xen/tmem: Fix compile warning.
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / xfs / xfs_log_recover.c
CommitLineData
1da177e4 1/*
87c199c2 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7b718769 3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
a844f451 19#include "xfs_fs.h"
1da177e4 20#include "xfs_types.h"
a844f451 21#include "xfs_bit.h"
1da177e4 22#include "xfs_log.h"
a844f451 23#include "xfs_inum.h"
1da177e4 24#include "xfs_trans.h"
a844f451
NS
25#include "xfs_sb.h"
26#include "xfs_ag.h"
1da177e4
LT
27#include "xfs_mount.h"
28#include "xfs_error.h"
29#include "xfs_bmap_btree.h"
a844f451
NS
30#include "xfs_alloc_btree.h"
31#include "xfs_ialloc_btree.h"
ee1a47ab 32#include "xfs_btree.h"
1da177e4 33#include "xfs_dinode.h"
1da177e4 34#include "xfs_inode.h"
a844f451 35#include "xfs_inode_item.h"
a844f451 36#include "xfs_alloc.h"
1da177e4
LT
37#include "xfs_ialloc.h"
38#include "xfs_log_priv.h"
39#include "xfs_buf_item.h"
1da177e4
LT
40#include "xfs_log_recover.h"
41#include "xfs_extfree_item.h"
42#include "xfs_trans_priv.h"
1da177e4 43#include "xfs_quota.h"
43355099 44#include "xfs_utils.h"
0e446be4 45#include "xfs_cksum.h"
0b1b213f 46#include "xfs_trace.h"
33479e05 47#include "xfs_icache.h"
d75afeb3
DC
48
49/* Need all the magic numbers and buffer ops structures from these headers */
f948dd76 50#include "xfs_symlink.h"
d75afeb3
DC
51#include "xfs_da_btree.h"
52#include "xfs_dir2_format.h"
53#include "xfs_dir2_priv.h"
54#include "xfs_attr_leaf.h"
55#include "xfs_attr_remote.h"
1da177e4 56
9a8d2fdb
MT
57STATIC int
58xlog_find_zeroed(
59 struct xlog *,
60 xfs_daddr_t *);
61STATIC int
62xlog_clear_stale_blocks(
63 struct xlog *,
64 xfs_lsn_t);
1da177e4 65#if defined(DEBUG)
9a8d2fdb
MT
66STATIC void
67xlog_recover_check_summary(
68 struct xlog *);
1da177e4
LT
69#else
70#define xlog_recover_check_summary(log)
1da177e4
LT
71#endif
72
d5689eaa
CH
73/*
74 * This structure is used during recovery to record the buf log items which
75 * have been canceled and should not be replayed.
76 */
77struct xfs_buf_cancel {
78 xfs_daddr_t bc_blkno;
79 uint bc_len;
80 int bc_refcount;
81 struct list_head bc_list;
82};
83
1da177e4
LT
84/*
85 * Sector aligned buffer routines for buffer create/read/write/access
86 */
87
ff30a622
AE
88/*
89 * Verify the given count of basic blocks is valid number of blocks
90 * to specify for an operation involving the given XFS log buffer.
91 * Returns nonzero if the count is valid, 0 otherwise.
92 */
93
94static inline int
95xlog_buf_bbcount_valid(
9a8d2fdb 96 struct xlog *log,
ff30a622
AE
97 int bbcount)
98{
99 return bbcount > 0 && bbcount <= log->l_logBBsize;
100}
101
36adecff
AE
102/*
103 * Allocate a buffer to hold log data. The buffer needs to be able
104 * to map to a range of nbblks basic blocks at any valid (basic
105 * block) offset within the log.
106 */
5d77c0dc 107STATIC xfs_buf_t *
1da177e4 108xlog_get_bp(
9a8d2fdb 109 struct xlog *log,
3228149c 110 int nbblks)
1da177e4 111{
c8da0faf
CH
112 struct xfs_buf *bp;
113
ff30a622 114 if (!xlog_buf_bbcount_valid(log, nbblks)) {
a0fa2b67 115 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
ff30a622
AE
116 nbblks);
117 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
3228149c
DC
118 return NULL;
119 }
1da177e4 120
36adecff
AE
121 /*
122 * We do log I/O in units of log sectors (a power-of-2
123 * multiple of the basic block size), so we round up the
25985edc 124 * requested size to accommodate the basic blocks required
36adecff
AE
125 * for complete log sectors.
126 *
127 * In addition, the buffer may be used for a non-sector-
128 * aligned block offset, in which case an I/O of the
129 * requested size could extend beyond the end of the
130 * buffer. If the requested size is only 1 basic block it
131 * will never straddle a sector boundary, so this won't be
132 * an issue. Nor will this be a problem if the log I/O is
133 * done in basic blocks (sector size 1). But otherwise we
134 * extend the buffer by one extra log sector to ensure
25985edc 135 * there's space to accommodate this possibility.
36adecff 136 */
69ce58f0
AE
137 if (nbblks > 1 && log->l_sectBBsize > 1)
138 nbblks += log->l_sectBBsize;
139 nbblks = round_up(nbblks, log->l_sectBBsize);
36adecff 140
e70b73f8 141 bp = xfs_buf_get_uncached(log->l_mp->m_logdev_targp, nbblks, 0);
c8da0faf
CH
142 if (bp)
143 xfs_buf_unlock(bp);
144 return bp;
1da177e4
LT
145}
146
5d77c0dc 147STATIC void
1da177e4
LT
148xlog_put_bp(
149 xfs_buf_t *bp)
150{
151 xfs_buf_free(bp);
152}
153
48389ef1
AE
154/*
155 * Return the address of the start of the given block number's data
156 * in a log buffer. The buffer covers a log sector-aligned region.
157 */
076e6acb
CH
158STATIC xfs_caddr_t
159xlog_align(
9a8d2fdb 160 struct xlog *log,
076e6acb
CH
161 xfs_daddr_t blk_no,
162 int nbblks,
9a8d2fdb 163 struct xfs_buf *bp)
076e6acb 164{
fdc07f44 165 xfs_daddr_t offset = blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1);
076e6acb 166
4e94b71b 167 ASSERT(offset + nbblks <= bp->b_length);
62926044 168 return bp->b_addr + BBTOB(offset);
076e6acb
CH
169}
170
1da177e4
LT
171
172/*
173 * nbblks should be uint, but oh well. Just want to catch that 32-bit length.
174 */
076e6acb
CH
175STATIC int
176xlog_bread_noalign(
9a8d2fdb 177 struct xlog *log,
1da177e4
LT
178 xfs_daddr_t blk_no,
179 int nbblks,
9a8d2fdb 180 struct xfs_buf *bp)
1da177e4
LT
181{
182 int error;
183
ff30a622 184 if (!xlog_buf_bbcount_valid(log, nbblks)) {
a0fa2b67 185 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
ff30a622
AE
186 nbblks);
187 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
3228149c
DC
188 return EFSCORRUPTED;
189 }
190
69ce58f0
AE
191 blk_no = round_down(blk_no, log->l_sectBBsize);
192 nbblks = round_up(nbblks, log->l_sectBBsize);
1da177e4
LT
193
194 ASSERT(nbblks > 0);
4e94b71b 195 ASSERT(nbblks <= bp->b_length);
1da177e4
LT
196
197 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
198 XFS_BUF_READ(bp);
aa0e8833 199 bp->b_io_length = nbblks;
0e95f19a 200 bp->b_error = 0;
1da177e4
LT
201
202 xfsbdstrat(log->l_mp, bp);
1a1a3e97 203 error = xfs_buf_iowait(bp);
d64e31a2 204 if (error)
901796af 205 xfs_buf_ioerror_alert(bp, __func__);
1da177e4
LT
206 return error;
207}
208
076e6acb
CH
209STATIC int
210xlog_bread(
9a8d2fdb 211 struct xlog *log,
076e6acb
CH
212 xfs_daddr_t blk_no,
213 int nbblks,
9a8d2fdb 214 struct xfs_buf *bp,
076e6acb
CH
215 xfs_caddr_t *offset)
216{
217 int error;
218
219 error = xlog_bread_noalign(log, blk_no, nbblks, bp);
220 if (error)
221 return error;
222
223 *offset = xlog_align(log, blk_no, nbblks, bp);
224 return 0;
225}
226
44396476
DC
227/*
228 * Read at an offset into the buffer. Returns with the buffer in it's original
229 * state regardless of the result of the read.
