
5a67e4c5 2141#endif /* CONFIG_HOTPLUG_CPU */
e8234a68 2142
8d280b98
DC
2143int
2144xfs_icsb_init_counters(
2145 xfs_mount_t *mp)
2146{
2147 xfs_icsb_cnts_t *cntp;
2148 int i;
2149
2150 mp->m_sb_cnts = alloc_percpu(xfs_icsb_cnts_t);
2151 if (mp->m_sb_cnts == NULL)
2152 return -ENOMEM;
2153
5a67e4c5 2154#ifdef CONFIG_HOTPLUG_CPU
e8234a68
DC
2155 mp->m_icsb_notifier.notifier_call = xfs_icsb_cpu_notify;
2156 mp->m_icsb_notifier.priority = 0;
5a67e4c5
CS
2157 register_hotcpu_notifier(&mp->m_icsb_notifier);
2158#endif /* CONFIG_HOTPLUG_CPU */
e8234a68 2159
8d280b98
DC
2160 for_each_online_cpu(i) {
2161 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
01e1b69c 2162 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
8d280b98 2163 }
20b64285
DC
2164
2165 mutex_init(&mp->m_icsb_mutex);
2166
8d280b98
DC
2167 /*
2168 * start with all counters disabled so that the
2169 * initial balance kicks us off correctly
2170 */
2171 mp->m_icsb_counters = -1;
2172 return 0;
2173}
2174
5478eead
LM
2175void
2176xfs_icsb_reinit_counters(
2177 xfs_mount_t *mp)
2178{
2179 xfs_icsb_lock(mp);
2180 /*
2181 * start with all counters disabled so that the
2182 * initial balance kicks us off correctly
2183 */
2184 mp->m_icsb_counters = -1;
45af6c6d
CH
2185 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
2186 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
2187 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
5478eead
LM
2188 xfs_icsb_unlock(mp);
2189}
2190
c962fb79 2191void
8d280b98
DC
2192xfs_icsb_destroy_counters(
2193 xfs_mount_t *mp)
2194{
e8234a68 2195 if (mp->m_sb_cnts) {
5a67e4c5 2196 unregister_hotcpu_notifier(&mp->m_icsb_notifier);
8d280b98 2197 free_percpu(mp->m_sb_cnts);
e8234a68 2198 }
03135cf7 2199 mutex_destroy(&mp->m_icsb_mutex);
8d280b98
DC
2200}
2201
b8f82a4a 2202STATIC void
01e1b69c
DC
2203xfs_icsb_lock_cntr(
2204 xfs_icsb_cnts_t *icsbp)
2205{
2206 while (test_and_set_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags)) {
2207 ndelay(1000);
2208 }
2209}
2210
b8f82a4a 2211STATIC void
01e1b69c
DC
2212xfs_icsb_unlock_cntr(
2213 xfs_icsb_cnts_t *icsbp)
2214{
2215 clear_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags);
2216}
2217
8d280b98 2218
b8f82a4a 2219STATIC void
8d280b98
DC
2220xfs_icsb_lock_all_counters(
2221 xfs_mount_t *mp)
2222{
2223 xfs_icsb_cnts_t *cntp;
2224 int i;
2225
2226 for_each_online_cpu(i) {
2227 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
01e1b69c 2228 xfs_icsb_lock_cntr(cntp);
8d280b98
DC
2229 }
2230}
2231
b8f82a4a 2232STATIC void
8d280b98
DC
2233xfs_icsb_unlock_all_counters(
2234 xfs_mount_t *mp)
2235{
2236 xfs_icsb_cnts_t *cntp;
2237 int i;
2238
2239 for_each_online_cpu(i) {
2240 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
01e1b69c 2241 xfs_icsb_unlock_cntr(cntp);
8d280b98
DC
2242 }
2243}
2244
2245STATIC void
2246xfs_icsb_count(
2247 xfs_mount_t *mp,
2248 xfs_icsb_cnts_t *cnt,
2249 int flags)
2250{
2251 xfs_icsb_cnts_t *cntp;
2252 int i;
2253
2254 memset(cnt, 0, sizeof(xfs_icsb_cnts_t));
2255
2256 if (!(flags & XFS_ICSB_LAZY_COUNT))
2257 xfs_icsb_lock_all_counters(mp);
2258
2259 for_each_online_cpu(i) {
2260 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
2261 cnt->icsb_icount += cntp->icsb_icount;
2262 cnt->icsb_ifree += cntp->icsb_ifree;
2263 cnt->icsb_fdblocks += cntp->icsb_fdblocks;
2264 }
2265
2266 if (!(flags & XFS_ICSB_LAZY_COUNT))
2267 xfs_icsb_unlock_all_counters(mp);
2268}
2269
2270STATIC int
2271xfs_icsb_counter_disabled(
2272 xfs_mount_t *mp,
2273 xfs_sb_field_t field)
2274{
2275 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2276 return test_bit(field, &mp->m_icsb_counters);
2277}
2278
36fbe6e6 2279STATIC void
8d280b98
DC
2280xfs_icsb_disable_counter(
2281 xfs_mount_t *mp,
2282 xfs_sb_field_t field)
2283{
2284 xfs_icsb_cnts_t cnt;
2285
2286 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2287
20b64285
DC
2288 /*
2289 * If we are already disabled, then there is nothing to do
2290 * here. We check before locking all the counters to avoid
2291 * the expensive lock operation when being called in the
2292 * slow path and the counter is already disabled. This is
2293 * safe because the only time we set or clear this state is under
2294 * the m_icsb_mutex.
