xfs: avoid repeated pointer dereferences
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / xfs / xfs_log_recover.c
CommitLineData
1da177e4 1/*
87c199c2 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7b718769 3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
a844f451 19#include "xfs_fs.h"
1da177e4 20#include "xfs_types.h"
a844f451 21#include "xfs_bit.h"
1da177e4 22#include "xfs_log.h"
a844f451 23#include "xfs_inum.h"
1da177e4 24#include "xfs_trans.h"
a844f451
NS
25#include "xfs_sb.h"
26#include "xfs_ag.h"
1da177e4
LT
27#include "xfs_dir2.h"
28#include "xfs_dmapi.h"
29#include "xfs_mount.h"
30#include "xfs_error.h"
31#include "xfs_bmap_btree.h"
a844f451
NS
32#include "xfs_alloc_btree.h"
33#include "xfs_ialloc_btree.h"
1da177e4 34#include "xfs_dir2_sf.h"
a844f451 35#include "xfs_attr_sf.h"
1da177e4 36#include "xfs_dinode.h"
1da177e4 37#include "xfs_inode.h"
a844f451 38#include "xfs_inode_item.h"
a844f451 39#include "xfs_alloc.h"
1da177e4
LT
40#include "xfs_ialloc.h"
41#include "xfs_log_priv.h"
42#include "xfs_buf_item.h"
1da177e4
LT
43#include "xfs_log_recover.h"
44#include "xfs_extfree_item.h"
45#include "xfs_trans_priv.h"
1da177e4
LT
46#include "xfs_quota.h"
47#include "xfs_rw.h"
43355099 48#include "xfs_utils.h"
0b1b213f 49#include "xfs_trace.h"
1da177e4
LT
50
51STATIC int xlog_find_zeroed(xlog_t *, xfs_daddr_t *);
52STATIC int xlog_clear_stale_blocks(xlog_t *, xfs_lsn_t);
1da177e4
LT
53#if defined(DEBUG)
54STATIC void xlog_recover_check_summary(xlog_t *);
1da177e4
LT
55#else
56#define xlog_recover_check_summary(log)
1da177e4
LT
57#endif
58
1da177e4
LT
59/*
60 * Sector aligned buffer routines for buffer create/read/write/access
61 */
62
6881a229
AE
63/* Number of basic blocks in a log sector */
64#define xlog_sectbb(log) (1 << (log)->l_sectbb_log)
65
ff30a622
AE
66/*
67 * Verify the given count of basic blocks is valid number of blocks
68 * to specify for an operation involving the given XFS log buffer.
69 * Returns nonzero if the count is valid, 0 otherwise.
70 */
71
72static inline int
73xlog_buf_bbcount_valid(
74 xlog_t *log,
75 int bbcount)
76{
77 return bbcount > 0 && bbcount <= log->l_logBBsize;
78}
79
36adecff
AE
80/*
81 * Allocate a buffer to hold log data. The buffer needs to be able
82 * to map to a range of nbblks basic blocks at any valid (basic
83 * block) offset within the log.
84 */
5d77c0dc 85STATIC xfs_buf_t *
1da177e4
LT
86xlog_get_bp(
87 xlog_t *log,
3228149c 88 int nbblks)
1da177e4 89{
ff30a622
AE
90 if (!xlog_buf_bbcount_valid(log, nbblks)) {
91 xlog_warn("XFS: Invalid block length (0x%x) given for buffer",
92 nbblks);
93 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
3228149c
DC
94 return NULL;
95 }
1da177e4 96
36adecff
AE
97 /*
98 * We do log I/O in units of log sectors (a power-of-2
99 * multiple of the basic block size), so we round up the
100 * requested size to acommodate the basic blocks required
101 * for complete log sectors.
102 *
103 * In addition, the buffer may be used for a non-sector-
104 * aligned block offset, in which case an I/O of the
105 * requested size could extend beyond the end of the
106 * buffer. If the requested size is only 1 basic block it
107 * will never straddle a sector boundary, so this won't be
108 * an issue. Nor will this be a problem if the log I/O is
109 * done in basic blocks (sector size 1). But otherwise we
110 * extend the buffer by one extra log sector to ensure
111 * there's space to accomodate this possiblility.
112 */
113 if (nbblks > 1 && log->l_sectbb_log)
114 nbblks += xlog_sectbb(log);
115 nbblks = round_up(nbblks, xlog_sectbb(log));
116
3228149c 117 return xfs_buf_get_noaddr(BBTOB(nbblks), log->l_mp->m_logdev_targp);
1da177e4
LT
118}
119
5d77c0dc 120STATIC void
1da177e4
LT
121xlog_put_bp(
122 xfs_buf_t *bp)
123{
124 xfs_buf_free(bp);
125}
126
076e6acb
CH
127STATIC xfs_caddr_t
128xlog_align(
129 xlog_t *log,
130 xfs_daddr_t blk_no,
131 int nbblks,
132 xfs_buf_t *bp)
133{
134 xfs_caddr_t ptr;
135
136 if (!log->l_sectbb_log)
137 return XFS_BUF_PTR(bp);
138
139 ptr = XFS_BUF_PTR(bp) + BBTOB((int)blk_no & log->l_sectbb_mask);
140 ASSERT(XFS_BUF_SIZE(bp) >=
141 BBTOB(nbblks + (blk_no & log->l_sectbb_mask)));
142 return ptr;
143}
144
1da177e4
LT
145
146/*
147 * nbblks should be uint, but oh well. Just want to catch that 32-bit length.
148 */
076e6acb
CH
149STATIC int
150xlog_bread_noalign(
1da177e4
LT
151 xlog_t *log,
152 xfs_daddr_t blk_no,
153 int nbblks,
154 xfs_buf_t *bp)
155{
156 int error;
157
ff30a622
AE
158 if (!xlog_buf_bbcount_valid(log, nbblks)) {
159 xlog_warn("XFS: Invalid block length (0x%x) given for buffer",
160 nbblks);
161 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
3228149c
DC
162 return EFSCORRUPTED;
163 }
164
36adecff
AE
165 blk_no = round_down(blk_no, xlog_sectbb(log));
166 nbblks = round_up(nbblks, xlog_sectbb(log));
1da177e4
LT
167
168 ASSERT(nbblks > 0);
169 ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
170 ASSERT(bp);
171
172 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
173 XFS_BUF_READ(bp);
174 XFS_BUF_BUSY(bp);
175 XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
176 XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
177
178 xfsbdstrat(log->l_mp, bp);
d64e31a2
DC
179 error = xfs_iowait(bp);
180 if (error)
1da177e4
LT
181 xfs_ioerror_alert("xlog_bread", log->l_mp,
182 bp, XFS_BUF_ADDR(bp));
183 return error;
184}
185
076e6acb
CH
186STATIC int
187xlog_bread(
188 xlog_t *log,
189 xfs_daddr_t blk_no,
190 int nbblks,
191 xfs_buf_t *bp,
192 xfs_caddr_t *offset)
193{
194 int error;
195
196 error = xlog_bread_noalign(log, blk_no, nbblks, bp);
197 if (error)
198 return error;
199
200 *offset = xlog_align(log, blk_no, nbblks, bp);
201 return 0;
202}
203
1da177e4
LT
204/*
205 * Write out the buffer at the given block for the given number of blocks.
206 * The buffer is kept locked across the write and is returned locked.
207 * This can only be used for synchronous log writes.
208 */
ba0f32d4 209STATIC int
1da177e4
LT
210xlog_bwrite(
211 xlog_t *log,
212 xfs_daddr_t blk_no,
213 int nbblks,
214 xfs_buf_t *bp)
215{
216 int error;
217
ff30a622
AE
218 if (!xlog_buf_bbcount_valid(log, nbblks)) {
219 xlog_warn("XFS: Invalid block length (0x%x) given for buffer",
220 nbblks);
221 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
3228149c
DC
222 return EFSCORRUPTED;
223 }
224
36adecff
AE
225 blk_no = round_down(blk_no, xlog_sectbb(log));
226 nbblks = round_up(nbblks, xlog_sectbb(log));
1da177e4
LT
227
228 ASSERT(nbblks > 0);
229 ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
230
231 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
232 XFS_BUF_ZEROFLAGS(bp);
233 XFS_BUF_BUSY(bp);
234 XFS_BUF_HOLD(bp);
235 XFS_BUF_PSEMA(bp, PRIBIO);
236 XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
237 XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
238
239 if ((error = xfs_bwrite(log->l_mp, bp)))
240 xfs_ioerror_alert("xlog_bwrite", log->l_mp,
241 bp, XFS_BUF_ADDR(bp));
242 return error;
243}
244
1da177e4
LT
245#ifdef DEBUG
246/*
247 * dump debug superblock and log record information
248 */
249STATIC void
250xlog_header_check_dump(
251 xfs_mount_t *mp,
252 xlog_rec_header_t *head)
253{
03daa57c
JP
254 cmn_err(CE_DEBUG, "%s: SB : uuid = %pU, fmt = %d\n",
255 __func__, &mp->m_sb.sb_uuid, XLOG_FMT);
256 cmn_err(CE_DEBUG, " log : uuid = %pU, fmt = %d\n",
257 &head->h_fs_uuid, be32_to_cpu(head->h_fmt));
1da177e4
LT
258}
259#else
260#define xlog_header_check_dump(mp, head)
261#endif
262
263/*
264 * check log record header for recovery
265 */
266STATIC int
267xlog_header_check_recover(
268 xfs_mount_t *mp,
269 xlog_rec_header_t *head)
270{
b53e675d 271 ASSERT(be32_to_cpu(head->h_magicno) == XLOG_HEADER_MAGIC_NUM);
1da177e4
LT
272
273 /*
274 * IRIX doesn't write the h_fmt field and leaves it zeroed
275 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
276 * a dirty log created in IRIX.
277 */
b53e675d 278 if (unlikely(be32_to_cpu(head->h_fmt) != XLOG_FMT)) {
1da177e4
LT
279 xlog_warn(
280 "XFS: dirty log written in incompatible format - can't recover");
281 xlog_header_check_dump(mp, head);
282 XFS_ERROR_REPORT("xlog_header_check_recover(1)",
283 XFS_ERRLEVEL_HIGH, mp);
284 return XFS_ERROR(EFSCORRUPTED);
285 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
286 xlog_warn(
287 "XFS: dirty log entry has mismatched uuid - can't recover");
288 xlog_header_check_dump(mp, head);
289 XFS_ERROR_REPORT("xlog_header_check_recover(2)",
290 XFS_ERRLEVEL_HIGH, mp);
291 return XFS_ERROR(EFSCORRUPTED);
292 }
293 return 0;
294}
295
296/*
297 * read the head block of the log and check the header
298 */
299STATIC int
300xlog_header_check_mount(
301 xfs_mount_t *mp,
302 xlog_rec_header_t *head)
303{
b53e675d 304 ASSERT(be32_to_cpu(head->h_magicno) == XLOG_HEADER_MAGIC_NUM);
1da177e4
LT
305
306 if (uuid_is_nil(&head->h_fs_uuid)) {
307 /*
308 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
309 * h_fs_uuid is nil, we assume this log was last mounted
310 * by IRIX and continue.
311 */
312 xlog_warn("XFS: nil uuid in log - IRIX style log");
313 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
314 xlog_warn("XFS: log has mismatched uuid - can't recover");
315 xlog_header_check_dump(mp, head);
316 XFS_ERROR_REPORT("xlog_header_check_mount",
317 XFS_ERRLEVEL_HIGH, mp);
318 return XFS_ERROR(EFSCORRUPTED);
319 }
320 return 0;
321}
322
323STATIC void
324xlog_recover_iodone(
325 struct xfs_buf *bp)
326{
1da177e4
LT
327 if (XFS_BUF_GETERROR(bp)) {
328 /*
329 * We're not going to bother about retrying
330 * this during recovery. One strike!
331 */
1da177e4 332 xfs_ioerror_alert("xlog_recover_iodone",
15ac08a8
CH
333 bp->b_mount, bp, XFS_BUF_ADDR(bp));
334 xfs_force_shutdown(bp->b_mount, SHUTDOWN_META_IO_ERROR);
1da177e4 335 }
15ac08a8 336 bp->b_mount = NULL;
1da177e4
LT
337 XFS_BUF_CLR_IODONE_FUNC(bp);
338 xfs_biodone(bp);
339}
340
341/*
342 * This routine finds (to an approximation) the first block in the physical
343 * log which contains the given cycle. It uses a binary search algorithm.
344 * Note that the algorithm can not be perfect because the disk will not
345 * necessarily be perfect.
346 */
a8272ce0 347STATIC int
1da177e4
LT
348xlog_find_cycle_start(
349 xlog_t *log,
350 xfs_buf_t *bp,
351 xfs_daddr_t first_blk,
352 xfs_daddr_t *last_blk,
353 uint cycle)
354{
355 xfs_caddr_t offset;
356 xfs_daddr_t mid_blk;
e3bb2e30 357 xfs_daddr_t end_blk;
1da177e4
LT
358 uint mid_cycle;
359 int error;
360
e3bb2e30
AE
361 end_blk = *last_blk;
362 mid_blk = BLK_AVG(first_blk, end_blk);
363 while (mid_blk != first_blk && mid_blk != end_blk) {
076e6acb
CH
364 error = xlog_bread(log, mid_blk, 1, bp, &offset);
365 if (error)
1da177e4 366 return error;
03bea6fe 367 mid_cycle = xlog_get_cycle(offset);
e3bb2e30
AE
368 if (mid_cycle == cycle)
369 end_blk = mid_blk; /* last_half_cycle == mid_cycle */
370 else
371 first_blk = mid_blk; /* first_half_cycle == mid_cycle */
372 mid_blk = BLK_AVG(first_blk, end_blk);
1da177e4 373 }
e3bb2e30
AE
374 ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
375 (mid_blk == end_blk && mid_blk-1 == first_blk));
376
377 *last_blk = end_blk;
1da177e4
LT
378
379 return 0;
380}
381
382/*
383 * Check that the range of blocks does not contain the cycle number
384 * given. The scan needs to occur from front to back and the ptr into the
385 * region must be updated since a later routine will need to perform another
386 * test. If the region is completely good, we end up returning the same
387 * last block number.
388 *
389 * Set blkno to -1 if we encounter no errors. This is an invalid block number
390 * since we don't ever expect logs to get this large.
391 */
392STATIC int
393xlog_find_verify_cycle(
394 xlog_t *log,
395 xfs_daddr_t start_blk,
396 int nbblks,
397 uint stop_on_cycle_no,
398 xfs_daddr_t *new_blk)
399{
400 xfs_daddr_t i, j;
401 uint cycle;
402 xfs_buf_t *bp;
403 xfs_daddr_t bufblks;
404 xfs_caddr_t buf = NULL;
405 int error = 0;
406
6881a229
AE
407 /*
408 * Greedily allocate a buffer big enough to handle the full
409 * range of basic blocks we'll be examining. If that fails,
410 * try a smaller size. We need to be able to read at least
411 * a log sector, or we're out of luck.
412 */
1da177e4 413 bufblks = 1 << ffs(nbblks);
1da177e4 414 while (!(bp = xlog_get_bp(log, bufblks))) {
1da177e4 415 bufblks >>= 1;
6881a229 416 if (bufblks < xlog_sectbb(log))
1da177e4
LT
417 return ENOMEM;
418 }
419
420 for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
421 int bcount;
422
423 bcount = min(bufblks, (start_blk + nbblks - i));
424
076e6acb
CH
425 error = xlog_bread(log, i, bcount, bp, &buf);
426 if (error)
1da177e4
LT
427 goto out;
428
1da177e4 429 for (j = 0; j < bcount; j++) {
03bea6fe 430 cycle = xlog_get_cycle(buf);
1da177e4
LT
431 if (cycle == stop_on_cycle_no) {
432 *new_blk = i+j;
433 goto out;
434 }
435
436 buf += BBSIZE;
437 }
438 }
439
440 *new_blk = -1;
441
442out:
443 xlog_put_bp(bp);
444 return error;
445}
446
447/*
448 * Potentially backup over partial log record write.
449 *
450 * In the typical case, last_blk is the number of the block directly after
451 * a good log record. Therefore, we subtract one to get the block number
452 * of the last block in the given buffer. extra_bblks contains the number
453 * of blocks we would have read on a previous read. This happens when the
454 * last log record is split over the end of the physical log.
455 *
456 * extra_bblks is the number of blocks potentially verified on a previous
457 * call to this routine.
458 */
459STATIC int
460xlog_find_verify_log_record(
461 xlog_t *log,
462 xfs_daddr_t start_blk,
463 xfs_daddr_t *last_blk,
464 int extra_bblks)
465{
466 xfs_daddr_t i;
467 xfs_buf_t *bp;
468 xfs_caddr_t offset = NULL;
469 xlog_rec_header_t *head = NULL;
470 int error = 0;
471 int smallmem = 0;
472 int num_blks = *last_blk - start_blk;
473 int xhdrs;
474
475 ASSERT(start_blk != 0 || *last_blk != start_blk);
476
477 if (!(bp = xlog_get_bp(log, num_blks))) {
478 if (!(bp = xlog_get_bp(log, 1)))
479 return ENOMEM;
480 smallmem = 1;
481 } else {
076e6acb
CH
482 error = xlog_bread(log, start_blk, num_blks, bp, &offset);
483 if (error)
1da177e4 484 goto out;
1da177e4
LT
485 offset += ((num_blks - 1) << BBSHIFT);
486 }
487
488 for (i = (*last_blk) - 1; i >= 0; i--) {
489 if (i < start_blk) {
490 /* valid log record not found */
491 xlog_warn(
492 "XFS: Log inconsistent (didn't find previous header)");
493 ASSERT(0);
494 error = XFS_ERROR(EIO);
495 goto out;
496 }
497
498 if (smallmem) {
076e6acb
CH
499 error = xlog_bread(log, i, 1, bp, &offset);
500 if (error)
1da177e4 501 goto out;
1da177e4
LT
502 }
503
504 head = (xlog_rec_header_t *)offset;
505
b53e675d 506 if (XLOG_HEADER_MAGIC_NUM == be32_to_cpu(head->h_magicno))
1da177e4
LT
507 break;
508
509 if (!smallmem)
510 offset -= BBSIZE;
511 }
512
513 /*
514 * We hit the beginning of the physical log & still no header. Return
515 * to caller. If caller can handle a return of -1, then this routine
516 * will be called again for the end of the physical log.
517 */
518 if (i == -1) {
519 error = -1;
520 goto out;
521 }
522
523 /*
524 * We have the final block of the good log (the first block
525 * of the log record _before_ the head. So we check the uuid.
526 */
527 if ((error = xlog_header_check_mount(log->l_mp, head)))
528 goto out;
529
530 /*
531 * We may have found a log record header before we expected one.
532 * last_blk will be the 1st block # with a given cycle #. We may end
533 * up reading an entire log record. In this case, we don't want to
534 * reset last_blk. Only when last_blk points in the middle of a log
535 * record do we update last_blk.
536 */
62118709 537 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
b53e675d 538 uint h_size = be32_to_cpu(head->h_size);
1da177e4
LT
539
540 xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
541 if (h_size % XLOG_HEADER_CYCLE_SIZE)
542 xhdrs++;
543 } else {
544 xhdrs = 1;
545 }
546
b53e675d
CH
547 if (*last_blk - i + extra_bblks !=
548 BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
1da177e4
LT
549 *last_blk = i;
550
551out:
552 xlog_put_bp(bp);
553 return error;
554}
555
556/*
557 * Head is defined to be the point of the log where the next log write
558 * write could go. This means that incomplete LR writes at the end are
559 * eliminated when calculating the head. We aren't guaranteed that previous
560 * LR have complete transactions. We only know that a cycle number of
561 * current cycle number -1 won't be present in the log if we start writing
562 * from our current block number.