230 */
231STATIC int
232xlog_bread_offset(
9a8d2fdb 233 struct xlog *log,
44396476
DC
234 xfs_daddr_t blk_no, /* block to read from */
235 int nbblks, /* blocks to read */
9a8d2fdb 236 struct xfs_buf *bp,
44396476
DC
237 xfs_caddr_t offset)
238{
62926044 239 xfs_caddr_t orig_offset = bp->b_addr;
4e94b71b 240 int orig_len = BBTOB(bp->b_length);
44396476
DC
241 int error, error2;
242
02fe03d9 243 error = xfs_buf_associate_memory(bp, offset, BBTOB(nbblks));
44396476
DC
244 if (error)
245 return error;
246
247 error = xlog_bread_noalign(log, blk_no, nbblks, bp);
248
249 /* must reset buffer pointer even on error */
02fe03d9 250 error2 = xfs_buf_associate_memory(bp, orig_offset, orig_len);
44396476
DC
251 if (error)
252 return error;
253 return error2;
254}
255
1da177e4
LT
256/*
257 * Write out the buffer at the given block for the given number of blocks.
258 * The buffer is kept locked across the write and is returned locked.
259 * This can only be used for synchronous log writes.
260 */
ba0f32d4 261STATIC int
1da177e4 262xlog_bwrite(
9a8d2fdb 263 struct xlog *log,
1da177e4
LT
264 xfs_daddr_t blk_no,
265 int nbblks,
9a8d2fdb 266 struct xfs_buf *bp)
1da177e4
LT
267{
268 int error;
269
ff30a622 270 if (!xlog_buf_bbcount_valid(log, nbblks)) {
a0fa2b67 271 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
ff30a622
AE
272 nbblks);
273 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
3228149c
DC
274 return EFSCORRUPTED;
275 }
276
69ce58f0
AE
277 blk_no = round_down(blk_no, log->l_sectBBsize);
278 nbblks = round_up(nbblks, log->l_sectBBsize);
1da177e4
LT
279
280 ASSERT(nbblks > 0);
4e94b71b 281 ASSERT(nbblks <= bp->b_length);
1da177e4
LT
282
283 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
284 XFS_BUF_ZEROFLAGS(bp);
72790aa1 285 xfs_buf_hold(bp);
0c842ad4 286 xfs_buf_lock(bp);
aa0e8833 287 bp->b_io_length = nbblks;
0e95f19a 288 bp->b_error = 0;
1da177e4 289
c2b006c1 290 error = xfs_bwrite(bp);
901796af
CH
291 if (error)
292 xfs_buf_ioerror_alert(bp, __func__);
c2b006c1 293 xfs_buf_relse(bp);
1da177e4
LT
294 return error;
295}
296
1da177e4
LT
297#ifdef DEBUG
298/*
299 * dump debug superblock and log record information
300 */
301STATIC void
302xlog_header_check_dump(
303 xfs_mount_t *mp,
304 xlog_rec_header_t *head)
305{
a0fa2b67 306 xfs_debug(mp, "%s: SB : uuid = %pU, fmt = %d\n",
03daa57c 307 __func__, &mp->m_sb.sb_uuid, XLOG_FMT);
a0fa2b67 308 xfs_debug(mp, " log : uuid = %pU, fmt = %d\n",
03daa57c 309 &head->h_fs_uuid, be32_to_cpu(head->h_fmt));
1da177e4
LT
310}
311#else
312#define xlog_header_check_dump(mp, head)
313#endif
314
315/*
316 * check log record header for recovery
317 */
318STATIC int
319xlog_header_check_recover(
320 xfs_mount_t *mp,
321 xlog_rec_header_t *head)
322{
69ef921b 323 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
1da177e4
LT
324
325 /*
326 * IRIX doesn't write the h_fmt field and leaves it zeroed
327 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
328 * a dirty log created in IRIX.
329 */
69ef921b 330 if (unlikely(head->h_fmt != cpu_to_be32(XLOG_FMT))) {
a0fa2b67
DC
331 xfs_warn(mp,
332 "dirty log written in incompatible format - can't recover");
1da177e4
LT
333 xlog_header_check_dump(mp, head);
334 XFS_ERROR_REPORT("xlog_header_check_recover(1)",
335 XFS_ERRLEVEL_HIGH, mp);
336 return XFS_ERROR(EFSCORRUPTED);
337 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
a0fa2b67
DC
338 xfs_warn(mp,
339 "dirty log entry has mismatched uuid - can't recover");
1da177e4
LT
340 xlog_header_check_dump(mp, head);
341 XFS_ERROR_REPORT("xlog_header_check_recover(2)",
342 XFS_ERRLEVEL_HIGH, mp);
343 return XFS_ERROR(EFSCORRUPTED);
344 }
345 return 0;
346}
347
348/*
349 * read the head block of the log and check the header
350 */
351STATIC int
352xlog_header_check_mount(
353 xfs_mount_t *mp,
354 xlog_rec_header_t *head)
355{
69ef921b 356 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
1da177e4
LT
357
358 if (uuid_is_nil(&head->h_fs_uuid)) {
359 /*
360 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
361 * h_fs_uuid is nil, we assume this log was last mounted
362 * by IRIX and continue.
363 */
a0fa2b67 364 xfs_warn(mp, "nil uuid in log - IRIX style log");
1da177e4 365 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
a0fa2b67 366 xfs_warn(mp, "log has mismatched uuid - can't recover");
1da177e4
LT
367 xlog_header_check_dump(mp, head);
368 XFS_ERROR_REPORT("xlog_header_check_mount",
369 XFS_ERRLEVEL_HIGH, mp);
370 return XFS_ERROR(EFSCORRUPTED);
371 }
372 return 0;
373}
374
375STATIC void
376xlog_recover_iodone(
377 struct xfs_buf *bp)
378{
5a52c2a5 379 if (bp->b_error) {
1da177e4
LT
380 /*
381 * We're not going to bother about retrying
382 * this during recovery. One strike!
383 */
901796af 384 xfs_buf_ioerror_alert(bp, __func__);
ebad861b
DC
385 xfs_force_shutdown(bp->b_target->bt_mount,
386 SHUTDOWN_META_IO_ERROR);
1da177e4 387 }
cb669ca5 388 bp->b_iodone = NULL;
1a1a3e97 389 xfs_buf_ioend(bp, 0);
1da177e4
LT
390}
391
392/*
393 * This routine finds (to an approximation) the first block in the physical
394 * log which contains the given cycle. It uses a binary search algorithm.
395 * Note that the algorithm can not be perfect because the disk will not
396 * necessarily be perfect.