2295 */
2296 if (xfs_icsb_counter_disabled(mp, field))
36fbe6e6 2297 return;
20b64285 2298
8d280b98
DC
2299 xfs_icsb_lock_all_counters(mp);
2300 if (!test_and_set_bit(field, &mp->m_icsb_counters)) {
2301 /* drain back to superblock */
2302
ce46193b 2303 xfs_icsb_count(mp, &cnt, XFS_ICSB_LAZY_COUNT);
8d280b98
DC
2304 switch(field) {
2305 case XFS_SBS_ICOUNT:
2306 mp->m_sb.sb_icount = cnt.icsb_icount;
2307 break;
2308 case XFS_SBS_IFREE:
2309 mp->m_sb.sb_ifree = cnt.icsb_ifree;
2310 break;
2311 case XFS_SBS_FDBLOCKS:
2312 mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
2313 break;
2314 default:
2315 BUG();
2316 }
2317 }
2318
2319 xfs_icsb_unlock_all_counters(mp);
8d280b98
DC
2320}
2321
2322STATIC void
2323xfs_icsb_enable_counter(
2324 xfs_mount_t *mp,
2325 xfs_sb_field_t field,
2326 uint64_t count,
2327 uint64_t resid)
2328{
2329 xfs_icsb_cnts_t *cntp;
2330 int i;
2331
2332 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
2333
2334 xfs_icsb_lock_all_counters(mp);
2335 for_each_online_cpu(i) {
2336 cntp = per_cpu_ptr(mp->m_sb_cnts, i);
2337 switch (field) {
2338 case XFS_SBS_ICOUNT:
2339 cntp->icsb_icount = count + resid;
2340 break;
2341 case XFS_SBS_IFREE:
2342 cntp->icsb_ifree = count + resid;
2343 break;
2344 case XFS_SBS_FDBLOCKS:
2345 cntp->icsb_fdblocks = count + resid;
2346 break;
2347 default:
2348 BUG();
2349 break;
2350 }
2351 resid = 0;
2352 }
2353 clear_bit(field, &mp->m_icsb_counters);
2354 xfs_icsb_unlock_all_counters(mp);
2355}
2356
dbcabad1 2357void
d4d90b57 2358xfs_icsb_sync_counters_locked(
8d280b98
DC
2359 xfs_mount_t *mp,
2360 int flags)
2361{
2362 xfs_icsb_cnts_t cnt;
8d280b98 2363
8d280b98
DC
2364 xfs_icsb_count(mp, &cnt, flags);
2365
8d280b98
DC
2366 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_ICOUNT))
2367 mp->m_sb.sb_icount = cnt.icsb_icount;
2368 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_IFREE))
2369 mp->m_sb.sb_ifree = cnt.icsb_ifree;
2370 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_FDBLOCKS))
2371 mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
8d280b98
DC
2372}
2373
2374/*
2375 * Accurate update of per-cpu counters to incore superblock
2376 */
d4d90b57 2377void
8d280b98 2378xfs_icsb_sync_counters(
d4d90b57
CH
2379 xfs_mount_t *mp,
2380 int flags)
8d280b98 2381{
d4d90b57
CH
2382 spin_lock(&mp->m_sb_lock);
2383 xfs_icsb_sync_counters_locked(mp, flags);
2384 spin_unlock(&mp->m_sb_lock);
8d280b98
DC
2385}
2386
2387/*
2388 * Balance and enable/disable counters as necessary.