563 *
564 * last_blk contains the block number of the first block with a given
565 * cycle number.
566 *
567 * Return: zero if normal, non-zero if error.
568 */
ba0f32d4 569STATIC int
1da177e4
LT
570xlog_find_head(
571 xlog_t *log,
572 xfs_daddr_t *return_head_blk)
573{
574 xfs_buf_t *bp;
575 xfs_caddr_t offset;
576 xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk;
577 int num_scan_bblks;
578 uint first_half_cycle, last_half_cycle;
579 uint stop_on_cycle;
580 int error, log_bbnum = log->l_logBBsize;
581
582 /* Is the end of the log device zeroed? */
583 if ((error = xlog_find_zeroed(log, &first_blk)) == -1) {
584 *return_head_blk = first_blk;
585
586 /* Is the whole lot zeroed? */
587 if (!first_blk) {
588 /* Linux XFS shouldn't generate totally zeroed logs -
589 * mkfs etc write a dummy unmount record to a fresh
590 * log so we can store the uuid in there
591 */
592 xlog_warn("XFS: totally zeroed log");
593 }
594
595 return 0;
596 } else if (error) {
597 xlog_warn("XFS: empty log check failed");
598 return error;
599 }
600
601 first_blk = 0; /* get cycle # of 1st block */
602 bp = xlog_get_bp(log, 1);
603 if (!bp)
604 return ENOMEM;
076e6acb
CH
605
606 error = xlog_bread(log, 0, 1, bp, &offset);
607 if (error)
1da177e4 608 goto bp_err;
076e6acb 609
03bea6fe 610 first_half_cycle = xlog_get_cycle(offset);
1da177e4
LT
611
612 last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */
076e6acb
CH
613 error = xlog_bread(log, last_blk, 1, bp, &offset);
614 if (error)
1da177e4 615 goto bp_err;
076e6acb 616
03bea6fe 617 last_half_cycle = xlog_get_cycle(offset);
1da177e4
LT
618 ASSERT(last_half_cycle != 0);
619
620 /*
621 * If the 1st half cycle number is equal to the last half cycle number,
622 * then the entire log is stamped with the same cycle number. In this
623 * case, head_blk can't be set to zero (which makes sense). The below
624 * math doesn't work out properly with head_blk equal to zero. Instead,
625 * we set it to log_bbnum which is an invalid block number, but this
626 * value makes the math correct. If head_blk doesn't changed through
627 * all the tests below, *head_blk is set to zero at the very end rather
628 * than log_bbnum. In a sense, log_bbnum and zero are the same block
629 * in a circular file.
630 */
631 if (first_half_cycle == last_half_cycle) {
632 /*
633 * In this case we believe that the entire log should have
634 * cycle number last_half_cycle. We need to scan backwards
635 * from the end verifying that there are no holes still
636 * containing last_half_cycle - 1. If we find such a hole,
637 * then the start of that hole will be the new head. The
638 * simple case looks like
639 * x | x ... | x - 1 | x
640 * Another case that fits this picture would be
641 * x | x + 1 | x ... | x
c41564b5 642 * In this case the head really is somewhere at the end of the
1da177e4
LT
643 * log, as one of the latest writes at the beginning was
644 * incomplete.
645 * One more case is
646 * x | x + 1 | x ... | x - 1 | x
647 * This is really the combination of the above two cases, and
648 * the head has to end up at the start of the x-1 hole at the
649 * end of the log.
650 *
651 * In the 256k log case, we will read from the beginning to the
652 * end of the log and search for cycle numbers equal to x-1.
653 * We don't worry about the x+1 blocks that we encounter,
654 * because we know that they cannot be the head since the log
655 * started with x.
656 */
657 head_blk = log_bbnum;
658 stop_on_cycle = last_half_cycle - 1;
659 } else {
660 /*
661 * In this case we want to find the first block with cycle
662 * number matching last_half_cycle. We expect the log to be
663 * some variation on
664 * x + 1 ... | x ...
665 * The first block with cycle number x (last_half_cycle) will
666 * be where the new head belongs. First we do a binary search
667 * for the first occurrence of last_half_cycle. The binary
668 * search may not be totally accurate, so then we scan back
669 * from there looking for occurrences of last_half_cycle before
670 * us. If that backwards scan wraps around the beginning of
671 * the log, then we look for occurrences of last_half_cycle - 1
672 * at the end of the log. The cases we're looking for look
673 * like
674 * x + 1 ... | x | x + 1 | x ...
675 * ^ binary search stopped here
676 * or
677 * x + 1 ... | x ... | x - 1 | x
678 * <---------> less than scan distance
679 */
680 stop_on_cycle = last_half_cycle;
681 if ((error = xlog_find_cycle_start(log, bp, first_blk,
682 &head_blk, last_half_cycle)))
683 goto bp_err;
684 }
685
686 /*
687 * Now validate the answer. Scan back some number of maximum possible
688 * blocks and make sure each one has the expected cycle number. The
689 * maximum is determined by the total possible amount of buffering
690 * in the in-core log. The following number can be made tighter if
691 * we actually look at the block size of the filesystem.
692 */
693 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
694 if (head_blk >= num_scan_bblks) {
695 /*
696 * We are guaranteed that the entire check can be performed
697 * in one buffer.
698 */
699 start_blk = head_blk - num_scan_bblks;
700 if ((error = xlog_find_verify_cycle(log,
701 start_blk, num_scan_bblks,
702 stop_on_cycle, &new_blk)))
703 goto bp_err;
704 if (new_blk != -1)
705 head_blk = new_blk;
706 } else { /* need to read 2 parts of log */
707 /*
708 * We are going to scan backwards in the log in two parts.
709 * First we scan the physical end of the log. In this part
710 * of the log, we are looking for blocks with cycle number
711 * last_half_cycle - 1.
712 * If we find one, then we know that the log starts there, as
713 * we've found a hole that didn't get written in going around
714 * the end of the physical log. The simple case for this is
715 * x + 1 ... | x ... | x - 1 | x
716 * <---------> less than scan distance
717 * If all of the blocks at the end of the log have cycle number
718 * last_half_cycle, then we check the blocks at the start of
719 * the log looking for occurrences of last_half_cycle. If we
720 * find one, then our current estimate for the location of the
721 * first occurrence of last_half_cycle is wrong and we move
722 * back to the hole we've found. This case looks like
723 * x + 1 ... | x | x + 1 | x ...
724 * ^ binary search stopped here
725 * Another case we need to handle that only occurs in 256k
726 * logs is
727 * x + 1 ... | x ... | x+1 | x ...
728 * ^ binary search stops here
729 * In a 256k log, the scan at the end of the log will see the
730 * x + 1 blocks. We need to skip past those since that is
731 * certainly not the head of the log. By searching for
732 * last_half_cycle-1 we accomplish that.
733 */
734 start_blk = log_bbnum - num_scan_bblks + head_blk;
735 ASSERT(head_blk <= INT_MAX &&
736 (xfs_daddr_t) num_scan_bblks - head_blk >= 0);
737 if ((error = xlog_find_verify_cycle(log, start_blk,
738 num_scan_bblks - (int)head_blk,
739 (stop_on_cycle - 1), &new_blk)))
740 goto bp_err;
741 if (new_blk != -1) {
742 head_blk = new_blk;
9db127ed 743 goto validate_head;
1da177e4
LT
744 }
745
746 /*
747 * Scan beginning of log now. The last part of the physical
748 * log is good. This scan needs to verify that it doesn't find
749 * the last_half_cycle.
750 */
751 start_blk = 0;
752 ASSERT(head_blk <= INT_MAX);
753 if ((error = xlog_find_verify_cycle(log,
754 start_blk, (int)head_blk,
755 stop_on_cycle, &new_blk)))
756 goto bp_err;
757 if (new_blk != -1)
758 head_blk = new_blk;
759 }
760
9db127ed 761validate_head:
1da177e4
LT
762 /*
763 * Now we need to make sure head_blk is not pointing to a block in
764 * the middle of a log record.
765 */
766 num_scan_bblks = XLOG_REC_SHIFT(log);
767 if (head_blk >= num_scan_bblks) {
768 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
769
770 /* start ptr at last block ptr before head_blk */
771 if ((error = xlog_find_verify_log_record(log, start_blk,
772 &head_blk, 0)) == -1) {
773 error = XFS_ERROR(EIO);
774 goto bp_err;
775 } else if (error)
776 goto bp_err;
777 } else {
778 start_blk = 0;
779 ASSERT(head_blk <= INT_MAX);
780 if ((error = xlog_find_verify_log_record(log, start_blk,
781 &head_blk, 0)) == -1) {
782 /* We hit the beginning of the log during our search */
783 start_blk = log_bbnum - num_scan_bblks + head_blk;
784 new_blk = log_bbnum;
785 ASSERT(start_blk <= INT_MAX &&
786 (xfs_daddr_t) log_bbnum-start_blk >= 0);
787 ASSERT(head_blk <= INT_MAX);
788 if ((error = xlog_find_verify_log_record(log,
789 start_blk, &new_blk,
790 (int)head_blk)) == -1) {
791 error = XFS_ERROR(EIO);
792 goto bp_err;
793 } else if (error)
794 goto bp_err;
795 if (new_blk != log_bbnum)
796 head_blk = new_blk;
797 } else if (error)
798 goto bp_err;
799 }
800
801 xlog_put_bp(bp);
802 if (head_blk == log_bbnum)
803 *return_head_blk = 0;
804 else
805 *return_head_blk = head_blk;
806 /*
807 * When returning here, we have a good block number. Bad block
808 * means that during a previous crash, we didn't have a clean break
809 * from cycle number N to cycle number N-1. In this case, we need
810 * to find the first block with cycle number N-1.
811 */
812 return 0;
813
814 bp_err:
815 xlog_put_bp(bp);
816
817 if (error)
818 xlog_warn("XFS: failed to find log head");
819 return error;
820}
821
822/*
823 * Find the sync block number or the tail of the log.
824 *
825 * This will be the block number of the last record to have its
826 * associated buffers synced to disk. Every log record header has
827 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy
828 * to get a sync block number. The only concern is to figure out which
829 * log record header to believe.
830 *
831 * The following algorithm uses the log record header with the largest
832 * lsn. The entire log record does not need to be valid. We only care
833 * that the header is valid.
834 *
835 * We could speed up search by using current head_blk buffer, but it is not
836 * available.
837 */
5d77c0dc 838STATIC int
1da177e4
LT
839xlog_find_tail(
840 xlog_t *log,
841 xfs_daddr_t *head_blk,
65be6054 842 xfs_daddr_t *tail_blk)
1da177e4
LT
843{
844 xlog_rec_header_t *rhead;
845 xlog_op_header_t *op_head;
846 xfs_caddr_t offset = NULL;
847 xfs_buf_t *bp;
848 int error, i, found;
849 xfs_daddr_t umount_data_blk;
850 xfs_daddr_t after_umount_blk;
851 xfs_lsn_t tail_lsn;
852 int hblks;
853
854 found = 0;
855
856 /*
857 * Find previous log record
858 */
859 if ((error = xlog_find_head(log, head_blk)))
860 return error;
861
862 bp = xlog_get_bp(log, 1);
863 if (!bp)
864 return ENOMEM;
865 if (*head_blk == 0) { /* special case */
076e6acb
CH
866 error = xlog_bread(log, 0, 1, bp, &offset);
867 if (error)
9db127ed 868 goto done;
076e6acb 869
03bea6fe 870 if (xlog_get_cycle(offset) == 0) {
1da177e4
LT
871 *tail_blk = 0;
872 /* leave all other log inited values alone */
9db127ed 873 goto done;
1da177e4
LT
874 }
875 }
876
877 /*
878 * Search backwards looking for log record header block
879 */
880 ASSERT(*head_blk < INT_MAX);
881 for (i = (int)(*head_blk) - 1; i >= 0; i--) {
076e6acb
CH
882 error = xlog_bread(log, i, 1, bp, &offset);
883 if (error)
9db127ed 884 goto done;
076e6acb 885
b53e675d 886 if (XLOG_HEADER_MAGIC_NUM == be32_to_cpu(*(__be32 *)offset)) {
1da177e4
LT
887 found = 1;
888 break;
889 }
890 }
891 /*
892 * If we haven't found the log record header block, start looking
893 * again from the end of the physical log. XXXmiken: There should be
894 * a check here to make sure we didn't search more than N blocks in
895 * the previous code.
896 */
897 if (!found) {
898 for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
076e6acb
CH
899 error = xlog_bread(log, i, 1, bp, &offset);
900 if (error)
9db127ed 901 goto done;
076e6acb 902
1da177e4 903 if (XLOG_HEADER_MAGIC_NUM ==
b53e675d 904 be32_to_cpu(*(__be32 *)offset)) {
1da177e4
LT
905 found = 2;
906 break;
907 }
908 }
909 }
910 if (!found) {
911 xlog_warn("XFS: xlog_find_tail: couldn't find sync record");
912 ASSERT(0);
913 return XFS_ERROR(EIO);
914 }
915
916 /* find blk_no of tail of log */
917 rhead = (xlog_rec_header_t *)offset;
b53e675d 918 *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
1da177e4
LT
919
920 /*
921 * Reset log values according to the state of the log when we
922 * crashed. In the case where head_blk == 0, we bump curr_cycle
923 * one because the next write starts a new cycle rather than
924 * continuing the cycle of the last good log record. At this
925 * point we have guaranteed that all partial log records have been
926 * accounted for. Therefore, we know that the last good log record
927 * written was complete and ended exactly on the end boundary
928 * of the physical log.
929 */
930 log->l_prev_block = i;
931 log->l_curr_block = (int)*head_blk;
b53e675d 932 log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
1da177e4
LT
933 if (found == 2)
934 log->l_curr_cycle++;
b53e675d
CH
935 log->l_tail_lsn = be64_to_cpu(rhead->h_tail_lsn);
936 log->l_last_sync_lsn = be64_to_cpu(rhead->h_lsn);
1da177e4
LT
937 log->l_grant_reserve_cycle = log->l_curr_cycle;
938 log->l_grant_reserve_bytes = BBTOB(log->l_curr_block);
939 log->l_grant_write_cycle = log->l_curr_cycle;
940 log->l_grant_write_bytes = BBTOB(log->l_curr_block);
941
942 /*
943 * Look for unmount record. If we find it, then we know there
944 * was a clean unmount. Since 'i' could be the last block in
945 * the physical log, we convert to a log block before comparing
946 * to the head_blk.
947 *
948 * Save the current tail lsn to use to pass to
949 * xlog_clear_stale_blocks() below. We won't want to clear the
950 * unmount record if there is one, so we pass the lsn of the
951 * unmount record rather than the block after it.
952 */
62118709 953 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
b53e675d
CH
954 int h_size = be32_to_cpu(rhead->h_size);
955 int h_version = be32_to_cpu(rhead->h_version);
1da177e4
LT
956
957 if ((h_version & XLOG_VERSION_2) &&
958 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
959 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
960 if (h_size % XLOG_HEADER_CYCLE_SIZE)
961 hblks++;
962 } else {
963 hblks = 1;
964 }
965 } else {
966 hblks = 1;
967 }
968 after_umount_blk = (i + hblks + (int)
b53e675d 969 BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize;
1da177e4
LT
970 tail_lsn = log->l_tail_lsn;
971 if (*head_blk == after_umount_blk &&
b53e675d 972 be32_to_cpu(rhead->h_num_logops) == 1) {
1da177e4 973 umount_data_blk = (i + hblks) % log->l_logBBsize;
076e6acb
CH
974 error = xlog_bread(log, umount_data_blk, 1, bp, &offset);
975 if (error)
9db127ed 976 goto done;
076e6acb 977
1da177e4
LT
978 op_head = (xlog_op_header_t *)offset;
979 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
980 /*
981 * Set tail and last sync so that newly written
982 * log records will point recovery to after the
983 * current unmount record.
984 */
03bea6fe
CH
985 log->l_tail_lsn =
986 xlog_assign_lsn(log->l_curr_cycle,
987 after_umount_blk);
988 log->l_last_sync_lsn =
989 xlog_assign_lsn(log->l_curr_cycle,
990 after_umount_blk);
1da177e4 991 *tail_blk = after_umount_blk;
92821e2b
DC
992
993 /*
994 * Note that the unmount was clean. If the unmount
995 * was not clean, we need to know this to rebuild the
996 * superblock counters from the perag headers if we
997 * have a filesystem using non-persistent counters.
998 */
999 log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
1da177e4
LT
1000 }
1001 }
1002
1003 /*
1004 * Make sure that there are no blocks in front of the head
1005 * with the same cycle number as the head. This can happen
1006 * because we allow multiple outstanding log writes concurrently,
1007 * and the later writes might make it out before earlier ones.
1008 *
1009 * We use the lsn from before modifying it so that we'll never
1010 * overwrite the unmount record after a clean unmount.
1011 *
1012 * Do this only if we are going to recover the filesystem
1013 *
1014 * NOTE: This used to say "if (!readonly)"
1015 * However on Linux, we can & do recover a read-only filesystem.
1016 * We only skip recovery if NORECOVERY is specified on mount,
1017 * in which case we would not be here.
1018 *
1019 * But... if the -device- itself is readonly, just skip this.
1020 * We can't recover this device anyway, so it won't matter.
1021 */
9db127ed 1022 if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp))
1da177e4 1023 error = xlog_clear_stale_blocks(log, tail_lsn);
1da177e4 1024
9db127ed 1025done:
1da177e4
LT
1026 xlog_put_bp(bp);
1027
1028 if (error)
1029 xlog_warn("XFS: failed to locate log tail");
1030 return error;
1031}
1032
1033/*
1034 * Is the log zeroed at all?
1035 *
1036 * The last binary search should be changed to perform an X block read
1037 * once X becomes small enough. You can then search linearly through
1038 * the X blocks. This will cut down on the number of reads we need to do.
1039 *
1040 * If the log is partially zeroed, this routine will pass back the blkno
1041 * of the first block with cycle number 0. It won't have a complete LR
1042 * preceding it.
1043 *
1044 * Return:
1045 * 0 => the log is completely written to
1046 * -1 => use *blk_no as the first block of the log
1047 * >0 => error has occurred
1048 */
a8272ce0 1049STATIC int
1da177e4
LT
1050xlog_find_zeroed(
1051 xlog_t *log,
1052 xfs_daddr_t *blk_no)
1053{
1054 xfs_buf_t *bp;
1055 xfs_caddr_t offset;
1056 uint first_cycle, last_cycle;
1057 xfs_daddr_t new_blk, last_blk, start_blk;
1058 xfs_daddr_t num_scan_bblks;
1059 int error, log_bbnum = log->l_logBBsize;
1060
6fdf8ccc
NS
1061 *blk_no = 0;
1062
1da177e4
LT
1063 /* check totally zeroed log */
1064 bp = xlog_get_bp(log, 1);
1065 if (!bp)
1066 return ENOMEM;
076e6acb
CH
1067 error = xlog_bread(log, 0, 1, bp, &offset);
1068 if (error)
1da177e4 1069 goto bp_err;
076e6acb 1070
03bea6fe 1071 first_cycle = xlog_get_cycle(offset);
1da177e4
LT
1072 if (first_cycle == 0) { /* completely zeroed log */
1073 *blk_no = 0;
1074 xlog_put_bp(bp);
1075 return -1;
1076 }
1077
1078 /* check partially zeroed log */
076e6acb
CH
1079 error = xlog_bread(log, log_bbnum-1, 1, bp, &offset);
1080 if (error)
1da177e4 1081 goto bp_err;
076e6acb 1082
03bea6fe 1083 last_cycle = xlog_get_cycle(offset);
1da177e4
LT
1084 if (last_cycle != 0) { /* log completely written to */
1085 xlog_put_bp(bp);
1086 return 0;
1087 } else if (first_cycle != 1) {
1088 /*
1089 * If the cycle of the last block is zero, the cycle of
1090 * the first block must be 1. If it's not, maybe we're
1091 * not looking at a log... Bail out.
