xfs: kill b_file_offset
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / xfs / xfs_log_recover.c
CommitLineData
1da177e4 1/*
87c199c2 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7b718769 3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
a844f451 19#include "xfs_fs.h"
1da177e4 20#include "xfs_types.h"
a844f451 21#include "xfs_bit.h"
1da177e4 22#include "xfs_log.h"
a844f451 23#include "xfs_inum.h"
1da177e4 24#include "xfs_trans.h"
a844f451
NS
25#include "xfs_sb.h"
26#include "xfs_ag.h"
1da177e4
LT
27#include "xfs_mount.h"
28#include "xfs_error.h"
29#include "xfs_bmap_btree.h"
a844f451
NS
30#include "xfs_alloc_btree.h"
31#include "xfs_ialloc_btree.h"
1da177e4 32#include "xfs_dinode.h"
1da177e4 33#include "xfs_inode.h"
a844f451 34#include "xfs_inode_item.h"
a844f451 35#include "xfs_alloc.h"
1da177e4
LT
36#include "xfs_ialloc.h"
37#include "xfs_log_priv.h"
38#include "xfs_buf_item.h"
1da177e4
LT
39#include "xfs_log_recover.h"
40#include "xfs_extfree_item.h"
41#include "xfs_trans_priv.h"
1da177e4
LT
42#include "xfs_quota.h"
43#include "xfs_rw.h"
43355099 44#include "xfs_utils.h"
0b1b213f 45#include "xfs_trace.h"
1da177e4
LT
46
47STATIC int xlog_find_zeroed(xlog_t *, xfs_daddr_t *);
48STATIC int xlog_clear_stale_blocks(xlog_t *, xfs_lsn_t);
1da177e4
LT
49#if defined(DEBUG)
50STATIC void xlog_recover_check_summary(xlog_t *);
1da177e4
LT
51#else
52#define xlog_recover_check_summary(log)
1da177e4
LT
53#endif
54
d5689eaa
CH
55/*
56 * This structure is used during recovery to record the buf log items which
57 * have been canceled and should not be replayed.
58 */
59struct xfs_buf_cancel {
60 xfs_daddr_t bc_blkno;
61 uint bc_len;
62 int bc_refcount;
63 struct list_head bc_list;
64};
65
1da177e4
LT
66/*
67 * Sector aligned buffer routines for buffer create/read/write/access
68 */
69
ff30a622
AE
70/*
71 * Verify the given count of basic blocks is valid number of blocks
72 * to specify for an operation involving the given XFS log buffer.
73 * Returns nonzero if the count is valid, 0 otherwise.
74 */
75
76static inline int
77xlog_buf_bbcount_valid(
78 xlog_t *log,
79 int bbcount)
80{
81 return bbcount > 0 && bbcount <= log->l_logBBsize;
82}
83
36adecff
AE
84/*
85 * Allocate a buffer to hold log data. The buffer needs to be able
86 * to map to a range of nbblks basic blocks at any valid (basic
87 * block) offset within the log.
88 */
5d77c0dc 89STATIC xfs_buf_t *
1da177e4
LT
90xlog_get_bp(
91 xlog_t *log,
3228149c 92 int nbblks)
1da177e4 93{
c8da0faf
CH
94 struct xfs_buf *bp;
95
ff30a622 96 if (!xlog_buf_bbcount_valid(log, nbblks)) {
a0fa2b67 97 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
ff30a622
AE
98 nbblks);
99 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
3228149c
DC
100 return NULL;
101 }
1da177e4 102
36adecff
AE
103 /*
104 * We do log I/O in units of log sectors (a power-of-2
105 * multiple of the basic block size), so we round up the
25985edc 106 * requested size to accommodate the basic blocks required
36adecff
AE
107 * for complete log sectors.
108 *
109 * In addition, the buffer may be used for a non-sector-
110 * aligned block offset, in which case an I/O of the
111 * requested size could extend beyond the end of the
112 * buffer. If the requested size is only 1 basic block it
113 * will never straddle a sector boundary, so this won't be
114 * an issue. Nor will this be a problem if the log I/O is
115 * done in basic blocks (sector size 1). But otherwise we
116 * extend the buffer by one extra log sector to ensure
25985edc 117 * there's space to accommodate this possibility.
36adecff 118 */
69ce58f0
AE
119 if (nbblks > 1 && log->l_sectBBsize > 1)
120 nbblks += log->l_sectBBsize;
121 nbblks = round_up(nbblks, log->l_sectBBsize);
36adecff 122
e70b73f8 123 bp = xfs_buf_get_uncached(log->l_mp->m_logdev_targp, nbblks, 0);
c8da0faf
CH
124 if (bp)
125 xfs_buf_unlock(bp);
126 return bp;
1da177e4
LT
127}
128
5d77c0dc 129STATIC void
1da177e4
LT
130xlog_put_bp(
131 xfs_buf_t *bp)
132{
133 xfs_buf_free(bp);
134}
135
48389ef1
AE
136/*
137 * Return the address of the start of the given block number's data
138 * in a log buffer. The buffer covers a log sector-aligned region.
139 */
076e6acb
CH
140STATIC xfs_caddr_t
141xlog_align(
142 xlog_t *log,
143 xfs_daddr_t blk_no,
144 int nbblks,
145 xfs_buf_t *bp)
146{
fdc07f44 147 xfs_daddr_t offset = blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1);
076e6acb 148
fdc07f44 149 ASSERT(BBTOB(offset + nbblks) <= XFS_BUF_SIZE(bp));
62926044 150 return bp->b_addr + BBTOB(offset);
076e6acb
CH
151}
152
1da177e4
LT
153
154/*
155 * nbblks should be uint, but oh well. Just want to catch that 32-bit length.
156 */
076e6acb
CH
157STATIC int
158xlog_bread_noalign(
1da177e4
LT
159 xlog_t *log,
160 xfs_daddr_t blk_no,
161 int nbblks,
162 xfs_buf_t *bp)
163{
164 int error;
165
ff30a622 166 if (!xlog_buf_bbcount_valid(log, nbblks)) {
a0fa2b67 167 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
ff30a622
AE
168 nbblks);
169 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
3228149c
DC
170 return EFSCORRUPTED;
171 }
172
69ce58f0
AE
173 blk_no = round_down(blk_no, log->l_sectBBsize);
174 nbblks = round_up(nbblks, log->l_sectBBsize);
1da177e4
LT
175
176 ASSERT(nbblks > 0);
177 ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
1da177e4
LT
178
179 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
180 XFS_BUF_READ(bp);
1da177e4 181 XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
0e95f19a 182 bp->b_error = 0;
1da177e4
LT
183
184 xfsbdstrat(log->l_mp, bp);
1a1a3e97 185 error = xfs_buf_iowait(bp);
d64e31a2 186 if (error)
901796af 187 xfs_buf_ioerror_alert(bp, __func__);
1da177e4
LT
188 return error;
189}
190
076e6acb
CH
191STATIC int
192xlog_bread(
193 xlog_t *log,
194 xfs_daddr_t blk_no,
195 int nbblks,
196 xfs_buf_t *bp,
197 xfs_caddr_t *offset)
198{
199 int error;
200
201 error = xlog_bread_noalign(log, blk_no, nbblks, bp);
202 if (error)
203 return error;
204
205 *offset = xlog_align(log, blk_no, nbblks, bp);
206 return 0;
207}
208
44396476
DC
209/*
210 * Read at an offset into the buffer. Returns with the buffer in it's original
211 * state regardless of the result of the read.
212 */
213STATIC int
214xlog_bread_offset(
215 xlog_t *log,
216 xfs_daddr_t blk_no, /* block to read from */
217 int nbblks, /* blocks to read */
218 xfs_buf_t *bp,
219 xfs_caddr_t offset)
220{
62926044 221 xfs_caddr_t orig_offset = bp->b_addr;
44396476
DC
222 int orig_len = bp->b_buffer_length;
223 int error, error2;
224
02fe03d9 225 error = xfs_buf_associate_memory(bp, offset, BBTOB(nbblks));
44396476
DC
226 if (error)
227 return error;
228
229 error = xlog_bread_noalign(log, blk_no, nbblks, bp);
230
231 /* must reset buffer pointer even on error */
02fe03d9 232 error2 = xfs_buf_associate_memory(bp, orig_offset, orig_len);
44396476
DC
233 if (error)
234 return error;
235 return error2;
236}
237
1da177e4
LT
238/*
239 * Write out the buffer at the given block for the given number of blocks.
240 * The buffer is kept locked across the write and is returned locked.
241 * This can only be used for synchronous log writes.
242 */
ba0f32d4 243STATIC int
1da177e4
LT
244xlog_bwrite(
245 xlog_t *log,
246 xfs_daddr_t blk_no,
247 int nbblks,
248 xfs_buf_t *bp)
249{
250 int error;
251
ff30a622 252 if (!xlog_buf_bbcount_valid(log, nbblks)) {
a0fa2b67 253 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
ff30a622
AE
254 nbblks);
255 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
3228149c
DC
256 return EFSCORRUPTED;
257 }
258
69ce58f0
AE
259 blk_no = round_down(blk_no, log->l_sectBBsize);
260 nbblks = round_up(nbblks, log->l_sectBBsize);
1da177e4
LT
261
262 ASSERT(nbblks > 0);
263 ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
264
265 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
266 XFS_BUF_ZEROFLAGS(bp);
72790aa1 267 xfs_buf_hold(bp);
0c842ad4 268 xfs_buf_lock(bp);
1da177e4 269 XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
0e95f19a 270 bp->b_error = 0;
1da177e4 271
c2b006c1 272 error = xfs_bwrite(bp);
901796af
CH
273 if (error)
274 xfs_buf_ioerror_alert(bp, __func__);
c2b006c1 275 xfs_buf_relse(bp);
1da177e4
LT
276 return error;
277}
278
1da177e4
LT
279#ifdef DEBUG
280/*
281 * dump debug superblock and log record information
282 */
283STATIC void
284xlog_header_check_dump(
285 xfs_mount_t *mp,
286 xlog_rec_header_t *head)
287{
a0fa2b67 288 xfs_debug(mp, "%s: SB : uuid = %pU, fmt = %d\n",
03daa57c 289 __func__, &mp->m_sb.sb_uuid, XLOG_FMT);
a0fa2b67 290 xfs_debug(mp, " log : uuid = %pU, fmt = %d\n",
03daa57c 291 &head->h_fs_uuid, be32_to_cpu(head->h_fmt));
1da177e4
LT
292}
293#else
294#define xlog_header_check_dump(mp, head)
295#endif
296
297/*
298 * check log record header for recovery
299 */
300STATIC int
301xlog_header_check_recover(
302 xfs_mount_t *mp,
303 xlog_rec_header_t *head)
304{
69ef921b 305 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
1da177e4
LT
306
307 /*
308 * IRIX doesn't write the h_fmt field and leaves it zeroed
309 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
310 * a dirty log created in IRIX.
311 */
69ef921b 312 if (unlikely(head->h_fmt != cpu_to_be32(XLOG_FMT))) {
a0fa2b67
DC
313 xfs_warn(mp,
314 "dirty log written in incompatible format - can't recover");
1da177e4
LT
315 xlog_header_check_dump(mp, head);
316 XFS_ERROR_REPORT("xlog_header_check_recover(1)",
317 XFS_ERRLEVEL_HIGH, mp);
318 return XFS_ERROR(EFSCORRUPTED);
319 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
a0fa2b67
DC
320 xfs_warn(mp,
321 "dirty log entry has mismatched uuid - can't recover");
1da177e4
LT
322 xlog_header_check_dump(mp, head);
323 XFS_ERROR_REPORT("xlog_header_check_recover(2)",
324 XFS_ERRLEVEL_HIGH, mp);
325 return XFS_ERROR(EFSCORRUPTED);
326 }
327 return 0;
328}
329
330/*
331 * read the head block of the log and check the header
332 */
333STATIC int
334xlog_header_check_mount(
335 xfs_mount_t *mp,
336 xlog_rec_header_t *head)
337{
69ef921b 338 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
1da177e4
LT
339
340 if (uuid_is_nil(&head->h_fs_uuid)) {
341 /*
342 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
343 * h_fs_uuid is nil, we assume this log was last mounted
344 * by IRIX and continue.
345 */
a0fa2b67 346 xfs_warn(mp, "nil uuid in log - IRIX style log");
1da177e4 347 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
a0fa2b67 348 xfs_warn(mp, "log has mismatched uuid - can't recover");
1da177e4
LT
349 xlog_header_check_dump(mp, head);
350 XFS_ERROR_REPORT("xlog_header_check_mount",
351 XFS_ERRLEVEL_HIGH, mp);
352 return XFS_ERROR(EFSCORRUPTED);
353 }
354 return 0;
355}
356
357STATIC void
358xlog_recover_iodone(
359 struct xfs_buf *bp)
360{
5a52c2a5 361 if (bp->b_error) {
1da177e4
LT
362 /*
363 * We're not going to bother about retrying
364 * this during recovery. One strike!
365 */
901796af 366 xfs_buf_ioerror_alert(bp, __func__);
ebad861b
DC
367 xfs_force_shutdown(bp->b_target->bt_mount,
368 SHUTDOWN_META_IO_ERROR);
1da177e4 369 }
cb669ca5 370 bp->b_iodone = NULL;
1a1a3e97 371 xfs_buf_ioend(bp, 0);
1da177e4
LT
372}
373
374/*
375 * This routine finds (to an approximation) the first block in the physical
376 * log which contains the given cycle. It uses a binary search algorithm.
377 * Note that the algorithm can not be perfect because the disk will not
378 * necessarily be perfect.
379 */
a8272ce0 380STATIC int
1da177e4
LT
381xlog_find_cycle_start(
382 xlog_t *log,
383 xfs_buf_t *bp,
384 xfs_daddr_t first_blk,
385 xfs_daddr_t *last_blk,
386 uint cycle)
387{
388 xfs_caddr_t offset;
389 xfs_daddr_t mid_blk;
e3bb2e30 390 xfs_daddr_t end_blk;
1da177e4
LT
391 uint mid_cycle;
392 int error;
393
e3bb2e30
AE
394 end_blk = *last_blk;
395 mid_blk = BLK_AVG(first_blk, end_blk);
396 while (mid_blk != first_blk && mid_blk != end_blk) {
076e6acb
CH
397 error = xlog_bread(log, mid_blk, 1, bp, &offset);
398 if (error)
1da177e4 399 return error;
03bea6fe 400 mid_cycle = xlog_get_cycle(offset);
e3bb2e30
AE
401 if (mid_cycle == cycle)
402 end_blk = mid_blk; /* last_half_cycle == mid_cycle */
403 else
404 first_blk = mid_blk; /* first_half_cycle == mid_cycle */
405 mid_blk = BLK_AVG(first_blk, end_blk);
1da177e4 406 }
e3bb2e30
AE
407 ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
408 (mid_blk == end_blk && mid_blk-1 == first_blk));
409
410 *last_blk = end_blk;
1da177e4
LT
411
412 return 0;
413}
414
415/*
3f943d85
AE
416 * Check that a range of blocks does not contain stop_on_cycle_no.
417 * Fill in *new_blk with the block offset where such a block is
418 * found, or with -1 (an invalid block number) if there is no such
419 * block in the range. The scan needs to occur from front to back
420 * and the pointer into the region must be updated since a later
421 * routine will need to perform another test.
1da177e4
LT
422 */
423STATIC int
424xlog_find_verify_cycle(
425 xlog_t *log,
426 xfs_daddr_t start_blk,
427 int nbblks,
428 uint stop_on_cycle_no,
429 xfs_daddr_t *new_blk)
430{
431 xfs_daddr_t i, j;
432 uint cycle;
433 xfs_buf_t *bp;
434 xfs_daddr_t bufblks;
435 xfs_caddr_t buf = NULL;
436 int error = 0;
437
6881a229
AE
438 /*
439 * Greedily allocate a buffer big enough to handle the full
440 * range of basic blocks we'll be examining. If that fails,
441 * try a smaller size. We need to be able to read at least
442 * a log sector, or we're out of luck.
443 */
1da177e4 444 bufblks = 1 << ffs(nbblks);
81158e0c
DC
445 while (bufblks > log->l_logBBsize)
446 bufblks >>= 1;
1da177e4 447 while (!(bp = xlog_get_bp(log, bufblks))) {
1da177e4 448 bufblks >>= 1;
69ce58f0 449 if (bufblks < log->l_sectBBsize)
1da177e4
LT
450 return ENOMEM;
451 }
452
453 for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
454 int bcount;
455
456 bcount = min(bufblks, (start_blk + nbblks - i));
457
076e6acb
CH
458 error = xlog_bread(log, i, bcount, bp, &buf);
459 if (error)
1da177e4
LT
460 goto out;
461
1da177e4 462 for (j = 0; j < bcount; j++) {
03bea6fe 463 cycle = xlog_get_cycle(buf);
1da177e4
LT
464 if (cycle == stop_on_cycle_no) {
465 *new_blk = i+j;
466 goto out;
467 }
468
469 buf += BBSIZE;
470 }
471 }
472
473 *new_blk = -1;
474
475out:
476 xlog_put_bp(bp);
477 return error;
478}
479
480/*
481 * Potentially backup over partial log record write.
482 *
483 * In the typical case, last_blk is the number of the block directly after
484 * a good log record. Therefore, we subtract one to get the block number
485 * of the last block in the given buffer. extra_bblks contains the number
486 * of blocks we would have read on a previous read. This happens when the
487 * last log record is split over the end of the physical log.
488 *
489 * extra_bblks is the number of blocks potentially verified on a previous
490 * call to this routine.
491 */
492STATIC int
493xlog_find_verify_log_record(
494 xlog_t *log,
495 xfs_daddr_t start_blk,
496 xfs_daddr_t *last_blk,
497 int extra_bblks)
498{
499 xfs_daddr_t i;
500 xfs_buf_t *bp;
501 xfs_caddr_t offset = NULL;
502 xlog_rec_header_t *head = NULL;
503 int error = 0;
504 int smallmem = 0;
505 int num_blks = *last_blk - start_blk;
506 int xhdrs;
507
508 ASSERT(start_blk != 0 || *last_blk != start_blk);
509
510 if (!(bp = xlog_get_bp(log, num_blks))) {
511 if (!(bp = xlog_get_bp(log, 1)))
512 return ENOMEM;
513 smallmem = 1;
514 } else {
076e6acb
CH
515 error = xlog_bread(log, start_blk, num_blks, bp, &offset);
516 if (error)
1da177e4 517 goto out;
1da177e4
LT
518 offset += ((num_blks - 1) << BBSHIFT);
519 }
520
521 for (i = (*last_blk) - 1; i >= 0; i--) {
522 if (i < start_blk) {
523 /* valid log record not found */
a0fa2b67
DC
524 xfs_warn(log->l_mp,
525 "Log inconsistent (didn't find previous header)");
1da177e4
LT
526 ASSERT(0);
527 error = XFS_ERROR(EIO);
528 goto out;
529 }
530
531 if (smallmem) {
076e6acb
CH
532 error = xlog_bread(log, i, 1, bp, &offset);
533 if (error)
1da177e4 534 goto out;
1da177e4
LT
535 }
536
537 head = (xlog_rec_header_t *)offset;
538
69ef921b 539 if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
1da177e4
LT
540 break;
541
542 if (!smallmem)
543 offset -= BBSIZE;
544 }
545
546 /*
547 * We hit the beginning of the physical log & still no header. Return
548 * to caller. If caller can handle a return of -1, then this routine
549 * will be called again for the end of the physical log.