2389 *
20b64285
DC
2390 * Thresholds for re-enabling counters are somewhat magic. inode counts are
2391 * chosen to be the same number as single on disk allocation chunk per CPU, and
2392 * free blocks is something far enough zero that we aren't going thrash when we
2393 * get near ENOSPC. We also need to supply a minimum we require per cpu to
2394 * prevent looping endlessly when xfs_alloc_space asks for more than will
2395 * be distributed to a single CPU but each CPU has enough blocks to be
2396 * reenabled.
2397 *
2398 * Note that we can be called when counters are already disabled.
2399 * xfs_icsb_disable_counter() optimises the counter locking in this case to
2400 * prevent locking every per-cpu counter needlessly.
8d280b98 2401 */
20b64285
DC
2402
2403#define XFS_ICSB_INO_CNTR_REENABLE (uint64_t)64
4be536de 2404#define XFS_ICSB_FDBLK_CNTR_REENABLE(mp) \
20b64285 2405 (uint64_t)(512 + XFS_ALLOC_SET_ASIDE(mp))
8d280b98 2406STATIC void
45af6c6d 2407xfs_icsb_balance_counter_locked(
8d280b98
DC
2408 xfs_mount_t *mp,
2409 xfs_sb_field_t field,
20b64285 2410 int min_per_cpu)
8d280b98 2411{
6fdf8ccc 2412 uint64_t count, resid;
8d280b98 2413 int weight = num_online_cpus();
20b64285 2414 uint64_t min = (uint64_t)min_per_cpu;
8d280b98 2415
8d280b98
DC
2416 /* disable counter and sync counter */
2417 xfs_icsb_disable_counter(mp, field);
2418
2419 /* update counters - first CPU gets residual*/
2420 switch (field) {
2421 case XFS_SBS_ICOUNT:
2422 count = mp->m_sb.sb_icount;
2423 resid = do_div(count, weight);
20b64285 2424 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
45af6c6d 2425 return;
8d280b98
DC
2426 break;
2427 case XFS_SBS_IFREE:
2428 count = mp->m_sb.sb_ifree;
2429 resid = do_div(count, weight);
20b64285 2430 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
45af6c6d 2431 return;
8d280b98
DC
2432 break;
2433 case XFS_SBS_FDBLOCKS:
2434 count = mp->m_sb.sb_fdblocks;
2435 resid = do_div(count, weight);
20b64285 2436 if (count < max(min, XFS_ICSB_FDBLK_CNTR_REENABLE(mp)))
45af6c6d 2437 return;
8d280b98
DC
2438 break;
2439 default:
2440 BUG();
6fdf8ccc 2441 count = resid = 0; /* quiet, gcc */
8d280b98
DC
2442 break;
2443 }
2444
2445 xfs_icsb_enable_counter(mp, field, count, resid);
45af6c6d
CH
2446}
2447
2448STATIC void
2449xfs_icsb_balance_counter(
2450 xfs_mount_t *mp,
2451 xfs_sb_field_t fields,
2452 int min_per_cpu)
2453{
2454 spin_lock(&mp->m_sb_lock);
2455 xfs_icsb_balance_counter_locked(mp, fields, min_per_cpu);
2456 spin_unlock(&mp->m_sb_lock);
8d280b98
DC
2457}
2458
1b040712 2459int
20b64285 2460xfs_icsb_modify_counters(
8d280b98
DC
2461 xfs_mount_t *mp,
2462 xfs_sb_field_t field,
20f4ebf2 2463 int64_t delta,
20b64285 2464 int rsvd)
8d280b98
DC
2465{
2466 xfs_icsb_cnts_t *icsbp;
2467 long long lcounter; /* long counter for 64 bit fields */
7a9e02d6 2468 int ret = 0;
8d280b98 2469
20b64285 2470 might_sleep();
8d280b98 2471again:
7a9e02d6
CL
2472 preempt_disable();
2473 icsbp = this_cpu_ptr(mp->m_sb_cnts);
20b64285
DC
2474
2475 /*
2476 * if the counter is disabled, go to slow path
2477 */
8d280b98
DC
2478 if (unlikely(xfs_icsb_counter_disabled(mp, field)))
2479 goto slow_path;
20b64285
DC
2480 xfs_icsb_lock_cntr(icsbp);
2481 if (unlikely(xfs_icsb_counter_disabled(mp, field))) {
2482 xfs_icsb_unlock_cntr(icsbp);
2483 goto slow_path;
2484 }
8d280b98
DC
2485
2486 switch (field) {
2487 case XFS_SBS_ICOUNT:
2488 lcounter = icsbp->icsb_icount;
2489 lcounter += delta;
2490 if (unlikely(lcounter < 0))
20b64285 2491 goto balance_counter;