1092 */
1093 xlog_warn("XFS: Log inconsistent or not a log (last==0, first!=1)");
1094 return XFS_ERROR(EINVAL);
1095 }
1096
1097 /* we have a partially zeroed log */
1098 last_blk = log_bbnum-1;
1099 if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
1100 goto bp_err;
1101
1102 /*
1103 * Validate the answer. Because there is no way to guarantee that
1104 * the entire log is made up of log records which are the same size,
1105 * we scan over the defined maximum blocks. At this point, the maximum
1106 * is not chosen to mean anything special. XXXmiken
1107 */
1108 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1109 ASSERT(num_scan_bblks <= INT_MAX);
1110
1111 if (last_blk < num_scan_bblks)
1112 num_scan_bblks = last_blk;
1113 start_blk = last_blk - num_scan_bblks;
1114
1115 /*
1116 * We search for any instances of cycle number 0 that occur before
1117 * our current estimate of the head. What we're trying to detect is
1118 * 1 ... | 0 | 1 | 0...
1119 * ^ binary search ends here
1120 */
1121 if ((error = xlog_find_verify_cycle(log, start_blk,
1122 (int)num_scan_bblks, 0, &new_blk)))
1123 goto bp_err;
1124 if (new_blk != -1)
1125 last_blk = new_blk;
1126
1127 /*
1128 * Potentially backup over partial log record write. We don't need
1129 * to search the end of the log because we know it is zero.
1130 */
1131 if ((error = xlog_find_verify_log_record(log, start_blk,
1132 &last_blk, 0)) == -1) {
1133 error = XFS_ERROR(EIO);
1134 goto bp_err;
1135 } else if (error)
1136 goto bp_err;
1137
1138 *blk_no = last_blk;
1139bp_err:
1140 xlog_put_bp(bp);
1141 if (error)
1142 return error;
1143 return -1;
1144}
1145
1146/*
1147 * These are simple subroutines used by xlog_clear_stale_blocks() below
1148 * to initialize a buffer full of empty log record headers and write
1149 * them into the log.
1150 */
1151STATIC void
1152xlog_add_record(
1153 xlog_t *log,
1154 xfs_caddr_t buf,
1155 int cycle,
1156 int block,
1157 int tail_cycle,
1158 int tail_block)
1159{
1160 xlog_rec_header_t *recp = (xlog_rec_header_t *)buf;
1161
1162 memset(buf, 0, BBSIZE);
b53e675d
CH
1163 recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1164 recp->h_cycle = cpu_to_be32(cycle);
1165 recp->h_version = cpu_to_be32(
62118709 1166 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
b53e675d
CH
1167 recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1168 recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1169 recp->h_fmt = cpu_to_be32(XLOG_FMT);
1da177e4
LT
1170 memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1171}
1172
1173STATIC int
1174xlog_write_log_records(
1175 xlog_t *log,
1176 int cycle,
1177 int start_block,
1178 int blocks,
1179 int tail_cycle,
1180 int tail_block)
1181{
1182 xfs_caddr_t offset;
1183 xfs_buf_t *bp;
1184 int balign, ealign;
5c17f533 1185 int sectbb = xlog_sectbb(log);
1da177e4
LT
1186 int end_block = start_block + blocks;
1187 int bufblks;
1188 int error = 0;
1189 int i, j = 0;
1190
6881a229
AE
1191 /*
1192 * Greedily allocate a buffer big enough to handle the full
1193 * range of basic blocks to be written. If that fails, try
1194 * a smaller size. We need to be able to write at least a
1195 * log sector, or we're out of luck.
1196 */
1da177e4
LT
1197 bufblks = 1 << ffs(blocks);
1198 while (!(bp = xlog_get_bp(log, bufblks))) {
1199 bufblks >>= 1;
6881a229 1200 if (bufblks < xlog_sectbb(log))
1da177e4
LT
1201 return ENOMEM;
1202 }
1203
1204 /* We may need to do a read at the start to fill in part of
1205 * the buffer in the starting sector not covered by the first
1206 * write below.
1207 */
5c17f533 1208 balign = round_down(start_block, sectbb);
1da177e4 1209 if (balign != start_block) {
076e6acb
CH
1210 error = xlog_bread_noalign(log, start_block, 1, bp);
1211 if (error)
1212 goto out_put_bp;
1213
1da177e4
LT
1214 j = start_block - balign;
1215 }
1216
1217 for (i = start_block; i < end_block; i += bufblks) {
1218 int bcount, endcount;
1219
1220 bcount = min(bufblks, end_block - start_block);
1221 endcount = bcount - j;
1222
1223 /* We may need to do a read at the end to fill in part of
1224 * the buffer in the final sector not covered by the write.
1225 * If this is the same sector as the above read, skip it.
1226 */
5c17f533 1227 ealign = round_down(end_block, sectbb);
1da177e4
LT
1228 if (j == 0 && (start_block + endcount > ealign)) {
1229 offset = XFS_BUF_PTR(bp);
1230 balign = BBTOB(ealign - start_block);
234f56ac
DC
1231 error = XFS_BUF_SET_PTR(bp, offset + balign,
1232 BBTOB(sectbb));
076e6acb
CH
1233 if (error)
1234 break;
1235
1236 error = xlog_bread_noalign(log, ealign, sectbb, bp);
1237 if (error)
1238 break;
1239
1240 error = XFS_BUF_SET_PTR(bp, offset, bufblks);
234f56ac 1241 if (error)
1da177e4 1242 break;
1da177e4
LT
1243 }
1244
1245 offset = xlog_align(log, start_block, endcount, bp);
1246 for (; j < endcount; j++) {
1247 xlog_add_record(log, offset, cycle, i+j,
1248 tail_cycle, tail_block);
1249 offset += BBSIZE;
1250 }
1251 error = xlog_bwrite(log, start_block, endcount, bp);
1252 if (error)
1253 break;
1254 start_block += endcount;
1255 j = 0;
1256 }
076e6acb
CH
1257
1258 out_put_bp:
1da177e4
LT
1259 xlog_put_bp(bp);
1260 return error;
1261}
1262
1263/*
1264 * This routine is called to blow away any incomplete log writes out
1265 * in front of the log head. We do this so that we won't become confused
1266 * if we come up, write only a little bit more, and then crash again.
1267 * If we leave the partial log records out there, this situation could
1268 * cause us to think those partial writes are valid blocks since they
1269 * have the current cycle number. We get rid of them by overwriting them
1270 * with empty log records with the old cycle number rather than the
1271 * current one.
1272 *
1273 * The tail lsn is passed in rather than taken from
1274 * the log so that we will not write over the unmount record after a
1275 * clean unmount in a 512 block log. Doing so would leave the log without
1276 * any valid log records in it until a new one was written. If we crashed
1277 * during that time we would not be able to recover.
1278 */
1279STATIC int
1280xlog_clear_stale_blocks(
1281 xlog_t *log,
1282 xfs_lsn_t tail_lsn)
1283{
1284 int tail_cycle, head_cycle;
1285 int tail_block, head_block;
1286 int tail_distance, max_distance;
1287 int distance;
1288 int error;
1289
1290 tail_cycle = CYCLE_LSN(tail_lsn);
1291 tail_block = BLOCK_LSN(tail_lsn);
1292 head_cycle = log->l_curr_cycle;
1293 head_block = log->l_curr_block;
1294
1295 /*
1296 * Figure out the distance between the new head of the log
1297 * and the tail. We want to write over any blocks beyond the
1298 * head that we may have written just before the crash, but
1299 * we don't want to overwrite the tail of the log.
1300 */
1301 if (head_cycle == tail_cycle) {
1302 /*
1303 * The tail is behind the head in the physical log,
1304 * so the distance from the head to the tail is the
1305 * distance from the head to the end of the log plus
1306 * the distance from the beginning of the log to the
1307 * tail.
1308 */
1309 if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1310 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1311 XFS_ERRLEVEL_LOW, log->l_mp);
1312 return XFS_ERROR(EFSCORRUPTED);
1313 }
1314 tail_distance = tail_block + (log->l_logBBsize - head_block);
1315 } else {
1316 /*
1317 * The head is behind the tail in the physical log,
1318 * so the distance from the head to the tail is just
1319 * the tail block minus the head block.
1320 */
1321 if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1322 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1323 XFS_ERRLEVEL_LOW, log->l_mp);
1324 return XFS_ERROR(EFSCORRUPTED);
1325 }
1326 tail_distance = tail_block - head_block;
1327 }
1328
1329 /*
1330 * If the head is right up against the tail, we can't clear
1331 * anything.
1332 */
1333 if (tail_distance <= 0) {
1334 ASSERT(tail_distance == 0);
1335 return 0;
1336 }
1337
1338 max_distance = XLOG_TOTAL_REC_SHIFT(log);
1339 /*
1340 * Take the smaller of the maximum amount of outstanding I/O
1341 * we could have and the distance to the tail to clear out.
1342 * We take the smaller so that we don't overwrite the tail and
1343 * we don't waste all day writing from the head to the tail
1344 * for no reason.
1345 */
1346 max_distance = MIN(max_distance, tail_distance);
1347
1348 if ((head_block + max_distance) <= log->l_logBBsize) {
1349 /*
1350 * We can stomp all the blocks we need to without
1351 * wrapping around the end of the log. Just do it
1352 * in a single write. Use the cycle number of the
1353 * current cycle minus one so that the log will look like:
1354 * n ... | n - 1 ...
1355 */
1356 error = xlog_write_log_records(log, (head_cycle - 1),
1357 head_block, max_distance, tail_cycle,
1358 tail_block);
1359 if (error)
1360 return error;
1361 } else {
1362 /*
1363 * We need to wrap around the end of the physical log in
1364 * order to clear all the blocks. Do it in two separate
1365 * I/Os. The first write should be from the head to the
1366 * end of the physical log, and it should use the current
1367 * cycle number minus one just like above.
1368 */
1369 distance = log->l_logBBsize - head_block;
1370 error = xlog_write_log_records(log, (head_cycle - 1),
1371 head_block, distance, tail_cycle,
1372 tail_block);
1373
1374 if (error)
1375 return error;
1376
1377 /*
1378 * Now write the blocks at the start of the physical log.
1379 * This writes the remainder of the blocks we want to clear.
1380 * It uses the current cycle number since we're now on the
1381 * same cycle as the head so that we get:
1382 * n ... n ... | n - 1 ...
1383 * ^^^^^ blocks we're writing
1384 */
1385 distance = max_distance - (log->l_logBBsize - head_block);
1386 error = xlog_write_log_records(log, head_cycle, 0, distance,
1387 tail_cycle, tail_block);
1388 if (error)
1389 return error;
1390 }
1391
1392 return 0;
1393}
1394
1395/******************************************************************************
1396 *
1397 * Log recover routines
1398 *
1399 ******************************************************************************
1400 */
1401
1402STATIC xlog_recover_t *
1403xlog_recover_find_tid(
f0a76953 1404 struct hlist_head *head,
1da177e4
LT
1405 xlog_tid_t tid)
1406{
f0a76953
DC
1407 xlog_recover_t *trans;
1408 struct hlist_node *n;
1da177e4 1409
f0a76953
DC
1410 hlist_for_each_entry(trans, n, head, r_list) {
1411 if (trans->r_log_tid == tid)
1412 return trans;
1da177e4 1413 }
f0a76953 1414 return NULL;
1da177e4
LT
1415}
1416
1417STATIC void
f0a76953
DC
1418xlog_recover_new_tid(
1419 struct hlist_head *head,
1420 xlog_tid_t tid,
1421 xfs_lsn_t lsn)
1da177e4 1422{
f0a76953
DC
1423 xlog_recover_t *trans;
1424
1425 trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP);
1426 trans->r_log_tid = tid;
1427 trans->r_lsn = lsn;
1428 INIT_LIST_HEAD(&trans->r_itemq);
1429
1430 INIT_HLIST_NODE(&trans->r_list);
1431 hlist_add_head(&trans->r_list, head);
1da177e4
LT
1432}
1433
1434STATIC void
1435xlog_recover_add_item(
f0a76953 1436 struct list_head *head)
1da177e4
LT
1437{
1438 xlog_recover_item_t *item;
1439
1440 item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
f0a76953
DC
1441 INIT_LIST_HEAD(&item->ri_list);
1442 list_add_tail(&item->ri_list, head);
1da177e4
LT
1443}
1444
1445STATIC int
1446xlog_recover_add_to_cont_trans(
9abbc539 1447 struct log *log,
1da177e4
LT
1448 xlog_recover_t *trans,
1449 xfs_caddr_t dp,
1450 int len)
1451{
1452 xlog_recover_item_t *item;
1453 xfs_caddr_t ptr, old_ptr;
1454 int old_len;
1455
f0a76953 1456 if (list_empty(&trans->r_itemq)) {
1da177e4
LT
1457 /* finish copying rest of trans header */
1458 xlog_recover_add_item(&trans->r_itemq);
1459 ptr = (xfs_caddr_t) &trans->r_theader +
1460 sizeof(xfs_trans_header_t) - len;
1461 memcpy(ptr, dp, len); /* d, s, l */
1462 return 0;
1463 }
f0a76953
DC
1464 /* take the tail entry */
1465 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
1da177e4
LT
1466
1467 old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
1468 old_len = item->ri_buf[item->ri_cnt-1].i_len;
1469
760dea67 1470 ptr = kmem_realloc(old_ptr, len+old_len, old_len, 0u);
1da177e4
LT
1471 memcpy(&ptr[old_len], dp, len); /* d, s, l */
1472 item->ri_buf[item->ri_cnt-1].i_len += len;
1473 item->ri_buf[item->ri_cnt-1].i_addr = ptr;
9abbc539 1474 trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
1da177e4
LT
1475 return 0;
1476}
1477
1478/*
1479 * The next region to add is the start of a new region. It could be
1480 * a whole region or it could be the first part of a new region. Because
1481 * of this, the assumption here is that the type and size fields of all
1482 * format structures fit into the first 32 bits of the structure.
1483 *
1484 * This works because all regions must be 32 bit aligned. Therefore, we
1485 * either have both fields or we have neither field. In the case we have
1486 * neither field, the data part of the region is zero length. We only have
1487 * a log_op_header and can throw away the header since a new one will appear
1488 * later. If we have at least 4 bytes, then we can determine how many regions
1489 * will appear in the current log item.
1490 */
1491STATIC int
1492xlog_recover_add_to_trans(
9abbc539 1493 struct log *log,
1da177e4
LT
1494 xlog_recover_t *trans,
1495 xfs_caddr_t dp,
1496 int len)
1497{
1498 xfs_inode_log_format_t *in_f; /* any will do */
1499 xlog_recover_item_t *item;
1500 xfs_caddr_t ptr;
1501
1502 if (!len)
1503 return 0;
f0a76953 1504 if (list_empty(&trans->r_itemq)) {
5a792c45
DC
1505 /* we need to catch log corruptions here */
1506 if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
1507 xlog_warn("XFS: xlog_recover_add_to_trans: "
1508 "bad header magic number");
1509 ASSERT(0);
1510 return XFS_ERROR(EIO);
1511 }
1da177e4
LT
1512 if (len == sizeof(xfs_trans_header_t))
1513 xlog_recover_add_item(&trans->r_itemq);
1514 memcpy(&trans->r_theader, dp, len); /* d, s, l */
1515 return 0;
1516 }
1517
1518 ptr = kmem_alloc(len, KM_SLEEP);
1519 memcpy(ptr, dp, len);
1520 in_f = (xfs_inode_log_format_t *)ptr;
1521
f0a76953
DC
1522 /* take the tail entry */
1523 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
1524 if (item->ri_total != 0 &&
1525 item->ri_total == item->ri_cnt) {
1526 /* tail item is in use, get a new one */
1da177e4 1527 xlog_recover_add_item(&trans->r_itemq);
f0a76953
DC
1528 item = list_entry(trans->r_itemq.prev,
1529 xlog_recover_item_t, ri_list);
1da177e4 1530 }
1da177e4
LT
1531
1532 if (item->ri_total == 0) { /* first region to be added */
e8fa6b48
CH
1533 if (in_f->ilf_size == 0 ||
1534 in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
1535 xlog_warn(
1536 "XFS: bad number of regions (%d) in inode log format",
1537 in_f->ilf_size);
1538 ASSERT(0);
1539 return XFS_ERROR(EIO);
1540 }
1541
1542 item->ri_total = in_f->ilf_size;
1543 item->ri_buf =
1544 kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
1545 KM_SLEEP);
1da177e4
LT
1546 }
1547 ASSERT(item->ri_total > item->ri_cnt);
1548 /* Description region is ri_buf[0] */
1549 item->ri_buf[item->ri_cnt].i_addr = ptr;
1550 item->ri_buf[item->ri_cnt].i_len = len;
1551 item->ri_cnt++;
9abbc539 1552 trace_xfs_log_recover_item_add(log, trans, item, 0);
1da177e4
LT
1553 return 0;
1554}
1555
f0a76953
DC
1556/*
1557 * Sort the log items in the transaction. Cancelled buffers need
1558 * to be put first so they are processed before any items that might
1559 * modify the buffers. If they are cancelled, then the modifications
1560 * don't need to be replayed.
1561 */
1da177e4
LT
1562STATIC int
1563xlog_recover_reorder_trans(
9abbc539
DC
1564 struct log *log,
1565 xlog_recover_t *trans,
1566 int pass)
1da177e4 1567{
f0a76953
DC
1568 xlog_recover_item_t *item, *n;
1569 LIST_HEAD(sort_list);
1570
1571 list_splice_init(&trans->r_itemq, &sort_list);
1572 list_for_each_entry_safe(item, n, &sort_list, ri_list) {
1573 xfs_buf_log_format_t *buf_f;
1da177e4 1574
f0a76953 1575 buf_f = (xfs_buf_log_format_t *)item->ri_buf[0].i_addr;
1da177e4 1576
f0a76953 1577 switch (ITEM_TYPE(item)) {
1da177e4 1578 case XFS_LI_BUF:
f0a76953 1579 if (!(buf_f->blf_flags & XFS_BLI_CANCEL)) {
9abbc539
DC
1580 trace_xfs_log_recover_item_reorder_head(log,
1581 trans, item, pass);
f0a76953 1582 list_move(&item->ri_list, &trans->r_itemq);
1da177e4
LT
1583 break;
1584 }
1585 case XFS_LI_INODE:
1da177e4
LT
1586 case XFS_LI_DQUOT:
1587 case XFS_LI_QUOTAOFF:
1588 case XFS_LI_EFD:
1589 case XFS_LI_EFI:
9abbc539
DC
1590 trace_xfs_log_recover_item_reorder_tail(log,
1591 trans, item, pass);
f0a76953 1592 list_move_tail(&item->ri_list, &trans->r_itemq);
1da177e4
LT
1593 break;
1594 default:
1595 xlog_warn(
1596 "XFS: xlog_recover_reorder_trans: unrecognized type of log operation");
1597 ASSERT(0);
1598 return XFS_ERROR(EIO);
1599 }
f0a76953
DC
1600 }
1601 ASSERT(list_empty(&sort_list));
1da177e4
LT
1602 return 0;
1603}
1604
1605/*
1606 * Build up the table of buf cancel records so that we don't replay
1607 * cancelled data in the second pass. For buffer records that are
1608 * not cancel records, there is nothing to do here so we just return.