397 */
a8272ce0 398STATIC int
1da177e4 399xlog_find_cycle_start(
9a8d2fdb
MT
400 struct xlog *log,
401 struct xfs_buf *bp,
1da177e4
LT
402 xfs_daddr_t first_blk,
403 xfs_daddr_t *last_blk,
404 uint cycle)
405{
406 xfs_caddr_t offset;
407 xfs_daddr_t mid_blk;
e3bb2e30 408 xfs_daddr_t end_blk;
1da177e4
LT
409 uint mid_cycle;
410 int error;
411
e3bb2e30
AE
412 end_blk = *last_blk;
413 mid_blk = BLK_AVG(first_blk, end_blk);
414 while (mid_blk != first_blk && mid_blk != end_blk) {
076e6acb
CH
415 error = xlog_bread(log, mid_blk, 1, bp, &offset);
416 if (error)
1da177e4 417 return error;
03bea6fe 418 mid_cycle = xlog_get_cycle(offset);
e3bb2e30
AE
419 if (mid_cycle == cycle)
420 end_blk = mid_blk; /* last_half_cycle == mid_cycle */
421 else
422 first_blk = mid_blk; /* first_half_cycle == mid_cycle */
423 mid_blk = BLK_AVG(first_blk, end_blk);
1da177e4 424 }
e3bb2e30
AE
425 ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
426 (mid_blk == end_blk && mid_blk-1 == first_blk));
427
428 *last_blk = end_blk;
1da177e4
LT
429
430 return 0;
431}
432
433/*
3f943d85
AE
434 * Check that a range of blocks does not contain stop_on_cycle_no.
435 * Fill in *new_blk with the block offset where such a block is
436 * found, or with -1 (an invalid block number) if there is no such
437 * block in the range. The scan needs to occur from front to back
438 * and the pointer into the region must be updated since a later
439 * routine will need to perform another test.
1da177e4
LT
440 */
441STATIC int
442xlog_find_verify_cycle(
9a8d2fdb 443 struct xlog *log,
1da177e4
LT
444 xfs_daddr_t start_blk,
445 int nbblks,
446 uint stop_on_cycle_no,
447 xfs_daddr_t *new_blk)
448{
449 xfs_daddr_t i, j;
450 uint cycle;
451 xfs_buf_t *bp;
452 xfs_daddr_t bufblks;
453 xfs_caddr_t buf = NULL;
454 int error = 0;
455
6881a229
AE
456 /*
457 * Greedily allocate a buffer big enough to handle the full
458 * range of basic blocks we'll be examining. If that fails,
459 * try a smaller size. We need to be able to read at least
460 * a log sector, or we're out of luck.
461 */
1da177e4 462 bufblks = 1 << ffs(nbblks);
81158e0c
DC
463 while (bufblks > log->l_logBBsize)
464 bufblks >>= 1;
1da177e4 465 while (!(bp = xlog_get_bp(log, bufblks))) {
1da177e4 466 bufblks >>= 1;
69ce58f0 467 if (bufblks < log->l_sectBBsize)
1da177e4
LT
468 return ENOMEM;
469 }
470
471 for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
472 int bcount;
473
474 bcount = min(bufblks, (start_blk + nbblks - i));
475
076e6acb
CH
476 error = xlog_bread(log, i, bcount, bp, &buf);
477 if (error)
1da177e4
LT
478 goto out;
479
1da177e4 480 for (j = 0; j < bcount; j++) {
03bea6fe 481 cycle = xlog_get_cycle(buf);
1da177e4
LT
482 if (cycle == stop_on_cycle_no) {
483 *new_blk = i+j;
484 goto out;
485 }
486
487 buf += BBSIZE;
488 }
489 }
490
491 *new_blk = -1;
492
493out:
494 xlog_put_bp(bp);
495 return error;
496}
497
498/*
499 * Potentially backup over partial log record write.
500 *
501 * In the typical case, last_blk is the number of the block directly after
502 * a good log record. Therefore, we subtract one to get the block number
503 * of the last block in the given buffer. extra_bblks contains the number
504 * of blocks we would have read on a previous read. This happens when the
505 * last log record is split over the end of the physical log.
506 *
507 * extra_bblks is the number of blocks potentially verified on a previous
508 * call to this routine.
509 */
510STATIC int
511xlog_find_verify_log_record(
9a8d2fdb 512 struct xlog *log,
1da177e4
LT
513 xfs_daddr_t start_blk,
514 xfs_daddr_t *last_blk,
515 int extra_bblks)
516{
517 xfs_daddr_t i;
518 xfs_buf_t *bp;
519 xfs_caddr_t offset = NULL;
520 xlog_rec_header_t *head = NULL;
521 int error = 0;
522 int smallmem = 0;
523 int num_blks = *last_blk - start_blk;
524 int xhdrs;
525
526 ASSERT(start_blk != 0 || *last_blk != start_blk);
527
528 if (!(bp = xlog_get_bp(log, num_blks))) {
529 if (!(bp = xlog_get_bp(log, 1)))
530 return ENOMEM;
531 smallmem = 1;
532 } else {
076e6acb
CH
533 error = xlog_bread(log, start_blk, num_blks, bp, &offset);
534 if (error)
1da177e4 535 goto out;
1da177e4
LT
536 offset += ((num_blks - 1) << BBSHIFT);
537 }
538
539 for (i = (*last_blk) - 1; i >= 0; i--) {
540 if (i < start_blk) {
541 /* valid log record not found */
a0fa2b67
DC
542 xfs_warn(log->l_mp,
543 "Log inconsistent (didn't find previous header)");
1da177e4
LT
544 ASSERT(0);
545 error = XFS_ERROR(EIO);
546 goto out;
547 }
548
549 if (smallmem) {
076e6acb
CH
550 error = xlog_bread(log, i, 1, bp, &offset);
551 if (error)
1da177e4 552 goto out;
1da177e4
LT
553 }
554
555 head = (xlog_rec_header_t *)offset;
556
69ef921b 557 if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
1da177e4
LT
558 break;
559
560 if (!smallmem)
561 offset -= BBSIZE;
562 }
563
564 /*
565 * We hit the beginning of the physical log & still no header. Return
566 * to caller. If caller can handle a return of -1, then this routine
567 * will be called again for the end of the physical log.
568 */
569 if (i == -1) {
570 error = -1;
571 goto out;
572 }
573
574 /*
575 * We have the final block of the good log (the first block
576 * of the log record _before_ the head. So we check the uuid.
577 */
578 if ((error = xlog_header_check_mount(log->l_mp, head)))
579 goto out;
580
581 /*
582 * We may have found a log record header before we expected one.
583 * last_blk will be the 1st block # with a given cycle #. We may end
584 * up reading an entire log record. In this case, we don't want to
585 * reset last_blk. Only when last_blk points in the middle of a log
586 * record do we update last_blk.
587 */
62118709 588 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
b53e675d 589 uint h_size = be32_to_cpu(head->h_size);
1da177e4
LT
590
591 xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
592 if (h_size % XLOG_HEADER_CYCLE_SIZE)
593 xhdrs++;
594 } else {
595 xhdrs = 1;
596 }
597
b53e675d
CH
598 if (*last_blk - i + extra_bblks !=
599 BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
1da177e4
LT
600 *last_blk = i;
601
602out:
603 xlog_put_bp(bp);
604 return error;
605}
606
607/*
608 * Head is defined to be the point of the log where the next log write
609 * write could go. This means that incomplete LR writes at the end are
610 * eliminated when calculating the head. We aren't guaranteed that previous
611 * LR have complete transactions. We only know that a cycle number of
612 * current cycle number -1 won't be present in the log if we start writing
613 * from our current block number.
614 *
615 * last_blk contains the block number of the first block with a given
616 * cycle number.
617 *
618 * Return: zero if normal, non-zero if error.