550 */
551 if (i == -1) {
552 error = -1;
553 goto out;
554 }
555
556 /*
557 * We have the final block of the good log (the first block
558 * of the log record _before_ the head. So we check the uuid.
559 */
560 if ((error = xlog_header_check_mount(log->l_mp, head)))
561 goto out;
562
563 /*
564 * We may have found a log record header before we expected one.
565 * last_blk will be the 1st block # with a given cycle #. We may end
566 * up reading an entire log record. In this case, we don't want to
567 * reset last_blk. Only when last_blk points in the middle of a log
568 * record do we update last_blk.
569 */
62118709 570 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
b53e675d 571 uint h_size = be32_to_cpu(head->h_size);
1da177e4
LT
572
573 xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
574 if (h_size % XLOG_HEADER_CYCLE_SIZE)
575 xhdrs++;
576 } else {
577 xhdrs = 1;
578 }
579
b53e675d
CH
580 if (*last_blk - i + extra_bblks !=
581 BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
1da177e4
LT
582 *last_blk = i;
583
584out:
585 xlog_put_bp(bp);
586 return error;
587}
588
589/*
590 * Head is defined to be the point of the log where the next log write
591 * write could go. This means that incomplete LR writes at the end are
592 * eliminated when calculating the head. We aren't guaranteed that previous
593 * LR have complete transactions. We only know that a cycle number of
594 * current cycle number -1 won't be present in the log if we start writing
595 * from our current block number.
596 *
597 * last_blk contains the block number of the first block with a given
598 * cycle number.
599 *
600 * Return: zero if normal, non-zero if error.
601 */
ba0f32d4 602STATIC int
1da177e4
LT
603xlog_find_head(
604 xlog_t *log,
605 xfs_daddr_t *return_head_blk)
606{
607 xfs_buf_t *bp;
608 xfs_caddr_t offset;
609 xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk;
610 int num_scan_bblks;
611 uint first_half_cycle, last_half_cycle;
612 uint stop_on_cycle;
613 int error, log_bbnum = log->l_logBBsize;
614
615 /* Is the end of the log device zeroed? */
616 if ((error = xlog_find_zeroed(log, &first_blk)) == -1) {
617 *return_head_blk = first_blk;
618
619 /* Is the whole lot zeroed? */
620 if (!first_blk) {
621 /* Linux XFS shouldn't generate totally zeroed logs -
622 * mkfs etc write a dummy unmount record to a fresh
623 * log so we can store the uuid in there
624 */
a0fa2b67 625 xfs_warn(log->l_mp, "totally zeroed log");
1da177e4
LT
626 }
627
628 return 0;
629 } else if (error) {
a0fa2b67 630 xfs_warn(log->l_mp, "empty log check failed");
1da177e4
LT
631 return error;
632 }
633
634 first_blk = 0; /* get cycle # of 1st block */
635 bp = xlog_get_bp(log, 1);
636 if (!bp)
637 return ENOMEM;
076e6acb
CH
638
639 error = xlog_bread(log, 0, 1, bp, &offset);
640 if (error)
1da177e4 641 goto bp_err;
076e6acb 642
03bea6fe 643 first_half_cycle = xlog_get_cycle(offset);
1da177e4
LT
644
645 last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */
076e6acb
CH
646 error = xlog_bread(log, last_blk, 1, bp, &offset);
647 if (error)
1da177e4 648 goto bp_err;
076e6acb 649
03bea6fe 650 last_half_cycle = xlog_get_cycle(offset);
1da177e4
LT
651 ASSERT(last_half_cycle != 0);
652
653 /*
654 * If the 1st half cycle number is equal to the last half cycle number,
655 * then the entire log is stamped with the same cycle number. In this
656 * case, head_blk can't be set to zero (which makes sense). The below
657 * math doesn't work out properly with head_blk equal to zero. Instead,
658 * we set it to log_bbnum which is an invalid block number, but this
659 * value makes the math correct. If head_blk doesn't changed through
660 * all the tests below, *head_blk is set to zero at the very end rather
661 * than log_bbnum. In a sense, log_bbnum and zero are the same block
662 * in a circular file.
663 */
664 if (first_half_cycle == last_half_cycle) {
665 /*
666 * In this case we believe that the entire log should have
667 * cycle number last_half_cycle. We need to scan backwards
668 * from the end verifying that there are no holes still
669 * containing last_half_cycle - 1. If we find such a hole,
670 * then the start of that hole will be the new head. The
671 * simple case looks like
672 * x | x ... | x - 1 | x
673 * Another case that fits this picture would be
674 * x | x + 1 | x ... | x
c41564b5 675 * In this case the head really is somewhere at the end of the
1da177e4
LT
676 * log, as one of the latest writes at the beginning was
677 * incomplete.
678 * One more case is
679 * x | x + 1 | x ... | x - 1 | x
680 * This is really the combination of the above two cases, and
681 * the head has to end up at the start of the x-1 hole at the
682 * end of the log.
683 *
684 * In the 256k log case, we will read from the beginning to the
685 * end of the log and search for cycle numbers equal to x-1.
686 * We don't worry about the x+1 blocks that we encounter,
687 * because we know that they cannot be the head since the log
688 * started with x.
689 */
690 head_blk = log_bbnum;
691 stop_on_cycle = last_half_cycle - 1;
692 } else {
693 /*
694 * In this case we want to find the first block with cycle
695 * number matching last_half_cycle. We expect the log to be
696 * some variation on
3f943d85 697 * x + 1 ... | x ... | x
1da177e4
LT
698 * The first block with cycle number x (last_half_cycle) will
699 * be where the new head belongs. First we do a binary search
700 * for the first occurrence of last_half_cycle. The binary
701 * search may not be totally accurate, so then we scan back
702 * from there looking for occurrences of last_half_cycle before
703 * us. If that backwards scan wraps around the beginning of
704 * the log, then we look for occurrences of last_half_cycle - 1
705 * at the end of the log. The cases we're looking for look
706 * like
3f943d85
AE
707 * v binary search stopped here
708 * x + 1 ... | x | x + 1 | x ... | x
709 * ^ but we want to locate this spot
1da177e4 710 * or
1da177e4 711 * <---------> less than scan distance
3f943d85
AE
712 * x + 1 ... | x ... | x - 1 | x
713 * ^ we want to locate this spot
1da177e4
LT
714 */
715 stop_on_cycle = last_half_cycle;
716 if ((error = xlog_find_cycle_start(log, bp, first_blk,
717 &head_blk, last_half_cycle)))
718 goto bp_err;
719 }
720
721 /*
722 * Now validate the answer. Scan back some number of maximum possible
723 * blocks and make sure each one has the expected cycle number. The
724 * maximum is determined by the total possible amount of buffering
725 * in the in-core log. The following number can be made tighter if
726 * we actually look at the block size of the filesystem.
727 */
728 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
729 if (head_blk >= num_scan_bblks) {
730 /*
731 * We are guaranteed that the entire check can be performed
732 * in one buffer.
733 */
734 start_blk = head_blk - num_scan_bblks;
735 if ((error = xlog_find_verify_cycle(log,
736 start_blk, num_scan_bblks,
737 stop_on_cycle, &new_blk)))
738 goto bp_err;
739 if (new_blk != -1)
740 head_blk = new_blk;
741 } else { /* need to read 2 parts of log */
742 /*
743 * We are going to scan backwards in the log in two parts.
744 * First we scan the physical end of the log. In this part
745 * of the log, we are looking for blocks with cycle number
746 * last_half_cycle - 1.
747 * If we find one, then we know that the log starts there, as
748 * we've found a hole that didn't get written in going around
749 * the end of the physical log. The simple case for this is
750 * x + 1 ... | x ... | x - 1 | x
751 * <---------> less than scan distance
752 * If all of the blocks at the end of the log have cycle number
753 * last_half_cycle, then we check the blocks at the start of
754 * the log looking for occurrences of last_half_cycle. If we
755 * find one, then our current estimate for the location of the
756 * first occurrence of last_half_cycle is wrong and we move
757 * back to the hole we've found. This case looks like
758 * x + 1 ... | x | x + 1 | x ...
759 * ^ binary search stopped here
760 * Another case we need to handle that only occurs in 256k
761 * logs is
762 * x + 1 ... | x ... | x+1 | x ...
763 * ^ binary search stops here
764 * In a 256k log, the scan at the end of the log will see the
765 * x + 1 blocks. We need to skip past those since that is
766 * certainly not the head of the log. By searching for
767 * last_half_cycle-1 we accomplish that.
768 */
1da177e4 769 ASSERT(head_blk <= INT_MAX &&
3f943d85
AE
770 (xfs_daddr_t) num_scan_bblks >= head_blk);
771 start_blk = log_bbnum - (num_scan_bblks - head_blk);
1da177e4
LT
772 if ((error = xlog_find_verify_cycle(log, start_blk,
773 num_scan_bblks - (int)head_blk,
774 (stop_on_cycle - 1), &new_blk)))
775 goto bp_err;
776 if (new_blk != -1) {
777 head_blk = new_blk;
9db127ed 778 goto validate_head;
1da177e4
LT
779 }
780
781 /*
782 * Scan beginning of log now. The last part of the physical
783 * log is good. This scan needs to verify that it doesn't find
784 * the last_half_cycle.
785 */
786 start_blk = 0;
787 ASSERT(head_blk <= INT_MAX);
788 if ((error = xlog_find_verify_cycle(log,
789 start_blk, (int)head_blk,
790 stop_on_cycle, &new_blk)))
791 goto bp_err;
792 if (new_blk != -1)
793 head_blk = new_blk;
794 }
795
9db127ed 796validate_head:
1da177e4
LT
797 /*
798 * Now we need to make sure head_blk is not pointing to a block in
799 * the middle of a log record.
800 */
801 num_scan_bblks = XLOG_REC_SHIFT(log);
802 if (head_blk >= num_scan_bblks) {
803 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
804
805 /* start ptr at last block ptr before head_blk */
806 if ((error = xlog_find_verify_log_record(log, start_blk,
807 &head_blk, 0)) == -1) {
808 error = XFS_ERROR(EIO);
809 goto bp_err;
810 } else if (error)
811 goto bp_err;
812 } else {
813 start_blk = 0;
814 ASSERT(head_blk <= INT_MAX);
815 if ((error = xlog_find_verify_log_record(log, start_blk,
816 &head_blk, 0)) == -1) {
817 /* We hit the beginning of the log during our search */
3f943d85 818 start_blk = log_bbnum - (num_scan_bblks - head_blk);
1da177e4
LT
819 new_blk = log_bbnum;
820 ASSERT(start_blk <= INT_MAX &&
821 (xfs_daddr_t) log_bbnum-start_blk >= 0);
822 ASSERT(head_blk <= INT_MAX);
823 if ((error = xlog_find_verify_log_record(log,
824 start_blk, &new_blk,
825 (int)head_blk)) == -1) {
826 error = XFS_ERROR(EIO);
827 goto bp_err;
828 } else if (error)
829 goto bp_err;
830 if (new_blk != log_bbnum)
831 head_blk = new_blk;
832 } else if (error)
833 goto bp_err;
834 }
835
836 xlog_put_bp(bp);
837 if (head_blk == log_bbnum)
838 *return_head_blk = 0;
839 else
840 *return_head_blk = head_blk;
841 /*
842 * When returning here, we have a good block number. Bad block
843 * means that during a previous crash, we didn't have a clean break
844 * from cycle number N to cycle number N-1. In this case, we need
845 * to find the first block with cycle number N-1.
846 */
847 return 0;
848
849 bp_err:
850 xlog_put_bp(bp);
851
852 if (error)
a0fa2b67 853 xfs_warn(log->l_mp, "failed to find log head");
1da177e4
LT
854 return error;
855}
856
857/*
858 * Find the sync block number or the tail of the log.
859 *
860 * This will be the block number of the last record to have its
861 * associated buffers synced to disk. Every log record header has
862 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy
863 * to get a sync block number. The only concern is to figure out which
864 * log record header to believe.
865 *
866 * The following algorithm uses the log record header with the largest
867 * lsn. The entire log record does not need to be valid. We only care
868 * that the header is valid.
869 *
870 * We could speed up search by using current head_blk buffer, but it is not
871 * available.
872 */
5d77c0dc 873STATIC int
1da177e4
LT
874xlog_find_tail(
875 xlog_t *log,
876 xfs_daddr_t *head_blk,
65be6054 877 xfs_daddr_t *tail_blk)
1da177e4
LT
878{
879 xlog_rec_header_t *rhead;
880 xlog_op_header_t *op_head;
881 xfs_caddr_t offset = NULL;
882 xfs_buf_t *bp;
883 int error, i, found;
884 xfs_daddr_t umount_data_blk;
885 xfs_daddr_t after_umount_blk;
886 xfs_lsn_t tail_lsn;
887 int hblks;
888
889 found = 0;
890
891 /*
892 * Find previous log record
893 */
894 if ((error = xlog_find_head(log, head_blk)))
895 return error;
896
897 bp = xlog_get_bp(log, 1);
898 if (!bp)
899 return ENOMEM;
900 if (*head_blk == 0) { /* special case */
076e6acb
CH
901 error = xlog_bread(log, 0, 1, bp, &offset);
902 if (error)
9db127ed 903 goto done;
076e6acb 904
03bea6fe 905 if (xlog_get_cycle(offset) == 0) {
1da177e4
LT
906 *tail_blk = 0;
907 /* leave all other log inited values alone */
9db127ed 908 goto done;
1da177e4
LT
909 }
910 }
911
912 /*
913 * Search backwards looking for log record header block
914 */
915 ASSERT(*head_blk < INT_MAX);
916 for (i = (int)(*head_blk) - 1; i >= 0; i--) {
076e6acb
CH
917 error = xlog_bread(log, i, 1, bp, &offset);
918 if (error)
9db127ed 919 goto done;
076e6acb 920
69ef921b 921 if (*(__be32 *)offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
1da177e4
LT
922 found = 1;
923 break;
924 }
925 }
926 /*
927 * If we haven't found the log record header block, start looking
928 * again from the end of the physical log. XXXmiken: There should be
929 * a check here to make sure we didn't search more than N blocks in
930 * the previous code.
931 */
932 if (!found) {
933 for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
076e6acb
CH
934 error = xlog_bread(log, i, 1, bp, &offset);
935 if (error)
9db127ed 936 goto done;
076e6acb 937
69ef921b
CH
938 if (*(__be32 *)offset ==
939 cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
1da177e4
LT
940 found = 2;
941 break;
942 }
943 }
944 }
945 if (!found) {
a0fa2b67 946 xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__);
1da177e4
LT
947 ASSERT(0);
948 return XFS_ERROR(EIO);
949 }
950
951 /* find blk_no of tail of log */
952 rhead = (xlog_rec_header_t *)offset;
b53e675d 953 *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
1da177e4
LT
954
955 /*
956 * Reset log values according to the state of the log when we
957 * crashed. In the case where head_blk == 0, we bump curr_cycle
958 * one because the next write starts a new cycle rather than
959 * continuing the cycle of the last good log record. At this
960 * point we have guaranteed that all partial log records have been
961 * accounted for. Therefore, we know that the last good log record
962 * written was complete and ended exactly on the end boundary
963 * of the physical log.
964 */
965 log->l_prev_block = i;
966 log->l_curr_block = (int)*head_blk;
b53e675d 967 log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
1da177e4
LT
968 if (found == 2)
969 log->l_curr_cycle++;
1c3cb9ec 970 atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn));
84f3c683 971 atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn));
28496968 972 xlog_assign_grant_head(&log->l_reserve_head.grant, log->l_curr_cycle,
a69ed03c 973 BBTOB(log->l_curr_block));
28496968 974 xlog_assign_grant_head(&log->l_write_head.grant, log->l_curr_cycle,
a69ed03c 975 BBTOB(log->l_curr_block));
1da177e4
LT
976
977 /*
978 * Look for unmount record. If we find it, then we know there
979 * was a clean unmount. Since 'i' could be the last block in
980 * the physical log, we convert to a log block before comparing
981 * to the head_blk.
982 *
983 * Save the current tail lsn to use to pass to
984 * xlog_clear_stale_blocks() below. We won't want to clear the
985 * unmount record if there is one, so we pass the lsn of the
986 * unmount record rather than the block after it.
987 */
62118709 988 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
b53e675d
CH
989 int h_size = be32_to_cpu(rhead->h_size);
990 int h_version = be32_to_cpu(rhead->h_version);
1da177e4
LT
991
992 if ((h_version & XLOG_VERSION_2) &&
993 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
994 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
995 if (h_size % XLOG_HEADER_CYCLE_SIZE)
996 hblks++;
997 } else {
998 hblks = 1;
999 }
1000 } else {
1001 hblks = 1;
1002 }
1003 after_umount_blk = (i + hblks + (int)
b53e675d 1004 BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize;
1c3cb9ec 1005 tail_lsn = atomic64_read(&log->l_tail_lsn);
1da177e4 1006 if (*head_blk == after_umount_blk &&
b53e675d 1007 be32_to_cpu(rhead->h_num_logops) == 1) {
1da177e4 1008 umount_data_blk = (i + hblks) % log->l_logBBsize;
076e6acb
CH
1009 error = xlog_bread(log, umount_data_blk, 1, bp, &offset);
1010 if (error)
9db127ed 1011 goto done;
076e6acb 1012
1da177e4
LT
1013 op_head = (xlog_op_header_t *)offset;
1014 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
1015 /*
1016 * Set tail and last sync so that newly written
1017 * log records will point recovery to after the
1018 * current unmount record.
1019 */
1c3cb9ec
DC
1020 xlog_assign_atomic_lsn(&log->l_tail_lsn,
1021 log->l_curr_cycle, after_umount_blk);
1022 xlog_assign_atomic_lsn(&log->l_last_sync_lsn,
1023 log->l_curr_cycle, after_umount_blk);
1da177e4 1024 *tail_blk = after_umount_blk;
92821e2b
DC
1025
1026 /*
1027 * Note that the unmount was clean. If the unmount
1028 * was not clean, we need to know this to rebuild the
1029 * superblock counters from the perag headers if we
1030 * have a filesystem using non-persistent counters.
1031 */
1032 log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
1da177e4
LT
1033 }
1034 }
1035
1036 /*
1037 * Make sure that there are no blocks in front of the head
1038 * with the same cycle number as the head. This can happen
1039 * because we allow multiple outstanding log writes concurrently,
1040 * and the later writes might make it out before earlier ones.
1041 *
1042 * We use the lsn from before modifying it so that we'll never
1043 * overwrite the unmount record after a clean unmount.