1609 *
1610 * If we get a cancel record which is already in the table, this indicates
1611 * that the buffer was cancelled multiple times. In order to ensure
1612 * that during pass 2 we keep the record in the table until we reach its
1613 * last occurrence in the log, we keep a reference count in the cancel
1614 * record in the table to tell us how many times we expect to see this
1615 * record during the second pass.
1616 */
1617STATIC void
1618xlog_recover_do_buffer_pass1(
1619 xlog_t *log,
1620 xfs_buf_log_format_t *buf_f)
1621{
1622 xfs_buf_cancel_t *bcp;
1623 xfs_buf_cancel_t *nextp;
1624 xfs_buf_cancel_t *prevp;
1625 xfs_buf_cancel_t **bucket;
1da177e4
LT
1626 xfs_daddr_t blkno = 0;
1627 uint len = 0;
1628 ushort flags = 0;
1629
1630 switch (buf_f->blf_type) {
1631 case XFS_LI_BUF:
1632 blkno = buf_f->blf_blkno;
1633 len = buf_f->blf_len;
1634 flags = buf_f->blf_flags;
1635 break;
1da177e4
LT
1636 }
1637
1638 /*
1639 * If this isn't a cancel buffer item, then just return.
1640 */
9abbc539
DC
1641 if (!(flags & XFS_BLI_CANCEL)) {
1642 trace_xfs_log_recover_buf_not_cancel(log, buf_f);
1da177e4 1643 return;
9abbc539 1644 }
1da177e4
LT
1645
1646 /*
1647 * Insert an xfs_buf_cancel record into the hash table of
1648 * them. If there is already an identical record, bump
1649 * its reference count.
1650 */
1651 bucket = &log->l_buf_cancel_table[(__uint64_t)blkno %
1652 XLOG_BC_TABLE_SIZE];
1653 /*
1654 * If the hash bucket is empty then just insert a new record into
1655 * the bucket.
1656 */
1657 if (*bucket == NULL) {
1658 bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t),
1659 KM_SLEEP);
1660 bcp->bc_blkno = blkno;
1661 bcp->bc_len = len;
1662 bcp->bc_refcount = 1;
1663 bcp->bc_next = NULL;
1664 *bucket = bcp;
1665 return;
1666 }
1667
1668 /*
1669 * The hash bucket is not empty, so search for duplicates of our
1670 * record. If we find one them just bump its refcount. If not
1671 * then add us at the end of the list.
1672 */
1673 prevp = NULL;
1674 nextp = *bucket;
1675 while (nextp != NULL) {
1676 if (nextp->bc_blkno == blkno && nextp->bc_len == len) {
1677 nextp->bc_refcount++;
9abbc539 1678 trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f);
1da177e4
LT
1679 return;
1680 }
1681 prevp = nextp;
1682 nextp = nextp->bc_next;
1683 }
1684 ASSERT(prevp != NULL);
1685 bcp = (xfs_buf_cancel_t *)kmem_alloc(sizeof(xfs_buf_cancel_t),
1686 KM_SLEEP);
1687 bcp->bc_blkno = blkno;
1688 bcp->bc_len = len;
1689 bcp->bc_refcount = 1;
1690 bcp->bc_next = NULL;
1691 prevp->bc_next = bcp;
9abbc539 1692 trace_xfs_log_recover_buf_cancel_add(log, buf_f);
1da177e4
LT
1693}
1694
1695/*
1696 * Check to see whether the buffer being recovered has a corresponding
1697 * entry in the buffer cancel record table. If it does then return 1
1698 * so that it will be cancelled, otherwise return 0. If the buffer is
1699 * actually a buffer cancel item (XFS_BLI_CANCEL is set), then decrement
1700 * the refcount on the entry in the table and remove it from the table
1701 * if this is the last reference.
1702 *
1703 * We remove the cancel record from the table when we encounter its
1704 * last occurrence in the log so that if the same buffer is re-used
1705 * again after its last cancellation we actually replay the changes
1706 * made at that point.
1707 */
1708STATIC int
1709xlog_check_buffer_cancelled(
1710 xlog_t *log,
1711 xfs_daddr_t blkno,
1712 uint len,
1713 ushort flags)
1714{
1715 xfs_buf_cancel_t *bcp;
1716 xfs_buf_cancel_t *prevp;
1717 xfs_buf_cancel_t **bucket;
1718
1719 if (log->l_buf_cancel_table == NULL) {
1720 /*
1721 * There is nothing in the table built in pass one,
1722 * so this buffer must not be cancelled.
1723 */
1724 ASSERT(!(flags & XFS_BLI_CANCEL));
1725 return 0;
1726 }
1727
1728 bucket = &log->l_buf_cancel_table[(__uint64_t)blkno %
1729 XLOG_BC_TABLE_SIZE];
1730 bcp = *bucket;
1731 if (bcp == NULL) {
1732 /*
1733 * There is no corresponding entry in the table built
1734 * in pass one, so this buffer has not been cancelled.
1735 */
1736 ASSERT(!(flags & XFS_BLI_CANCEL));
1737 return 0;
1738 }
1739
1740 /*
1741 * Search for an entry in the buffer cancel table that
1742 * matches our buffer.
1743 */
1744 prevp = NULL;
1745 while (bcp != NULL) {
1746 if (bcp->bc_blkno == blkno && bcp->bc_len == len) {
1747 /*
1748 * We've go a match, so return 1 so that the
1749 * recovery of this buffer is cancelled.
1750 * If this buffer is actually a buffer cancel
1751 * log item, then decrement the refcount on the
1752 * one in the table and remove it if this is the
1753 * last reference.
1754 */
1755 if (flags & XFS_BLI_CANCEL) {
1756 bcp->bc_refcount--;
1757 if (bcp->bc_refcount == 0) {
1758 if (prevp == NULL) {
1759 *bucket = bcp->bc_next;
1760 } else {
1761 prevp->bc_next = bcp->bc_next;
1762 }
f0e2d93c 1763 kmem_free(bcp);
1da177e4
LT
1764 }
1765 }
1766 return 1;
1767 }
1768 prevp = bcp;
1769 bcp = bcp->bc_next;
1770 }
1771 /*
1772 * We didn't find a corresponding entry in the table, so
1773 * return 0 so that the buffer is NOT cancelled.
1774 */
1775 ASSERT(!(flags & XFS_BLI_CANCEL));
1776 return 0;
1777}
1778
1779STATIC int
1780xlog_recover_do_buffer_pass2(
1781 xlog_t *log,
1782 xfs_buf_log_format_t *buf_f)
1783{
1da177e4
LT
1784 xfs_daddr_t blkno = 0;
1785 ushort flags = 0;
1786 uint len = 0;
1787
1788 switch (buf_f->blf_type) {
1789 case XFS_LI_BUF:
1790 blkno = buf_f->blf_blkno;
1791 flags = buf_f->blf_flags;
1792 len = buf_f->blf_len;
1793 break;
1da177e4
LT
1794 }
1795
1796 return xlog_check_buffer_cancelled(log, blkno, len, flags);
1797}
1798
1799/*
1800 * Perform recovery for a buffer full of inodes. In these buffers,
1801 * the only data which should be recovered is that which corresponds
1802 * to the di_next_unlinked pointers in the on disk inode structures.
1803 * The rest of the data for the inodes is always logged through the
1804 * inodes themselves rather than the inode buffer and is recovered
1805 * in xlog_recover_do_inode_trans().
1806 *
1807 * The only time when buffers full of inodes are fully recovered is
1808 * when the buffer is full of newly allocated inodes. In this case
1809 * the buffer will not be marked as an inode buffer and so will be
1810 * sent to xlog_recover_do_reg_buffer() below during recovery.
1811 */
1812STATIC int
1813xlog_recover_do_inode_buffer(
1814 xfs_mount_t *mp,
1815 xlog_recover_item_t *item,
1816 xfs_buf_t *bp,
1817 xfs_buf_log_format_t *buf_f)
1818{
1819 int i;
1820 int item_index;
1821 int bit;
1822 int nbits;
1823 int reg_buf_offset;
1824 int reg_buf_bytes;
1825 int next_unlinked_offset;
1826 int inodes_per_buf;
1827 xfs_agino_t *logged_nextp;
1828 xfs_agino_t *buffer_nextp;
1da177e4
LT
1829 unsigned int *data_map = NULL;
1830 unsigned int map_size = 0;
1831
9abbc539
DC
1832 trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
1833
1da177e4
LT
1834 switch (buf_f->blf_type) {
1835 case XFS_LI_BUF:
1836 data_map = buf_f->blf_data_map;
1837 map_size = buf_f->blf_map_size;
1838 break;
1da177e4
LT
1839 }
1840 /*
1841 * Set the variables corresponding to the current region to
1842 * 0 so that we'll initialize them on the first pass through
1843 * the loop.
1844 */
1845 reg_buf_offset = 0;
1846 reg_buf_bytes = 0;
1847 bit = 0;
1848 nbits = 0;
1849 item_index = 0;
1850 inodes_per_buf = XFS_BUF_COUNT(bp) >> mp->m_sb.sb_inodelog;
1851 for (i = 0; i < inodes_per_buf; i++) {
1852 next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
1853 offsetof(xfs_dinode_t, di_next_unlinked);
1854
1855 while (next_unlinked_offset >=
1856 (reg_buf_offset + reg_buf_bytes)) {
1857 /*
1858 * The next di_next_unlinked field is beyond
1859 * the current logged region. Find the next
1860 * logged region that contains or is beyond
1861 * the current di_next_unlinked field.
1862 */
1863 bit += nbits;
1864 bit = xfs_next_bit(data_map, map_size, bit);
1865
1866 /*
1867 * If there are no more logged regions in the
1868 * buffer, then we're done.
1869 */
1870 if (bit == -1) {
1871 return 0;
1872 }
1873
1874 nbits = xfs_contig_bits(data_map, map_size,
1875 bit);
1876 ASSERT(nbits > 0);
1877 reg_buf_offset = bit << XFS_BLI_SHIFT;
1878 reg_buf_bytes = nbits << XFS_BLI_SHIFT;
1879 item_index++;
1880 }
1881
1882 /*
1883 * If the current logged region starts after the current
1884 * di_next_unlinked field, then move on to the next
1885 * di_next_unlinked field.
1886 */
1887 if (next_unlinked_offset < reg_buf_offset) {
1888 continue;
1889 }
1890
1891 ASSERT(item->ri_buf[item_index].i_addr != NULL);
1892 ASSERT((item->ri_buf[item_index].i_len % XFS_BLI_CHUNK) == 0);
1893 ASSERT((reg_buf_offset + reg_buf_bytes) <= XFS_BUF_COUNT(bp));
1894
1895 /*
1896 * The current logged region contains a copy of the
1897 * current di_next_unlinked field. Extract its value
1898 * and copy it to the buffer copy.
1899 */
1900 logged_nextp = (xfs_agino_t *)
1901 ((char *)(item->ri_buf[item_index].i_addr) +
1902 (next_unlinked_offset - reg_buf_offset));
1903 if (unlikely(*logged_nextp == 0)) {
1904 xfs_fs_cmn_err(CE_ALERT, mp,
1905 "bad inode buffer log record (ptr = 0x%p, bp = 0x%p). XFS trying to replay bad (0) inode di_next_unlinked field",
1906 item, bp);
1907 XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
1908 XFS_ERRLEVEL_LOW, mp);
1909 return XFS_ERROR(EFSCORRUPTED);
1910 }
1911
1912 buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp,
1913 next_unlinked_offset);
87c199c2 1914 *buffer_nextp = *logged_nextp;
1da177e4
LT
1915 }
1916
1917 return 0;
1918}
1919
1920/*
1921 * Perform a 'normal' buffer recovery. Each logged region of the
1922 * buffer should be copied over the corresponding region in the
1923 * given buffer. The bitmap in the buf log format structure indicates
1924 * where to place the logged data.
1925 */
1926/*ARGSUSED*/
1927STATIC void
1928xlog_recover_do_reg_buffer(
9abbc539 1929 struct xfs_mount *mp,
1da177e4
LT
1930 xlog_recover_item_t *item,
1931 xfs_buf_t *bp,
1932 xfs_buf_log_format_t *buf_f)
1933{
1934 int i;
1935 int bit;
1936 int nbits;
1da177e4
LT
1937 unsigned int *data_map = NULL;
1938 unsigned int map_size = 0;
1939 int error;
1940
9abbc539
DC
1941 trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
1942
1da177e4
LT
1943 switch (buf_f->blf_type) {
1944 case XFS_LI_BUF:
1945 data_map = buf_f->blf_data_map;
1946 map_size = buf_f->blf_map_size;
1947 break;
1da177e4
LT
1948 }
1949 bit = 0;
1950 i = 1; /* 0 is the buf format structure */
1951 while (1) {
1952 bit = xfs_next_bit(data_map, map_size, bit);
1953 if (bit == -1)
1954 break;
1955 nbits = xfs_contig_bits(data_map, map_size, bit);
1956 ASSERT(nbits > 0);
4b80916b 1957 ASSERT(item->ri_buf[i].i_addr != NULL);
1da177e4
LT
1958 ASSERT(item->ri_buf[i].i_len % XFS_BLI_CHUNK == 0);
1959 ASSERT(XFS_BUF_COUNT(bp) >=
1960 ((uint)bit << XFS_BLI_SHIFT)+(nbits<<XFS_BLI_SHIFT));
1961
1962 /*
1963 * Do a sanity check if this is a dquot buffer. Just checking
1964 * the first dquot in the buffer should do. XXXThis is
1965 * probably a good thing to do for other buf types also.
1966 */
1967 error = 0;
c8ad20ff
NS
1968 if (buf_f->blf_flags &
1969 (XFS_BLI_UDQUOT_BUF|XFS_BLI_PDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) {
0c5e1ce8
CH
1970 if (item->ri_buf[i].i_addr == NULL) {
1971 cmn_err(CE_ALERT,
1972 "XFS: NULL dquot in %s.", __func__);
1973 goto next;
1974 }
8ec6dba2 1975 if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) {
0c5e1ce8
CH
1976 cmn_err(CE_ALERT,
1977 "XFS: dquot too small (%d) in %s.",
1978 item->ri_buf[i].i_len, __func__);
1979 goto next;
1980 }
1da177e4
LT
1981 error = xfs_qm_dqcheck((xfs_disk_dquot_t *)
1982 item->ri_buf[i].i_addr,
1983 -1, 0, XFS_QMOPT_DOWARN,
1984 "dquot_buf_recover");
0c5e1ce8
CH
1985 if (error)
1986 goto next;
1da177e4 1987 }
0c5e1ce8
CH
1988
1989 memcpy(xfs_buf_offset(bp,
1990 (uint)bit << XFS_BLI_SHIFT), /* dest */
1991 item->ri_buf[i].i_addr, /* source */
1992 nbits<<XFS_BLI_SHIFT); /* length */
1993 next:
1da177e4
LT
1994 i++;
1995 bit += nbits;
1996 }
1997
1998 /* Shouldn't be any more regions */
1999 ASSERT(i == item->ri_total);
2000}
2001
2002/*
2003 * Do some primitive error checking on ondisk dquot data structures.
2004 */
2005int
2006xfs_qm_dqcheck(
2007 xfs_disk_dquot_t *ddq,
2008 xfs_dqid_t id,
2009 uint type, /* used only when IO_dorepair is true */
2010 uint flags,
2011 char *str)
2012{
2013 xfs_dqblk_t *d = (xfs_dqblk_t *)ddq;
2014 int errs = 0;
2015
2016 /*
2017 * We can encounter an uninitialized dquot buffer for 2 reasons:
2018 * 1. If we crash while deleting the quotainode(s), and those blks got
2019 * used for user data. This is because we take the path of regular
2020 * file deletion; however, the size field of quotainodes is never
2021 * updated, so all the tricks that we play in itruncate_finish
2022 * don't quite matter.
2023 *
2024 * 2. We don't play the quota buffers when there's a quotaoff logitem.
2025 * But the allocation will be replayed so we'll end up with an
2026 * uninitialized quota block.
2027 *
2028 * This is all fine; things are still consistent, and we haven't lost
2029 * any quota information. Just don't complain about bad dquot blks.
2030 */
1149d96a 2031 if (be16_to_cpu(ddq->d_magic) != XFS_DQUOT_MAGIC) {
1da177e4
LT
2032 if (flags & XFS_QMOPT_DOWARN)
2033 cmn_err(CE_ALERT,
2034 "%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x",
1149d96a 2035 str, id, be16_to_cpu(ddq->d_magic), XFS_DQUOT_MAGIC);
1da177e4
LT
2036 errs++;
2037 }
1149d96a 2038 if (ddq->d_version != XFS_DQUOT_VERSION) {
1da177e4
LT
2039 if (flags & XFS_QMOPT_DOWARN)
2040 cmn_err(CE_ALERT,
2041 "%s : XFS dquot ID 0x%x, version 0x%x != 0x%x",
1149d96a 2042 str, id, ddq->d_version, XFS_DQUOT_VERSION);
1da177e4
LT
2043 errs++;
2044 }
2045
1149d96a
CH
2046 if (ddq->d_flags != XFS_DQ_USER &&
2047 ddq->d_flags != XFS_DQ_PROJ &&
2048 ddq->d_flags != XFS_DQ_GROUP) {
1da177e4
LT
2049 if (flags & XFS_QMOPT_DOWARN)
2050 cmn_err(CE_ALERT,
2051 "%s : XFS dquot ID 0x%x, unknown flags 0x%x",
1149d96a 2052 str, id, ddq->d_flags);
1da177e4
LT
2053 errs++;
2054 }
2055
1149d96a 2056 if (id != -1 && id != be32_to_cpu(ddq->d_id)) {
1da177e4
LT
2057 if (flags & XFS_QMOPT_DOWARN)
2058 cmn_err(CE_ALERT,
2059 "%s : ondisk-dquot 0x%p, ID mismatch: "
2060 "0x%x expected, found id 0x%x",
1149d96a 2061 str, ddq, id, be32_to_cpu(ddq->d_id));
1da177e4
LT
2062 errs++;
2063 }
2064
2065 if (!errs && ddq->d_id) {
1149d96a
CH
2066 if (ddq->d_blk_softlimit &&
2067 be64_to_cpu(ddq->d_bcount) >=
2068 be64_to_cpu(ddq->d_blk_softlimit)) {
1da177e4
LT
2069 if (!ddq->d_btimer) {
2070 if (flags & XFS_QMOPT_DOWARN)
2071 cmn_err(CE_ALERT,
2072 "%s : Dquot ID 0x%x (0x%p) "
2073 "BLK TIMER NOT STARTED",
1149d96a 2074 str, (int)be32_to_cpu(ddq->d_id), ddq);
1da177e4
LT
2075 errs++;
2076 }
2077 }
1149d96a
CH
2078 if (ddq->d_ino_softlimit &&
2079 be64_to_cpu(ddq->d_icount) >=
2080 be64_to_cpu(ddq->d_ino_softlimit)) {
1da177e4
LT
2081 if (!ddq->d_itimer) {
2082 if (flags & XFS_QMOPT_DOWARN)
2083 cmn_err(CE_ALERT,
2084 "%s : Dquot ID 0x%x (0x%p) "
2085 "INODE TIMER NOT STARTED",
1149d96a 2086 str, (int)be32_to_cpu(ddq->d_id), ddq);
1da177e4
LT
2087 errs++;
2088 }
2089 }
1149d96a
CH
2090 if (ddq->d_rtb_softlimit &&
2091 be64_to_cpu(ddq->d_rtbcount) >=
2092 be64_to_cpu(ddq->d_rtb_softlimit)) {
1da177e4
LT
2093 if (!ddq->d_rtbtimer) {
2094 if (flags & XFS_QMOPT_DOWARN)
2095 cmn_err(CE_ALERT,
2096 "%s : Dquot ID 0x%x (0x%p) "
2097 "RTBLK TIMER NOT STARTED",
1149d96a 2098 str, (int)be32_to_cpu(ddq->d_id), ddq);
1da177e4
LT
2099 errs++;
2100 }
2101 }
2102 }
2103
2104 if (!errs || !(flags & XFS_QMOPT_DQREPAIR))
2105 return errs;
2106
2107 if (flags & XFS_QMOPT_DOWARN)
2108 cmn_err(CE_NOTE, "Re-initializing dquot ID 0x%x", id);
2109
2110 /*
2111 * Typically, a repair is only requested by quotacheck.