619 */
ba0f32d4 620STATIC int
1da177e4 621xlog_find_head(
9a8d2fdb 622 struct xlog *log,
1da177e4
LT
623 xfs_daddr_t *return_head_blk)
624{
625 xfs_buf_t *bp;
626 xfs_caddr_t offset;
627 xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk;
628 int num_scan_bblks;
629 uint first_half_cycle, last_half_cycle;
630 uint stop_on_cycle;
631 int error, log_bbnum = log->l_logBBsize;
632
633 /* Is the end of the log device zeroed? */
634 if ((error = xlog_find_zeroed(log, &first_blk)) == -1) {
635 *return_head_blk = first_blk;
636
637 /* Is the whole lot zeroed? */
638 if (!first_blk) {
639 /* Linux XFS shouldn't generate totally zeroed logs -
640 * mkfs etc write a dummy unmount record to a fresh
641 * log so we can store the uuid in there
642 */
a0fa2b67 643 xfs_warn(log->l_mp, "totally zeroed log");
1da177e4
LT
644 }
645
646 return 0;
647 } else if (error) {
a0fa2b67 648 xfs_warn(log->l_mp, "empty log check failed");
1da177e4
LT
649 return error;
650 }
651
652 first_blk = 0; /* get cycle # of 1st block */
653 bp = xlog_get_bp(log, 1);
654 if (!bp)
655 return ENOMEM;
076e6acb
CH
656
657 error = xlog_bread(log, 0, 1, bp, &offset);
658 if (error)
1da177e4 659 goto bp_err;
076e6acb 660
03bea6fe 661 first_half_cycle = xlog_get_cycle(offset);
1da177e4
LT
662
663 last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */
076e6acb
CH
664 error = xlog_bread(log, last_blk, 1, bp, &offset);
665 if (error)
1da177e4 666 goto bp_err;
076e6acb 667
03bea6fe 668 last_half_cycle = xlog_get_cycle(offset);
1da177e4
LT
669 ASSERT(last_half_cycle != 0);
670
671 /*
672 * If the 1st half cycle number is equal to the last half cycle number,
673 * then the entire log is stamped with the same cycle number. In this
674 * case, head_blk can't be set to zero (which makes sense). The below
675 * math doesn't work out properly with head_blk equal to zero. Instead,
676 * we set it to log_bbnum which is an invalid block number, but this
677 * value makes the math correct. If head_blk doesn't changed through
678 * all the tests below, *head_blk is set to zero at the very end rather
679 * than log_bbnum. In a sense, log_bbnum and zero are the same block
680 * in a circular file.
681 */
682 if (first_half_cycle == last_half_cycle) {
683 /*
684 * In this case we believe that the entire log should have
685 * cycle number last_half_cycle. We need to scan backwards
686 * from the end verifying that there are no holes still
687 * containing last_half_cycle - 1. If we find such a hole,
688 * then the start of that hole will be the new head. The
689 * simple case looks like
690 * x | x ... | x - 1 | x
691 * Another case that fits this picture would be
692 * x | x + 1 | x ... | x
c41564b5 693 * In this case the head really is somewhere at the end of the
1da177e4
LT
694 * log, as one of the latest writes at the beginning was
695 * incomplete.
696 * One more case is
697 * x | x + 1 | x ... | x - 1 | x
698 * This is really the combination of the above two cases, and
699 * the head has to end up at the start of the x-1 hole at the
700 * end of the log.
701 *
702 * In the 256k log case, we will read from the beginning to the
703 * end of the log and search for cycle numbers equal to x-1.
704 * We don't worry about the x+1 blocks that we encounter,
705 * because we know that they cannot be the head since the log
706 * started with x.
707 */
708 head_blk = log_bbnum;
709 stop_on_cycle = last_half_cycle - 1;
710 } else {
711 /*
712 * In this case we want to find the first block with cycle
713 * number matching last_half_cycle. We expect the log to be
714 * some variation on
3f943d85 715 * x + 1 ... | x ... | x
1da177e4
LT
716 * The first block with cycle number x (last_half_cycle) will
717 * be where the new head belongs. First we do a binary search
718 * for the first occurrence of last_half_cycle. The binary
719 * search may not be totally accurate, so then we scan back
720 * from there looking for occurrences of last_half_cycle before
721 * us. If that backwards scan wraps around the beginning of
722 * the log, then we look for occurrences of last_half_cycle - 1
723 * at the end of the log. The cases we're looking for look
724 * like
3f943d85
AE
725 * v binary search stopped here
726 * x + 1 ... | x | x + 1 | x ... | x
727 * ^ but we want to locate this spot
1da177e4 728 * or
1da177e4 729 * <---------> less than scan distance
3f943d85
AE
730 * x + 1 ... | x ... | x - 1 | x
731 * ^ we want to locate this spot
1da177e4
LT
732 */
733 stop_on_cycle = last_half_cycle;
734 if ((error = xlog_find_cycle_start(log, bp, first_blk,
735 &head_blk, last_half_cycle)))
736 goto bp_err;
737 }
738
739 /*
740 * Now validate the answer. Scan back some number of maximum possible
741 * blocks and make sure each one has the expected cycle number. The
742 * maximum is determined by the total possible amount of buffering
743 * in the in-core log. The following number can be made tighter if
744 * we actually look at the block size of the filesystem.
745 */
746 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
747 if (head_blk >= num_scan_bblks) {
748 /*
749 * We are guaranteed that the entire check can be performed
750 * in one buffer.
751 */
752 start_blk = head_blk - num_scan_bblks;
753 if ((error = xlog_find_verify_cycle(log,
754 start_blk, num_scan_bblks,
755 stop_on_cycle, &new_blk)))
756 goto bp_err;
757 if (new_blk != -1)
758 head_blk = new_blk;
759 } else { /* need to read 2 parts of log */
760 /*
761 * We are going to scan backwards in the log in two parts.
762 * First we scan the physical end of the log. In this part
763 * of the log, we are looking for blocks with cycle number
764 * last_half_cycle - 1.
765 * If we find one, then we know that the log starts there, as
766 * we've found a hole that didn't get written in going around
767 * the end of the physical log. The simple case for this is
768 * x + 1 ... | x ... | x - 1 | x
769 * <---------> less than scan distance
770 * If all of the blocks at the end of the log have cycle number
771 * last_half_cycle, then we check the blocks at the start of
772 * the log looking for occurrences of last_half_cycle. If we
773 * find one, then our current estimate for the location of the
774 * first occurrence of last_half_cycle is wrong and we move
775 * back to the hole we've found. This case looks like
776 * x + 1 ... | x | x + 1 | x ...
777 * ^ binary search stopped here
778 * Another case we need to handle that only occurs in 256k
779 * logs is
780 * x + 1 ... | x ... | x+1 | x ...
781 * ^ binary search stops here
782 * In a 256k log, the scan at the end of the log will see the
783 * x + 1 blocks. We need to skip past those since that is
784 * certainly not the head of the log. By searching for
785 * last_half_cycle-1 we accomplish that.
786 */
1da177e4 787 ASSERT(head_blk <= INT_MAX &&
3f943d85
AE
788 (xfs_daddr_t) num_scan_bblks >= head_blk);
789 start_blk = log_bbnum - (num_scan_bblks - head_blk);
1da177e4
LT
790 if ((error = xlog_find_verify_cycle(log, start_blk,
791 num_scan_bblks - (int)head_blk,
792 (stop_on_cycle - 1), &new_blk)))
793 goto bp_err;
794 if (new_blk != -1) {
795 head_blk = new_blk;
9db127ed 796 goto validate_head;
1da177e4
LT
797 }
798
799 /*
800 * Scan beginning of log now. The last part of the physical
801 * log is good. This scan needs to verify that it doesn't find
802 * the last_half_cycle.
803 */
804 start_blk = 0;
805 ASSERT(head_blk <= INT_MAX);
806 if ((error = xlog_find_verify_cycle(log,
807 start_blk, (int)head_blk,
808 stop_on_cycle, &new_blk)))
809 goto bp_err;
810 if (new_blk != -1)
811 head_blk = new_blk;
812 }
813
9db127ed 814validate_head:
1da177e4
LT
815 /*
816 * Now we need to make sure head_blk is not pointing to a block in
817 * the middle of a log record.