1044 *
1045 * Do this only if we are going to recover the filesystem
1046 *
1047 * NOTE: This used to say "if (!readonly)"
1048 * However on Linux, we can & do recover a read-only filesystem.
1049 * We only skip recovery if NORECOVERY is specified on mount,
1050 * in which case we would not be here.
1051 *
1052 * But... if the -device- itself is readonly, just skip this.
1053 * We can't recover this device anyway, so it won't matter.
1054 */
9db127ed 1055 if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp))
1da177e4 1056 error = xlog_clear_stale_blocks(log, tail_lsn);
1da177e4 1057
9db127ed 1058done:
1da177e4
LT
1059 xlog_put_bp(bp);
1060
1061 if (error)
a0fa2b67 1062 xfs_warn(log->l_mp, "failed to locate log tail");
1da177e4
LT
1063 return error;
1064}
1065
1066/*
1067 * Is the log zeroed at all?
1068 *
1069 * The last binary search should be changed to perform an X block read
1070 * once X becomes small enough. You can then search linearly through
1071 * the X blocks. This will cut down on the number of reads we need to do.
1072 *
1073 * If the log is partially zeroed, this routine will pass back the blkno
1074 * of the first block with cycle number 0. It won't have a complete LR
1075 * preceding it.
1076 *
1077 * Return:
1078 * 0 => the log is completely written to
1079 * -1 => use *blk_no as the first block of the log
1080 * >0 => error has occurred
1081 */
a8272ce0 1082STATIC int
1da177e4
LT
1083xlog_find_zeroed(
1084 xlog_t *log,
1085 xfs_daddr_t *blk_no)
1086{
1087 xfs_buf_t *bp;
1088 xfs_caddr_t offset;
1089 uint first_cycle, last_cycle;
1090 xfs_daddr_t new_blk, last_blk, start_blk;
1091 xfs_daddr_t num_scan_bblks;
1092 int error, log_bbnum = log->l_logBBsize;
1093
6fdf8ccc
NS
1094 *blk_no = 0;
1095
1da177e4
LT
1096 /* check totally zeroed log */
1097 bp = xlog_get_bp(log, 1);
1098 if (!bp)
1099 return ENOMEM;
076e6acb
CH
1100 error = xlog_bread(log, 0, 1, bp, &offset);
1101 if (error)
1da177e4 1102 goto bp_err;
076e6acb 1103
03bea6fe 1104 first_cycle = xlog_get_cycle(offset);
1da177e4
LT
1105 if (first_cycle == 0) { /* completely zeroed log */
1106 *blk_no = 0;
1107 xlog_put_bp(bp);
1108 return -1;
1109 }
1110
1111 /* check partially zeroed log */
076e6acb
CH
1112 error = xlog_bread(log, log_bbnum-1, 1, bp, &offset);
1113 if (error)
1da177e4 1114 goto bp_err;
076e6acb 1115
03bea6fe 1116 last_cycle = xlog_get_cycle(offset);
1da177e4
LT
1117 if (last_cycle != 0) { /* log completely written to */
1118 xlog_put_bp(bp);
1119 return 0;
1120 } else if (first_cycle != 1) {
1121 /*
1122 * If the cycle of the last block is zero, the cycle of
1123 * the first block must be 1. If it's not, maybe we're
1124 * not looking at a log... Bail out.
1125 */
a0fa2b67
DC
1126 xfs_warn(log->l_mp,
1127 "Log inconsistent or not a log (last==0, first!=1)");
1da177e4
LT
1128 return XFS_ERROR(EINVAL);
1129 }
1130
1131 /* we have a partially zeroed log */
1132 last_blk = log_bbnum-1;
1133 if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
1134 goto bp_err;
1135
1136 /*
1137 * Validate the answer. Because there is no way to guarantee that
1138 * the entire log is made up of log records which are the same size,
1139 * we scan over the defined maximum blocks. At this point, the maximum
1140 * is not chosen to mean anything special. XXXmiken
1141 */
1142 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1143 ASSERT(num_scan_bblks <= INT_MAX);
1144
1145 if (last_blk < num_scan_bblks)
1146 num_scan_bblks = last_blk;
1147 start_blk = last_blk - num_scan_bblks;
1148
1149 /*
1150 * We search for any instances of cycle number 0 that occur before
1151 * our current estimate of the head. What we're trying to detect is
1152 * 1 ... | 0 | 1 | 0...
1153 * ^ binary search ends here
1154 */
1155 if ((error = xlog_find_verify_cycle(log, start_blk,
1156 (int)num_scan_bblks, 0, &new_blk)))
1157 goto bp_err;
1158 if (new_blk != -1)
1159 last_blk = new_blk;
1160
1161 /*
1162 * Potentially backup over partial log record write. We don't need
1163 * to search the end of the log because we know it is zero.
1164 */
1165 if ((error = xlog_find_verify_log_record(log, start_blk,
1166 &last_blk, 0)) == -1) {
1167 error = XFS_ERROR(EIO);
1168 goto bp_err;
1169 } else if (error)
1170 goto bp_err;
1171
1172 *blk_no = last_blk;
1173bp_err:
1174 xlog_put_bp(bp);
1175 if (error)
1176 return error;
1177 return -1;
1178}
1179
1180/*
1181 * These are simple subroutines used by xlog_clear_stale_blocks() below
1182 * to initialize a buffer full of empty log record headers and write
1183 * them into the log.
1184 */
1185STATIC void
1186xlog_add_record(
1187 xlog_t *log,
1188 xfs_caddr_t buf,
1189 int cycle,
1190 int block,
1191 int tail_cycle,
1192 int tail_block)
1193{
1194 xlog_rec_header_t *recp = (xlog_rec_header_t *)buf;
1195
1196 memset(buf, 0, BBSIZE);
b53e675d
CH
1197 recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1198 recp->h_cycle = cpu_to_be32(cycle);
1199 recp->h_version = cpu_to_be32(
62118709 1200 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
b53e675d
CH
1201 recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1202 recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1203 recp->h_fmt = cpu_to_be32(XLOG_FMT);
1da177e4
LT
1204 memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1205}
1206
1207STATIC int
1208xlog_write_log_records(
1209 xlog_t *log,
1210 int cycle,
1211 int start_block,
1212 int blocks,
1213 int tail_cycle,
1214 int tail_block)
1215{
1216 xfs_caddr_t offset;
1217 xfs_buf_t *bp;
1218 int balign, ealign;
69ce58f0 1219 int sectbb = log->l_sectBBsize;
1da177e4
LT
1220 int end_block = start_block + blocks;
1221 int bufblks;
1222 int error = 0;
1223 int i, j = 0;
1224
6881a229
AE
1225 /*
1226 * Greedily allocate a buffer big enough to handle the full
1227 * range of basic blocks to be written. If that fails, try
1228 * a smaller size. We need to be able to write at least a
1229 * log sector, or we're out of luck.
1230 */
1da177e4 1231 bufblks = 1 << ffs(blocks);
81158e0c
DC
1232 while (bufblks > log->l_logBBsize)
1233 bufblks >>= 1;
1da177e4
LT
1234 while (!(bp = xlog_get_bp(log, bufblks))) {
1235 bufblks >>= 1;
69ce58f0 1236 if (bufblks < sectbb)
1da177e4
LT
1237 return ENOMEM;
1238 }
1239
1240 /* We may need to do a read at the start to fill in part of
1241 * the buffer in the starting sector not covered by the first
1242 * write below.
1243 */
5c17f533 1244 balign = round_down(start_block, sectbb);
1da177e4 1245 if (balign != start_block) {
076e6acb
CH
1246 error = xlog_bread_noalign(log, start_block, 1, bp);
1247 if (error)
1248 goto out_put_bp;
1249
1da177e4
LT
1250 j = start_block - balign;
1251 }
1252
1253 for (i = start_block; i < end_block; i += bufblks) {
1254 int bcount, endcount;
1255
1256 bcount = min(bufblks, end_block - start_block);
1257 endcount = bcount - j;
1258
1259 /* We may need to do a read at the end to fill in part of
1260 * the buffer in the final sector not covered by the write.
1261 * If this is the same sector as the above read, skip it.
1262 */
5c17f533 1263 ealign = round_down(end_block, sectbb);
1da177e4 1264 if (j == 0 && (start_block + endcount > ealign)) {
62926044 1265 offset = bp->b_addr + BBTOB(ealign - start_block);
44396476
DC
1266 error = xlog_bread_offset(log, ealign, sectbb,
1267 bp, offset);
076e6acb
CH
1268 if (error)
1269 break;
1270
1da177e4
LT
1271 }
1272
1273 offset = xlog_align(log, start_block, endcount, bp);
1274 for (; j < endcount; j++) {
1275 xlog_add_record(log, offset, cycle, i+j,
1276 tail_cycle, tail_block);
1277 offset += BBSIZE;
1278 }
1279 error = xlog_bwrite(log, start_block, endcount, bp);
1280 if (error)
1281 break;
1282 start_block += endcount;
1283 j = 0;
1284 }
076e6acb
CH
1285
1286 out_put_bp:
1da177e4
LT
1287 xlog_put_bp(bp);
1288 return error;
1289}
1290
1291/*
1292 * This routine is called to blow away any incomplete log writes out
1293 * in front of the log head. We do this so that we won't become confused
1294 * if we come up, write only a little bit more, and then crash again.
1295 * If we leave the partial log records out there, this situation could
1296 * cause us to think those partial writes are valid blocks since they
1297 * have the current cycle number. We get rid of them by overwriting them
1298 * with empty log records with the old cycle number rather than the
1299 * current one.
1300 *
1301 * The tail lsn is passed in rather than taken from
1302 * the log so that we will not write over the unmount record after a
1303 * clean unmount in a 512 block log. Doing so would leave the log without
1304 * any valid log records in it until a new one was written. If we crashed
1305 * during that time we would not be able to recover.
1306 */
1307STATIC int
1308xlog_clear_stale_blocks(
1309 xlog_t *log,
1310 xfs_lsn_t tail_lsn)
1311{
1312 int tail_cycle, head_cycle;
1313 int tail_block, head_block;
1314 int tail_distance, max_distance;
1315 int distance;
1316 int error;
1317
1318 tail_cycle = CYCLE_LSN(tail_lsn);
1319 tail_block = BLOCK_LSN(tail_lsn);
1320 head_cycle = log->l_curr_cycle;
1321 head_block = log->l_curr_block;
1322
1323 /*
1324 * Figure out the distance between the new head of the log
1325 * and the tail. We want to write over any blocks beyond the
1326 * head that we may have written just before the crash, but
1327 * we don't want to overwrite the tail of the log.
1328 */
1329 if (head_cycle == tail_cycle) {
1330 /*
1331 * The tail is behind the head in the physical log,
1332 * so the distance from the head to the tail is the
1333 * distance from the head to the end of the log plus
1334 * the distance from the beginning of the log to the
1335 * tail.
1336 */
1337 if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1338 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1339 XFS_ERRLEVEL_LOW, log->l_mp);
1340 return XFS_ERROR(EFSCORRUPTED);
1341 }
1342 tail_distance = tail_block + (log->l_logBBsize - head_block);
1343 } else {
1344 /*
1345 * The head is behind the tail in the physical log,
1346 * so the distance from the head to the tail is just
1347 * the tail block minus the head block.
1348 */
1349 if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1350 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1351 XFS_ERRLEVEL_LOW, log->l_mp);
1352 return XFS_ERROR(EFSCORRUPTED);
1353 }
1354 tail_distance = tail_block - head_block;
1355 }
1356
1357 /*
1358 * If the head is right up against the tail, we can't clear
1359 * anything.
1360 */
1361 if (tail_distance <= 0) {
1362 ASSERT(tail_distance == 0);
1363 return 0;
1364 }
1365
1366 max_distance = XLOG_TOTAL_REC_SHIFT(log);
1367 /*
1368 * Take the smaller of the maximum amount of outstanding I/O
1369 * we could have and the distance to the tail to clear out.
1370 * We take the smaller so that we don't overwrite the tail and
1371 * we don't waste all day writing from the head to the tail
1372 * for no reason.
1373 */
1374 max_distance = MIN(max_distance, tail_distance);
1375
1376 if ((head_block + max_distance) <= log->l_logBBsize) {
1377 /*
1378 * We can stomp all the blocks we need to without
1379 * wrapping around the end of the log. Just do it
1380 * in a single write. Use the cycle number of the
1381 * current cycle minus one so that the log will look like:
1382 * n ... | n - 1 ...
1383 */
1384 error = xlog_write_log_records(log, (head_cycle - 1),
1385 head_block, max_distance, tail_cycle,
1386 tail_block);
1387 if (error)
1388 return error;
1389 } else {
1390 /*
1391 * We need to wrap around the end of the physical log in
1392 * order to clear all the blocks. Do it in two separate
1393 * I/Os. The first write should be from the head to the
1394 * end of the physical log, and it should use the current
1395 * cycle number minus one just like above.
1396 */
1397 distance = log->l_logBBsize - head_block;
1398 error = xlog_write_log_records(log, (head_cycle - 1),
1399 head_block, distance, tail_cycle,
1400 tail_block);
1401
1402 if (error)
1403 return error;
1404
1405 /*
1406 * Now write the blocks at the start of the physical log.
1407 * This writes the remainder of the blocks we want to clear.
1408 * It uses the current cycle number since we're now on the
1409 * same cycle as the head so that we get:
1410 * n ... n ... | n - 1 ...
1411 * ^^^^^ blocks we're writing
1412 */
1413 distance = max_distance - (log->l_logBBsize - head_block);
1414 error = xlog_write_log_records(log, head_cycle, 0, distance,
1415 tail_cycle, tail_block);
1416 if (error)
1417 return error;
1418 }
1419
1420 return 0;
1421}
1422
1423/******************************************************************************
1424 *
1425 * Log recover routines
1426 *
1427 ******************************************************************************
1428 */
1429
1430STATIC xlog_recover_t *
1431xlog_recover_find_tid(
f0a76953 1432 struct hlist_head *head,
1da177e4
LT
1433 xlog_tid_t tid)
1434{
f0a76953
DC
1435 xlog_recover_t *trans;
1436 struct hlist_node *n;
1da177e4 1437
f0a76953
DC
1438 hlist_for_each_entry(trans, n, head, r_list) {
1439 if (trans->r_log_tid == tid)
1440 return trans;
1da177e4 1441 }
f0a76953 1442 return NULL;
1da177e4
LT
1443}
1444
1445STATIC void
f0a76953
DC
1446xlog_recover_new_tid(
1447 struct hlist_head *head,
1448 xlog_tid_t tid,
1449 xfs_lsn_t lsn)
1da177e4 1450{
f0a76953
DC
1451 xlog_recover_t *trans;
1452
1453 trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP);
1454 trans->r_log_tid = tid;
1455 trans->r_lsn = lsn;
1456 INIT_LIST_HEAD(&trans->r_itemq);
1457
1458 INIT_HLIST_NODE(&trans->r_list);
1459 hlist_add_head(&trans->r_list, head);
1da177e4
LT
1460}
1461
1462STATIC void
1463xlog_recover_add_item(
f0a76953 1464 struct list_head *head)
1da177e4
LT
1465{
1466 xlog_recover_item_t *item;
1467
1468 item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
f0a76953
DC
1469 INIT_LIST_HEAD(&item->ri_list);
1470 list_add_tail(&item->ri_list, head);
1da177e4
LT
1471}
1472
1473STATIC int
1474xlog_recover_add_to_cont_trans(
9abbc539 1475 struct log *log,
1da177e4
LT
1476 xlog_recover_t *trans,
1477 xfs_caddr_t dp,
1478 int len)
1479{
1480 xlog_recover_item_t *item;
1481 xfs_caddr_t ptr, old_ptr;
1482 int old_len;
1483
f0a76953 1484 if (list_empty(&trans->r_itemq)) {
1da177e4
LT
1485 /* finish copying rest of trans header */
1486 xlog_recover_add_item(&trans->r_itemq);
1487 ptr = (xfs_caddr_t) &trans->r_theader +
1488 sizeof(xfs_trans_header_t) - len;
1489 memcpy(ptr, dp, len); /* d, s, l */
1490 return 0;
1491 }
f0a76953
DC
1492 /* take the tail entry */
1493 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
1da177e4
LT
1494
1495 old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
1496 old_len = item->ri_buf[item->ri_cnt-1].i_len;
1497
45053603 1498 ptr = kmem_realloc(old_ptr, len+old_len, old_len, KM_SLEEP);
1da177e4
LT
1499 memcpy(&ptr[old_len], dp, len); /* d, s, l */
1500 item->ri_buf[item->ri_cnt-1].i_len += len;
1501 item->ri_buf[item->ri_cnt-1].i_addr = ptr;
9abbc539 1502 trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
1da177e4
LT
1503 return 0;
1504}
1505
1506/*
1507 * The next region to add is the start of a new region. It could be
1508 * a whole region or it could be the first part of a new region. Because
1509 * of this, the assumption here is that the type and size fields of all
1510 * format structures fit into the first 32 bits of the structure.
1511 *
1512 * This works because all regions must be 32 bit aligned. Therefore, we
1513 * either have both fields or we have neither field. In the case we have
1514 * neither field, the data part of the region is zero length. We only have
1515 * a log_op_header and can throw away the header since a new one will appear
1516 * later. If we have at least 4 bytes, then we can determine how many regions
1517 * will appear in the current log item.
1518 */
1519STATIC int
1520xlog_recover_add_to_trans(
9abbc539 1521 struct log *log,
1da177e4
LT
1522 xlog_recover_t *trans,
1523 xfs_caddr_t dp,
1524 int len)
1525{
1526 xfs_inode_log_format_t *in_f; /* any will do */
1527 xlog_recover_item_t *item;
1528 xfs_caddr_t ptr;
1529
1530 if (!len)
1531 return 0;
f0a76953 1532 if (list_empty(&trans->r_itemq)) {
5a792c45
DC
1533 /* we need to catch log corruptions here */
1534 if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
a0fa2b67
DC
1535 xfs_warn(log->l_mp, "%s: bad header magic number",
1536 __func__);
5a792c45
DC
1537 ASSERT(0);
1538 return XFS_ERROR(EIO);
1539 }
1da177e4
LT
1540 if (len == sizeof(xfs_trans_header_t))
1541 xlog_recover_add_item(&trans->r_itemq);
1542 memcpy(&trans->r_theader, dp, len); /* d, s, l */
1543 return 0;
1544 }
1545
1546 ptr = kmem_alloc(len, KM_SLEEP);
1547 memcpy(ptr, dp, len);
1548 in_f = (xfs_inode_log_format_t *)ptr;
1549
f0a76953
DC
1550 /* take the tail entry */
1551 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
1552 if (item->ri_total != 0 &&
1553 item->ri_total == item->ri_cnt) {
1554 /* tail item is in use, get a new one */
1da177e4 1555 xlog_recover_add_item(&trans->r_itemq);
f0a76953
DC
1556 item = list_entry(trans->r_itemq.prev,
1557 xlog_recover_item_t, ri_list);
1da177e4 1558 }
1da177e4
LT
1559
1560 if (item->ri_total == 0) { /* first region to be added */
e8fa6b48
CH
1561 if (in_f->ilf_size == 0 ||
1562 in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
a0fa2b67
DC
1563 xfs_warn(log->l_mp,
1564 "bad number of regions (%d) in inode log format",
e8fa6b48
CH
1565 in_f->ilf_size);
1566 ASSERT(0);
1567 return XFS_ERROR(EIO);
1568 }
1569
1570 item->ri_total = in_f->ilf_size;
1571 item->ri_buf =
1572 kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
1573 KM_SLEEP);
1da177e4
LT
1574 }
1575 ASSERT(item->ri_total > item->ri_cnt);
1576 /* Description region is ri_buf[0] */
1577 item->ri_buf[item->ri_cnt].i_addr = ptr;
1578 item->ri_buf[item->ri_cnt].i_len = len;
1579 item->ri_cnt++;
9abbc539 1580 trace_xfs_log_recover_item_add(log, trans, item, 0);
1da177e4
LT
1581 return 0;
1582}
1583
f0a76953
DC
1584/*
1585 * Sort the log items in the transaction. Cancelled buffers need
1586 * to be put first so they are processed before any items that might
1587 * modify the buffers. If they are cancelled, then the modifications
1588 * don't need to be replayed.