2112 */
2113 ASSERT(id != -1);
2114 ASSERT(flags & XFS_QMOPT_DQREPAIR);
2115 memset(d, 0, sizeof(xfs_dqblk_t));
1149d96a
CH
2116
2117 d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC);
2118 d->dd_diskdq.d_version = XFS_DQUOT_VERSION;
2119 d->dd_diskdq.d_flags = type;
2120 d->dd_diskdq.d_id = cpu_to_be32(id);
1da177e4
LT
2121
2122 return errs;
2123}
2124
2125/*
2126 * Perform a dquot buffer recovery.
2127 * Simple algorithm: if we have found a QUOTAOFF logitem of the same type
2128 * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2129 * Else, treat it as a regular buffer and do recovery.
2130 */
2131STATIC void
2132xlog_recover_do_dquot_buffer(
2133 xfs_mount_t *mp,
2134 xlog_t *log,
2135 xlog_recover_item_t *item,
2136 xfs_buf_t *bp,
2137 xfs_buf_log_format_t *buf_f)
2138{
2139 uint type;
2140
9abbc539
DC
2141 trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
2142
1da177e4
LT
2143 /*
2144 * Filesystems are required to send in quota flags at mount time.
2145 */
2146 if (mp->m_qflags == 0) {
2147 return;
2148 }
2149
2150 type = 0;
2151 if (buf_f->blf_flags & XFS_BLI_UDQUOT_BUF)
2152 type |= XFS_DQ_USER;
c8ad20ff
NS
2153 if (buf_f->blf_flags & XFS_BLI_PDQUOT_BUF)
2154 type |= XFS_DQ_PROJ;
1da177e4
LT
2155 if (buf_f->blf_flags & XFS_BLI_GDQUOT_BUF)
2156 type |= XFS_DQ_GROUP;
2157 /*
2158 * This type of quotas was turned off, so ignore this buffer
2159 */
2160 if (log->l_quotaoffs_flag & type)
2161 return;
2162
9abbc539 2163 xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
1da177e4
LT
2164}
2165
2166/*
2167 * This routine replays a modification made to a buffer at runtime.
2168 * There are actually two types of buffer, regular and inode, which
2169 * are handled differently. Inode buffers are handled differently
2170 * in that we only recover a specific set of data from them, namely
2171 * the inode di_next_unlinked fields. This is because all other inode
2172 * data is actually logged via inode records and any data we replay
2173 * here which overlaps that may be stale.
2174 *
2175 * When meta-data buffers are freed at run time we log a buffer item
2176 * with the XFS_BLI_CANCEL bit set to indicate that previous copies
2177 * of the buffer in the log should not be replayed at recovery time.
2178 * This is so that if the blocks covered by the buffer are reused for
2179 * file data before we crash we don't end up replaying old, freed
2180 * meta-data into a user's file.
2181 *
2182 * To handle the cancellation of buffer log items, we make two passes
2183 * over the log during recovery. During the first we build a table of
2184 * those buffers which have been cancelled, and during the second we
2185 * only replay those buffers which do not have corresponding cancel
2186 * records in the table. See xlog_recover_do_buffer_pass[1,2] above
2187 * for more details on the implementation of the table of cancel records.
2188 */
2189STATIC int
2190xlog_recover_do_buffer_trans(
2191 xlog_t *log,
2192 xlog_recover_item_t *item,
2193 int pass)
2194{
2195 xfs_buf_log_format_t *buf_f;
1da177e4
LT
2196 xfs_mount_t *mp;
2197 xfs_buf_t *bp;
2198 int error;
2199 int cancel;
2200 xfs_daddr_t blkno;
2201 int len;
2202 ushort flags;
6ad112bf 2203 uint buf_flags;
1da177e4
LT
2204
2205 buf_f = (xfs_buf_log_format_t *)item->ri_buf[0].i_addr;
2206
2207 if (pass == XLOG_RECOVER_PASS1) {
2208 /*
2209 * In this pass we're only looking for buf items
2210 * with the XFS_BLI_CANCEL bit set.
2211 */
2212 xlog_recover_do_buffer_pass1(log, buf_f);
2213 return 0;
2214 } else {
2215 /*
2216 * In this pass we want to recover all the buffers
2217 * which have not been cancelled and are not
2218 * cancellation buffers themselves. The routine
2219 * we call here will tell us whether or not to
2220 * continue with the replay of this buffer.
2221 */
2222 cancel = xlog_recover_do_buffer_pass2(log, buf_f);
2223 if (cancel) {
9abbc539 2224 trace_xfs_log_recover_buf_cancel(log, buf_f);
1da177e4
LT
2225 return 0;
2226 }
2227 }
9abbc539 2228 trace_xfs_log_recover_buf_recover(log, buf_f);
1da177e4
LT
2229 switch (buf_f->blf_type) {
2230 case XFS_LI_BUF:
2231 blkno = buf_f->blf_blkno;
2232 len = buf_f->blf_len;
2233 flags = buf_f->blf_flags;
2234 break;
1da177e4
LT
2235 default:
2236 xfs_fs_cmn_err(CE_ALERT, log->l_mp,
fc1f8c1c
NS
2237 "xfs_log_recover: unknown buffer type 0x%x, logdev %s",
2238 buf_f->blf_type, log->l_mp->m_logname ?
2239 log->l_mp->m_logname : "internal");
1da177e4
LT
2240 XFS_ERROR_REPORT("xlog_recover_do_buffer_trans",
2241 XFS_ERRLEVEL_LOW, log->l_mp);
2242 return XFS_ERROR(EFSCORRUPTED);
2243 }
2244
2245 mp = log->l_mp;
0cadda1c 2246 buf_flags = XBF_LOCK;
6ad112bf 2247 if (!(flags & XFS_BLI_INODE_BUF))
0cadda1c 2248 buf_flags |= XBF_MAPPED;
6ad112bf
CH
2249
2250 bp = xfs_buf_read(mp->m_ddev_targp, blkno, len, buf_flags);
1da177e4
LT
2251 if (XFS_BUF_ISERROR(bp)) {
2252 xfs_ioerror_alert("xlog_recover_do..(read#1)", log->l_mp,
2253 bp, blkno);
2254 error = XFS_BUF_GETERROR(bp);
2255 xfs_buf_relse(bp);
2256 return error;
2257 }
2258
2259 error = 0;
2260 if (flags & XFS_BLI_INODE_BUF) {
2261 error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
c8ad20ff
NS
2262 } else if (flags &
2263 (XFS_BLI_UDQUOT_BUF|XFS_BLI_PDQUOT_BUF|XFS_BLI_GDQUOT_BUF)) {
1da177e4
LT
2264 xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2265 } else {
9abbc539 2266 xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
1da177e4
LT
2267 }
2268 if (error)
2269 return XFS_ERROR(error);
2270
2271 /*
2272 * Perform delayed write on the buffer. Asynchronous writes will be
2273 * slower when taking into account all the buffers to be flushed.
2274 *
2275 * Also make sure that only inode buffers with good sizes stay in
2276 * the buffer cache. The kernel moves inodes in buffers of 1 block
2277 * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger. The inode
2278 * buffers in the log can be a different size if the log was generated
2279 * by an older kernel using unclustered inode buffers or a newer kernel
2280 * running with a different inode cluster size. Regardless, if the
2281 * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE)
2282 * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep
2283 * the buffer out of the buffer cache so that the buffer won't
2284 * overlap with future reads of those inodes.
2285 */
2286 if (XFS_DINODE_MAGIC ==
b53e675d 2287 be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
1da177e4
LT
2288 (XFS_BUF_COUNT(bp) != MAX(log->l_mp->m_sb.sb_blocksize,
2289 (__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) {
2290 XFS_BUF_STALE(bp);
2291 error = xfs_bwrite(mp, bp);
2292 } else {
15ac08a8
CH
2293 ASSERT(bp->b_mount == NULL || bp->b_mount == mp);
2294 bp->b_mount = mp;
1da177e4
LT
2295 XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2296 xfs_bdwrite(mp, bp);
2297 }
2298
2299 return (error);
2300}
2301
2302STATIC int
2303xlog_recover_do_inode_trans(
2304 xlog_t *log,
2305 xlog_recover_item_t *item,
2306 int pass)
2307{
2308 xfs_inode_log_format_t *in_f;
2309 xfs_mount_t *mp;
2310 xfs_buf_t *bp;
1da177e4
LT
2311 xfs_dinode_t *dip;
2312 xfs_ino_t ino;
2313 int len;
2314 xfs_caddr_t src;
2315 xfs_caddr_t dest;
2316 int error;
2317 int attr_index;
2318 uint fields;
347d1c01 2319 xfs_icdinode_t *dicp;
6d192a9b 2320 int need_free = 0;
1da177e4
LT
2321
2322 if (pass == XLOG_RECOVER_PASS1) {
2323 return 0;
2324 }
2325
6d192a9b
TS
2326 if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
2327 in_f = (xfs_inode_log_format_t *)item->ri_buf[0].i_addr;
2328 } else {
2329 in_f = (xfs_inode_log_format_t *)kmem_alloc(
2330 sizeof(xfs_inode_log_format_t), KM_SLEEP);
2331 need_free = 1;
2332 error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
2333 if (error)
2334 goto error;
2335 }
1da177e4
LT
2336 ino = in_f->ilf_ino;
2337 mp = log->l_mp;
1da177e4
LT
2338
2339 /*
2340 * Inode buffers can be freed, look out for it,
2341 * and do not replay the inode.
2342 */
a1941895
CH
2343 if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
2344 in_f->ilf_len, 0)) {
6d192a9b 2345 error = 0;
9abbc539 2346 trace_xfs_log_recover_inode_cancel(log, in_f);
6d192a9b
TS
2347 goto error;
2348 }
9abbc539 2349 trace_xfs_log_recover_inode_recover(log, in_f);
1da177e4 2350
6ad112bf 2351 bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len,
0cadda1c 2352 XBF_LOCK);
1da177e4
LT
2353 if (XFS_BUF_ISERROR(bp)) {
2354 xfs_ioerror_alert("xlog_recover_do..(read#2)", mp,
a1941895 2355 bp, in_f->ilf_blkno);
1da177e4
LT
2356 error = XFS_BUF_GETERROR(bp);
2357 xfs_buf_relse(bp);
6d192a9b 2358 goto error;
1da177e4
LT
2359 }
2360 error = 0;
2361 ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
a1941895 2362 dip = (xfs_dinode_t *)xfs_buf_offset(bp, in_f->ilf_boffset);
1da177e4
LT
2363
2364 /*
2365 * Make sure the place we're flushing out to really looks
2366 * like an inode!
2367 */
81591fe2 2368 if (unlikely(be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC)) {
1da177e4
LT
2369 xfs_buf_relse(bp);
2370 xfs_fs_cmn_err(CE_ALERT, mp,
2371 "xfs_inode_recover: Bad inode magic number, dino ptr = 0x%p, dino bp = 0x%p, ino = %Ld",
2372 dip, bp, ino);
2373 XFS_ERROR_REPORT("xlog_recover_do_inode_trans(1)",
2374 XFS_ERRLEVEL_LOW, mp);
6d192a9b
TS
2375 error = EFSCORRUPTED;
2376 goto error;
1da177e4 2377 }
347d1c01 2378 dicp = (xfs_icdinode_t *)(item->ri_buf[1].i_addr);
1da177e4
LT
2379 if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
2380 xfs_buf_relse(bp);
2381 xfs_fs_cmn_err(CE_ALERT, mp,
2382 "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, ino %Ld",
2383 item, ino);
2384 XFS_ERROR_REPORT("xlog_recover_do_inode_trans(2)",
2385 XFS_ERRLEVEL_LOW, mp);
6d192a9b
TS
2386 error = EFSCORRUPTED;
2387 goto error;
1da177e4
LT
2388 }
2389
2390 /* Skip replay when the on disk inode is newer than the log one */
81591fe2 2391 if (dicp->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
1da177e4
LT
2392 /*
2393 * Deal with the wrap case, DI_MAX_FLUSH is less
2394 * than smaller numbers
2395 */
81591fe2 2396 if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
347d1c01 2397 dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) {
1da177e4
LT
2398 /* do nothing */
2399 } else {
2400 xfs_buf_relse(bp);
9abbc539 2401 trace_xfs_log_recover_inode_skip(log, in_f);
6d192a9b
TS
2402 error = 0;
2403 goto error;
1da177e4
LT
2404 }
2405 }
2406 /* Take the opportunity to reset the flush iteration count */
2407 dicp->di_flushiter = 0;
2408
2409 if (unlikely((dicp->di_mode & S_IFMT) == S_IFREG)) {
2410 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2411 (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
2412 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(3)",
2413 XFS_ERRLEVEL_LOW, mp, dicp);
2414 xfs_buf_relse(bp);
2415 xfs_fs_cmn_err(CE_ALERT, mp,
2416 "xfs_inode_recover: Bad regular inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2417 item, dip, bp, ino);
6d192a9b
TS
2418 error = EFSCORRUPTED;
2419 goto error;
1da177e4
LT
2420 }
2421 } else if (unlikely((dicp->di_mode & S_IFMT) == S_IFDIR)) {
2422 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2423 (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
2424 (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
2425 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(4)",
2426 XFS_ERRLEVEL_LOW, mp, dicp);
2427 xfs_buf_relse(bp);
2428 xfs_fs_cmn_err(CE_ALERT, mp,
2429 "xfs_inode_recover: Bad dir inode log record, rec ptr 0x%p, ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2430 item, dip, bp, ino);
6d192a9b
TS
2431 error = EFSCORRUPTED;
2432 goto error;
1da177e4
LT
2433 }
2434 }
2435 if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
2436 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(5)",
2437 XFS_ERRLEVEL_LOW, mp, dicp);
2438 xfs_buf_relse(bp);
2439 xfs_fs_cmn_err(CE_ALERT, mp,
2440 "xfs_inode_recover: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
2441 item, dip, bp, ino,
2442 dicp->di_nextents + dicp->di_anextents,
2443 dicp->di_nblocks);
6d192a9b
TS
2444 error = EFSCORRUPTED;
2445 goto error;
1da177e4
LT
2446 }
2447 if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
2448 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(6)",
2449 XFS_ERRLEVEL_LOW, mp, dicp);
2450 xfs_buf_relse(bp);
2451 xfs_fs_cmn_err(CE_ALERT, mp,
2452 "xfs_inode_recover: Bad inode log rec ptr 0x%p, dino ptr 0x%p, dino bp 0x%p, ino %Ld, forkoff 0x%x",
2453 item, dip, bp, ino, dicp->di_forkoff);
6d192a9b
TS
2454 error = EFSCORRUPTED;
2455 goto error;
1da177e4 2456 }
81591fe2 2457 if (unlikely(item->ri_buf[1].i_len > sizeof(struct xfs_icdinode))) {
1da177e4
LT
2458 XFS_CORRUPTION_ERROR("xlog_recover_do_inode_trans(7)",
2459 XFS_ERRLEVEL_LOW, mp, dicp);
2460 xfs_buf_relse(bp);
2461 xfs_fs_cmn_err(CE_ALERT, mp,
2462 "xfs_inode_recover: Bad inode log record length %d, rec ptr 0x%p",
2463 item->ri_buf[1].i_len, item);
6d192a9b
TS
2464 error = EFSCORRUPTED;
2465 goto error;
1da177e4
LT
2466 }
2467
2468 /* The core is in in-core format */
81591fe2 2469 xfs_dinode_to_disk(dip, (xfs_icdinode_t *)item->ri_buf[1].i_addr);
1da177e4
LT
2470
2471 /* the rest is in on-disk format */
81591fe2
CH
2472 if (item->ri_buf[1].i_len > sizeof(struct xfs_icdinode)) {
2473 memcpy((xfs_caddr_t) dip + sizeof(struct xfs_icdinode),
2474 item->ri_buf[1].i_addr + sizeof(struct xfs_icdinode),
2475 item->ri_buf[1].i_len - sizeof(struct xfs_icdinode));
1da177e4
LT
2476 }
2477
2478 fields = in_f->ilf_fields;
2479 switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
2480 case XFS_ILOG_DEV:
81591fe2 2481 xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
1da177e4
LT
2482 break;
2483 case XFS_ILOG_UUID:
81591fe2
CH
2484 memcpy(XFS_DFORK_DPTR(dip),
2485 &in_f->ilf_u.ilfu_uuid,
2486 sizeof(uuid_t));
1da177e4
LT
2487 break;
2488 }
2489
2490 if (in_f->ilf_size == 2)
2491 goto write_inode_buffer;
2492 len = item->ri_buf[2].i_len;
2493 src = item->ri_buf[2].i_addr;
2494 ASSERT(in_f->ilf_size <= 4);
2495 ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
2496 ASSERT(!(fields & XFS_ILOG_DFORK) ||
2497 (len == in_f->ilf_dsize));
2498
2499 switch (fields & XFS_ILOG_DFORK) {
2500 case XFS_ILOG_DDATA:
2501 case XFS_ILOG_DEXT:
81591fe2 2502 memcpy(XFS_DFORK_DPTR(dip), src, len);
1da177e4
LT
2503 break;
2504
2505 case XFS_ILOG_DBROOT:
7cc95a82 2506 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
81591fe2 2507 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
1da177e4
LT
2508 XFS_DFORK_DSIZE(dip, mp));
2509 break;
2510
2511 default:
2512 /*
2513 * There are no data fork flags set.
2514 */
2515 ASSERT((fields & XFS_ILOG_DFORK) == 0);
2516 break;
2517 }
2518
2519 /*
2520 * If we logged any attribute data, recover it. There may or
2521 * may not have been any other non-core data logged in this
2522 * transaction.
2523 */
2524 if (in_f->ilf_fields & XFS_ILOG_AFORK) {
2525 if (in_f->ilf_fields & XFS_ILOG_DFORK) {
2526 attr_index = 3;
2527 } else {
2528 attr_index = 2;
2529 }
2530 len = item->ri_buf[attr_index].i_len;
2531 src = item->ri_buf[attr_index].i_addr;
2532 ASSERT(len == in_f->ilf_asize);
2533
2534 switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
2535 case XFS_ILOG_ADATA:
2536 case XFS_ILOG_AEXT:
2537 dest = XFS_DFORK_APTR(dip);
2538 ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
2539 memcpy(dest, src, len);
2540 break;
2541
2542 case XFS_ILOG_ABROOT:
2543 dest = XFS_DFORK_APTR(dip);
7cc95a82
CH
2544 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
2545 len, (xfs_bmdr_block_t*)dest,
1da177e4
LT
2546 XFS_DFORK_ASIZE(dip, mp));
2547 break;
2548
2549 default:
2550 xlog_warn("XFS: xlog_recover_do_inode_trans: Invalid flag");
2551 ASSERT(0);
2552 xfs_buf_relse(bp);
6d192a9b
TS
2553 error = EIO;
2554 goto error;
1da177e4
LT
2555 }
2556 }
2557
2558write_inode_buffer:
dd0bbad8
CH
2559 ASSERT(bp->b_mount == NULL || bp->b_mount == mp);
2560 bp->b_mount = mp;
2561 XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2562 xfs_bdwrite(mp, bp);
6d192a9b
TS
2563error:
2564 if (need_free)
f0e2d93c 2565 kmem_free(in_f);
6d192a9b 2566 return XFS_ERROR(error);
1da177e4
LT
2567}
2568
2569/*
2570 * Recover QUOTAOFF records. We simply make a note of it in the xlog_t
2571 * structure, so that we know not to do any dquot item or dquot buffer recovery,
2572 * of that type.