818 */
819 num_scan_bblks = XLOG_REC_SHIFT(log);
820 if (head_blk >= num_scan_bblks) {
821 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
822
823 /* start ptr at last block ptr before head_blk */
824 if ((error = xlog_find_verify_log_record(log, start_blk,
825 &head_blk, 0)) == -1) {
826 error = XFS_ERROR(EIO);
827 goto bp_err;
828 } else if (error)
829 goto bp_err;
830 } else {
831 start_blk = 0;
832 ASSERT(head_blk <= INT_MAX);
833 if ((error = xlog_find_verify_log_record(log, start_blk,
834 &head_blk, 0)) == -1) {
835 /* We hit the beginning of the log during our search */
3f943d85 836 start_blk = log_bbnum - (num_scan_bblks - head_blk);
1da177e4
LT
837 new_blk = log_bbnum;
838 ASSERT(start_blk <= INT_MAX &&
839 (xfs_daddr_t) log_bbnum-start_blk >= 0);
840 ASSERT(head_blk <= INT_MAX);
841 if ((error = xlog_find_verify_log_record(log,
842 start_blk, &new_blk,
843 (int)head_blk)) == -1) {
844 error = XFS_ERROR(EIO);
845 goto bp_err;
846 } else if (error)
847 goto bp_err;
848 if (new_blk != log_bbnum)
849 head_blk = new_blk;
850 } else if (error)
851 goto bp_err;
852 }
853
854 xlog_put_bp(bp);
855 if (head_blk == log_bbnum)
856 *return_head_blk = 0;
857 else
858 *return_head_blk = head_blk;
859 /*
860 * When returning here, we have a good block number. Bad block
861 * means that during a previous crash, we didn't have a clean break
862 * from cycle number N to cycle number N-1. In this case, we need
863 * to find the first block with cycle number N-1.
864 */
865 return 0;
866
867 bp_err:
868 xlog_put_bp(bp);
869
870 if (error)
a0fa2b67 871 xfs_warn(log->l_mp, "failed to find log head");
1da177e4
LT
872 return error;
873}
874
875/*
876 * Find the sync block number or the tail of the log.
877 *
878 * This will be the block number of the last record to have its
879 * associated buffers synced to disk. Every log record header has
880 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy
881 * to get a sync block number. The only concern is to figure out which
882 * log record header to believe.
883 *
884 * The following algorithm uses the log record header with the largest
885 * lsn. The entire log record does not need to be valid. We only care
886 * that the header is valid.
887 *
888 * We could speed up search by using current head_blk buffer, but it is not
889 * available.
890 */
5d77c0dc 891STATIC int
1da177e4 892xlog_find_tail(
9a8d2fdb 893 struct xlog *log,
1da177e4 894 xfs_daddr_t *head_blk,
65be6054 895 xfs_daddr_t *tail_blk)
1da177e4
LT
896{
897 xlog_rec_header_t *rhead;
898 xlog_op_header_t *op_head;
899 xfs_caddr_t offset = NULL;
900 xfs_buf_t *bp;
901 int error, i, found;
902 xfs_daddr_t umount_data_blk;
903 xfs_daddr_t after_umount_blk;
904 xfs_lsn_t tail_lsn;
905 int hblks;
906
907 found = 0;
908
909 /*
910 * Find previous log record
911 */
912 if ((error = xlog_find_head(log, head_blk)))
913 return error;
914
915 bp = xlog_get_bp(log, 1);
916 if (!bp)
917 return ENOMEM;
918 if (*head_blk == 0) { /* special case */
076e6acb
CH
919 error = xlog_bread(log, 0, 1, bp, &offset);
920 if (error)
9db127ed 921 goto done;
076e6acb 922
03bea6fe 923 if (xlog_get_cycle(offset) == 0) {
1da177e4
LT
924 *tail_blk = 0;
925 /* leave all other log inited values alone */
9db127ed 926 goto done;
1da177e4
LT
927 }
928 }
929
930 /*
931 * Search backwards looking for log record header block
932 */
933 ASSERT(*head_blk < INT_MAX);
934 for (i = (int)(*head_blk) - 1; i >= 0; i--) {
076e6acb
CH
935 error = xlog_bread(log, i, 1, bp, &offset);
936 if (error)
9db127ed 937 goto done;
076e6acb 938
69ef921b 939 if (*(__be32 *)offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
1da177e4
LT
940 found = 1;
941 break;
942 }
943 }
944 /*
945 * If we haven't found the log record header block, start looking
946 * again from the end of the physical log. XXXmiken: There should be
947 * a check here to make sure we didn't search more than N blocks in
948 * the previous code.
949 */
950 if (!found) {
951 for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
076e6acb
CH
952 error = xlog_bread(log, i, 1, bp, &offset);
953 if (error)
9db127ed 954 goto done;
076e6acb 955
69ef921b
CH
956 if (*(__be32 *)offset ==
957 cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
1da177e4
LT
958 found = 2;
959 break;
960 }
961 }
962 }
963 if (!found) {
a0fa2b67 964 xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__);
1da177e4
LT
965 ASSERT(0);
966 return XFS_ERROR(EIO);
967 }
968
969 /* find blk_no of tail of log */
970 rhead = (xlog_rec_header_t *)offset;
b53e675d 971 *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
1da177e4
LT
972
973 /*
974 * Reset log values according to the state of the log when we
975 * crashed. In the case where head_blk == 0, we bump curr_cycle
976 * one because the next write starts a new cycle rather than
977 * continuing the cycle of the last good log record. At this
978 * point we have guaranteed that all partial log records have been
979 * accounted for. Therefore, we know that the last good log record
980 * written was complete and ended exactly on the end boundary
981 * of the physical log.
982 */
983 log->l_prev_block = i;
984 log->l_curr_block = (int)*head_blk;
b53e675d 985 log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
1da177e4
LT
986 if (found == 2)
987 log->l_curr_cycle++;
1c3cb9ec 988 atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn));
84f3c683 989 atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn));
28496968 990 xlog_assign_grant_head(&log->l_reserve_head.grant, log->l_curr_cycle,
a69ed03c 991 BBTOB(log->l_curr_block));
28496968 992 xlog_assign_grant_head(&log->l_write_head.grant, log->l_curr_cycle,
a69ed03c 993 BBTOB(log->l_curr_block));
1da177e4
LT
994
995 /*
996 * Look for unmount record. If we find it, then we know there
997 * was a clean unmount. Since 'i' could be the last block in
998 * the physical log, we convert to a log block before comparing
999 * to the head_blk.
1000 *
1001 * Save the current tail lsn to use to pass to
1002 * xlog_clear_stale_blocks() below. We won't want to clear the
1003 * unmount record if there is one, so we pass the lsn of the
1004 * unmount record rather than the block after it.
1005 */
62118709 1006 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
b53e675d
CH
1007 int h_size = be32_to_cpu(rhead->h_size);
1008 int h_version = be32_to_cpu(rhead->h_version);
1da177e4
LT
1009
1010 if ((h_version & XLOG_VERSION_2) &&
1011 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
1012 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
1013 if (h_size % XLOG_HEADER_CYCLE_SIZE)
1014 hblks++;
1015 } else {
1016 hblks = 1;
1017 }
1018 } else {
1019 hblks = 1;
1020 }
1021 after_umount_blk = (i + hblks + (int)
b53e675d 1022 BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize;
1c3cb9ec 1023 tail_lsn = atomic64_read(&log->l_tail_lsn);
1da177e4 1024 if (*head_blk == after_umount_blk &&
b53e675d 1025 be32_to_cpu(rhead->h_num_logops) == 1) {
1da177e4 1026 umount_data_blk = (i + hblks) % log->l_logBBsize;
076e6acb
CH
1027 error = xlog_bread(log, umount_data_blk, 1, bp, &offset);
1028 if (error)
9db127ed 1029 goto done;
076e6acb 1030
1da177e4
LT
1031 op_head = (xlog_op_header_t *)offset;
1032 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
1033 /*
1034 * Set tail and last sync so that newly written
1035 * log records will point recovery to after the
1036 * current unmount record.