1589 */
1da177e4
LT
1590STATIC int
1591xlog_recover_reorder_trans(
9abbc539
DC
1592 struct log *log,
1593 xlog_recover_t *trans,
1594 int pass)
1da177e4 1595{
f0a76953
DC
1596 xlog_recover_item_t *item, *n;
1597 LIST_HEAD(sort_list);
1598
1599 list_splice_init(&trans->r_itemq, &sort_list);
1600 list_for_each_entry_safe(item, n, &sort_list, ri_list) {
4e0d5f92 1601 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
1da177e4 1602
f0a76953 1603 switch (ITEM_TYPE(item)) {
1da177e4 1604 case XFS_LI_BUF:
c1155410 1605 if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
9abbc539
DC
1606 trace_xfs_log_recover_item_reorder_head(log,
1607 trans, item, pass);
f0a76953 1608 list_move(&item->ri_list, &trans->r_itemq);
1da177e4
LT
1609 break;
1610 }
1611 case XFS_LI_INODE:
1da177e4
LT
1612 case XFS_LI_DQUOT:
1613 case XFS_LI_QUOTAOFF:
1614 case XFS_LI_EFD:
1615 case XFS_LI_EFI:
9abbc539
DC
1616 trace_xfs_log_recover_item_reorder_tail(log,
1617 trans, item, pass);
f0a76953 1618 list_move_tail(&item->ri_list, &trans->r_itemq);
1da177e4
LT
1619 break;
1620 default:
a0fa2b67
DC
1621 xfs_warn(log->l_mp,
1622 "%s: unrecognized type of log operation",
1623 __func__);
1da177e4
LT
1624 ASSERT(0);
1625 return XFS_ERROR(EIO);
1626 }
f0a76953
DC
1627 }
1628 ASSERT(list_empty(&sort_list));
1da177e4
LT
1629 return 0;
1630}
1631
1632/*
1633 * Build up the table of buf cancel records so that we don't replay
1634 * cancelled data in the second pass. For buffer records that are
1635 * not cancel records, there is nothing to do here so we just return.
1636 *
1637 * If we get a cancel record which is already in the table, this indicates
1638 * that the buffer was cancelled multiple times. In order to ensure
1639 * that during pass 2 we keep the record in the table until we reach its
1640 * last occurrence in the log, we keep a reference count in the cancel
1641 * record in the table to tell us how many times we expect to see this
1642 * record during the second pass.
1643 */
c9f71f5f
CH
1644STATIC int
1645xlog_recover_buffer_pass1(
d5689eaa 1646 struct log *log,
c9f71f5f 1647 xlog_recover_item_t *item)
1da177e4 1648{
c9f71f5f 1649 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
d5689eaa
CH
1650 struct list_head *bucket;
1651 struct xfs_buf_cancel *bcp;
1da177e4
LT
1652
1653 /*
1654 * If this isn't a cancel buffer item, then just return.
1655 */
e2714bf8 1656 if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
9abbc539 1657 trace_xfs_log_recover_buf_not_cancel(log, buf_f);
c9f71f5f 1658 return 0;
9abbc539 1659 }
1da177e4
LT
1660
1661 /*
d5689eaa
CH
1662 * Insert an xfs_buf_cancel record into the hash table of them.
1663 * If there is already an identical record, bump its reference count.
1da177e4 1664 */
d5689eaa
CH
1665 bucket = XLOG_BUF_CANCEL_BUCKET(log, buf_f->blf_blkno);
1666 list_for_each_entry(bcp, bucket, bc_list) {
1667 if (bcp->bc_blkno == buf_f->blf_blkno &&
1668 bcp->bc_len == buf_f->blf_len) {
1669 bcp->bc_refcount++;
9abbc539 1670 trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f);
c9f71f5f 1671 return 0;
1da177e4 1672 }
d5689eaa
CH
1673 }
1674
1675 bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), KM_SLEEP);
1676 bcp->bc_blkno = buf_f->blf_blkno;
1677 bcp->bc_len = buf_f->blf_len;
1da177e4 1678 bcp->bc_refcount = 1;
d5689eaa
CH
1679 list_add_tail(&bcp->bc_list, bucket);
1680
9abbc539 1681 trace_xfs_log_recover_buf_cancel_add(log, buf_f);
c9f71f5f 1682 return 0;
1da177e4
LT
1683}
1684
1685/*
1686 * Check to see whether the buffer being recovered has a corresponding
1687 * entry in the buffer cancel record table. If it does then return 1
1688 * so that it will be cancelled, otherwise return 0. If the buffer is
c1155410 1689 * actually a buffer cancel item (XFS_BLF_CANCEL is set), then decrement
1da177e4
LT
1690 * the refcount on the entry in the table and remove it from the table
1691 * if this is the last reference.
1692 *
1693 * We remove the cancel record from the table when we encounter its
1694 * last occurrence in the log so that if the same buffer is re-used
1695 * again after its last cancellation we actually replay the changes
1696 * made at that point.
1697 */
1698STATIC int
1699xlog_check_buffer_cancelled(
d5689eaa 1700 struct log *log,
1da177e4
LT
1701 xfs_daddr_t blkno,
1702 uint len,
1703 ushort flags)
1704{
d5689eaa
CH
1705 struct list_head *bucket;
1706 struct xfs_buf_cancel *bcp;
1da177e4
LT
1707
1708 if (log->l_buf_cancel_table == NULL) {
1709 /*
1710 * There is nothing in the table built in pass one,
1711 * so this buffer must not be cancelled.
1712 */
c1155410 1713 ASSERT(!(flags & XFS_BLF_CANCEL));
1da177e4
LT
1714 return 0;
1715 }
1716
1da177e4 1717 /*
d5689eaa 1718 * Search for an entry in the cancel table that matches our buffer.
1da177e4 1719 */
d5689eaa
CH
1720 bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno);
1721 list_for_each_entry(bcp, bucket, bc_list) {
1722 if (bcp->bc_blkno == blkno && bcp->bc_len == len)
1723 goto found;
1da177e4 1724 }
d5689eaa 1725
1da177e4 1726 /*
d5689eaa
CH
1727 * We didn't find a corresponding entry in the table, so return 0 so
1728 * that the buffer is NOT cancelled.
1da177e4 1729 */
c1155410 1730 ASSERT(!(flags & XFS_BLF_CANCEL));
1da177e4 1731 return 0;
d5689eaa
CH
1732
1733found:
1734 /*
1735 * We've go a match, so return 1 so that the recovery of this buffer
1736 * is cancelled. If this buffer is actually a buffer cancel log
1737 * item, then decrement the refcount on the one in the table and
1738 * remove it if this is the last reference.
1739 */
1740 if (flags & XFS_BLF_CANCEL) {
1741 if (--bcp->bc_refcount == 0) {
1742 list_del(&bcp->bc_list);
1743 kmem_free(bcp);
1744 }
1745 }
1746 return 1;
1da177e4
LT
1747}
1748
1da177e4 1749/*
e2714bf8
CH
1750 * Perform recovery for a buffer full of inodes. In these buffers, the only
1751 * data which should be recovered is that which corresponds to the
1752 * di_next_unlinked pointers in the on disk inode structures. The rest of the
1753 * data for the inodes is always logged through the inodes themselves rather
1754 * than the inode buffer and is recovered in xlog_recover_inode_pass2().
1da177e4 1755 *
e2714bf8
CH
1756 * The only time when buffers full of inodes are fully recovered is when the
1757 * buffer is full of newly allocated inodes. In this case the buffer will
1758 * not be marked as an inode buffer and so will be sent to
1759 * xlog_recover_do_reg_buffer() below during recovery.
1da177e4
LT
1760 */
1761STATIC int
1762xlog_recover_do_inode_buffer(
e2714bf8 1763 struct xfs_mount *mp,
1da177e4 1764 xlog_recover_item_t *item,
e2714bf8 1765 struct xfs_buf *bp,
1da177e4
LT
1766 xfs_buf_log_format_t *buf_f)
1767{
1768 int i;
e2714bf8
CH
1769 int item_index = 0;
1770 int bit = 0;
1771 int nbits = 0;
1772 int reg_buf_offset = 0;
1773 int reg_buf_bytes = 0;
1da177e4
LT
1774 int next_unlinked_offset;
1775 int inodes_per_buf;
1776 xfs_agino_t *logged_nextp;
1777 xfs_agino_t *buffer_nextp;
1da177e4 1778
9abbc539
DC
1779 trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
1780
1da177e4
LT
1781 inodes_per_buf = XFS_BUF_COUNT(bp) >> mp->m_sb.sb_inodelog;
1782 for (i = 0; i < inodes_per_buf; i++) {
1783 next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
1784 offsetof(xfs_dinode_t, di_next_unlinked);
1785
1786 while (next_unlinked_offset >=
1787 (reg_buf_offset + reg_buf_bytes)) {
1788 /*
1789 * The next di_next_unlinked field is beyond
1790 * the current logged region. Find the next
1791 * logged region that contains or is beyond
1792 * the current di_next_unlinked field.
1793 */
1794 bit += nbits;
e2714bf8
CH
1795 bit = xfs_next_bit(buf_f->blf_data_map,
1796 buf_f->blf_map_size, bit);
1da177e4
LT
1797
1798 /*
1799 * If there are no more logged regions in the
1800 * buffer, then we're done.
1801 */
e2714bf8 1802 if (bit == -1)
1da177e4 1803 return 0;
1da177e4 1804
e2714bf8
CH
1805 nbits = xfs_contig_bits(buf_f->blf_data_map,
1806 buf_f->blf_map_size, bit);
1da177e4 1807 ASSERT(nbits > 0);
c1155410
DC
1808 reg_buf_offset = bit << XFS_BLF_SHIFT;
1809 reg_buf_bytes = nbits << XFS_BLF_SHIFT;
1da177e4
LT
1810 item_index++;
1811 }
1812
1813 /*
1814 * If the current logged region starts after the current
1815 * di_next_unlinked field, then move on to the next
1816 * di_next_unlinked field.
1817 */
e2714bf8 1818 if (next_unlinked_offset < reg_buf_offset)
1da177e4 1819 continue;
1da177e4
LT
1820
1821 ASSERT(item->ri_buf[item_index].i_addr != NULL);
c1155410 1822 ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0);
1da177e4
LT
1823 ASSERT((reg_buf_offset + reg_buf_bytes) <= XFS_BUF_COUNT(bp));
1824
1825 /*
1826 * The current logged region contains a copy of the
1827 * current di_next_unlinked field. Extract its value
1828 * and copy it to the buffer copy.
1829 */
4e0d5f92
CH
1830 logged_nextp = item->ri_buf[item_index].i_addr +
1831 next_unlinked_offset - reg_buf_offset;
1da177e4 1832 if (unlikely(*logged_nextp == 0)) {
a0fa2b67
DC
1833 xfs_alert(mp,
1834 "Bad inode buffer log record (ptr = 0x%p, bp = 0x%p). "
1835 "Trying to replay bad (0) inode di_next_unlinked field.",
1da177e4
LT
1836 item, bp);
1837 XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
1838 XFS_ERRLEVEL_LOW, mp);
1839 return XFS_ERROR(EFSCORRUPTED);
1840 }
1841
1842 buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp,
1843 next_unlinked_offset);
87c199c2 1844 *buffer_nextp = *logged_nextp;
1da177e4
LT
1845 }
1846
1847 return 0;
1848}
1849
1850/*
1851 * Perform a 'normal' buffer recovery. Each logged region of the
1852 * buffer should be copied over the corresponding region in the
1853 * given buffer. The bitmap in the buf log format structure indicates
1854 * where to place the logged data.
1855 */
1da177e4
LT
1856STATIC void
1857xlog_recover_do_reg_buffer(
9abbc539 1858 struct xfs_mount *mp,
1da177e4 1859 xlog_recover_item_t *item,
e2714bf8 1860 struct xfs_buf *bp,
1da177e4
LT
1861 xfs_buf_log_format_t *buf_f)
1862{
1863 int i;
1864 int bit;
1865 int nbits;
1da177e4
LT
1866 int error;
1867
9abbc539
DC
1868 trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
1869
1da177e4
LT
1870 bit = 0;
1871 i = 1; /* 0 is the buf format structure */
1872 while (1) {
e2714bf8
CH
1873 bit = xfs_next_bit(buf_f->blf_data_map,
1874 buf_f->blf_map_size, bit);
1da177e4
LT
1875 if (bit == -1)
1876 break;
e2714bf8
CH
1877 nbits = xfs_contig_bits(buf_f->blf_data_map,
1878 buf_f->blf_map_size, bit);
1da177e4 1879 ASSERT(nbits > 0);
4b80916b 1880 ASSERT(item->ri_buf[i].i_addr != NULL);
c1155410 1881 ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0);
1da177e4 1882 ASSERT(XFS_BUF_COUNT(bp) >=
c1155410 1883 ((uint)bit << XFS_BLF_SHIFT)+(nbits<<XFS_BLF_SHIFT));
1da177e4
LT
1884
1885 /*
1886 * Do a sanity check if this is a dquot buffer. Just checking
1887 * the first dquot in the buffer should do. XXXThis is
1888 * probably a good thing to do for other buf types also.
1889 */
1890 error = 0;
c8ad20ff 1891 if (buf_f->blf_flags &
c1155410 1892 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
0c5e1ce8 1893 if (item->ri_buf[i].i_addr == NULL) {
a0fa2b67 1894 xfs_alert(mp,
0c5e1ce8
CH
1895 "XFS: NULL dquot in %s.", __func__);
1896 goto next;
1897 }
8ec6dba2 1898 if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) {
a0fa2b67 1899 xfs_alert(mp,
0c5e1ce8
CH
1900 "XFS: dquot too small (%d) in %s.",
1901 item->ri_buf[i].i_len, __func__);
1902 goto next;
1903 }
a0fa2b67 1904 error = xfs_qm_dqcheck(mp, item->ri_buf[i].i_addr,
1da177e4
LT
1905 -1, 0, XFS_QMOPT_DOWARN,
1906 "dquot_buf_recover");
0c5e1ce8
CH
1907 if (error)
1908 goto next;
1da177e4 1909 }
0c5e1ce8
CH
1910
1911 memcpy(xfs_buf_offset(bp,
c1155410 1912 (uint)bit << XFS_BLF_SHIFT), /* dest */
0c5e1ce8 1913 item->ri_buf[i].i_addr, /* source */
c1155410 1914 nbits<<XFS_BLF_SHIFT); /* length */
0c5e1ce8 1915 next:
1da177e4
LT
1916 i++;
1917 bit += nbits;
1918 }
1919
1920 /* Shouldn't be any more regions */
1921 ASSERT(i == item->ri_total);
1922}
1923
1924/*
1925 * Do some primitive error checking on ondisk dquot data structures.
1926 */
1927int
1928xfs_qm_dqcheck(
a0fa2b67 1929 struct xfs_mount *mp,
1da177e4
LT
1930 xfs_disk_dquot_t *ddq,
1931 xfs_dqid_t id,
1932 uint type, /* used only when IO_dorepair is true */
1933 uint flags,
1934 char *str)
1935{
1936 xfs_dqblk_t *d = (xfs_dqblk_t *)ddq;
1937 int errs = 0;
1938
1939 /*
1940 * We can encounter an uninitialized dquot buffer for 2 reasons:
1941 * 1. If we crash while deleting the quotainode(s), and those blks got
1942 * used for user data. This is because we take the path of regular
1943 * file deletion; however, the size field of quotainodes is never
1944 * updated, so all the tricks that we play in itruncate_finish
1945 * don't quite matter.
1946 *
1947 * 2. We don't play the quota buffers when there's a quotaoff logitem.
1948 * But the allocation will be replayed so we'll end up with an
1949 * uninitialized quota block.
1950 *
1951 * This is all fine; things are still consistent, and we haven't lost
1952 * any quota information. Just don't complain about bad dquot blks.