2573 */
2574STATIC int
2575xlog_recover_do_quotaoff_trans(
2576 xlog_t *log,
2577 xlog_recover_item_t *item,
2578 int pass)
2579{
2580 xfs_qoff_logformat_t *qoff_f;
2581
2582 if (pass == XLOG_RECOVER_PASS2) {
2583 return (0);
2584 }
2585
2586 qoff_f = (xfs_qoff_logformat_t *)item->ri_buf[0].i_addr;
2587 ASSERT(qoff_f);
2588
2589 /*
2590 * The logitem format's flag tells us if this was user quotaoff,
77a7cce4 2591 * group/project quotaoff or both.
1da177e4
LT
2592 */
2593 if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
2594 log->l_quotaoffs_flag |= XFS_DQ_USER;
77a7cce4
NS
2595 if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
2596 log->l_quotaoffs_flag |= XFS_DQ_PROJ;
1da177e4
LT
2597 if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
2598 log->l_quotaoffs_flag |= XFS_DQ_GROUP;
2599
2600 return (0);
2601}
2602
2603/*
2604 * Recover a dquot record
2605 */
2606STATIC int
2607xlog_recover_do_dquot_trans(
2608 xlog_t *log,
2609 xlog_recover_item_t *item,
2610 int pass)
2611{
2612 xfs_mount_t *mp;
2613 xfs_buf_t *bp;
2614 struct xfs_disk_dquot *ddq, *recddq;
2615 int error;
2616 xfs_dq_logformat_t *dq_f;
2617 uint type;
2618
2619 if (pass == XLOG_RECOVER_PASS1) {
2620 return 0;
2621 }
2622 mp = log->l_mp;
2623
2624 /*
2625 * Filesystems are required to send in quota flags at mount time.
2626 */
2627 if (mp->m_qflags == 0)
2628 return (0);
2629
2630 recddq = (xfs_disk_dquot_t *)item->ri_buf[1].i_addr;
0c5e1ce8
CH
2631
2632 if (item->ri_buf[1].i_addr == NULL) {
2633 cmn_err(CE_ALERT,
2634 "XFS: NULL dquot in %s.", __func__);
2635 return XFS_ERROR(EIO);
2636 }
8ec6dba2 2637 if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) {
0c5e1ce8
CH
2638 cmn_err(CE_ALERT,
2639 "XFS: dquot too small (%d) in %s.",
2640 item->ri_buf[1].i_len, __func__);
2641 return XFS_ERROR(EIO);
2642 }
2643
1da177e4
LT
2644 /*
2645 * This type of quotas was turned off, so ignore this record.
2646 */
b53e675d 2647 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
1da177e4
LT
2648 ASSERT(type);
2649 if (log->l_quotaoffs_flag & type)
2650 return (0);
2651
2652 /*
2653 * At this point we know that quota was _not_ turned off.
2654 * Since the mount flags are not indicating to us otherwise, this
2655 * must mean that quota is on, and the dquot needs to be replayed.
2656 * Remember that we may not have fully recovered the superblock yet,
2657 * so we can't do the usual trick of looking at the SB quota bits.
2658 *
2659 * The other possibility, of course, is that the quota subsystem was
2660 * removed since the last mount - ENOSYS.
2661 */
2662 dq_f = (xfs_dq_logformat_t *)item->ri_buf[0].i_addr;
2663 ASSERT(dq_f);
2664 if ((error = xfs_qm_dqcheck(recddq,
2665 dq_f->qlf_id,
2666 0, XFS_QMOPT_DOWARN,
2667 "xlog_recover_do_dquot_trans (log copy)"))) {
2668 return XFS_ERROR(EIO);
2669 }
2670 ASSERT(dq_f->qlf_len == 1);
2671
2672 error = xfs_read_buf(mp, mp->m_ddev_targp,
2673 dq_f->qlf_blkno,
2674 XFS_FSB_TO_BB(mp, dq_f->qlf_len),
2675 0, &bp);
2676 if (error) {
2677 xfs_ioerror_alert("xlog_recover_do..(read#3)", mp,
2678 bp, dq_f->qlf_blkno);
2679 return error;
2680 }
2681 ASSERT(bp);
2682 ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset);
2683
2684 /*
2685 * At least the magic num portion should be on disk because this
2686 * was among a chunk of dquots created earlier, and we did some
2687 * minimal initialization then.
2688 */
2689 if (xfs_qm_dqcheck(ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
2690 "xlog_recover_do_dquot_trans")) {
2691 xfs_buf_relse(bp);
2692 return XFS_ERROR(EIO);
2693 }
2694
2695 memcpy(ddq, recddq, item->ri_buf[1].i_len);
2696
2697 ASSERT(dq_f->qlf_size == 2);
15ac08a8
CH
2698 ASSERT(bp->b_mount == NULL || bp->b_mount == mp);
2699 bp->b_mount = mp;
1da177e4
LT
2700 XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
2701 xfs_bdwrite(mp, bp);
2702
2703 return (0);
2704}
2705
2706/*
2707 * This routine is called to create an in-core extent free intent
2708 * item from the efi format structure which was logged on disk.
2709 * It allocates an in-core efi, copies the extents from the format
2710 * structure into it, and adds the efi to the AIL with the given
2711 * LSN.
2712 */
6d192a9b 2713STATIC int
1da177e4
LT
2714xlog_recover_do_efi_trans(
2715 xlog_t *log,
2716 xlog_recover_item_t *item,
2717 xfs_lsn_t lsn,
2718 int pass)
2719{
6d192a9b 2720 int error;
1da177e4
LT
2721 xfs_mount_t *mp;
2722 xfs_efi_log_item_t *efip;
2723 xfs_efi_log_format_t *efi_formatp;
1da177e4
LT
2724
2725 if (pass == XLOG_RECOVER_PASS1) {
6d192a9b 2726 return 0;
1da177e4
LT
2727 }
2728
2729 efi_formatp = (xfs_efi_log_format_t *)item->ri_buf[0].i_addr;
1da177e4
LT
2730
2731 mp = log->l_mp;
2732 efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
6d192a9b
TS
2733 if ((error = xfs_efi_copy_format(&(item->ri_buf[0]),
2734 &(efip->efi_format)))) {
2735 xfs_efi_item_free(efip);
2736 return error;
2737 }
1da177e4
LT
2738 efip->efi_next_extent = efi_formatp->efi_nextents;
2739 efip->efi_flags |= XFS_EFI_COMMITTED;
2740
a9c21c1b 2741 spin_lock(&log->l_ailp->xa_lock);
1da177e4 2742 /*
783a2f65 2743 * xfs_trans_ail_update() drops the AIL lock.
1da177e4 2744 */
783a2f65 2745 xfs_trans_ail_update(log->l_ailp, (xfs_log_item_t *)efip, lsn);
6d192a9b 2746 return 0;
1da177e4
LT
2747}
2748
2749
2750/*
2751 * This routine is called when an efd format structure is found in
2752 * a committed transaction in the log. It's purpose is to cancel
2753 * the corresponding efi if it was still in the log. To do this
2754 * it searches the AIL for the efi with an id equal to that in the
2755 * efd format structure. If we find it, we remove the efi from the
2756 * AIL and free it.
2757 */
2758STATIC void
2759xlog_recover_do_efd_trans(
2760 xlog_t *log,
2761 xlog_recover_item_t *item,
2762 int pass)
2763{
1da177e4
LT
2764 xfs_efd_log_format_t *efd_formatp;
2765 xfs_efi_log_item_t *efip = NULL;
2766 xfs_log_item_t *lip;
1da177e4 2767 __uint64_t efi_id;
27d8d5fe 2768 struct xfs_ail_cursor cur;
783a2f65 2769 struct xfs_ail *ailp = log->l_ailp;
1da177e4
LT
2770
2771 if (pass == XLOG_RECOVER_PASS1) {
2772 return;
2773 }
2774
2775 efd_formatp = (xfs_efd_log_format_t *)item->ri_buf[0].i_addr;
6d192a9b
TS
2776 ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
2777 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
2778 (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
2779 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
1da177e4
LT
2780 efi_id = efd_formatp->efd_efi_id;
2781
2782 /*
2783 * Search for the efi with the id in the efd format structure
2784 * in the AIL.
2785 */
a9c21c1b
DC
2786 spin_lock(&ailp->xa_lock);
2787 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
1da177e4
LT
2788 while (lip != NULL) {
2789 if (lip->li_type == XFS_LI_EFI) {
2790 efip = (xfs_efi_log_item_t *)lip;
2791 if (efip->efi_format.efi_id == efi_id) {
2792 /*
783a2f65 2793 * xfs_trans_ail_delete() drops the
1da177e4
LT
2794 * AIL lock.
2795 */
783a2f65 2796 xfs_trans_ail_delete(ailp, lip);
8ae2c0f6 2797 xfs_efi_item_free(efip);
a9c21c1b 2798 spin_lock(&ailp->xa_lock);
27d8d5fe 2799 break;
1da177e4
LT
2800 }
2801 }
a9c21c1b 2802 lip = xfs_trans_ail_cursor_next(ailp, &cur);
1da177e4 2803 }
a9c21c1b
DC
2804 xfs_trans_ail_cursor_done(ailp, &cur);
2805 spin_unlock(&ailp->xa_lock);
1da177e4
LT
2806}
2807
2808/*
2809 * Perform the transaction
2810 *
2811 * If the transaction modifies a buffer or inode, do it now. Otherwise,
2812 * EFIs and EFDs get queued up by adding entries into the AIL for them.
2813 */
2814STATIC int
2815xlog_recover_do_trans(
2816 xlog_t *log,
2817 xlog_recover_t *trans,
2818 int pass)
2819{
2820 int error = 0;
f0a76953 2821 xlog_recover_item_t *item;
1da177e4 2822
9abbc539 2823 error = xlog_recover_reorder_trans(log, trans, pass);
ff0205e0 2824 if (error)
1da177e4 2825 return error;
ff0205e0 2826
f0a76953 2827 list_for_each_entry(item, &trans->r_itemq, ri_list) {
9abbc539 2828 trace_xfs_log_recover_item_recover(log, trans, item, pass);
ff0205e0
CH
2829 switch (ITEM_TYPE(item)) {
2830 case XFS_LI_BUF:
2831 error = xlog_recover_do_buffer_trans(log, item, pass);
2832 break;
2833 case XFS_LI_INODE:
2834 error = xlog_recover_do_inode_trans(log, item, pass);
2835 break;
2836 case XFS_LI_EFI:
2837 error = xlog_recover_do_efi_trans(log, item,
2838 trans->r_lsn, pass);
2839 break;
2840 case XFS_LI_EFD:
1da177e4 2841 xlog_recover_do_efd_trans(log, item, pass);
ff0205e0
CH
2842 error = 0;
2843 break;
2844 case XFS_LI_DQUOT:
2845 error = xlog_recover_do_dquot_trans(log, item, pass);
2846 break;
2847 case XFS_LI_QUOTAOFF:
2848 error = xlog_recover_do_quotaoff_trans(log, item,
2849 pass);
2850 break;
2851 default:
2852 xlog_warn(
2853 "XFS: invalid item type (%d) xlog_recover_do_trans", ITEM_TYPE(item));
1da177e4
LT
2854 ASSERT(0);
2855 error = XFS_ERROR(EIO);
2856 break;
2857 }
ff0205e0
CH
2858
2859 if (error)
2860 return error;
f0a76953 2861 }
1da177e4 2862
ff0205e0 2863 return 0;
1da177e4
LT
2864}
2865
2866/*
2867 * Free up any resources allocated by the transaction
2868 *
2869 * Remember that EFIs, EFDs, and IUNLINKs are handled later.
2870 */
2871STATIC void
2872xlog_recover_free_trans(
2873 xlog_recover_t *trans)
2874{
f0a76953 2875 xlog_recover_item_t *item, *n;
1da177e4
LT
2876 int i;
2877
f0a76953
DC
2878 list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
2879 /* Free the regions in the item. */
2880 list_del(&item->ri_list);
2881 for (i = 0; i < item->ri_cnt; i++)
2882 kmem_free(item->ri_buf[i].i_addr);
1da177e4 2883 /* Free the item itself */
f0a76953
DC
2884 kmem_free(item->ri_buf);
2885 kmem_free(item);
2886 }
1da177e4 2887 /* Free the transaction recover structure */
f0e2d93c 2888 kmem_free(trans);
1da177e4
LT
2889}
2890
2891STATIC int
2892xlog_recover_commit_trans(
2893 xlog_t *log,
1da177e4
LT
2894 xlog_recover_t *trans,
2895 int pass)
2896{
2897 int error;
2898
f0a76953 2899 hlist_del(&trans->r_list);
1da177e4
LT
2900 if ((error = xlog_recover_do_trans(log, trans, pass)))
2901 return error;
2902 xlog_recover_free_trans(trans); /* no error */
2903 return 0;
2904}
2905
2906STATIC int
2907xlog_recover_unmount_trans(
2908 xlog_recover_t *trans)
2909{
2910 /* Do nothing now */
2911 xlog_warn("XFS: xlog_recover_unmount_trans: Unmount LR");
2912 return 0;
2913}
2914
2915/*
2916 * There are two valid states of the r_state field. 0 indicates that the
2917 * transaction structure is in a normal state. We have either seen the
2918 * start of the transaction or the last operation we added was not a partial
2919 * operation. If the last operation we added to the transaction was a
2920 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
2921 *
2922 * NOTE: skip LRs with 0 data length.
2923 */
2924STATIC int
2925xlog_recover_process_data(
2926 xlog_t *log,
f0a76953 2927 struct hlist_head rhash[],
1da177e4
LT
2928 xlog_rec_header_t *rhead,
2929 xfs_caddr_t dp,
2930 int pass)
2931{
2932 xfs_caddr_t lp;
2933 int num_logops;
2934 xlog_op_header_t *ohead;
2935 xlog_recover_t *trans;
2936 xlog_tid_t tid;
2937 int error;
2938 unsigned long hash;
2939 uint flags;
2940
b53e675d
CH
2941 lp = dp + be32_to_cpu(rhead->h_len);
2942 num_logops = be32_to_cpu(rhead->h_num_logops);
1da177e4
LT
2943
2944 /* check the log format matches our own - else we can't recover */
2945 if (xlog_header_check_recover(log->l_mp, rhead))
2946 return (XFS_ERROR(EIO));
2947
2948 while ((dp < lp) && num_logops) {
2949 ASSERT(dp + sizeof(xlog_op_header_t) <= lp);
2950 ohead = (xlog_op_header_t *)dp;
2951 dp += sizeof(xlog_op_header_t);
2952 if (ohead->oh_clientid != XFS_TRANSACTION &&
2953 ohead->oh_clientid != XFS_LOG) {
2954 xlog_warn(
2955 "XFS: xlog_recover_process_data: bad clientid");
2956 ASSERT(0);
2957 return (XFS_ERROR(EIO));
2958 }
67fcb7bf 2959 tid = be32_to_cpu(ohead->oh_tid);
1da177e4 2960 hash = XLOG_RHASH(tid);
f0a76953 2961 trans = xlog_recover_find_tid(&rhash[hash], tid);
1da177e4
LT
2962 if (trans == NULL) { /* not found; add new tid */
2963 if (ohead->oh_flags & XLOG_START_TRANS)
2964 xlog_recover_new_tid(&rhash[hash], tid,
b53e675d 2965 be64_to_cpu(rhead->h_lsn));
1da177e4 2966 } else {
9742bb93
LM
2967 if (dp + be32_to_cpu(ohead->oh_len) > lp) {
2968 xlog_warn(
2969 "XFS: xlog_recover_process_data: bad length");
2970 WARN_ON(1);
2971 return (XFS_ERROR(EIO));
2972 }
1da177e4
LT
2973 flags = ohead->oh_flags & ~XLOG_END_TRANS;
2974 if (flags & XLOG_WAS_CONT_TRANS)
2975 flags &= ~XLOG_CONTINUE_TRANS;
2976 switch (flags) {
2977 case XLOG_COMMIT_TRANS:
2978 error = xlog_recover_commit_trans(log,
f0a76953 2979 trans, pass);
1da177e4
LT
2980 break;
2981 case XLOG_UNMOUNT_TRANS:
2982 error = xlog_recover_unmount_trans(trans);
2983 break;
2984 case XLOG_WAS_CONT_TRANS:
9abbc539
DC
2985 error = xlog_recover_add_to_cont_trans(log,
2986 trans, dp,
2987 be32_to_cpu(ohead->oh_len));
1da177e4
LT
2988 break;
2989 case XLOG_START_TRANS:
2990 xlog_warn(
2991 "XFS: xlog_recover_process_data: bad transaction");
2992 ASSERT(0);
2993 error = XFS_ERROR(EIO);
2994 break;
2995 case 0:
2996 case XLOG_CONTINUE_TRANS:
9abbc539 2997 error = xlog_recover_add_to_trans(log, trans,
67fcb7bf 2998 dp, be32_to_cpu(ohead->oh_len));
1da177e4
LT
2999 break;
3000 default:
3001 xlog_warn(
3002 "XFS: xlog_recover_process_data: bad flag");
3003 ASSERT(0);
3004 error = XFS_ERROR(EIO);
3005 break;
3006 }
3007 if (error)
3008 return error;
3009 }
67fcb7bf 3010 dp += be32_to_cpu(ohead->oh_len);
1da177e4
LT
3011 num_logops--;
3012 }
3013 return 0;
3014}
3015
3016/*
3017 * Process an extent free intent item that was recovered from
3018 * the log. We need to free the extents that it describes.
3019 */
3c1e2bbe 3020STATIC int
1da177e4
LT
3021xlog_recover_process_efi(
3022 xfs_mount_t *mp,
3023 xfs_efi_log_item_t *efip)
3024{
3025 xfs_efd_log_item_t *efdp;
3026 xfs_trans_t *tp;
3027 int i;
3c1e2bbe 3028 int error = 0;
1da177e4
LT
3029 xfs_extent_t *extp;
3030 xfs_fsblock_t startblock_fsb;
3031
3032 ASSERT(!(efip->efi_flags & XFS_EFI_RECOVERED));
3033
3034 /*
3035 * First check the validity of the extents described by the
3036 * EFI. If any are bad, then assume that all are bad and
3037 * just toss the EFI.
3038 */
3039 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3040 extp = &(efip->efi_format.efi_extents[i]);
3041 startblock_fsb = XFS_BB_TO_FSB(mp,
3042 XFS_FSB_TO_DADDR(mp, extp->ext_start));
3043 if ((startblock_fsb == 0) ||
3044 (extp->ext_len == 0) ||
3045 (startblock_fsb >= mp->m_sb.sb_dblocks) ||
3046 (extp->ext_len >= mp->m_sb.sb_agblocks)) {
3047 /*
3048 * This will pull the EFI from the AIL and
3049 * free the memory associated with it.