1037 */
1c3cb9ec
DC
1038 xlog_assign_atomic_lsn(&log->l_tail_lsn,
1039 log->l_curr_cycle, after_umount_blk);
1040 xlog_assign_atomic_lsn(&log->l_last_sync_lsn,
1041 log->l_curr_cycle, after_umount_blk);
1da177e4 1042 *tail_blk = after_umount_blk;
92821e2b
DC
1043
1044 /*
1045 * Note that the unmount was clean. If the unmount
1046 * was not clean, we need to know this to rebuild the
1047 * superblock counters from the perag headers if we
1048 * have a filesystem using non-persistent counters.
1049 */
1050 log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
1da177e4
LT
1051 }
1052 }
1053
1054 /*
1055 * Make sure that there are no blocks in front of the head
1056 * with the same cycle number as the head. This can happen
1057 * because we allow multiple outstanding log writes concurrently,
1058 * and the later writes might make it out before earlier ones.
1059 *
1060 * We use the lsn from before modifying it so that we'll never
1061 * overwrite the unmount record after a clean unmount.
1062 *
1063 * Do this only if we are going to recover the filesystem
1064 *
1065 * NOTE: This used to say "if (!readonly)"
1066 * However on Linux, we can & do recover a read-only filesystem.
1067 * We only skip recovery if NORECOVERY is specified on mount,
1068 * in which case we would not be here.
1069 *
1070 * But... if the -device- itself is readonly, just skip this.
1071 * We can't recover this device anyway, so it won't matter.
1072 */
9db127ed 1073 if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp))
1da177e4 1074 error = xlog_clear_stale_blocks(log, tail_lsn);
1da177e4 1075
9db127ed 1076done:
1da177e4
LT
1077 xlog_put_bp(bp);
1078
1079 if (error)
a0fa2b67 1080 xfs_warn(log->l_mp, "failed to locate log tail");
1da177e4
LT
1081 return error;
1082}
1083
1084/*
1085 * Is the log zeroed at all?
1086 *
1087 * The last binary search should be changed to perform an X block read
1088 * once X becomes small enough. You can then search linearly through
1089 * the X blocks. This will cut down on the number of reads we need to do.
1090 *
1091 * If the log is partially zeroed, this routine will pass back the blkno
1092 * of the first block with cycle number 0. It won't have a complete LR
1093 * preceding it.
1094 *
1095 * Return:
1096 * 0 => the log is completely written to
1097 * -1 => use *blk_no as the first block of the log
1098 * >0 => error has occurred
1099 */
a8272ce0 1100STATIC int
1da177e4 1101xlog_find_zeroed(
9a8d2fdb 1102 struct xlog *log,
1da177e4
LT
1103 xfs_daddr_t *blk_no)
1104{
1105 xfs_buf_t *bp;
1106 xfs_caddr_t offset;
1107 uint first_cycle, last_cycle;
1108 xfs_daddr_t new_blk, last_blk, start_blk;
1109 xfs_daddr_t num_scan_bblks;
1110 int error, log_bbnum = log->l_logBBsize;
1111
6fdf8ccc
NS
1112 *blk_no = 0;
1113
1da177e4
LT
1114 /* check totally zeroed log */
1115 bp = xlog_get_bp(log, 1);
1116 if (!bp)
1117 return ENOMEM;
076e6acb
CH
1118 error = xlog_bread(log, 0, 1, bp, &offset);
1119 if (error)
1da177e4 1120 goto bp_err;
076e6acb 1121
03bea6fe 1122 first_cycle = xlog_get_cycle(offset);
1da177e4
LT
1123 if (first_cycle == 0) { /* completely zeroed log */
1124 *blk_no = 0;
1125 xlog_put_bp(bp);
1126 return -1;
1127 }
1128
1129 /* check partially zeroed log */
076e6acb
CH
1130 error = xlog_bread(log, log_bbnum-1, 1, bp, &offset);
1131 if (error)
1da177e4 1132 goto bp_err;
076e6acb 1133
03bea6fe 1134 last_cycle = xlog_get_cycle(offset);
1da177e4
LT
1135 if (last_cycle != 0) { /* log completely written to */
1136 xlog_put_bp(bp);
1137 return 0;
1138 } else if (first_cycle != 1) {
1139 /*
1140 * If the cycle of the last block is zero, the cycle of
1141 * the first block must be 1. If it's not, maybe we're
1142 * not looking at a log... Bail out.
1143 */
a0fa2b67
DC
1144 xfs_warn(log->l_mp,
1145 "Log inconsistent or not a log (last==0, first!=1)");
1da177e4
LT
1146 return XFS_ERROR(EINVAL);
1147 }
1148
1149 /* we have a partially zeroed log */
1150 last_blk = log_bbnum-1;
1151 if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
1152 goto bp_err;
1153
1154 /*
1155 * Validate the answer. Because there is no way to guarantee that
1156 * the entire log is made up of log records which are the same size,
1157 * we scan over the defined maximum blocks. At this point, the maximum
1158 * is not chosen to mean anything special. XXXmiken
1159 */
1160 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1161 ASSERT(num_scan_bblks <= INT_MAX);
1162
1163 if (last_blk < num_scan_bblks)
1164 num_scan_bblks = last_blk;
1165 start_blk = last_blk - num_scan_bblks;
1166
1167 /*
1168 * We search for any instances of cycle number 0 that occur before
1169 * our current estimate of the head. What we're trying to detect is
1170 * 1 ... | 0 | 1 | 0...
1171 * ^ binary search ends here
1172 */
1173 if ((error = xlog_find_verify_cycle(log, start_blk,
1174 (int)num_scan_bblks, 0, &new_blk)))
1175 goto bp_err;
1176 if (new_blk != -1)
1177 last_blk = new_blk;
1178
1179 /*
1180 * Potentially backup over partial log record write. We don't need
1181 * to search the end of the log because we know it is zero.
1182 */
1183 if ((error = xlog_find_verify_log_record(log, start_blk,
1184 &last_blk, 0)) == -1) {
1185 error = XFS_ERROR(EIO);
1186 goto bp_err;
1187 } else if (error)
1188 goto bp_err;
1189
1190 *blk_no = last_blk;
1191bp_err:
1192 xlog_put_bp(bp);
1193 if (error)
1194 return error;
1195 return -1;
1196}
1197
1198/*
1199 * These are simple subroutines used by xlog_clear_stale_blocks() below
1200 * to initialize a buffer full of empty log record headers and write
1201 * them into the log.
1202 */
1203STATIC void
1204xlog_add_record(
9a8d2fdb 1205 struct xlog *log,
1da177e4
LT
1206 xfs_caddr_t buf,
1207 int cycle,
1208 int block,
1209 int tail_cycle,
1210 int tail_block)
1211{
1212 xlog_rec_header_t *recp = (xlog_rec_header_t *)buf;
1213
1214 memset(buf, 0, BBSIZE);
b53e675d
CH
1215 recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1216 recp->h_cycle = cpu_to_be32(cycle);
1217 recp->h_version = cpu_to_be32(
62118709 1218 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
b53e675d
CH
1219 recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1220 recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1221 recp->h_fmt = cpu_to_be32(XLOG_FMT);
1da177e4
LT
1222 memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1223}
1224
1225STATIC int
1226xlog_write_log_records(
9a8d2fdb 1227 struct xlog *log,
1da177e4
LT
1228 int cycle,
1229 int start_block,
1230 int blocks,
1231 int tail_cycle,
1232 int tail_block)
1233{
1234 xfs_caddr_t offset;
1235 xfs_buf_t *bp;
1236 int balign, ealign;
69ce58f0 1237 int sectbb = log->l_sectBBsize;
1da177e4
LT
1238 int end_block = start_block + blocks;
1239 int bufblks;
1240 int error = 0;
1241 int i, j = 0;
1242
6881a229
AE
1243 /*
1244 * Greedily allocate a buffer big enough to handle the full
1245 * range of basic blocks to be written. If that fails, try
1246 * a smaller size. We need to be able to write at least a
1247 * log sector, or we're out of luck.