1953 */
69ef921b 1954 if (ddq->d_magic != cpu_to_be16(XFS_DQUOT_MAGIC)) {
1da177e4 1955 if (flags & XFS_QMOPT_DOWARN)
a0fa2b67 1956 xfs_alert(mp,
1da177e4 1957 "%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x",
1149d96a 1958 str, id, be16_to_cpu(ddq->d_magic), XFS_DQUOT_MAGIC);
1da177e4
LT
1959 errs++;
1960 }
1149d96a 1961 if (ddq->d_version != XFS_DQUOT_VERSION) {
1da177e4 1962 if (flags & XFS_QMOPT_DOWARN)
a0fa2b67 1963 xfs_alert(mp,
1da177e4 1964 "%s : XFS dquot ID 0x%x, version 0x%x != 0x%x",
1149d96a 1965 str, id, ddq->d_version, XFS_DQUOT_VERSION);
1da177e4
LT
1966 errs++;
1967 }
1968
1149d96a
CH
1969 if (ddq->d_flags != XFS_DQ_USER &&
1970 ddq->d_flags != XFS_DQ_PROJ &&
1971 ddq->d_flags != XFS_DQ_GROUP) {
1da177e4 1972 if (flags & XFS_QMOPT_DOWARN)
a0fa2b67 1973 xfs_alert(mp,
1da177e4 1974 "%s : XFS dquot ID 0x%x, unknown flags 0x%x",
1149d96a 1975 str, id, ddq->d_flags);
1da177e4
LT
1976 errs++;
1977 }
1978
1149d96a 1979 if (id != -1 && id != be32_to_cpu(ddq->d_id)) {
1da177e4 1980 if (flags & XFS_QMOPT_DOWARN)
a0fa2b67 1981 xfs_alert(mp,
1da177e4
LT
1982 "%s : ondisk-dquot 0x%p, ID mismatch: "
1983 "0x%x expected, found id 0x%x",
1149d96a 1984 str, ddq, id, be32_to_cpu(ddq->d_id));
1da177e4
LT
1985 errs++;
1986 }
1987
1988 if (!errs && ddq->d_id) {
1149d96a 1989 if (ddq->d_blk_softlimit &&
d0a3fe67 1990 be64_to_cpu(ddq->d_bcount) >
1149d96a 1991 be64_to_cpu(ddq->d_blk_softlimit)) {
1da177e4
LT
1992 if (!ddq->d_btimer) {
1993 if (flags & XFS_QMOPT_DOWARN)
a0fa2b67
DC
1994 xfs_alert(mp,
1995 "%s : Dquot ID 0x%x (0x%p) BLK TIMER NOT STARTED",
1149d96a 1996 str, (int)be32_to_cpu(ddq->d_id), ddq);
1da177e4
LT
1997 errs++;
1998 }
1999 }
1149d96a 2000 if (ddq->d_ino_softlimit &&
d0a3fe67 2001 be64_to_cpu(ddq->d_icount) >
1149d96a 2002 be64_to_cpu(ddq->d_ino_softlimit)) {
1da177e4
LT
2003 if (!ddq->d_itimer) {
2004 if (flags & XFS_QMOPT_DOWARN)
a0fa2b67
DC
2005 xfs_alert(mp,
2006 "%s : Dquot ID 0x%x (0x%p) INODE TIMER NOT STARTED",
1149d96a 2007 str, (int)be32_to_cpu(ddq->d_id), ddq);
1da177e4
LT
2008 errs++;
2009 }
2010 }
1149d96a 2011 if (ddq->d_rtb_softlimit &&
d0a3fe67 2012 be64_to_cpu(ddq->d_rtbcount) >
1149d96a 2013 be64_to_cpu(ddq->d_rtb_softlimit)) {
1da177e4
LT
2014 if (!ddq->d_rtbtimer) {
2015 if (flags & XFS_QMOPT_DOWARN)
a0fa2b67
DC
2016 xfs_alert(mp,
2017 "%s : Dquot ID 0x%x (0x%p) RTBLK TIMER NOT STARTED",
1149d96a 2018 str, (int)be32_to_cpu(ddq->d_id), ddq);
1da177e4
LT
2019 errs++;
2020 }
2021 }
2022 }
2023
2024 if (!errs || !(flags & XFS_QMOPT_DQREPAIR))
2025 return errs;
2026
2027 if (flags & XFS_QMOPT_DOWARN)
a0fa2b67 2028 xfs_notice(mp, "Re-initializing dquot ID 0x%x", id);
1da177e4
LT
2029
2030 /*
2031 * Typically, a repair is only requested by quotacheck.
2032 */
2033 ASSERT(id != -1);
2034 ASSERT(flags & XFS_QMOPT_DQREPAIR);
2035 memset(d, 0, sizeof(xfs_dqblk_t));
1149d96a
CH
2036
2037 d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC);
2038 d->dd_diskdq.d_version = XFS_DQUOT_VERSION;
2039 d->dd_diskdq.d_flags = type;
2040 d->dd_diskdq.d_id = cpu_to_be32(id);
1da177e4
LT
2041
2042 return errs;
2043}
2044
2045/*
2046 * Perform a dquot buffer recovery.
2047 * Simple algorithm: if we have found a QUOTAOFF logitem of the same type
2048 * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2049 * Else, treat it as a regular buffer and do recovery.
2050 */
2051STATIC void
2052xlog_recover_do_dquot_buffer(
2053 xfs_mount_t *mp,
2054 xlog_t *log,
2055 xlog_recover_item_t *item,
2056 xfs_buf_t *bp,
2057 xfs_buf_log_format_t *buf_f)
2058{
2059 uint type;
2060
9abbc539
DC
2061 trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
2062
1da177e4
LT
2063 /*
2064 * Filesystems are required to send in quota flags at mount time.
2065 */
2066 if (mp->m_qflags == 0) {
2067 return;
2068 }
2069
2070 type = 0;
c1155410 2071 if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF)
1da177e4 2072 type |= XFS_DQ_USER;
c1155410 2073 if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF)
c8ad20ff 2074 type |= XFS_DQ_PROJ;
c1155410 2075 if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF)
1da177e4
LT
2076 type |= XFS_DQ_GROUP;
2077 /*
2078 * This type of quotas was turned off, so ignore this buffer
2079 */
2080 if (log->l_quotaoffs_flag & type)
2081 return;
2082
9abbc539 2083 xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
1da177e4
LT
2084}
2085
2086/*
2087 * This routine replays a modification made to a buffer at runtime.
2088 * There are actually two types of buffer, regular and inode, which
2089 * are handled differently. Inode buffers are handled differently
2090 * in that we only recover a specific set of data from them, namely
2091 * the inode di_next_unlinked fields. This is because all other inode
2092 * data is actually logged via inode records and any data we replay
2093 * here which overlaps that may be stale.
2094 *
2095 * When meta-data buffers are freed at run time we log a buffer item
c1155410 2096 * with the XFS_BLF_CANCEL bit set to indicate that previous copies
1da177e4
LT
2097 * of the buffer in the log should not be replayed at recovery time.
2098 * This is so that if the blocks covered by the buffer are reused for
2099 * file data before we crash we don't end up replaying old, freed
2100 * meta-data into a user's file.
2101 *
2102 * To handle the cancellation of buffer log items, we make two passes
2103 * over the log during recovery. During the first we build a table of
2104 * those buffers which have been cancelled, and during the second we
2105 * only replay those buffers which do not have corresponding cancel
2106 * records in the table. See xlog_recover_do_buffer_pass[1,2] above
2107 * for more details on the implementation of the table of cancel records.
2108 */
2109STATIC int
c9f71f5f 2110xlog_recover_buffer_pass2(
1da177e4 2111 xlog_t *log,
43ff2122 2112 struct list_head *buffer_list,
c9f71f5f 2113 xlog_recover_item_t *item)
1da177e4 2114{
4e0d5f92 2115 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
e2714bf8 2116 xfs_mount_t *mp = log->l_mp;
1da177e4
LT
2117 xfs_buf_t *bp;
2118 int error;
6ad112bf 2119 uint buf_flags;
1da177e4 2120
c9f71f5f
CH
2121 /*
2122 * In this pass we only want to recover all the buffers which have
2123 * not been cancelled and are not cancellation buffers themselves.
2124 */
2125 if (xlog_check_buffer_cancelled(log, buf_f->blf_blkno,
2126 buf_f->blf_len, buf_f->blf_flags)) {
2127 trace_xfs_log_recover_buf_cancel(log, buf_f);
1da177e4 2128 return 0;
1da177e4 2129 }
c9f71f5f 2130
9abbc539 2131 trace_xfs_log_recover_buf_recover(log, buf_f);
1da177e4 2132
0cadda1c 2133 buf_flags = XBF_LOCK;
e2714bf8 2134 if (!(buf_f->blf_flags & XFS_BLF_INODE_BUF))
0cadda1c 2135 buf_flags |= XBF_MAPPED;
6ad112bf 2136
e2714bf8
CH
2137 bp = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len,
2138 buf_flags);
ac4d6888
CS
2139 if (!bp)
2140 return XFS_ERROR(ENOMEM);
e5702805 2141 error = bp->b_error;
5a52c2a5 2142 if (error) {
901796af 2143 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#1)");
1da177e4
LT
2144 xfs_buf_relse(bp);
2145 return error;
2146 }
2147
e2714bf8 2148 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
1da177e4 2149 error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
e2714bf8 2150 } else if (buf_f->blf_flags &
c1155410 2151 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
1da177e4
LT
2152 xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2153 } else {
9abbc539 2154 xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
1da177e4
LT
2155 }
2156 if (error)
2157 return XFS_ERROR(error);
2158
2159 /*
2160 * Perform delayed write on the buffer. Asynchronous writes will be
2161 * slower when taking into account all the buffers to be flushed.
2162 *
2163 * Also make sure that only inode buffers with good sizes stay in
2164 * the buffer cache. The kernel moves inodes in buffers of 1 block
2165 * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger. The inode
2166 * buffers in the log can be a different size if the log was generated
2167 * by an older kernel using unclustered inode buffers or a newer kernel
2168 * running with a different inode cluster size. Regardless, if the
2169 * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE)
2170 * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep
2171 * the buffer out of the buffer cache so that the buffer won't
2172 * overlap with future reads of those inodes.
2173 */
2174 if (XFS_DINODE_MAGIC ==
b53e675d 2175 be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
1da177e4
LT
2176 (XFS_BUF_COUNT(bp) != MAX(log->l_mp->m_sb.sb_blocksize,
2177 (__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) {
c867cb61 2178 xfs_buf_stale(bp);
c2b006c1 2179 error = xfs_bwrite(bp);
1da177e4 2180 } else {
ebad861b 2181 ASSERT(bp->b_target->bt_mount == mp);
cb669ca5 2182 bp->b_iodone = xlog_recover_iodone;
43ff2122 2183 xfs_buf_delwri_queue(bp, buffer_list);
1da177e4
LT
2184 }
2185
c2b006c1
CH
2186 xfs_buf_relse(bp);
2187 return error;
1da177e4
LT
2188}
2189
2190STATIC int
c9f71f5f 2191xlog_recover_inode_pass2(
1da177e4 2192 xlog_t *log,
43ff2122 2193 struct list_head *buffer_list,
c9f71f5f 2194 xlog_recover_item_t *item)
1da177e4
LT
2195{
2196 xfs_inode_log_format_t *in_f;
c9f71f5f 2197 xfs_mount_t *mp = log->l_mp;
1da177e4 2198 xfs_buf_t *bp;
1da177e4 2199 xfs_dinode_t *dip;
1da177e4
LT
2200 int len;
2201 xfs_caddr_t src;
2202 xfs_caddr_t dest;
2203 int error;
2204 int attr_index;
2205 uint fields;
347d1c01 2206 xfs_icdinode_t *dicp;
6d192a9b 2207 int need_free = 0;
1da177e4 2208
6d192a9b 2209 if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
4e0d5f92 2210 in_f = item->ri_buf[0].i_addr;
6d192a9b 2211 } else {
4e0d5f92 2212 in_f = kmem_alloc(sizeof(xfs_inode_log_format_t), KM_SLEEP);
6d192a9b
TS
2213 need_free = 1;
2214 error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
2215 if (error)
2216 goto error;
2217 }
1da177e4
LT
2218
2219 /*
2220 * Inode buffers can be freed, look out for it,
2221 * and do not replay the inode.
2222 */
a1941895
CH
2223 if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
2224 in_f->ilf_len, 0)) {
6d192a9b 2225 error = 0;
9abbc539 2226 trace_xfs_log_recover_inode_cancel(log, in_f);
6d192a9b
TS
2227 goto error;
2228 }
9abbc539 2229 trace_xfs_log_recover_inode_recover(log, in_f);
1da177e4 2230
6ad112bf 2231 bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len,
0cadda1c 2232 XBF_LOCK);
ac4d6888
CS
2233 if (!bp) {
2234 error = ENOMEM;
2235 goto error;
2236 }
e5702805 2237 error = bp->b_error;
5a52c2a5 2238 if (error) {
901796af 2239 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#2)");
1da177e4 2240 xfs_buf_relse(bp);
6d192a9b 2241 goto error;
1da177e4 2242 }
1da177e4 2243 ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
a1941895 2244 dip = (xfs_dinode_t *)xfs_buf_offset(bp, in_f->ilf_boffset);
1da177e4
LT
2245
2246 /*
2247 * Make sure the place we're flushing out to really looks
2248 * like an inode!
2249 */
69ef921b 2250 if (unlikely(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC))) {
1da177e4 2251 xfs_buf_relse(bp);
a0fa2b67
DC
2252 xfs_alert(mp,
2253 "%s: Bad inode magic number, dip = 0x%p, dino bp = 0x%p, ino = %Ld",
2254 __func__, dip, bp, in_f->ilf_ino);
c9f71f5f 2255 XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)",
1da177e4 2256 XFS_ERRLEVEL_LOW, mp);
6d192a9b
TS
2257 error = EFSCORRUPTED;
2258 goto error;
1da177e4 2259 }
4e0d5f92 2260 dicp = item->ri_buf[1].i_addr;
1da177e4
LT
2261 if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
2262 xfs_buf_relse(bp);
a0fa2b67
DC
2263 xfs_alert(mp,
2264 "%s: Bad inode log record, rec ptr 0x%p, ino %Ld",
2265 __func__, item, in_f->ilf_ino);
c9f71f5f 2266 XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)",
1da177e4 2267 XFS_ERRLEVEL_LOW, mp);
6d192a9b
TS
2268 error = EFSCORRUPTED;
2269 goto error;
1da177e4
LT
2270 }
2271
2272 /* Skip replay when the on disk inode is newer than the log one */
81591fe2 2273 if (dicp->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
1da177e4
LT
2274 /*
2275 * Deal with the wrap case, DI_MAX_FLUSH is less
2276 * than smaller numbers
2277 */
81591fe2 2278 if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
347d1c01 2279 dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) {
1da177e4
LT
2280 /* do nothing */
2281 } else {
2282 xfs_buf_relse(bp);
9abbc539 2283 trace_xfs_log_recover_inode_skip(log, in_f);
6d192a9b
TS
2284 error = 0;
2285 goto error;
1da177e4
LT
2286 }
2287 }
2288 /* Take the opportunity to reset the flush iteration count */
2289 dicp->di_flushiter = 0;
2290
abbede1b 2291 if (unlikely(S_ISREG(dicp->di_mode))) {
1da177e4
LT
2292 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2293 (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
c9f71f5f 2294 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)",
1da177e4
LT
2295 XFS_ERRLEVEL_LOW, mp, dicp);
2296 xfs_buf_relse(bp);
a0fa2b67
DC
2297 xfs_alert(mp,
2298 "%s: Bad regular inode log record, rec ptr 0x%p, "
2299 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2300 __func__, item, dip, bp, in_f->ilf_ino);
6d192a9b
TS
2301 error = EFSCORRUPTED;
2302 goto error;
1da177e4 2303 }
abbede1b 2304 } else if (unlikely(S_ISDIR(dicp->di_mode))) {
1da177e4
LT
2305 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2306 (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
2307 (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
c9f71f5f 2308 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)",
1da177e4
LT
2309 XFS_ERRLEVEL_LOW, mp, dicp);
2310 xfs_buf_relse(bp);
a0fa2b67
DC
2311 xfs_alert(mp,
2312 "%s: Bad dir inode log record, rec ptr 0x%p, "
2313 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2314 __func__, item, dip, bp, in_f->ilf_ino);
6d192a9b
TS
2315 error = EFSCORRUPTED;
2316 goto error;
1da177e4
LT
2317 }
2318 }
2319 if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
c9f71f5f 2320 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)",
1da177e4
LT
2321 XFS_ERRLEVEL_LOW, mp, dicp);
2322 xfs_buf_relse(bp);
a0fa2b67
DC
2323 xfs_alert(mp,
2324 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
2325 "dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
2326 __func__, item, dip, bp, in_f->ilf_ino,
1da177e4
LT
2327 dicp->di_nextents + dicp->di_anextents,
2328 dicp->di_nblocks);
6d192a9b
TS
2329 error = EFSCORRUPTED;
2330 goto error;
1da177e4
LT
2331 }
2332 if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
c9f71f5f 2333 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)",
1da177e4
LT
2334 XFS_ERRLEVEL_LOW, mp, dicp);
2335 xfs_buf_relse(bp);
a0fa2b67
DC
2336 xfs_alert(mp,
2337 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
2338 "dino bp 0x%p, ino %Ld, forkoff 0x%x", __func__,
c9f71f5f 2339 item, dip, bp, in_f->ilf_ino, dicp->di_forkoff);
6d192a9b
TS
2340 error = EFSCORRUPTED;
2341 goto error;
1da177e4 2342 }
81591fe2 2343 if (unlikely(item->ri_buf[1].i_len > sizeof(struct xfs_icdinode))) {
c9f71f5f 2344 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)",
1da177e4
LT
2345 XFS_ERRLEVEL_LOW, mp, dicp);
2346 xfs_buf_relse(bp);
a0fa2b67
DC
2347 xfs_alert(mp,
2348 "%s: Bad inode log record length %d, rec ptr 0x%p",
2349 __func__, item->ri_buf[1].i_len, item);
6d192a9b
TS
2350 error = EFSCORRUPTED;
2351 goto error;
1da177e4
LT
2352 }
2353
2354 /* The core is in in-core format */
4e0d5f92 2355 xfs_dinode_to_disk(dip, item->ri_buf[1].i_addr);
1da177e4
LT
2356
2357 /* the rest is in on-disk format */
81591fe2
CH
2358 if (item->ri_buf[1].i_len > sizeof(struct xfs_icdinode)) {
2359 memcpy((xfs_caddr_t) dip + sizeof(struct xfs_icdinode),
2360 item->ri_buf[1].i_addr + sizeof(struct xfs_icdinode),
2361 item->ri_buf[1].i_len - sizeof(struct xfs_icdinode));
1da177e4
LT
2362 }
2363
2364 fields = in_f->ilf_fields;
2365 switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
2366 case XFS_ILOG_DEV:
81591fe2 2367 xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
1da177e4
LT
2368 break;
2369 case XFS_ILOG_UUID:
81591fe2
CH
2370 memcpy(XFS_DFORK_DPTR(dip),
2371 &in_f->ilf_u.ilfu_uuid,
2372 sizeof(uuid_t));
1da177e4
LT
2373 break;
2374 }
2375
2376 if (in_f->ilf_size == 2)
2377 goto write_inode_buffer;
2378 len = item->ri_buf[2].i_len;
2379 src = item->ri_buf[2].i_addr;
2380 ASSERT(in_f->ilf_size <= 4);
2381 ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
2382 ASSERT(!(fields & XFS_ILOG_DFORK) ||
2383 (len == in_f->ilf_dsize));
2384
2385 switch (fields & XFS_ILOG_DFORK) {
2386 case XFS_ILOG_DDATA:
2387 case XFS_ILOG_DEXT:
81591fe2 2388 memcpy(XFS_DFORK_DPTR(dip), src, len);
1da177e4
LT
2389 break;
2390
2391 case XFS_ILOG_DBROOT:
7cc95a82 2392 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
81591fe2 2393 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
1da177e4
LT
2394 XFS_DFORK_DSIZE(dip, mp));
2395 break;
2396
2397 default:
2398 /*
2399 * There are no data fork flags set.
2400 */
2401 ASSERT((fields & XFS_ILOG_DFORK) == 0);
2402 break;
2403 }
2404
2405 /*
2406 * If we logged any attribute data, recover it. There may or
2407 * may not have been any other non-core data logged in this
2408 * transaction.