3050 */
3051 xfs_efi_release(efip, efip->efi_format.efi_nextents);
3c1e2bbe 3052 return XFS_ERROR(EIO);
1da177e4
LT
3053 }
3054 }
3055
3056 tp = xfs_trans_alloc(mp, 0);
3c1e2bbe 3057 error = xfs_trans_reserve(tp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 0, 0);
fc6149d8
DC
3058 if (error)
3059 goto abort_error;
1da177e4
LT
3060 efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
3061
3062 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3063 extp = &(efip->efi_format.efi_extents[i]);
fc6149d8
DC
3064 error = xfs_free_extent(tp, extp->ext_start, extp->ext_len);
3065 if (error)
3066 goto abort_error;
1da177e4
LT
3067 xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
3068 extp->ext_len);
3069 }
3070
3071 efip->efi_flags |= XFS_EFI_RECOVERED;
e5720eec 3072 error = xfs_trans_commit(tp, 0);
3c1e2bbe 3073 return error;
fc6149d8
DC
3074
3075abort_error:
3076 xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3077 return error;
1da177e4
LT
3078}
3079
1da177e4
LT
3080/*
3081 * When this is called, all of the EFIs which did not have
3082 * corresponding EFDs should be in the AIL. What we do now
3083 * is free the extents associated with each one.
3084 *
3085 * Since we process the EFIs in normal transactions, they
3086 * will be removed at some point after the commit. This prevents
3087 * us from just walking down the list processing each one.
3088 * We'll use a flag in the EFI to skip those that we've already
3089 * processed and use the AIL iteration mechanism's generation
3090 * count to try to speed this up at least a bit.
3091 *
3092 * When we start, we know that the EFIs are the only things in
3093 * the AIL. As we process them, however, other items are added
3094 * to the AIL. Since everything added to the AIL must come after
3095 * everything already in the AIL, we stop processing as soon as
3096 * we see something other than an EFI in the AIL.
3097 */
3c1e2bbe 3098STATIC int
1da177e4
LT
3099xlog_recover_process_efis(
3100 xlog_t *log)
3101{
3102 xfs_log_item_t *lip;
3103 xfs_efi_log_item_t *efip;
3c1e2bbe 3104 int error = 0;
27d8d5fe 3105 struct xfs_ail_cursor cur;
a9c21c1b 3106 struct xfs_ail *ailp;
1da177e4 3107
a9c21c1b
DC
3108 ailp = log->l_ailp;
3109 spin_lock(&ailp->xa_lock);
3110 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
1da177e4
LT
3111 while (lip != NULL) {
3112 /*
3113 * We're done when we see something other than an EFI.
27d8d5fe 3114 * There should be no EFIs left in the AIL now.
1da177e4
LT
3115 */
3116 if (lip->li_type != XFS_LI_EFI) {
27d8d5fe 3117#ifdef DEBUG
a9c21c1b 3118 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
27d8d5fe
DC
3119 ASSERT(lip->li_type != XFS_LI_EFI);
3120#endif
1da177e4
LT
3121 break;
3122 }
3123
3124 /*
3125 * Skip EFIs that we've already processed.
3126 */
3127 efip = (xfs_efi_log_item_t *)lip;
3128 if (efip->efi_flags & XFS_EFI_RECOVERED) {
a9c21c1b 3129 lip = xfs_trans_ail_cursor_next(ailp, &cur);
1da177e4
LT
3130 continue;
3131 }
3132
a9c21c1b
DC
3133 spin_unlock(&ailp->xa_lock);
3134 error = xlog_recover_process_efi(log->l_mp, efip);
3135 spin_lock(&ailp->xa_lock);
27d8d5fe
DC
3136 if (error)
3137 goto out;
a9c21c1b 3138 lip = xfs_trans_ail_cursor_next(ailp, &cur);
1da177e4 3139 }
27d8d5fe 3140out:
a9c21c1b
DC
3141 xfs_trans_ail_cursor_done(ailp, &cur);
3142 spin_unlock(&ailp->xa_lock);
3c1e2bbe 3143 return error;
1da177e4
LT
3144}
3145
3146/*
3147 * This routine performs a transaction to null out a bad inode pointer
3148 * in an agi unlinked inode hash bucket.
3149 */
3150STATIC void
3151xlog_recover_clear_agi_bucket(
3152 xfs_mount_t *mp,
3153 xfs_agnumber_t agno,
3154 int bucket)
3155{
3156 xfs_trans_t *tp;
3157 xfs_agi_t *agi;
3158 xfs_buf_t *agibp;
3159 int offset;
3160 int error;
3161
3162 tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
5e1be0fb
CH
3163 error = xfs_trans_reserve(tp, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp),
3164 0, 0, 0);
e5720eec
DC
3165 if (error)
3166 goto out_abort;
1da177e4 3167
5e1be0fb
CH
3168 error = xfs_read_agi(mp, tp, agno, &agibp);
3169 if (error)
e5720eec 3170 goto out_abort;
1da177e4 3171
5e1be0fb 3172 agi = XFS_BUF_TO_AGI(agibp);
16259e7d 3173 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
1da177e4
LT
3174 offset = offsetof(xfs_agi_t, agi_unlinked) +
3175 (sizeof(xfs_agino_t) * bucket);
3176 xfs_trans_log_buf(tp, agibp, offset,
3177 (offset + sizeof(xfs_agino_t) - 1));
3178
e5720eec
DC
3179 error = xfs_trans_commit(tp, 0);
3180 if (error)
3181 goto out_error;
3182 return;
3183
3184out_abort:
3185 xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3186out_error:
3187 xfs_fs_cmn_err(CE_WARN, mp, "xlog_recover_clear_agi_bucket: "
3188 "failed to clear agi %d. Continuing.", agno);
3189 return;
1da177e4
LT
3190}
3191
23fac50f
CH
3192STATIC xfs_agino_t
3193xlog_recover_process_one_iunlink(
3194 struct xfs_mount *mp,
3195 xfs_agnumber_t agno,
3196 xfs_agino_t agino,
3197 int bucket)
3198{
3199 struct xfs_buf *ibp;
3200 struct xfs_dinode *dip;
3201 struct xfs_inode *ip;
3202 xfs_ino_t ino;
3203 int error;
3204
3205 ino = XFS_AGINO_TO_INO(mp, agno, agino);
3206 error = xfs_iget(mp, NULL, ino, 0, 0, &ip, 0);
3207 if (error)
3208 goto fail;
3209
3210 /*
3211 * Get the on disk inode to find the next inode in the bucket.
3212 */
0cadda1c 3213 error = xfs_itobp(mp, NULL, ip, &dip, &ibp, XBF_LOCK);
23fac50f 3214 if (error)
0e446673 3215 goto fail_iput;
23fac50f 3216
23fac50f 3217 ASSERT(ip->i_d.di_nlink == 0);
0e446673 3218 ASSERT(ip->i_d.di_mode != 0);
23fac50f
CH
3219
3220 /* setup for the next pass */
3221 agino = be32_to_cpu(dip->di_next_unlinked);
3222 xfs_buf_relse(ibp);
3223
3224 /*
3225 * Prevent any DMAPI event from being sent when the reference on
3226 * the inode is dropped.
3227 */
3228 ip->i_d.di_dmevmask = 0;
3229
0e446673 3230 IRELE(ip);
23fac50f
CH
3231 return agino;
3232
0e446673
CH
3233 fail_iput:
3234 IRELE(ip);
23fac50f
CH
3235 fail:
3236 /*
3237 * We can't read in the inode this bucket points to, or this inode
3238 * is messed up. Just ditch this bucket of inodes. We will lose
3239 * some inodes and space, but at least we won't hang.
3240 *
3241 * Call xlog_recover_clear_agi_bucket() to perform a transaction to
3242 * clear the inode pointer in the bucket.
3243 */
3244 xlog_recover_clear_agi_bucket(mp, agno, bucket);
3245 return NULLAGINO;
3246}
3247
1da177e4
LT
3248/*
3249 * xlog_iunlink_recover
3250 *
3251 * This is called during recovery to process any inodes which
3252 * we unlinked but not freed when the system crashed. These
3253 * inodes will be on the lists in the AGI blocks. What we do
3254 * here is scan all the AGIs and fully truncate and free any
3255 * inodes found on the lists. Each inode is removed from the
3256 * lists when it has been fully truncated and is freed. The
3257 * freeing of the inode and its removal from the list must be
3258 * atomic.
3259 */
d96f8f89 3260STATIC void
1da177e4
LT
3261xlog_recover_process_iunlinks(
3262 xlog_t *log)
3263{
3264 xfs_mount_t *mp;
3265 xfs_agnumber_t agno;
3266 xfs_agi_t *agi;
3267 xfs_buf_t *agibp;
1da177e4 3268 xfs_agino_t agino;
1da177e4
LT
3269 int bucket;
3270 int error;
3271 uint mp_dmevmask;
3272
3273 mp = log->l_mp;
3274
3275 /*
3276 * Prevent any DMAPI event from being sent while in this function.
3277 */
3278 mp_dmevmask = mp->m_dmevmask;
3279 mp->m_dmevmask = 0;
3280
3281 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3282 /*
3283 * Find the agi for this ag.
3284 */
5e1be0fb
CH
3285 error = xfs_read_agi(mp, NULL, agno, &agibp);
3286 if (error) {
3287 /*
3288 * AGI is b0rked. Don't process it.
3289 *
3290 * We should probably mark the filesystem as corrupt
3291 * after we've recovered all the ag's we can....
3292 */
3293 continue;
1da177e4
LT
3294 }
3295 agi = XFS_BUF_TO_AGI(agibp);
1da177e4
LT
3296
3297 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
16259e7d 3298 agino = be32_to_cpu(agi->agi_unlinked[bucket]);
1da177e4 3299 while (agino != NULLAGINO) {
1da177e4
LT
3300 /*
3301 * Release the agi buffer so that it can
3302 * be acquired in the normal course of the
3303 * transaction to truncate and free the inode.
3304 */
3305 xfs_buf_relse(agibp);
3306
23fac50f
CH
3307 agino = xlog_recover_process_one_iunlink(mp,
3308 agno, agino, bucket);
1da177e4
LT
3309
3310 /*
3311 * Reacquire the agibuffer and continue around
5e1be0fb
CH
3312 * the loop. This should never fail as we know
3313 * the buffer was good earlier on.
1da177e4 3314 */
5e1be0fb
CH
3315 error = xfs_read_agi(mp, NULL, agno, &agibp);
3316 ASSERT(error == 0);
1da177e4 3317 agi = XFS_BUF_TO_AGI(agibp);
1da177e4
LT
3318 }
3319 }
3320
3321 /*
3322 * Release the buffer for the current agi so we can
3323 * go on to the next one.
3324 */
3325 xfs_buf_relse(agibp);
3326 }
3327
3328 mp->m_dmevmask = mp_dmevmask;
3329}
3330
3331
3332#ifdef DEBUG
3333STATIC void
3334xlog_pack_data_checksum(
3335 xlog_t *log,
3336 xlog_in_core_t *iclog,
3337 int size)
3338{
3339 int i;
b53e675d 3340 __be32 *up;
1da177e4
LT
3341 uint chksum = 0;
3342
b53e675d 3343 up = (__be32 *)iclog->ic_datap;
1da177e4
LT
3344 /* divide length by 4 to get # words */
3345 for (i = 0; i < (size >> 2); i++) {
b53e675d 3346 chksum ^= be32_to_cpu(*up);
1da177e4
LT
3347 up++;
3348 }
b53e675d 3349 iclog->ic_header.h_chksum = cpu_to_be32(chksum);
1da177e4
LT
3350}
3351#else
3352#define xlog_pack_data_checksum(log, iclog, size)
3353#endif
3354
3355/*
3356 * Stamp cycle number in every block
3357 */
3358void
3359xlog_pack_data(
3360 xlog_t *log,
3361 xlog_in_core_t *iclog,
3362 int roundoff)
3363{
3364 int i, j, k;
3365 int size = iclog->ic_offset + roundoff;
b53e675d 3366 __be32 cycle_lsn;
1da177e4 3367 xfs_caddr_t dp;
1da177e4
LT
3368
3369 xlog_pack_data_checksum(log, iclog, size);
3370
3371 cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
3372
3373 dp = iclog->ic_datap;
3374 for (i = 0; i < BTOBB(size) &&
3375 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
b53e675d
CH
3376 iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
3377 *(__be32 *)dp = cycle_lsn;
1da177e4
LT
3378 dp += BBSIZE;
3379 }
3380
62118709 3381 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
b28708d6
CH
3382 xlog_in_core_2_t *xhdr = iclog->ic_data;
3383
1da177e4
LT
3384 for ( ; i < BTOBB(size); i++) {
3385 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3386 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
b53e675d
CH
3387 xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
3388 *(__be32 *)dp = cycle_lsn;
1da177e4
LT
3389 dp += BBSIZE;
3390 }
3391
3392 for (i = 1; i < log->l_iclog_heads; i++) {
3393 xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
3394 }
3395 }
3396}
3397
3398#if defined(DEBUG) && defined(XFS_LOUD_RECOVERY)
3399STATIC void
3400xlog_unpack_data_checksum(
3401 xlog_rec_header_t *rhead,
3402 xfs_caddr_t dp,
3403 xlog_t *log)
3404{
b53e675d 3405 __be32 *up = (__be32 *)dp;
1da177e4
LT
3406 uint chksum = 0;
3407 int i;
3408
3409 /* divide length by 4 to get # words */
b53e675d
CH
3410 for (i=0; i < be32_to_cpu(rhead->h_len) >> 2; i++) {
3411 chksum ^= be32_to_cpu(*up);
1da177e4
LT
3412 up++;
3413 }
b53e675d 3414 if (chksum != be32_to_cpu(rhead->h_chksum)) {
1da177e4
LT
3415 if (rhead->h_chksum ||
3416 ((log->l_flags & XLOG_CHKSUM_MISMATCH) == 0)) {
3417 cmn_err(CE_DEBUG,
b6574520 3418 "XFS: LogR chksum mismatch: was (0x%x) is (0x%x)\n",
b53e675d 3419 be32_to_cpu(rhead->h_chksum), chksum);
1da177e4
LT
3420 cmn_err(CE_DEBUG,
3421"XFS: Disregard message if filesystem was created with non-DEBUG kernel");
62118709 3422 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1da177e4 3423 cmn_err(CE_DEBUG,
b6574520 3424 "XFS: LogR this is a LogV2 filesystem\n");
1da177e4
LT
3425 }
3426 log->l_flags |= XLOG_CHKSUM_MISMATCH;
3427 }
3428 }
3429}
3430#else
3431#define xlog_unpack_data_checksum(rhead, dp, log)
3432#endif
3433
3434STATIC void
3435xlog_unpack_data(
3436 xlog_rec_header_t *rhead,
3437 xfs_caddr_t dp,
3438 xlog_t *log)
3439{
3440 int i, j, k;
1da177e4 3441
b53e675d 3442 for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
1da177e4 3443 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
b53e675d 3444 *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
1da177e4
LT
3445 dp += BBSIZE;
3446 }
3447
62118709 3448 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
b28708d6 3449 xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
b53e675d 3450 for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
1da177e4
LT
3451 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3452 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
b53e675d 3453 *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
1da177e4
LT
3454 dp += BBSIZE;
3455 }
3456 }
3457
3458 xlog_unpack_data_checksum(rhead, dp, log);
3459}
3460
3461STATIC int
3462xlog_valid_rec_header(
3463 xlog_t *log,
3464 xlog_rec_header_t *rhead,
3465 xfs_daddr_t blkno)
3466{
3467 int hlen;
3468
b53e675d 3469 if (unlikely(be32_to_cpu(rhead->h_magicno) != XLOG_HEADER_MAGIC_NUM)) {
1da177e4
LT
3470 XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
3471 XFS_ERRLEVEL_LOW, log->l_mp);
3472 return XFS_ERROR(EFSCORRUPTED);
3473 }
3474 if (unlikely(
3475 (!rhead->h_version ||
b53e675d 3476 (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
1da177e4 3477 xlog_warn("XFS: %s: unrecognised log version (%d).",
34a622b2 3478 __func__, be32_to_cpu(rhead->h_version));
1da177e4
LT
3479 return XFS_ERROR(EIO);
3480 }
3481
3482 /* LR body must have data or it wouldn't have been written */
b53e675d 3483 hlen = be32_to_cpu(rhead->h_len);
1da177e4
LT
3484 if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
3485 XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
3486 XFS_ERRLEVEL_LOW, log->l_mp);
3487 return XFS_ERROR(EFSCORRUPTED);
3488 }
3489 if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
3490 XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
3491 XFS_ERRLEVEL_LOW, log->l_mp);
3492 return XFS_ERROR(EFSCORRUPTED);
3493 }
3494 return 0;
3495}
3496
3497/*
3498 * Read the log from tail to head and process the log records found.
3499 * Handle the two cases where the tail and head are in the same cycle
3500 * and where the active portion of the log wraps around the end of
3501 * the physical log separately. The pass parameter is passed through
3502 * to the routines called to process the data and is not looked at
3503 * here.
3504 */
3505STATIC int
3506xlog_do_recovery_pass(
3507 xlog_t *log,
3508 xfs_daddr_t head_blk,
3509 xfs_daddr_t tail_blk,
3510 int pass)
3511{
3512 xlog_rec_header_t *rhead;
3513 xfs_daddr_t blk_no;
fc5bc4c8 3514 xfs_caddr_t offset;
1da177e4
LT
3515 xfs_buf_t *hbp, *dbp;
3516 int error = 0, h_size;
3517 int bblks, split_bblks;
3518 int hblks, split_hblks, wrapped_hblks;
f0a76953 3519 struct hlist_head rhash[XLOG_RHASH_SIZE];
1da177e4
LT
3520
3521 ASSERT(head_blk != tail_blk);
3522
3523 /*
3524 * Read the header of the tail block and get the iclog buffer size from
3525 * h_size. Use this to tell how many sectors make up the log header.
3526 */
62118709 3527 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1da177e4
LT
3528 /*
3529 * When using variable length iclogs, read first sector of
3530 * iclog header and extract the header size from it. Get a
3531 * new hbp that is the correct size.
3532 */
3533 hbp = xlog_get_bp(log, 1);
3534 if (!hbp)
3535 return ENOMEM;
076e6acb
CH
3536
3537 error = xlog_bread(log, tail_blk, 1, hbp, &offset);
3538 if (error)
1da177e4 3539 goto bread_err1;
076e6acb 3540
1da177e4
LT
3541 rhead = (xlog_rec_header_t *)offset;
3542 error = xlog_valid_rec_header(log, rhead, tail_blk);
3543 if (error)
3544 goto bread_err1;
b53e675d
CH
3545 h_size = be32_to_cpu(rhead->h_size);
3546 if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
1da177e4
LT
3547 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
3548 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
3549 if (h_size % XLOG_HEADER_CYCLE_SIZE)
3550 hblks++;
3551 xlog_put_bp(hbp);
3552 hbp = xlog_get_bp(log, hblks);
3553 } else {
3554 hblks = 1;
3555 }
3556 } else {
3557 ASSERT(log->l_sectbb_log == 0);
3558 hblks = 1;
3559 hbp = xlog_get_bp(log, 1);
3560 h_size = XLOG_BIG_RECORD_BSIZE;
3561 }
3562
3563 if (!hbp)
3564 return ENOMEM;
3565 dbp = xlog_get_bp(log, BTOBB(h_size));
3566 if (!dbp) {
3567 xlog_put_bp(hbp);
3568 return ENOMEM;
3569 }
3570
3571 memset(rhash, 0, sizeof(rhash));
3572 if (tail_blk <= head_blk) {
3573 for (blk_no = tail_blk; blk_no < head_blk; ) {
076e6acb
CH
3574 error = xlog_bread(log, blk_no, hblks, hbp, &offset);
3575 if (error)
1da177e4 3576 goto bread_err2;
076e6acb 3577
1da177e4
LT
3578 rhead = (xlog_rec_header_t *)offset;
3579 error = xlog_valid_rec_header(log, rhead, blk_no);
3580 if (error)
3581 goto bread_err2;
3582
3583 /* blocks in data section */
b53e675d 3584 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
076e6acb
CH
3585 error = xlog_bread(log, blk_no + hblks, bblks, dbp,
3586 &offset);
1da177e4
LT
3587 if (error)
3588 goto bread_err2;
076e6acb 3589
1da177e4
LT
3590 xlog_unpack_data(rhead, offset, log);
3591 if ((error = xlog_recover_process_data(log,
3592 rhash, rhead, offset, pass)))
3593 goto bread_err2;
3594 blk_no += bblks + hblks;
3595 }
3596 } else {
3597 /*
3598 * Perform recovery around the end of the physical log.