1248 */
1da177e4 1249 bufblks = 1 << ffs(blocks);
81158e0c
DC
1250 while (bufblks > log->l_logBBsize)
1251 bufblks >>= 1;
1da177e4
LT
1252 while (!(bp = xlog_get_bp(log, bufblks))) {
1253 bufblks >>= 1;
69ce58f0 1254 if (bufblks < sectbb)
1da177e4
LT
1255 return ENOMEM;
1256 }
1257
1258 /* We may need to do a read at the start to fill in part of
1259 * the buffer in the starting sector not covered by the first
1260 * write below.
1261 */
5c17f533 1262 balign = round_down(start_block, sectbb);
1da177e4 1263 if (balign != start_block) {
076e6acb
CH
1264 error = xlog_bread_noalign(log, start_block, 1, bp);
1265 if (error)
1266 goto out_put_bp;
1267
1da177e4
LT
1268 j = start_block - balign;
1269 }
1270
1271 for (i = start_block; i < end_block; i += bufblks) {
1272 int bcount, endcount;
1273
1274 bcount = min(bufblks, end_block - start_block);
1275 endcount = bcount - j;
1276
1277 /* We may need to do a read at the end to fill in part of
1278 * the buffer in the final sector not covered by the write.
1279 * If this is the same sector as the above read, skip it.
1280 */
5c17f533 1281 ealign = round_down(end_block, sectbb);
1da177e4 1282 if (j == 0 && (start_block + endcount > ealign)) {
62926044 1283 offset = bp->b_addr + BBTOB(ealign - start_block);
44396476
DC
1284 error = xlog_bread_offset(log, ealign, sectbb,
1285 bp, offset);
076e6acb
CH
1286 if (error)
1287 break;
1288
1da177e4
LT
1289 }
1290
1291 offset = xlog_align(log, start_block, endcount, bp);
1292 for (; j < endcount; j++) {
1293 xlog_add_record(log, offset, cycle, i+j,
1294 tail_cycle, tail_block);
1295 offset += BBSIZE;
1296 }
1297 error = xlog_bwrite(log, start_block, endcount, bp);
1298 if (error)
1299 break;
1300 start_block += endcount;
1301 j = 0;
1302 }
076e6acb
CH
1303
1304 out_put_bp:
1da177e4
LT
1305 xlog_put_bp(bp);
1306 return error;
1307}
1308
1309/*
1310 * This routine is called to blow away any incomplete log writes out
1311 * in front of the log head. We do this so that we won't become confused
1312 * if we come up, write only a little bit more, and then crash again.
1313 * If we leave the partial log records out there, this situation could
1314 * cause us to think those partial writes are valid blocks since they
1315 * have the current cycle number. We get rid of them by overwriting them
1316 * with empty log records with the old cycle number rather than the
1317 * current one.
1318 *
1319 * The tail lsn is passed in rather than taken from
1320 * the log so that we will not write over the unmount record after a
1321 * clean unmount in a 512 block log. Doing so would leave the log without
1322 * any valid log records in it until a new one was written. If we crashed
1323 * during that time we would not be able to recover.
1324 */
1325STATIC int
1326xlog_clear_stale_blocks(
9a8d2fdb 1327 struct xlog *log,
1da177e4
LT
1328 xfs_lsn_t tail_lsn)
1329{
1330 int tail_cycle, head_cycle;
1331 int tail_block, head_block;
1332 int tail_distance, max_distance;
1333 int distance;
1334 int error;
1335
1336 tail_cycle = CYCLE_LSN(tail_lsn);
1337 tail_block = BLOCK_LSN(tail_lsn);
1338 head_cycle = log->l_curr_cycle;
1339 head_block = log->l_curr_block;
1340
1341 /*
1342 * Figure out the distance between the new head of the log
1343 * and the tail. We want to write over any blocks beyond the
1344 * head that we may have written just before the crash, but
1345 * we don't want to overwrite the tail of the log.
1346 */
1347 if (head_cycle == tail_cycle) {
1348 /*
1349 * The tail is behind the head in the physical log,
1350 * so the distance from the head to the tail is the
1351 * distance from the head to the end of the log plus
1352 * the distance from the beginning of the log to the
1353 * tail.
1354 */
1355 if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1356 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1357 XFS_ERRLEVEL_LOW, log->l_mp);
1358 return XFS_ERROR(EFSCORRUPTED);
1359 }
1360 tail_distance = tail_block + (log->l_logBBsize - head_block);
1361 } else {
1362 /*
1363 * The head is behind the tail in the physical log,
1364 * so the distance from the head to the tail is just
1365 * the tail block minus the head block.
1366 */
1367 if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1368 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1369 XFS_ERRLEVEL_LOW, log->l_mp);
1370 return XFS_ERROR(EFSCORRUPTED);
1371 }
1372 tail_distance = tail_block - head_block;
1373 }
1374
1375 /*
1376 * If the head is right up against the tail, we can't clear
1377 * anything.
1378 */
1379 if (tail_distance <= 0) {
1380 ASSERT(tail_distance == 0);
1381 return 0;
1382 }
1383
1384 max_distance = XLOG_TOTAL_REC_SHIFT(log);
1385 /*
1386 * Take the smaller of the maximum amount of outstanding I/O
1387 * we could have and the distance to the tail to clear out.
1388 * We take the smaller so that we don't overwrite the tail and
1389 * we don't waste all day writing from the head to the tail
1390 * for no reason.
1391 */
1392 max_distance = MIN(max_distance, tail_distance);
1393
1394 if ((head_block + max_distance) <= log->l_logBBsize) {
1395 /*
1396 * We can stomp all the blocks we need to without
1397 * wrapping around the end of the log. Just do it
1398 * in a single write. Use the cycle number of the
1399 * current cycle minus one so that the log will look like:
1400 * n ... | n - 1 ...
1401 */
1402 error = xlog_write_log_records(log, (head_cycle - 1),
1403 head_block, max_distance, tail_cycle,
1404 tail_block);
1405 if (error)
1406 return error;
1407 } else {
1408 /*
1409 * We need to wrap around the end of the physical log in
1410 * order to clear all the blocks. Do it in two separate
1411 * I/Os. The first write should be from the head to the
1412 * end of the physical log, and it should use the current
1413 * cycle number minus one just like above.
1414 */
1415 distance = log->l_logBBsize - head_block;
1416 error = xlog_write_log_records(log, (head_cycle - 1),
1417 head_block, distance, tail_cycle,
1418 tail_block);
1419
1420 if (error)
1421 return error;
1422
1423 /*
1424 * Now write the blocks at the start of the physical log.
1425 * This writes the remainder of the blocks we want to clear.
1426 * It uses the current cycle number since we're now on the
1427 * same cycle as the head so that we get:
1428 * n ... n ... | n - 1 ...