2409 */
2410 if (in_f->ilf_fields & XFS_ILOG_AFORK) {
2411 if (in_f->ilf_fields & XFS_ILOG_DFORK) {
2412 attr_index = 3;
2413 } else {
2414 attr_index = 2;
2415 }
2416 len = item->ri_buf[attr_index].i_len;
2417 src = item->ri_buf[attr_index].i_addr;
2418 ASSERT(len == in_f->ilf_asize);
2419
2420 switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
2421 case XFS_ILOG_ADATA:
2422 case XFS_ILOG_AEXT:
2423 dest = XFS_DFORK_APTR(dip);
2424 ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
2425 memcpy(dest, src, len);
2426 break;
2427
2428 case XFS_ILOG_ABROOT:
2429 dest = XFS_DFORK_APTR(dip);
7cc95a82
CH
2430 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
2431 len, (xfs_bmdr_block_t*)dest,
1da177e4
LT
2432 XFS_DFORK_ASIZE(dip, mp));
2433 break;
2434
2435 default:
a0fa2b67 2436 xfs_warn(log->l_mp, "%s: Invalid flag", __func__);
1da177e4
LT
2437 ASSERT(0);
2438 xfs_buf_relse(bp);
6d192a9b
TS
2439 error = EIO;
2440 goto error;
1da177e4
LT
2441 }
2442 }
2443
2444write_inode_buffer:
ebad861b 2445 ASSERT(bp->b_target->bt_mount == mp);
cb669ca5 2446 bp->b_iodone = xlog_recover_iodone;
43ff2122 2447 xfs_buf_delwri_queue(bp, buffer_list);
61551f1e 2448 xfs_buf_relse(bp);
6d192a9b
TS
2449error:
2450 if (need_free)
f0e2d93c 2451 kmem_free(in_f);
6d192a9b 2452 return XFS_ERROR(error);
1da177e4
LT
2453}
2454
2455/*
2456 * Recover QUOTAOFF records. We simply make a note of it in the xlog_t
2457 * structure, so that we know not to do any dquot item or dquot buffer recovery,
2458 * of that type.
2459 */
2460STATIC int
c9f71f5f 2461xlog_recover_quotaoff_pass1(
1da177e4 2462 xlog_t *log,
c9f71f5f 2463 xlog_recover_item_t *item)
1da177e4 2464{
c9f71f5f 2465 xfs_qoff_logformat_t *qoff_f = item->ri_buf[0].i_addr;
1da177e4
LT
2466 ASSERT(qoff_f);
2467
2468 /*
2469 * The logitem format's flag tells us if this was user quotaoff,
77a7cce4 2470 * group/project quotaoff or both.
1da177e4
LT
2471 */
2472 if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
2473 log->l_quotaoffs_flag |= XFS_DQ_USER;
77a7cce4
NS
2474 if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
2475 log->l_quotaoffs_flag |= XFS_DQ_PROJ;
1da177e4
LT
2476 if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
2477 log->l_quotaoffs_flag |= XFS_DQ_GROUP;
2478
2479 return (0);
2480}
2481
2482/*
2483 * Recover a dquot record
2484 */
2485STATIC int
c9f71f5f 2486xlog_recover_dquot_pass2(
1da177e4 2487 xlog_t *log,
43ff2122 2488 struct list_head *buffer_list,
c9f71f5f 2489 xlog_recover_item_t *item)
1da177e4 2490{
c9f71f5f 2491 xfs_mount_t *mp = log->l_mp;
1da177e4
LT
2492 xfs_buf_t *bp;
2493 struct xfs_disk_dquot *ddq, *recddq;
2494 int error;
2495 xfs_dq_logformat_t *dq_f;
2496 uint type;
2497
1da177e4
LT
2498
2499 /*
2500 * Filesystems are required to send in quota flags at mount time.
2501 */
2502 if (mp->m_qflags == 0)
2503 return (0);
2504
4e0d5f92
CH
2505 recddq = item->ri_buf[1].i_addr;
2506 if (recddq == NULL) {
a0fa2b67 2507 xfs_alert(log->l_mp, "NULL dquot in %s.", __func__);
0c5e1ce8
CH
2508 return XFS_ERROR(EIO);
2509 }
8ec6dba2 2510 if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) {
a0fa2b67 2511 xfs_alert(log->l_mp, "dquot too small (%d) in %s.",
0c5e1ce8
CH
2512 item->ri_buf[1].i_len, __func__);
2513 return XFS_ERROR(EIO);
2514 }
2515
1da177e4
LT
2516 /*
2517 * This type of quotas was turned off, so ignore this record.
2518 */
b53e675d 2519 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
1da177e4
LT
2520 ASSERT(type);
2521 if (log->l_quotaoffs_flag & type)
2522 return (0);
2523
2524 /*
2525 * At this point we know that quota was _not_ turned off.
2526 * Since the mount flags are not indicating to us otherwise, this
2527 * must mean that quota is on, and the dquot needs to be replayed.
2528 * Remember that we may not have fully recovered the superblock yet,
2529 * so we can't do the usual trick of looking at the SB quota bits.
2530 *
2531 * The other possibility, of course, is that the quota subsystem was
2532 * removed since the last mount - ENOSYS.
2533 */
4e0d5f92 2534 dq_f = item->ri_buf[0].i_addr;
1da177e4 2535 ASSERT(dq_f);
a0fa2b67
DC
2536 error = xfs_qm_dqcheck(mp, recddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
2537 "xlog_recover_dquot_pass2 (log copy)");
2538 if (error)
1da177e4 2539 return XFS_ERROR(EIO);
1da177e4
LT
2540 ASSERT(dq_f->qlf_len == 1);
2541
2542 error = xfs_read_buf(mp, mp->m_ddev_targp,
2543 dq_f->qlf_blkno,
2544 XFS_FSB_TO_BB(mp, dq_f->qlf_len),
2545 0, &bp);
2546 if (error) {
901796af 2547 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#3)");
1da177e4
LT
2548 return error;
2549 }
2550 ASSERT(bp);
2551 ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset);
2552
2553 /*
2554 * At least the magic num portion should be on disk because this
2555 * was among a chunk of dquots created earlier, and we did some
2556 * minimal initialization then.
2557 */
a0fa2b67
DC
2558 error = xfs_qm_dqcheck(mp, ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
2559 "xlog_recover_dquot_pass2");
2560 if (error) {
1da177e4
LT
2561 xfs_buf_relse(bp);
2562 return XFS_ERROR(EIO);
2563 }
2564
2565 memcpy(ddq, recddq, item->ri_buf[1].i_len);
2566
2567 ASSERT(dq_f->qlf_size == 2);
ebad861b 2568 ASSERT(bp->b_target->bt_mount == mp);
cb669ca5 2569 bp->b_iodone = xlog_recover_iodone;
43ff2122 2570 xfs_buf_delwri_queue(bp, buffer_list);
61551f1e 2571 xfs_buf_relse(bp);
1da177e4
LT
2572
2573 return (0);
2574}
2575
2576/*
2577 * This routine is called to create an in-core extent free intent
2578 * item from the efi format structure which was logged on disk.
2579 * It allocates an in-core efi, copies the extents from the format
2580 * structure into it, and adds the efi to the AIL with the given
2581 * LSN.
2582 */
6d192a9b 2583STATIC int
c9f71f5f 2584xlog_recover_efi_pass2(
1da177e4
LT
2585 xlog_t *log,
2586 xlog_recover_item_t *item,
c9f71f5f 2587 xfs_lsn_t lsn)
1da177e4 2588{
6d192a9b 2589 int error;
c9f71f5f 2590 xfs_mount_t *mp = log->l_mp;
1da177e4
LT
2591 xfs_efi_log_item_t *efip;
2592 xfs_efi_log_format_t *efi_formatp;
1da177e4 2593
4e0d5f92 2594 efi_formatp = item->ri_buf[0].i_addr;
1da177e4 2595
1da177e4 2596 efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
6d192a9b
TS
2597 if ((error = xfs_efi_copy_format(&(item->ri_buf[0]),
2598 &(efip->efi_format)))) {
2599 xfs_efi_item_free(efip);
2600 return error;
2601 }
b199c8a4 2602 atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
1da177e4 2603
a9c21c1b 2604 spin_lock(&log->l_ailp->xa_lock);
1da177e4 2605 /*
783a2f65 2606 * xfs_trans_ail_update() drops the AIL lock.
1da177e4 2607 */
e6059949 2608 xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn);
6d192a9b 2609 return 0;
1da177e4
LT
2610}
2611
2612
2613/*
2614 * This routine is called when an efd format structure is found in
2615 * a committed transaction in the log. It's purpose is to cancel
2616 * the corresponding efi if it was still in the log. To do this
2617 * it searches the AIL for the efi with an id equal to that in the
2618 * efd format structure. If we find it, we remove the efi from the
2619 * AIL and free it.
2620 */
c9f71f5f
CH
2621STATIC int
2622xlog_recover_efd_pass2(
1da177e4 2623 xlog_t *log,
c9f71f5f 2624 xlog_recover_item_t *item)
1da177e4 2625{
1da177e4
LT
2626 xfs_efd_log_format_t *efd_formatp;
2627 xfs_efi_log_item_t *efip = NULL;
2628 xfs_log_item_t *lip;
1da177e4 2629 __uint64_t efi_id;
27d8d5fe 2630 struct xfs_ail_cursor cur;
783a2f65 2631 struct xfs_ail *ailp = log->l_ailp;
1da177e4 2632
4e0d5f92 2633 efd_formatp = item->ri_buf[0].i_addr;
6d192a9b
TS
2634 ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
2635 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
2636 (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
2637 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
1da177e4
LT
2638 efi_id = efd_formatp->efd_efi_id;
2639
2640 /*
2641 * Search for the efi with the id in the efd format structure
2642 * in the AIL.
2643 */
a9c21c1b
DC
2644 spin_lock(&ailp->xa_lock);
2645 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
1da177e4
LT
2646 while (lip != NULL) {
2647 if (lip->li_type == XFS_LI_EFI) {
2648 efip = (xfs_efi_log_item_t *)lip;
2649 if (efip->efi_format.efi_id == efi_id) {
2650 /*
783a2f65 2651 * xfs_trans_ail_delete() drops the
1da177e4
LT
2652 * AIL lock.
2653 */
04913fdd
DC
2654 xfs_trans_ail_delete(ailp, lip,
2655 SHUTDOWN_CORRUPT_INCORE);
8ae2c0f6 2656 xfs_efi_item_free(efip);
a9c21c1b 2657 spin_lock(&ailp->xa_lock);
27d8d5fe 2658 break;
1da177e4
LT
2659 }
2660 }
a9c21c1b 2661 lip = xfs_trans_ail_cursor_next(ailp, &cur);
1da177e4 2662 }
a9c21c1b
DC
2663 xfs_trans_ail_cursor_done(ailp, &cur);
2664 spin_unlock(&ailp->xa_lock);
c9f71f5f
CH
2665
2666 return 0;
1da177e4
LT
2667}
2668
1da177e4
LT
2669/*
2670 * Free up any resources allocated by the transaction
2671 *
2672 * Remember that EFIs, EFDs, and IUNLINKs are handled later.
2673 */
2674STATIC void
2675xlog_recover_free_trans(
d0450948 2676 struct xlog_recover *trans)
1da177e4 2677{
f0a76953 2678 xlog_recover_item_t *item, *n;
1da177e4
LT
2679 int i;
2680
f0a76953
DC
2681 list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
2682 /* Free the regions in the item. */
2683 list_del(&item->ri_list);
2684 for (i = 0; i < item->ri_cnt; i++)
2685 kmem_free(item->ri_buf[i].i_addr);
1da177e4 2686 /* Free the item itself */
f0a76953
DC
2687 kmem_free(item->ri_buf);
2688 kmem_free(item);
2689 }
1da177e4 2690 /* Free the transaction recover structure */
f0e2d93c 2691 kmem_free(trans);
1da177e4
LT
2692}
2693
d0450948 2694STATIC int
c9f71f5f 2695xlog_recover_commit_pass1(
d0450948
CH
2696 struct log *log,
2697 struct xlog_recover *trans,
c9f71f5f 2698 xlog_recover_item_t *item)
d0450948 2699{
c9f71f5f 2700 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1);
d0450948
CH
2701
2702 switch (ITEM_TYPE(item)) {
2703 case XFS_LI_BUF:
c9f71f5f
CH
2704 return xlog_recover_buffer_pass1(log, item);
2705 case XFS_LI_QUOTAOFF:
2706 return xlog_recover_quotaoff_pass1(log, item);
d0450948 2707 case XFS_LI_INODE:
d0450948 2708 case XFS_LI_EFI:
d0450948 2709 case XFS_LI_EFD:
c9f71f5f
CH
2710 case XFS_LI_DQUOT:
2711 /* nothing to do in pass 1 */
d0450948 2712 return 0;
c9f71f5f 2713 default:
a0fa2b67
DC
2714 xfs_warn(log->l_mp, "%s: invalid item type (%d)",
2715 __func__, ITEM_TYPE(item));
c9f71f5f
CH
2716 ASSERT(0);
2717 return XFS_ERROR(EIO);
2718 }
2719}
2720
2721STATIC int
2722xlog_recover_commit_pass2(
2723 struct log *log,
2724 struct xlog_recover *trans,
43ff2122 2725 struct list_head *buffer_list,
c9f71f5f
CH
2726 xlog_recover_item_t *item)
2727{
2728 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2);
2729
2730 switch (ITEM_TYPE(item)) {
2731 case XFS_LI_BUF:
43ff2122 2732 return xlog_recover_buffer_pass2(log, buffer_list, item);
c9f71f5f 2733 case XFS_LI_INODE:
43ff2122 2734 return xlog_recover_inode_pass2(log, buffer_list, item);
c9f71f5f
CH
2735 case XFS_LI_EFI:
2736 return xlog_recover_efi_pass2(log, item, trans->r_lsn);
2737 case XFS_LI_EFD:
2738 return xlog_recover_efd_pass2(log, item);
d0450948 2739 case XFS_LI_DQUOT:
43ff2122 2740 return xlog_recover_dquot_pass2(log, buffer_list, item);
d0450948 2741 case XFS_LI_QUOTAOFF:
c9f71f5f
CH
2742 /* nothing to do in pass2 */
2743 return 0;
d0450948 2744 default:
a0fa2b67
DC
2745 xfs_warn(log->l_mp, "%s: invalid item type (%d)",
2746 __func__, ITEM_TYPE(item));
d0450948
CH
2747 ASSERT(0);
2748 return XFS_ERROR(EIO);
2749 }
2750}
2751
2752/*
2753 * Perform the transaction.
2754 *
2755 * If the transaction modifies a buffer or inode, do it now. Otherwise,
2756 * EFIs and EFDs get queued up by adding entries into the AIL for them.
2757 */
1da177e4
LT
2758STATIC int
2759xlog_recover_commit_trans(
d0450948
CH
2760 struct log *log,
2761 struct xlog_recover *trans,
1da177e4
LT
2762 int pass)
2763{
43ff2122 2764 int error = 0, error2;
d0450948 2765 xlog_recover_item_t *item;
43ff2122 2766 LIST_HEAD (buffer_list);
1da177e4 2767
f0a76953 2768 hlist_del(&trans->r_list);
d0450948
CH
2769
2770 error = xlog_recover_reorder_trans(log, trans, pass);
2771 if (error)
1da177e4 2772 return error;
d0450948
CH
2773
2774 list_for_each_entry(item, &trans->r_itemq, ri_list) {
43ff2122
CH
2775 switch (pass) {
2776 case XLOG_RECOVER_PASS1:
c9f71f5f 2777 error = xlog_recover_commit_pass1(log, trans, item);
43ff2122
CH
2778 break;
2779 case XLOG_RECOVER_PASS2:
2780 error = xlog_recover_commit_pass2(log, trans,
2781 &buffer_list, item);
2782 break;
2783 default:
2784 ASSERT(0);
2785 }
2786
d0450948 2787 if (error)
43ff2122 2788 goto out;
d0450948
CH
2789 }
2790
2791 xlog_recover_free_trans(trans);
43ff2122
CH
2792
2793out:
2794 error2 = xfs_buf_delwri_submit(&buffer_list);
2795 return error ? error : error2;
1da177e4
LT
2796}
2797
2798STATIC int
2799xlog_recover_unmount_trans(
a0fa2b67 2800 struct log *log,
1da177e4
LT
2801 xlog_recover_t *trans)
2802{
2803 /* Do nothing now */
a0fa2b67 2804 xfs_warn(log->l_mp, "%s: Unmount LR", __func__);
1da177e4
LT
2805 return 0;
2806}
2807
2808/*
2809 * There are two valid states of the r_state field. 0 indicates that the
2810 * transaction structure is in a normal state. We have either seen the
2811 * start of the transaction or the last operation we added was not a partial
2812 * operation. If the last operation we added to the transaction was a
2813 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
2814 *
2815 * NOTE: skip LRs with 0 data length.
2816 */
2817STATIC int
2818xlog_recover_process_data(
2819 xlog_t *log,
f0a76953 2820 struct hlist_head rhash[],
1da177e4
LT
2821 xlog_rec_header_t *rhead,
2822 xfs_caddr_t dp,
2823 int pass)
2824{
2825 xfs_caddr_t lp;
2826 int num_logops;
2827 xlog_op_header_t *ohead;
2828 xlog_recover_t *trans;
2829 xlog_tid_t tid;
2830 int error;
2831 unsigned long hash;
2832 uint flags;
2833
b53e675d
CH
2834 lp = dp + be32_to_cpu(rhead->h_len);
2835 num_logops = be32_to_cpu(rhead->h_num_logops);
1da177e4
LT
2836
2837 /* check the log format matches our own - else we can't recover */
2838 if (xlog_header_check_recover(log->l_mp, rhead))
2839 return (XFS_ERROR(EIO));
2840
2841 while ((dp < lp) && num_logops) {
2842 ASSERT(dp + sizeof(xlog_op_header_t) <= lp);
2843 ohead = (xlog_op_header_t *)dp;
2844 dp += sizeof(xlog_op_header_t);
2845 if (ohead->oh_clientid != XFS_TRANSACTION &&
2846 ohead->oh_clientid != XFS_LOG) {
a0fa2b67
DC
2847 xfs_warn(log->l_mp, "%s: bad clientid 0x%x",
2848 __func__, ohead->oh_clientid);
1da177e4
LT
2849 ASSERT(0);
2850 return (XFS_ERROR(EIO));
2851 }
67fcb7bf 2852 tid = be32_to_cpu(ohead->oh_tid);
1da177e4 2853 hash = XLOG_RHASH(tid);
f0a76953 2854 trans = xlog_recover_find_tid(&rhash[hash], tid);
1da177e4
LT
2855 if (trans == NULL) { /* not found; add new tid */
2856 if (ohead->oh_flags & XLOG_START_TRANS)
2857 xlog_recover_new_tid(&rhash[hash], tid,
b53e675d 2858 be64_to_cpu(rhead->h_lsn));
1da177e4 2859 } else {
9742bb93 2860 if (dp + be32_to_cpu(ohead->oh_len) > lp) {
a0fa2b67
DC
2861 xfs_warn(log->l_mp, "%s: bad length 0x%x",
2862 __func__, be32_to_cpu(ohead->oh_len));
9742bb93
LM
2863 WARN_ON(1);
2864 return (XFS_ERROR(EIO));
2865 }
1da177e4
LT
2866 flags = ohead->oh_flags & ~XLOG_END_TRANS;
2867 if (flags & XLOG_WAS_CONT_TRANS)
2868 flags &= ~XLOG_CONTINUE_TRANS;
2869 switch (flags) {
2870 case XLOG_COMMIT_TRANS:
2871 error = xlog_recover_commit_trans(log,
f0a76953 2872 trans, pass);
1da177e4
LT
2873 break;
2874 case XLOG_UNMOUNT_TRANS:
a0fa2b67 2875 error = xlog_recover_unmount_trans(log, trans);
1da177e4
LT
2876 break;
2877 case XLOG_WAS_CONT_TRANS:
9abbc539
DC
2878 error = xlog_recover_add_to_cont_trans(log,
2879 trans, dp,
2880 be32_to_cpu(ohead->oh_len));
1da177e4
LT
2881 break;
2882 case XLOG_START_TRANS:
a0fa2b67
DC
2883 xfs_warn(log->l_mp, "%s: bad transaction",
2884 __func__);
1da177e4
LT
2885 ASSERT(0);
2886 error = XFS_ERROR(EIO);
2887 break;
2888 case 0:
2889 case XLOG_CONTINUE_TRANS:
9abbc539 2890 error = xlog_recover_add_to_trans(log, trans,
67fcb7bf 2891 dp, be32_to_cpu(ohead->oh_len));
1da177e4
LT
2892 break;
2893 default:
a0fa2b67
DC
2894 xfs_warn(log->l_mp, "%s: bad flag 0x%x",
2895 __func__, flags);
1da177e4
LT
2896 ASSERT(0);
2897 error = XFS_ERROR(EIO);
2898 break;
2899 }
2900 if (error)
2901 return error;
2902 }
67fcb7bf 2903 dp += be32_to_cpu(ohead->oh_len);
1da177e4
LT
2904 num_logops--;
2905 }
2906 return 0;
2907}
2908
2909/*
2910 * Process an extent free intent item that was recovered from
2911 * the log. We need to free the extents that it describes.