8d280b98
DC
2492 icsbp->icsb_icount = lcounter;
2493 break;
2494
2495 case XFS_SBS_IFREE:
2496 lcounter = icsbp->icsb_ifree;
2497 lcounter += delta;
2498 if (unlikely(lcounter < 0))
20b64285 2499 goto balance_counter;
8d280b98
DC
2500 icsbp->icsb_ifree = lcounter;
2501 break;
2502
2503 case XFS_SBS_FDBLOCKS:
2504 BUG_ON((mp->m_resblks - mp->m_resblks_avail) != 0);
2505
4be536de 2506 lcounter = icsbp->icsb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
8d280b98
DC
2507 lcounter += delta;
2508 if (unlikely(lcounter < 0))
20b64285 2509 goto balance_counter;
4be536de 2510 icsbp->icsb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
8d280b98
DC
2511 break;
2512 default:
2513 BUG();
2514 break;
2515 }
01e1b69c 2516 xfs_icsb_unlock_cntr(icsbp);
7a9e02d6 2517 preempt_enable();
8d280b98
DC
2518 return 0;
2519
8d280b98 2520slow_path:
7a9e02d6 2521 preempt_enable();
8d280b98 2522
20b64285
DC
2523 /*
2524 * serialise with a mutex so we don't burn lots of cpu on
2525 * the superblock lock. We still need to hold the superblock
2526 * lock, however, when we modify the global structures.
2527 */
03135cf7 2528 xfs_icsb_lock(mp);
20b64285
DC
2529
2530 /*
2531 * Now running atomically.
2532 *
2533 * If the counter is enabled, someone has beaten us to rebalancing.
2534 * Drop the lock and try again in the fast path....
2535 */
2536 if (!(xfs_icsb_counter_disabled(mp, field))) {
03135cf7 2537 xfs_icsb_unlock(mp);
8d280b98 2538 goto again;
8d280b98
DC
2539 }
2540
20b64285
DC
2541 /*
2542 * The counter is currently disabled. Because we are
2543 * running atomically here, we know a rebalance cannot
2544 * be in progress. Hence we can go straight to operating
2545 * on the global superblock. We do not call xfs_mod_incore_sb()
3685c2a1 2546 * here even though we need to get the m_sb_lock. Doing so
20b64285 2547 * will cause us to re-enter this function and deadlock.
3685c2a1 2548 * Hence we get the m_sb_lock ourselves and then call
20b64285
DC
2549 * xfs_mod_incore_sb_unlocked() as the unlocked path operates
2550 * directly on the global counters.
2551 */
3685c2a1 2552 spin_lock(&mp->m_sb_lock);
8d280b98 2553 ret = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
3685c2a1 2554 spin_unlock(&mp->m_sb_lock);
8d280b98 2555
20b64285
DC
2556 /*
2557 * Now that we've modified the global superblock, we
2558 * may be able to re-enable the distributed counters
2559 * (e.g. lots of space just got freed). After that
2560 * we are done.
2561 */
2562 if (ret != ENOSPC)
45af6c6d 2563 xfs_icsb_balance_counter(mp, field, 0);
03135cf7 2564 xfs_icsb_unlock(mp);
8d280b98 2565 return ret;
8d280b98 2566
20b64285
DC
2567balance_counter:
2568 xfs_icsb_unlock_cntr(icsbp);
7a9e02d6 2569 preempt_enable();
8d280b98 2570
20b64285
DC
2571 /*
2572 * We may have multiple threads here if multiple per-cpu
2573 * counters run dry at the same time. This will mean we can
2574 * do more balances than strictly necessary but it is not
2575 * the common slowpath case.
2576 */
03135cf7 2577 xfs_icsb_lock(mp);
20b64285
DC
2578
2579 /*
2580 * running atomically.
2581 *
2582 * This will leave the counter in the correct state for future
2583 * accesses. After the rebalance, we simply try again and our retry
2584 * will either succeed through the fast path or slow path without
2585 * another balance operation being required.
2586 */
45af6c6d 2587 xfs_icsb_balance_counter(mp, field, delta);
03135cf7 2588 xfs_icsb_unlock(mp);
20b64285 2589 goto again;
8d280b98 2590}
20b64285 2591
8d280b98 2592#endif