3599 * When the head is not on the same cycle number as the tail,
3600 * we can't do a sequential recovery as above.
3601 */
3602 blk_no = tail_blk;
3603 while (blk_no < log->l_logBBsize) {
3604 /*
3605 * Check for header wrapping around physical end-of-log
3606 */
fc5bc4c8 3607 offset = XFS_BUF_PTR(hbp);
1da177e4
LT
3608 split_hblks = 0;
3609 wrapped_hblks = 0;
3610 if (blk_no + hblks <= log->l_logBBsize) {
3611 /* Read header in one read */
076e6acb
CH
3612 error = xlog_bread(log, blk_no, hblks, hbp,
3613 &offset);
1da177e4
LT
3614 if (error)
3615 goto bread_err2;
1da177e4
LT
3616 } else {
3617 /* This LR is split across physical log end */
3618 if (blk_no != log->l_logBBsize) {
3619 /* some data before physical log end */
3620 ASSERT(blk_no <= INT_MAX);
3621 split_hblks = log->l_logBBsize - (int)blk_no;
3622 ASSERT(split_hblks > 0);
076e6acb
CH
3623 error = xlog_bread(log, blk_no,
3624 split_hblks, hbp,
3625 &offset);
3626 if (error)
1da177e4 3627 goto bread_err2;
1da177e4 3628 }
076e6acb 3629
1da177e4
LT
3630 /*
3631 * Note: this black magic still works with
3632 * large sector sizes (non-512) only because:
3633 * - we increased the buffer size originally
3634 * by 1 sector giving us enough extra space
3635 * for the second read;
3636 * - the log start is guaranteed to be sector
3637 * aligned;
3638 * - we read the log end (LR header start)
3639 * _first_, then the log start (LR header end)
3640 * - order is important.
3641 */
234f56ac 3642 wrapped_hblks = hblks - split_hblks;
234f56ac 3643 error = XFS_BUF_SET_PTR(hbp,
fc5bc4c8 3644 offset + BBTOB(split_hblks),
1da177e4 3645 BBTOB(hblks - split_hblks));
076e6acb
CH
3646 if (error)
3647 goto bread_err2;
3648
3649 error = xlog_bread_noalign(log, 0,
3650 wrapped_hblks, hbp);
3651 if (error)
3652 goto bread_err2;
3653
fc5bc4c8 3654 error = XFS_BUF_SET_PTR(hbp, offset,
234f56ac 3655 BBTOB(hblks));
1da177e4
LT
3656 if (error)
3657 goto bread_err2;
1da177e4
LT
3658 }
3659 rhead = (xlog_rec_header_t *)offset;
3660 error = xlog_valid_rec_header(log, rhead,
3661 split_hblks ? blk_no : 0);
3662 if (error)
3663 goto bread_err2;
3664
b53e675d 3665 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
1da177e4
LT
3666 blk_no += hblks;
3667
3668 /* Read in data for log record */
3669 if (blk_no + bblks <= log->l_logBBsize) {
076e6acb
CH
3670 error = xlog_bread(log, blk_no, bblks, dbp,
3671 &offset);
1da177e4
LT
3672 if (error)
3673 goto bread_err2;
1da177e4
LT
3674 } else {
3675 /* This log record is split across the
3676 * physical end of log */
fc5bc4c8 3677 offset = XFS_BUF_PTR(dbp);
1da177e4
LT
3678 split_bblks = 0;
3679 if (blk_no != log->l_logBBsize) {
3680 /* some data is before the physical
3681 * end of log */
3682 ASSERT(!wrapped_hblks);
3683 ASSERT(blk_no <= INT_MAX);
3684 split_bblks =
3685 log->l_logBBsize - (int)blk_no;
3686 ASSERT(split_bblks > 0);
076e6acb
CH
3687 error = xlog_bread(log, blk_no,
3688 split_bblks, dbp,
3689 &offset);
3690 if (error)
1da177e4 3691 goto bread_err2;
1da177e4 3692 }
076e6acb 3693
1da177e4
LT
3694 /*
3695 * Note: this black magic still works with
3696 * large sector sizes (non-512) only because:
3697 * - we increased the buffer size originally
3698 * by 1 sector giving us enough extra space
3699 * for the second read;
3700 * - the log start is guaranteed to be sector
3701 * aligned;
3702 * - we read the log end (LR header start)
3703 * _first_, then the log start (LR header end)
3704 * - order is important.
3705 */
234f56ac 3706 error = XFS_BUF_SET_PTR(dbp,
fc5bc4c8 3707 offset + BBTOB(split_bblks),
1da177e4 3708 BBTOB(bblks - split_bblks));
234f56ac 3709 if (error)
1da177e4 3710 goto bread_err2;
076e6acb
CH
3711
3712 error = xlog_bread_noalign(log, wrapped_hblks,
3713 bblks - split_bblks,
3714 dbp);
3715 if (error)
3716 goto bread_err2;
3717
fc5bc4c8 3718 error = XFS_BUF_SET_PTR(dbp, offset, h_size);
076e6acb
CH
3719 if (error)
3720 goto bread_err2;
1da177e4
LT
3721 }
3722 xlog_unpack_data(rhead, offset, log);
3723 if ((error = xlog_recover_process_data(log, rhash,
3724 rhead, offset, pass)))
3725 goto bread_err2;
3726 blk_no += bblks;
3727 }
3728
3729 ASSERT(blk_no >= log->l_logBBsize);
3730 blk_no -= log->l_logBBsize;
3731
3732 /* read first part of physical log */
3733 while (blk_no < head_blk) {
076e6acb
CH
3734 error = xlog_bread(log, blk_no, hblks, hbp, &offset);
3735 if (error)
1da177e4 3736 goto bread_err2;
076e6acb 3737
1da177e4
LT
3738 rhead = (xlog_rec_header_t *)offset;
3739 error = xlog_valid_rec_header(log, rhead, blk_no);
3740 if (error)
3741 goto bread_err2;
076e6acb 3742
b53e675d 3743 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
076e6acb
CH
3744 error = xlog_bread(log, blk_no+hblks, bblks, dbp,
3745 &offset);
3746 if (error)
1da177e4 3747 goto bread_err2;
076e6acb 3748
1da177e4
LT
3749 xlog_unpack_data(rhead, offset, log);
3750 if ((error = xlog_recover_process_data(log, rhash,
3751 rhead, offset, pass)))
3752 goto bread_err2;
3753 blk_no += bblks + hblks;
3754 }
3755 }
3756
3757 bread_err2:
3758 xlog_put_bp(dbp);
3759 bread_err1:
3760 xlog_put_bp(hbp);
3761 return error;
3762}
3763
3764/*
3765 * Do the recovery of the log. We actually do this in two phases.
3766 * The two passes are necessary in order to implement the function
3767 * of cancelling a record written into the log. The first pass
3768 * determines those things which have been cancelled, and the
3769 * second pass replays log items normally except for those which
3770 * have been cancelled. The handling of the replay and cancellations
3771 * takes place in the log item type specific routines.
3772 *
3773 * The table of items which have cancel records in the log is allocated
3774 * and freed at this level, since only here do we know when all of
3775 * the log recovery has been completed.
3776 */
3777STATIC int
3778xlog_do_log_recovery(
3779 xlog_t *log,
3780 xfs_daddr_t head_blk,
3781 xfs_daddr_t tail_blk)
3782{
3783 int error;
3784
3785 ASSERT(head_blk != tail_blk);
3786
3787 /*
3788 * First do a pass to find all of the cancelled buf log items.
3789 * Store them in the buf_cancel_table for use in the second pass.
3790 */
3791 log->l_buf_cancel_table =
3792 (xfs_buf_cancel_t **)kmem_zalloc(XLOG_BC_TABLE_SIZE *
3793 sizeof(xfs_buf_cancel_t*),
3794 KM_SLEEP);
3795 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3796 XLOG_RECOVER_PASS1);
3797 if (error != 0) {
f0e2d93c 3798 kmem_free(log->l_buf_cancel_table);
1da177e4
LT
3799 log->l_buf_cancel_table = NULL;
3800 return error;
3801 }
3802 /*
3803 * Then do a second pass to actually recover the items in the log.
3804 * When it is complete free the table of buf cancel items.
3805 */
3806 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3807 XLOG_RECOVER_PASS2);
3808#ifdef DEBUG
6d192a9b 3809 if (!error) {
1da177e4
LT
3810 int i;
3811
3812 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
3813 ASSERT(log->l_buf_cancel_table[i] == NULL);
3814 }
3815#endif /* DEBUG */
3816
f0e2d93c 3817 kmem_free(log->l_buf_cancel_table);
1da177e4
LT
3818 log->l_buf_cancel_table = NULL;
3819
3820 return error;
3821}
3822
3823/*
3824 * Do the actual recovery
3825 */
3826STATIC int
3827xlog_do_recover(
3828 xlog_t *log,
3829 xfs_daddr_t head_blk,
3830 xfs_daddr_t tail_blk)
3831{
3832 int error;
3833 xfs_buf_t *bp;
3834 xfs_sb_t *sbp;
3835
3836 /*
3837 * First replay the images in the log.
3838 */
3839 error = xlog_do_log_recovery(log, head_blk, tail_blk);
3840 if (error) {
3841 return error;
3842 }
3843
3844 XFS_bflush(log->l_mp->m_ddev_targp);
3845
3846 /*
3847 * If IO errors happened during recovery, bail out.
3848 */
3849 if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
3850 return (EIO);
3851 }
3852
3853 /*
3854 * We now update the tail_lsn since much of the recovery has completed
3855 * and there may be space available to use. If there were no extent
3856 * or iunlinks, we can free up the entire log and set the tail_lsn to
3857 * be the last_sync_lsn. This was set in xlog_find_tail to be the
3858 * lsn of the last known good LR on disk. If there are extent frees
3859 * or iunlinks they will have some entries in the AIL; so we look at
3860 * the AIL to determine how to set the tail_lsn.
3861 */
3862 xlog_assign_tail_lsn(log->l_mp);
3863
3864 /*
3865 * Now that we've finished replaying all buffer and inode
3866 * updates, re-read in the superblock.
3867 */
3868 bp = xfs_getsb(log->l_mp, 0);
3869 XFS_BUF_UNDONE(bp);
bebf963f
LM
3870 ASSERT(!(XFS_BUF_ISWRITE(bp)));
3871 ASSERT(!(XFS_BUF_ISDELAYWRITE(bp)));
1da177e4 3872 XFS_BUF_READ(bp);
bebf963f 3873 XFS_BUF_UNASYNC(bp);
1da177e4 3874 xfsbdstrat(log->l_mp, bp);
d64e31a2
DC
3875 error = xfs_iowait(bp);
3876 if (error) {
1da177e4
LT
3877 xfs_ioerror_alert("xlog_do_recover",
3878 log->l_mp, bp, XFS_BUF_ADDR(bp));
3879 ASSERT(0);
3880 xfs_buf_relse(bp);
3881 return error;
3882 }
3883
3884 /* Convert superblock from on-disk format */
3885 sbp = &log->l_mp->m_sb;
2bdf7cd0 3886 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
1da177e4 3887 ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
62118709 3888 ASSERT(xfs_sb_good_version(sbp));
1da177e4
LT
3889 xfs_buf_relse(bp);
3890
5478eead
LM
3891 /* We've re-read the superblock so re-initialize per-cpu counters */
3892 xfs_icsb_reinit_counters(log->l_mp);
3893
1da177e4
LT
3894 xlog_recover_check_summary(log);
3895
3896 /* Normal transactions can now occur */
3897 log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
3898 return 0;
3899}
3900
3901/*
3902 * Perform recovery and re-initialize some log variables in xlog_find_tail.
3903 *
3904 * Return error or zero.
3905 */
3906int
3907xlog_recover(
65be6054 3908 xlog_t *log)
1da177e4
LT
3909{
3910 xfs_daddr_t head_blk, tail_blk;
3911 int error;
3912
3913 /* find the tail of the log */
65be6054 3914 if ((error = xlog_find_tail(log, &head_blk, &tail_blk)))
1da177e4
LT
3915 return error;
3916
3917 if (tail_blk != head_blk) {
3918 /* There used to be a comment here:
3919 *
3920 * disallow recovery on read-only mounts. note -- mount
3921 * checks for ENOSPC and turns it into an intelligent
3922 * error message.
3923 * ...but this is no longer true. Now, unless you specify
3924 * NORECOVERY (in which case this function would never be
3925 * called), we just go ahead and recover. We do this all
3926 * under the vfs layer, so we can get away with it unless
3927 * the device itself is read-only, in which case we fail.
3928 */
3a02ee18 3929 if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
1da177e4
LT
3930 return error;
3931 }
3932
3933 cmn_err(CE_NOTE,
fc1f8c1c
NS
3934 "Starting XFS recovery on filesystem: %s (logdev: %s)",
3935 log->l_mp->m_fsname, log->l_mp->m_logname ?
3936 log->l_mp->m_logname : "internal");
1da177e4
LT
3937
3938 error = xlog_do_recover(log, head_blk, tail_blk);
3939 log->l_flags |= XLOG_RECOVERY_NEEDED;
3940 }
3941 return error;
3942}
3943
3944/*
3945 * In the first part of recovery we replay inodes and buffers and build
3946 * up the list of extent free items which need to be processed. Here
3947 * we process the extent free items and clean up the on disk unlinked
3948 * inode lists. This is separated from the first part of recovery so
3949 * that the root and real-time bitmap inodes can be read in from disk in
3950 * between the two stages. This is necessary so that we can free space
3951 * in the real-time portion of the file system.
3952 */
3953int
3954xlog_recover_finish(
4249023a 3955 xlog_t *log)
1da177e4
LT
3956{
3957 /*
3958 * Now we're ready to do the transactions needed for the
3959 * rest of recovery. Start with completing all the extent
3960 * free intent records and then process the unlinked inode
3961 * lists. At this point, we essentially run in normal mode
3962 * except that we're still performing recovery actions
3963 * rather than accepting new requests.
3964 */
3965 if (log->l_flags & XLOG_RECOVERY_NEEDED) {
3c1e2bbe
DC
3966 int error;
3967 error = xlog_recover_process_efis(log);
3968 if (error) {
3969 cmn_err(CE_ALERT,
3970 "Failed to recover EFIs on filesystem: %s",
3971 log->l_mp->m_fsname);
3972 return error;
3973 }
1da177e4
LT
3974 /*
3975 * Sync the log to get all the EFIs out of the AIL.
3976 * This isn't absolutely necessary, but it helps in
3977 * case the unlink transactions would have problems
3978 * pushing the EFIs out of the way.
3979 */
a14a348b 3980 xfs_log_force(log->l_mp, XFS_LOG_SYNC);
1da177e4 3981
4249023a 3982 xlog_recover_process_iunlinks(log);
1da177e4
LT
3983
3984 xlog_recover_check_summary(log);
3985
3986 cmn_err(CE_NOTE,
fc1f8c1c
NS
3987 "Ending XFS recovery on filesystem: %s (logdev: %s)",
3988 log->l_mp->m_fsname, log->l_mp->m_logname ?
3989 log->l_mp->m_logname : "internal");
1da177e4
LT
3990 log->l_flags &= ~XLOG_RECOVERY_NEEDED;
3991 } else {
3992 cmn_err(CE_DEBUG,
b6574520 3993 "!Ending clean XFS mount for filesystem: %s\n",
1da177e4
LT
3994 log->l_mp->m_fsname);
3995 }
3996 return 0;
3997}
3998
3999
4000#if defined(DEBUG)
4001/*
4002 * Read all of the agf and agi counters and check that they
4003 * are consistent with the superblock counters.
4004 */
4005void
4006xlog_recover_check_summary(
4007 xlog_t *log)
4008{
4009 xfs_mount_t *mp;
4010 xfs_agf_t *agfp;
1da177e4
LT
4011 xfs_buf_t *agfbp;
4012 xfs_buf_t *agibp;
1da177e4
LT
4013 xfs_buf_t *sbbp;
4014#ifdef XFS_LOUD_RECOVERY
4015 xfs_sb_t *sbp;
4016#endif
4017 xfs_agnumber_t agno;
4018 __uint64_t freeblks;
4019 __uint64_t itotal;
4020 __uint64_t ifree;
5e1be0fb 4021 int error;
1da177e4
LT
4022
4023 mp = log->l_mp;
4024
4025 freeblks = 0LL;
4026 itotal = 0LL;
4027 ifree = 0LL;
4028 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
4805621a
CH
4029 error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
4030 if (error) {
4031 xfs_fs_cmn_err(CE_ALERT, mp,
4032 "xlog_recover_check_summary(agf)"
4033 "agf read failed agno %d error %d",
4034 agno, error);
4035 } else {
4036 agfp = XFS_BUF_TO_AGF(agfbp);
4037 freeblks += be32_to_cpu(agfp->agf_freeblks) +
4038 be32_to_cpu(agfp->agf_flcount);
4039 xfs_buf_relse(agfbp);
1da177e4 4040 }
1da177e4 4041
5e1be0fb
CH
4042 error = xfs_read_agi(mp, NULL, agno, &agibp);
4043 if (!error) {
4044 struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp);
16259e7d 4045
5e1be0fb
CH
4046 itotal += be32_to_cpu(agi->agi_count);
4047 ifree += be32_to_cpu(agi->agi_freecount);
4048 xfs_buf_relse(agibp);
4049 }
1da177e4
LT
4050 }
4051
4052 sbbp = xfs_getsb(mp, 0);
4053#ifdef XFS_LOUD_RECOVERY
4054 sbp = &mp->m_sb;
2bdf7cd0 4055 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(sbbp));
1da177e4
LT
4056 cmn_err(CE_NOTE,
4057 "xlog_recover_check_summary: sb_icount %Lu itotal %Lu",
4058 sbp->sb_icount, itotal);
4059 cmn_err(CE_NOTE,
4060 "xlog_recover_check_summary: sb_ifree %Lu itotal %Lu",
4061 sbp->sb_ifree, ifree);
4062 cmn_err(CE_NOTE,
4063 "xlog_recover_check_summary: sb_fdblocks %Lu freeblks %Lu",
4064 sbp->sb_fdblocks, freeblks);
4065#if 0
4066 /*
4067 * This is turned off until I account for the allocation
4068 * btree blocks which live in free space.
4069 */
4070 ASSERT(sbp->sb_icount == itotal);
4071 ASSERT(sbp->sb_ifree == ifree);
4072 ASSERT(sbp->sb_fdblocks == freeblks);
4073#endif
4074#endif
4075 xfs_buf_relse(sbbp);
4076}
4077#endif /* DEBUG */