2912 */
3c1e2bbe 2913STATIC int
1da177e4
LT
2914xlog_recover_process_efi(
2915 xfs_mount_t *mp,
2916 xfs_efi_log_item_t *efip)
2917{
2918 xfs_efd_log_item_t *efdp;
2919 xfs_trans_t *tp;
2920 int i;
3c1e2bbe 2921 int error = 0;
1da177e4
LT
2922 xfs_extent_t *extp;
2923 xfs_fsblock_t startblock_fsb;
2924
b199c8a4 2925 ASSERT(!test_bit(XFS_EFI_RECOVERED, &efip->efi_flags));
1da177e4
LT
2926
2927 /*
2928 * First check the validity of the extents described by the
2929 * EFI. If any are bad, then assume that all are bad and
2930 * just toss the EFI.
2931 */
2932 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
2933 extp = &(efip->efi_format.efi_extents[i]);
2934 startblock_fsb = XFS_BB_TO_FSB(mp,
2935 XFS_FSB_TO_DADDR(mp, extp->ext_start));
2936 if ((startblock_fsb == 0) ||
2937 (extp->ext_len == 0) ||
2938 (startblock_fsb >= mp->m_sb.sb_dblocks) ||
2939 (extp->ext_len >= mp->m_sb.sb_agblocks)) {
2940 /*
2941 * This will pull the EFI from the AIL and
2942 * free the memory associated with it.
2943 */
2944 xfs_efi_release(efip, efip->efi_format.efi_nextents);
3c1e2bbe 2945 return XFS_ERROR(EIO);
1da177e4
LT
2946 }
2947 }
2948
2949 tp = xfs_trans_alloc(mp, 0);
3c1e2bbe 2950 error = xfs_trans_reserve(tp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 0, 0);
fc6149d8
DC
2951 if (error)
2952 goto abort_error;
1da177e4
LT
2953 efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
2954
2955 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
2956 extp = &(efip->efi_format.efi_extents[i]);
fc6149d8
DC
2957 error = xfs_free_extent(tp, extp->ext_start, extp->ext_len);
2958 if (error)
2959 goto abort_error;
1da177e4
LT
2960 xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
2961 extp->ext_len);
2962 }
2963
b199c8a4 2964 set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
e5720eec 2965 error = xfs_trans_commit(tp, 0);
3c1e2bbe 2966 return error;
fc6149d8
DC
2967
2968abort_error:
2969 xfs_trans_cancel(tp, XFS_TRANS_ABORT);
2970 return error;
1da177e4
LT
2971}
2972
1da177e4
LT
2973/*
2974 * When this is called, all of the EFIs which did not have
2975 * corresponding EFDs should be in the AIL. What we do now
2976 * is free the extents associated with each one.
2977 *
2978 * Since we process the EFIs in normal transactions, they
2979 * will be removed at some point after the commit. This prevents
2980 * us from just walking down the list processing each one.
2981 * We'll use a flag in the EFI to skip those that we've already
2982 * processed and use the AIL iteration mechanism's generation
2983 * count to try to speed this up at least a bit.
2984 *
2985 * When we start, we know that the EFIs are the only things in
2986 * the AIL. As we process them, however, other items are added
2987 * to the AIL. Since everything added to the AIL must come after
2988 * everything already in the AIL, we stop processing as soon as
2989 * we see something other than an EFI in the AIL.
2990 */
3c1e2bbe 2991STATIC int
1da177e4
LT
2992xlog_recover_process_efis(
2993 xlog_t *log)
2994{
2995 xfs_log_item_t *lip;
2996 xfs_efi_log_item_t *efip;
3c1e2bbe 2997 int error = 0;
27d8d5fe 2998 struct xfs_ail_cursor cur;
a9c21c1b 2999 struct xfs_ail *ailp;
1da177e4 3000
a9c21c1b
DC
3001 ailp = log->l_ailp;
3002 spin_lock(&ailp->xa_lock);
3003 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
1da177e4
LT
3004 while (lip != NULL) {
3005 /*
3006 * We're done when we see something other than an EFI.
27d8d5fe 3007 * There should be no EFIs left in the AIL now.
1da177e4
LT
3008 */
3009 if (lip->li_type != XFS_LI_EFI) {
27d8d5fe 3010#ifdef DEBUG
a9c21c1b 3011 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
27d8d5fe
DC
3012 ASSERT(lip->li_type != XFS_LI_EFI);
3013#endif
1da177e4
LT
3014 break;
3015 }
3016
3017 /*
3018 * Skip EFIs that we've already processed.
3019 */
3020 efip = (xfs_efi_log_item_t *)lip;
b199c8a4 3021 if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags)) {
a9c21c1b 3022 lip = xfs_trans_ail_cursor_next(ailp, &cur);
1da177e4
LT
3023 continue;
3024 }
3025
a9c21c1b
DC
3026 spin_unlock(&ailp->xa_lock);
3027 error = xlog_recover_process_efi(log->l_mp, efip);
3028 spin_lock(&ailp->xa_lock);
27d8d5fe
DC
3029 if (error)
3030 goto out;
a9c21c1b 3031 lip = xfs_trans_ail_cursor_next(ailp, &cur);
1da177e4 3032 }
27d8d5fe 3033out:
a9c21c1b
DC
3034 xfs_trans_ail_cursor_done(ailp, &cur);
3035 spin_unlock(&ailp->xa_lock);
3c1e2bbe 3036 return error;
1da177e4
LT
3037}
3038
3039/*
3040 * This routine performs a transaction to null out a bad inode pointer
3041 * in an agi unlinked inode hash bucket.
3042 */
3043STATIC void
3044xlog_recover_clear_agi_bucket(
3045 xfs_mount_t *mp,
3046 xfs_agnumber_t agno,
3047 int bucket)
3048{
3049 xfs_trans_t *tp;
3050 xfs_agi_t *agi;
3051 xfs_buf_t *agibp;
3052 int offset;
3053 int error;
3054
3055 tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
5e1be0fb
CH
3056 error = xfs_trans_reserve(tp, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp),
3057 0, 0, 0);
e5720eec
DC
3058 if (error)
3059 goto out_abort;
1da177e4 3060
5e1be0fb
CH
3061 error = xfs_read_agi(mp, tp, agno, &agibp);
3062 if (error)
e5720eec 3063 goto out_abort;
1da177e4 3064
5e1be0fb 3065 agi = XFS_BUF_TO_AGI(agibp);
16259e7d 3066 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
1da177e4
LT
3067 offset = offsetof(xfs_agi_t, agi_unlinked) +
3068 (sizeof(xfs_agino_t) * bucket);
3069 xfs_trans_log_buf(tp, agibp, offset,
3070 (offset + sizeof(xfs_agino_t) - 1));
3071
e5720eec
DC
3072 error = xfs_trans_commit(tp, 0);
3073 if (error)
3074 goto out_error;
3075 return;
3076
3077out_abort:
3078 xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3079out_error:
a0fa2b67 3080 xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno);
e5720eec 3081 return;
1da177e4
LT
3082}
3083
23fac50f
CH
3084STATIC xfs_agino_t
3085xlog_recover_process_one_iunlink(
3086 struct xfs_mount *mp,
3087 xfs_agnumber_t agno,
3088 xfs_agino_t agino,
3089 int bucket)
3090{
3091 struct xfs_buf *ibp;
3092 struct xfs_dinode *dip;
3093 struct xfs_inode *ip;
3094 xfs_ino_t ino;
3095 int error;
3096
3097 ino = XFS_AGINO_TO_INO(mp, agno, agino);
7b6259e7 3098 error = xfs_iget(mp, NULL, ino, 0, 0, &ip);
23fac50f
CH
3099 if (error)
3100 goto fail;
3101
3102 /*
3103 * Get the on disk inode to find the next inode in the bucket.
3104 */
0cadda1c 3105 error = xfs_itobp(mp, NULL, ip, &dip, &ibp, XBF_LOCK);
23fac50f 3106 if (error)
0e446673 3107 goto fail_iput;
23fac50f 3108
23fac50f 3109 ASSERT(ip->i_d.di_nlink == 0);
0e446673 3110 ASSERT(ip->i_d.di_mode != 0);
23fac50f
CH
3111
3112 /* setup for the next pass */
3113 agino = be32_to_cpu(dip->di_next_unlinked);
3114 xfs_buf_relse(ibp);
3115
3116 /*
3117 * Prevent any DMAPI event from being sent when the reference on
3118 * the inode is dropped.
3119 */
3120 ip->i_d.di_dmevmask = 0;
3121
0e446673 3122 IRELE(ip);
23fac50f
CH
3123 return agino;
3124
0e446673
CH
3125 fail_iput:
3126 IRELE(ip);
23fac50f
CH
3127 fail:
3128 /*
3129 * We can't read in the inode this bucket points to, or this inode
3130 * is messed up. Just ditch this bucket of inodes. We will lose
3131 * some inodes and space, but at least we won't hang.
3132 *
3133 * Call xlog_recover_clear_agi_bucket() to perform a transaction to
3134 * clear the inode pointer in the bucket.
3135 */
3136 xlog_recover_clear_agi_bucket(mp, agno, bucket);
3137 return NULLAGINO;
3138}
3139
1da177e4
LT
3140/*
3141 * xlog_iunlink_recover
3142 *
3143 * This is called during recovery to process any inodes which
3144 * we unlinked but not freed when the system crashed. These
3145 * inodes will be on the lists in the AGI blocks. What we do
3146 * here is scan all the AGIs and fully truncate and free any
3147 * inodes found on the lists. Each inode is removed from the
3148 * lists when it has been fully truncated and is freed. The
3149 * freeing of the inode and its removal from the list must be
3150 * atomic.
3151 */
d96f8f89 3152STATIC void
1da177e4
LT
3153xlog_recover_process_iunlinks(
3154 xlog_t *log)
3155{
3156 xfs_mount_t *mp;
3157 xfs_agnumber_t agno;
3158 xfs_agi_t *agi;
3159 xfs_buf_t *agibp;
1da177e4 3160 xfs_agino_t agino;
1da177e4
LT
3161 int bucket;
3162 int error;
3163 uint mp_dmevmask;
3164
3165 mp = log->l_mp;
3166
3167 /*
3168 * Prevent any DMAPI event from being sent while in this function.
3169 */
3170 mp_dmevmask = mp->m_dmevmask;
3171 mp->m_dmevmask = 0;
3172
3173 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3174 /*
3175 * Find the agi for this ag.
3176 */
5e1be0fb
CH
3177 error = xfs_read_agi(mp, NULL, agno, &agibp);
3178 if (error) {
3179 /*
3180 * AGI is b0rked. Don't process it.
3181 *
3182 * We should probably mark the filesystem as corrupt
3183 * after we've recovered all the ag's we can....
3184 */
3185 continue;
1da177e4 3186 }
d97d32ed
JK
3187 /*
3188 * Unlock the buffer so that it can be acquired in the normal
3189 * course of the transaction to truncate and free each inode.
3190 * Because we are not racing with anyone else here for the AGI
3191 * buffer, we don't even need to hold it locked to read the
3192 * initial unlinked bucket entries out of the buffer. We keep
3193 * buffer reference though, so that it stays pinned in memory
3194 * while we need the buffer.
3195 */
1da177e4 3196 agi = XFS_BUF_TO_AGI(agibp);
d97d32ed 3197 xfs_buf_unlock(agibp);
1da177e4
LT
3198
3199 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
16259e7d 3200 agino = be32_to_cpu(agi->agi_unlinked[bucket]);
1da177e4 3201 while (agino != NULLAGINO) {
23fac50f
CH
3202 agino = xlog_recover_process_one_iunlink(mp,
3203 agno, agino, bucket);
1da177e4
LT
3204 }
3205 }
d97d32ed 3206 xfs_buf_rele(agibp);
1da177e4
LT
3207 }
3208
3209 mp->m_dmevmask = mp_dmevmask;
3210}
3211
3212
3213#ifdef DEBUG
3214STATIC void
3215xlog_pack_data_checksum(
3216 xlog_t *log,
3217 xlog_in_core_t *iclog,
3218 int size)
3219{
3220 int i;
b53e675d 3221 __be32 *up;
1da177e4
LT
3222 uint chksum = 0;
3223
b53e675d 3224 up = (__be32 *)iclog->ic_datap;
1da177e4
LT
3225 /* divide length by 4 to get # words */
3226 for (i = 0; i < (size >> 2); i++) {
b53e675d 3227 chksum ^= be32_to_cpu(*up);
1da177e4
LT
3228 up++;
3229 }
b53e675d 3230 iclog->ic_header.h_chksum = cpu_to_be32(chksum);
1da177e4
LT
3231}
3232#else
3233#define xlog_pack_data_checksum(log, iclog, size)
3234#endif
3235
3236/*
3237 * Stamp cycle number in every block
3238 */
3239void
3240xlog_pack_data(
3241 xlog_t *log,
3242 xlog_in_core_t *iclog,
3243 int roundoff)
3244{
3245 int i, j, k;
3246 int size = iclog->ic_offset + roundoff;
b53e675d 3247 __be32 cycle_lsn;
1da177e4 3248 xfs_caddr_t dp;
1da177e4
LT
3249
3250 xlog_pack_data_checksum(log, iclog, size);
3251
3252 cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
3253
3254 dp = iclog->ic_datap;
3255 for (i = 0; i < BTOBB(size) &&
3256 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
b53e675d
CH
3257 iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
3258 *(__be32 *)dp = cycle_lsn;
1da177e4
LT
3259 dp += BBSIZE;
3260 }
3261
62118709 3262 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
b28708d6
CH
3263 xlog_in_core_2_t *xhdr = iclog->ic_data;
3264
1da177e4
LT
3265 for ( ; i < BTOBB(size); i++) {
3266 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3267 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
b53e675d
CH
3268 xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
3269 *(__be32 *)dp = cycle_lsn;
1da177e4
LT
3270 dp += BBSIZE;
3271 }
3272
3273 for (i = 1; i < log->l_iclog_heads; i++) {
3274 xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
3275 }
3276 }
3277}
3278
1da177e4
LT
3279STATIC void
3280xlog_unpack_data(
3281 xlog_rec_header_t *rhead,
3282 xfs_caddr_t dp,
3283 xlog_t *log)
3284{
3285 int i, j, k;
1da177e4 3286
b53e675d 3287 for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
1da177e4 3288 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
b53e675d 3289 *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
1da177e4
LT
3290 dp += BBSIZE;
3291 }
3292
62118709 3293 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
b28708d6 3294 xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
b53e675d 3295 for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
1da177e4
LT
3296 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3297 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
b53e675d 3298 *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
1da177e4
LT
3299 dp += BBSIZE;
3300 }
3301 }
1da177e4
LT
3302}
3303
3304STATIC int
3305xlog_valid_rec_header(
3306 xlog_t *log,
3307 xlog_rec_header_t *rhead,
3308 xfs_daddr_t blkno)
3309{
3310 int hlen;
3311
69ef921b 3312 if (unlikely(rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))) {
1da177e4
LT
3313 XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
3314 XFS_ERRLEVEL_LOW, log->l_mp);
3315 return XFS_ERROR(EFSCORRUPTED);
3316 }
3317 if (unlikely(
3318 (!rhead->h_version ||
b53e675d 3319 (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
a0fa2b67 3320 xfs_warn(log->l_mp, "%s: unrecognised log version (%d).",
34a622b2 3321 __func__, be32_to_cpu(rhead->h_version));
1da177e4
LT
3322 return XFS_ERROR(EIO);
3323 }
3324
3325 /* LR body must have data or it wouldn't have been written */
b53e675d 3326 hlen = be32_to_cpu(rhead->h_len);
1da177e4
LT
3327 if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
3328 XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
3329 XFS_ERRLEVEL_LOW, log->l_mp);
3330 return XFS_ERROR(EFSCORRUPTED);
3331 }
3332 if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
3333 XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
3334 XFS_ERRLEVEL_LOW, log->l_mp);
3335 return XFS_ERROR(EFSCORRUPTED);
3336 }
3337 return 0;
3338}
3339
3340/*
3341 * Read the log from tail to head and process the log records found.
3342 * Handle the two cases where the tail and head are in the same cycle
3343 * and where the active portion of the log wraps around the end of
3344 * the physical log separately. The pass parameter is passed through
3345 * to the routines called to process the data and is not looked at
3346 * here.
3347 */
3348STATIC int
3349xlog_do_recovery_pass(
3350 xlog_t *log,
3351 xfs_daddr_t head_blk,
3352 xfs_daddr_t tail_blk,
3353 int pass)
3354{
3355 xlog_rec_header_t *rhead;
3356 xfs_daddr_t blk_no;
fc5bc4c8 3357 xfs_caddr_t offset;
1da177e4
LT
3358 xfs_buf_t *hbp, *dbp;
3359 int error = 0, h_size;
3360 int bblks, split_bblks;
3361 int hblks, split_hblks, wrapped_hblks;
f0a76953 3362 struct hlist_head rhash[XLOG_RHASH_SIZE];
1da177e4
LT
3363
3364 ASSERT(head_blk != tail_blk);
3365
3366 /*
3367 * Read the header of the tail block and get the iclog buffer size from
3368 * h_size. Use this to tell how many sectors make up the log header.
3369 */
62118709 3370 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1da177e4
LT
3371 /*
3372 * When using variable length iclogs, read first sector of
3373 * iclog header and extract the header size from it. Get a
3374 * new hbp that is the correct size.
3375 */
3376 hbp = xlog_get_bp(log, 1);
3377 if (!hbp)
3378 return ENOMEM;
076e6acb
CH
3379
3380 error = xlog_bread(log, tail_blk, 1, hbp, &offset);
3381 if (error)
1da177e4 3382 goto bread_err1;
076e6acb 3383
1da177e4
LT
3384 rhead = (xlog_rec_header_t *)offset;
3385 error = xlog_valid_rec_header(log, rhead, tail_blk);
3386 if (error)
3387 goto bread_err1;
b53e675d
CH
3388 h_size = be32_to_cpu(rhead->h_size);
3389 if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
1da177e4
LT
3390 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
3391 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
3392 if (h_size % XLOG_HEADER_CYCLE_SIZE)
3393 hblks++;
3394 xlog_put_bp(hbp);
3395 hbp = xlog_get_bp(log, hblks);
3396 } else {
3397 hblks = 1;
3398 }
3399 } else {
69ce58f0 3400 ASSERT(log->l_sectBBsize == 1);
1da177e4
LT
3401 hblks = 1;
3402 hbp = xlog_get_bp(log, 1);
3403 h_size = XLOG_BIG_RECORD_BSIZE;
3404 }
3405
3406 if (!hbp)
3407 return ENOMEM;
3408 dbp = xlog_get_bp(log, BTOBB(h_size));
3409 if (!dbp) {
3410 xlog_put_bp(hbp);
3411 return ENOMEM;
3412 }
3413
3414 memset(rhash, 0, sizeof(rhash));
3415 if (tail_blk <= head_blk) {
3416 for (blk_no = tail_blk; blk_no < head_blk; ) {
076e6acb
CH
3417 error = xlog_bread(log, blk_no, hblks, hbp, &offset);
3418 if (error)
1da177e4 3419 goto bread_err2;
076e6acb 3420
1da177e4
LT
3421 rhead = (xlog_rec_header_t *)offset;
3422 error = xlog_valid_rec_header(log, rhead, blk_no);
3423 if (error)
3424 goto bread_err2;
3425
3426 /* blocks in data section */
b53e675d 3427 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
076e6acb
CH
3428 error = xlog_bread(log, blk_no + hblks, bblks, dbp,
3429 &offset);
1da177e4
LT
3430 if (error)
3431 goto bread_err2;
076e6acb 3432
1da177e4
LT
3433 xlog_unpack_data(rhead, offset, log);
3434 if ((error = xlog_recover_process_data(log,
3435 rhash, rhead, offset, pass)))
3436 goto bread_err2;
3437 blk_no += bblks + hblks;
3438 }
3439 } else {
3440 /*
3441 * Perform recovery around the end of the physical log.
3442 * When the head is not on the same cycle number as the tail,
3443 * we can't do a sequential recovery as above.
3444 */
3445 blk_no = tail_blk;
3446 while (blk_no < log->l_logBBsize) {
3447 /*
3448 * Check for header wrapping around physical end-of-log
3449 */
62926044 3450 offset = hbp->b_addr;
1da177e4
LT
3451 split_hblks = 0;
3452 wrapped_hblks = 0;
3453 if (blk_no + hblks <= log->l_logBBsize) {
3454 /* Read header in one read */
076e6acb
CH
3455 error = xlog_bread(log, blk_no, hblks, hbp,
3456 &offset);
1da177e4
LT
3457 if (error)
3458 goto bread_err2;
1da177e4
LT
3459 } else {
3460 /* This LR is split across physical log end */
3461 if (blk_no != log->l_logBBsize) {
3462 /* some data before physical log end */
3463 ASSERT(blk_no <= INT_MAX);
3464 split_hblks = log->l_logBBsize - (int)blk_no;
3465 ASSERT(split_hblks > 0);
076e6acb
CH
3466 error = xlog_bread(log, blk_no,
3467 split_hblks, hbp,
3468 &offset);
3469 if (error)
1da177e4 3470 goto bread_err2;
1da177e4 3471 }
076e6acb 3472
1da177e4
LT
3473 /*
3474 * Note: this black magic still works with
3475 * large sector sizes (non-512) only because:
3476 * - we increased the buffer size originally
3477 * by 1 sector giving us enough extra space
3478 * for the second read;
3479 * - the log start is guaranteed to be sector
3480 * aligned;
3481 * - we read the log end (LR header start)
3482 * _first_, then the log start (LR header end)
3483 * - order is important.
3484 */
234f56ac 3485 wrapped_hblks = hblks - split_hblks;
44396476
DC
3486 error = xlog_bread_offset(log, 0,
3487 wrapped_hblks, hbp,
3488 offset + BBTOB(split_hblks));
1da177e4
LT
3489 if (error)
3490 goto bread_err2;
1da177e4
LT
3491 }
3492 rhead = (xlog_rec_header_t *)offset;
3493 error = xlog_valid_rec_header(log, rhead,
3494 split_hblks ? blk_no : 0);
3495 if (error)
3496 goto bread_err2;
3497
b53e675d 3498 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
1da177e4
LT
3499 blk_no += hblks;
3500
3501 /* Read in data for log record */
3502 if (blk_no + bblks <= log->l_logBBsize) {
076e6acb
CH
3503 error = xlog_bread(log, blk_no, bblks, dbp,
3504 &offset);
1da177e4
LT
3505 if (error)
3506 goto bread_err2;
1da177e4
LT
3507 } else {
3508 /* This log record is split across the
3509 * physical end of log */
62926044 3510 offset = dbp->b_addr;
1da177e4
LT
3511 split_bblks = 0;
3512 if (blk_no != log->l_logBBsize) {
3513 /* some data is before the physical
3514 * end of log */
3515 ASSERT(!wrapped_hblks);
3516 ASSERT(blk_no <= INT_MAX);
3517 split_bblks =
3518 log->l_logBBsize - (int)blk_no;
3519 ASSERT(split_bblks > 0);
076e6acb
CH
3520 error = xlog_bread(log, blk_no,
3521 split_bblks, dbp,
3522 &offset);
3523 if (error)
1da177e4 3524 goto bread_err2;
1da177e4 3525 }
076e6acb 3526
1da177e4
LT
3527 /*
3528 * Note: this black magic still works with
3529 * large sector sizes (non-512) only because:
3530 * - we increased the buffer size originally
3531 * by 1 sector giving us enough extra space
3532 * for the second read;
3533 * - the log start is guaranteed to be sector
3534 * aligned;
3535 * - we read the log end (LR header start)
3536 * _first_, then the log start (LR header end)
3537 * - order is important.
3538 */
44396476
DC
3539 error = xlog_bread_offset(log, 0,
3540 bblks - split_bblks, hbp,
3541 offset + BBTOB(split_bblks));
076e6acb
CH
3542 if (error)
3543 goto bread_err2;
1da177e4
LT
3544 }
3545 xlog_unpack_data(rhead, offset, log);
3546 if ((error = xlog_recover_process_data(log, rhash,
3547 rhead, offset, pass)))
3548 goto bread_err2;
3549 blk_no += bblks;
3550 }
3551
3552 ASSERT(blk_no >= log->l_logBBsize);
3553 blk_no -= log->l_logBBsize;
3554
3555 /* read first part of physical log */
3556 while (blk_no < head_blk) {
076e6acb
CH
3557 error = xlog_bread(log, blk_no, hblks, hbp, &offset);
3558 if (error)
1da177e4 3559 goto bread_err2;
076e6acb 3560
1da177e4
LT
3561 rhead = (xlog_rec_header_t *)offset;
3562 error = xlog_valid_rec_header(log, rhead, blk_no);
3563 if (error)
3564 goto bread_err2;
076e6acb 3565
b53e675d 3566 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
076e6acb
CH
3567 error = xlog_bread(log, blk_no+hblks, bblks, dbp,
3568 &offset);
3569 if (error)
1da177e4 3570 goto bread_err2;
076e6acb 3571
1da177e4
LT
3572 xlog_unpack_data(rhead, offset, log);
3573 if ((error = xlog_recover_process_data(log, rhash,
3574 rhead, offset, pass)))
3575 goto bread_err2;
3576 blk_no += bblks + hblks;
3577 }
3578 }
3579
3580 bread_err2:
3581 xlog_put_bp(dbp);
3582 bread_err1:
3583 xlog_put_bp(hbp);
3584 return error;
3585}
3586
3587/*
3588 * Do the recovery of the log. We actually do this in two phases.
3589 * The two passes are necessary in order to implement the function
3590 * of cancelling a record written into the log. The first pass
3591 * determines those things which have been cancelled, and the
3592 * second pass replays log items normally except for those which
3593 * have been cancelled. The handling of the replay and cancellations
3594 * takes place in the log item type specific routines.
3595 *
3596 * The table of items which have cancel records in the log is allocated
3597 * and freed at this level, since only here do we know when all of
3598 * the log recovery has been completed.
3599 */
3600STATIC int
3601xlog_do_log_recovery(
3602 xlog_t *log,
3603 xfs_daddr_t head_blk,
3604 xfs_daddr_t tail_blk)
3605{
d5689eaa 3606 int error, i;
1da177e4
LT
3607
3608 ASSERT(head_blk != tail_blk);
3609
3610 /*
3611 * First do a pass to find all of the cancelled buf log items.
3612 * Store them in the buf_cancel_table for use in the second pass.
3613 */
d5689eaa
CH
3614 log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE *
3615 sizeof(struct list_head),
1da177e4 3616 KM_SLEEP);
d5689eaa
CH
3617 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
3618 INIT_LIST_HEAD(&log->l_buf_cancel_table[i]);
3619
1da177e4
LT
3620 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3621 XLOG_RECOVER_PASS1);
3622 if (error != 0) {
f0e2d93c 3623 kmem_free(log->l_buf_cancel_table);
1da177e4
LT
3624 log->l_buf_cancel_table = NULL;
3625 return error;
3626 }
3627 /*
3628 * Then do a second pass to actually recover the items in the log.
3629 * When it is complete free the table of buf cancel items.
3630 */
3631 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3632 XLOG_RECOVER_PASS2);
3633#ifdef DEBUG
6d192a9b 3634 if (!error) {
1da177e4
LT
3635 int i;
3636
3637 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
d5689eaa 3638 ASSERT(list_empty(&log->l_buf_cancel_table[i]));
1da177e4
LT
3639 }
3640#endif /* DEBUG */
3641
f0e2d93c 3642 kmem_free(log->l_buf_cancel_table);
1da177e4
LT
3643 log->l_buf_cancel_table = NULL;
3644
3645 return error;
3646}
3647
3648/*
3649 * Do the actual recovery
3650 */
3651STATIC int
3652xlog_do_recover(
3653 xlog_t *log,
3654 xfs_daddr_t head_blk,
3655 xfs_daddr_t tail_blk)
3656{
3657 int error;
3658 xfs_buf_t *bp;
3659 xfs_sb_t *sbp;
3660
3661 /*
3662 * First replay the images in the log.
3663 */
3664 error = xlog_do_log_recovery(log, head_blk, tail_blk);
43ff2122 3665 if (error)
1da177e4 3666 return error;
1da177e4
LT
3667
3668 /*
3669 * If IO errors happened during recovery, bail out.
3670 */
3671 if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
3672 return (EIO);
3673 }
3674
3675 /*
3676 * We now update the tail_lsn since much of the recovery has completed
3677 * and there may be space available to use. If there were no extent
3678 * or iunlinks, we can free up the entire log and set the tail_lsn to
3679 * be the last_sync_lsn. This was set in xlog_find_tail to be the
3680 * lsn of the last known good LR on disk. If there are extent frees
3681 * or iunlinks they will have some entries in the AIL; so we look at
3682 * the AIL to determine how to set the tail_lsn.
3683 */
3684 xlog_assign_tail_lsn(log->l_mp);
3685
3686 /*
3687 * Now that we've finished replaying all buffer and inode
3688 * updates, re-read in the superblock.
3689 */
3690 bp = xfs_getsb(log->l_mp, 0);
3691 XFS_BUF_UNDONE(bp);
bebf963f 3692 ASSERT(!(XFS_BUF_ISWRITE(bp)));
1da177e4 3693 XFS_BUF_READ(bp);
bebf963f 3694 XFS_BUF_UNASYNC(bp);
1da177e4 3695 xfsbdstrat(log->l_mp, bp);
1a1a3e97 3696 error = xfs_buf_iowait(bp);
d64e31a2 3697 if (error) {
901796af 3698 xfs_buf_ioerror_alert(bp, __func__);
1da177e4
LT
3699 ASSERT(0);
3700 xfs_buf_relse(bp);
3701 return error;
3702 }
3703
3704 /* Convert superblock from on-disk format */
3705 sbp = &log->l_mp->m_sb;
6bd92a23 3706 xfs_sb_from_disk(log->l_mp, XFS_BUF_TO_SBP(bp));
1da177e4 3707 ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
62118709 3708 ASSERT(xfs_sb_good_version(sbp));
1da177e4
LT
3709 xfs_buf_relse(bp);
3710
5478eead
LM
3711 /* We've re-read the superblock so re-initialize per-cpu counters */
3712 xfs_icsb_reinit_counters(log->l_mp);
3713
1da177e4
LT
3714 xlog_recover_check_summary(log);
3715
3716 /* Normal transactions can now occur */
3717 log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
3718 return 0;
3719}
3720
3721/*
3722 * Perform recovery and re-initialize some log variables in xlog_find_tail.
3723 *
3724 * Return error or zero.
3725 */
3726int
3727xlog_recover(
65be6054 3728 xlog_t *log)
1da177e4
LT
3729{
3730 xfs_daddr_t head_blk, tail_blk;
3731 int error;
3732
3733 /* find the tail of the log */
65be6054 3734 if ((error = xlog_find_tail(log, &head_blk, &tail_blk)))
1da177e4
LT
3735 return error;
3736
3737 if (tail_blk != head_blk) {
3738 /* There used to be a comment here:
3739 *
3740 * disallow recovery on read-only mounts. note -- mount
3741 * checks for ENOSPC and turns it into an intelligent
3742 * error message.
3743 * ...but this is no longer true. Now, unless you specify
3744 * NORECOVERY (in which case this function would never be
3745 * called), we just go ahead and recover. We do this all
3746 * under the vfs layer, so we can get away with it unless
3747 * the device itself is read-only, in which case we fail.
3748 */
3a02ee18 3749 if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
1da177e4
LT
3750 return error;
3751 }
3752
a0fa2b67
DC
3753 xfs_notice(log->l_mp, "Starting recovery (logdev: %s)",
3754 log->l_mp->m_logname ? log->l_mp->m_logname
3755 : "internal");
1da177e4
LT
3756
3757 error = xlog_do_recover(log, head_blk, tail_blk);
3758 log->l_flags |= XLOG_RECOVERY_NEEDED;
3759 }
3760 return error;
3761}
3762
3763/*
3764 * In the first part of recovery we replay inodes and buffers and build
3765 * up the list of extent free items which need to be processed. Here
3766 * we process the extent free items and clean up the on disk unlinked
3767 * inode lists. This is separated from the first part of recovery so
3768 * that the root and real-time bitmap inodes can be read in from disk in
3769 * between the two stages. This is necessary so that we can free space
3770 * in the real-time portion of the file system.
3771 */
3772int
3773xlog_recover_finish(
4249023a 3774 xlog_t *log)
1da177e4
LT
3775{
3776 /*
3777 * Now we're ready to do the transactions needed for the
3778 * rest of recovery. Start with completing all the extent
3779 * free intent records and then process the unlinked inode
3780 * lists. At this point, we essentially run in normal mode
3781 * except that we're still performing recovery actions
3782 * rather than accepting new requests.
3783 */
3784 if (log->l_flags & XLOG_RECOVERY_NEEDED) {
3c1e2bbe
DC
3785 int error;
3786 error = xlog_recover_process_efis(log);
3787 if (error) {
a0fa2b67 3788 xfs_alert(log->l_mp, "Failed to recover EFIs");
3c1e2bbe
DC
3789 return error;
3790 }
1da177e4
LT
3791 /*
3792 * Sync the log to get all the EFIs out of the AIL.
3793 * This isn't absolutely necessary, but it helps in
3794 * case the unlink transactions would have problems
3795 * pushing the EFIs out of the way.
3796 */
a14a348b 3797 xfs_log_force(log->l_mp, XFS_LOG_SYNC);
1da177e4 3798
4249023a 3799 xlog_recover_process_iunlinks(log);
1da177e4
LT
3800
3801 xlog_recover_check_summary(log);
3802
a0fa2b67
DC
3803 xfs_notice(log->l_mp, "Ending recovery (logdev: %s)",
3804 log->l_mp->m_logname ? log->l_mp->m_logname
3805 : "internal");
1da177e4
LT
3806 log->l_flags &= ~XLOG_RECOVERY_NEEDED;
3807 } else {
a0fa2b67 3808 xfs_info(log->l_mp, "Ending clean mount");
1da177e4
LT
3809 }
3810 return 0;
3811}
3812
3813
3814#if defined(DEBUG)
3815/*
3816 * Read all of the agf and agi counters and check that they
3817 * are consistent with the superblock counters.
3818 */
3819void
3820xlog_recover_check_summary(
3821 xlog_t *log)
3822{
3823 xfs_mount_t *mp;
3824 xfs_agf_t *agfp;
1da177e4
LT
3825 xfs_buf_t *agfbp;
3826 xfs_buf_t *agibp;
1da177e4
LT
3827 xfs_agnumber_t agno;
3828 __uint64_t freeblks;
3829 __uint64_t itotal;
3830 __uint64_t ifree;
5e1be0fb 3831 int error;
1da177e4
LT
3832
3833 mp = log->l_mp;
3834
3835 freeblks = 0LL;
3836 itotal = 0LL;
3837 ifree = 0LL;
3838 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
4805621a
CH
3839 error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
3840 if (error) {
a0fa2b67
DC
3841 xfs_alert(mp, "%s agf read failed agno %d error %d",
3842 __func__, agno, error);
4805621a
CH
3843 } else {
3844 agfp = XFS_BUF_TO_AGF(agfbp);
3845 freeblks += be32_to_cpu(agfp->agf_freeblks) +
3846 be32_to_cpu(agfp->agf_flcount);
3847 xfs_buf_relse(agfbp);
1da177e4 3848 }
1da177e4 3849
5e1be0fb 3850 error = xfs_read_agi(mp, NULL, agno, &agibp);
a0fa2b67
DC
3851 if (error) {
3852 xfs_alert(mp, "%s agi read failed agno %d error %d",
3853 __func__, agno, error);
3854 } else {
5e1be0fb 3855 struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp);
16259e7d 3856
5e1be0fb
CH
3857 itotal += be32_to_cpu(agi->agi_count);
3858 ifree += be32_to_cpu(agi->agi_freecount);
3859 xfs_buf_relse(agibp);
3860 }
1da177e4 3861 }
1da177e4
LT
3862}
3863#endif /* DEBUG */