1429 * ^^^^^ blocks we're writing
1430 */
1431 distance = max_distance - (log->l_logBBsize - head_block);
1432 error = xlog_write_log_records(log, head_cycle, 0, distance,
1433 tail_cycle, tail_block);
1434 if (error)
1435 return error;
1436 }
1437
1438 return 0;
1439}
1440
1441/******************************************************************************
1442 *
1443 * Log recover routines
1444 *
1445 ******************************************************************************
1446 */
1447
1448STATIC xlog_recover_t *
1449xlog_recover_find_tid(
f0a76953 1450 struct hlist_head *head,
1da177e4
LT
1451 xlog_tid_t tid)
1452{
f0a76953 1453 xlog_recover_t *trans;
1da177e4 1454
b67bfe0d 1455 hlist_for_each_entry(trans, head, r_list) {
f0a76953
DC
1456 if (trans->r_log_tid == tid)
1457 return trans;
1da177e4 1458 }
f0a76953 1459 return NULL;
1da177e4
LT
1460}
1461
1462STATIC void
f0a76953
DC
1463xlog_recover_new_tid(
1464 struct hlist_head *head,
1465 xlog_tid_t tid,
1466 xfs_lsn_t lsn)
1da177e4 1467{
f0a76953
DC
1468 xlog_recover_t *trans;
1469
1470 trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP);
1471 trans->r_log_tid = tid;
1472 trans->r_lsn = lsn;
1473 INIT_LIST_HEAD(&trans->r_itemq);
1474
1475 INIT_HLIST_NODE(&trans->r_list);
1476 hlist_add_head(&trans->r_list, head);
1da177e4
LT
1477}
1478
1479STATIC void
1480xlog_recover_add_item(
f0a76953 1481 struct list_head *head)
1da177e4
LT
1482{
1483 xlog_recover_item_t *item;
1484
1485 item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
f0a76953
DC
1486 INIT_LIST_HEAD(&item->ri_list);
1487 list_add_tail(&item->ri_list, head);
1da177e4
LT
1488}
1489
1490STATIC int
1491xlog_recover_add_to_cont_trans(
ad223e60
MT
1492 struct xlog *log,
1493 struct xlog_recover *trans,
1da177e4
LT
1494 xfs_caddr_t dp,
1495 int len)
1496{
1497 xlog_recover_item_t *item;
1498 xfs_caddr_t ptr, old_ptr;
1499 int old_len;
1500
f0a76953 1501 if (list_empty(&trans->r_itemq)) {
1da177e4
LT
1502 /* finish copying rest of trans header */
1503 xlog_recover_add_item(&trans->r_itemq);
1504 ptr = (xfs_caddr_t) &trans->r_theader +
1505 sizeof(xfs_trans_header_t) - len;
1506 memcpy(ptr, dp, len); /* d, s, l */
1507 return 0;
1508 }
f0a76953
DC
1509 /* take the tail entry */
1510 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
1da177e4
LT
1511
1512 old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
1513 old_len = item->ri_buf[item->ri_cnt-1].i_len;
1514
45053603 1515 ptr = kmem_realloc(old_ptr, len+old_len, old_len, KM_SLEEP);
1da177e4
LT
1516 memcpy(&ptr[old_len], dp, len); /* d, s, l */
1517 item->ri_buf[item->ri_cnt-1].i_len += len;
1518 item->ri_buf[item->ri_cnt-1].i_addr = ptr;
9abbc539 1519 trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
1da177e4
LT
1520 return 0;
1521}
1522
1523/*
1524 * The next region to add is the start of a new region. It could be
1525 * a whole region or it could be the first part of a new region. Because
1526 * of this, the assumption here is that the type and size fields of all
1527 * format structures fit into the first 32 bits of the structure.
1528 *
1529 * This works because all regions must be 32 bit aligned. Therefore, we
1530 * either have both fields or we have neither field. In the case we have
1531 * neither field, the data part of the region is zero length. We only have
1532 * a log_op_header and can throw away the header since a new one will appear
1533 * later. If we have at least 4 bytes, then we can determine how many regions
1534 * will appear in the current log item.
1535 */
1536STATIC int
1537xlog_recover_add_to_trans(
ad223e60
MT
1538 struct xlog *log,
1539 struct xlog_recover *trans,
1da177e4
LT
1540 xfs_caddr_t dp,
1541 int len)
1542{
1543 xfs_inode_log_format_t *in_f; /* any will do */
1544 xlog_recover_item_t *item;
1545 xfs_caddr_t ptr;
1546
1547 if (!len)
1548 return 0;
f0a76953 1549 if (list_empty(&trans->r_itemq)) {
5a792c45
DC
1550 /* we need to catch log corruptions here */
1551 if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
a0fa2b67
DC
1552 xfs_warn(log->l_mp, "%s: bad header magic number",
1553 __func__);
5a792c45
DC
1554 ASSERT(0);
1555 return XFS_ERROR(EIO);
1556 }
1da177e4
LT
1557 if (len == sizeof(xfs_trans_header_t))
1558 xlog_recover_add_item(&trans->r_itemq);
1559 memcpy(&trans->r_theader, dp, len); /* d, s, l */
1560 return 0;
1561 }
1562
1563 ptr = kmem_alloc(len, KM_SLEEP);
1564 memcpy(ptr, dp, len);
1565 in_f = (xfs_inode_log_format_t *)ptr;
1566
f0a76953
DC
1567 /* take the tail entry */
1568 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
1569 if (item->ri_total != 0 &&
1570 item->ri_total == item->ri_cnt) {
1571 /* tail item is in use, get a new one */
1da177e4 1572 xlog_recover_add_item(&trans->r_itemq);
f0a76953
DC
1573 item = list_entry(trans->r_itemq.prev,
1574 xlog_recover_item_t, ri_list);
1da177e4 1575 }
1da177e4
LT
1576
1577 if (item->ri_total == 0) { /* first region to be added */
e8fa6b48
CH
1578 if (in_f->ilf_size == 0 ||
1579 in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
a0fa2b67
DC
1580 xfs_warn(log->l_mp,
1581 "bad number of regions (%d) in inode log format",
e8fa6b48
CH
1582 in_f->ilf_size);
1583 ASSERT(0);
1584 return XFS_ERROR(EIO);
1585 }
1586
1587 item->ri_total = in_f->ilf_size;
1588 item->ri_buf =
1589 kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
1590 KM_SLEEP);
1da177e4
LT
1591 }
1592 ASSERT(item->ri_total > item->ri_cnt);
1593 /* Description region is ri_buf[0] */
1594 item->ri_buf[item->ri_cnt].i_addr = ptr;
1595 item->ri_buf[item->ri_cnt].i_len = len;
1596 item->ri_cnt++;
9abbc539 1597 trace_xfs_log_recover_item_add(log, trans, item, 0);
1da177e4
LT
1598 return 0;
1599}
1600
f0a76953
DC
1601/*
1602 * Sort the log items in the transaction. Cancelled buffers need
1603 * to be put first so they are processed before any items that might
1604 * modify the buffers. If they are cancelled, then the modifications
1605 * don't need to be replayed.
1606 */
1da177e4
LT
1607STATIC int
1608xlog_recover_reorder_trans(
ad223e60
MT
1609 struct xlog *log,
1610 struct xlog_recover *trans,
9abbc539 1611 int pass)
1da177e4 1612{
f0a76953
DC
1613 xlog_recover_item_t *item, *n;
1614 LIST_HEAD(sort_list);
1615
1616 list_splice_init(&trans->r_itemq, &sort_list);
1617 list_for_each_entry_safe(item, n, &sort_list, ri_list) {
4e0d5f92 1618 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
1da177e4 1619
f0a76953 1620 switch (ITEM_TYPE(item)) {
1da177e4 1621 case XFS_LI_BUF:
c1155410 1622 if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
9abbc539
DC
1623 trace_xfs_log_recover_item_reorder_head(log,
1624 trans, item, pass);
f0a76953 1625 list_move(&item->ri_list, &trans->r_itemq);
1da177e4
LT
1626 break;
1627 }
1628 case XFS_LI_INODE:
1da177e4
LT
1629 case XFS_LI_DQUOT:
1630 case XFS_LI_QUOTAOFF:
1631 case XFS_LI_EFD:
1632 case XFS_LI_EFI:
9abbc539
DC
1633 trace_xfs_log_recover_item_reorder_tail(log,
1634 trans, item, pass);
f0a76953 1635 list_move_tail(&item->ri_list, &trans->r_itemq);
1da177e4
LT
1636 break;
1637 default:
a0fa2b67
DC
1638 xfs_warn(log->l_mp,
1639 "%s: unrecognized type of log operation",
1640 __func__);
1da177e4
LT
1641 ASSERT(0);
1642 return XFS_ERROR(EIO);
1643 }
f0a76953
DC
1644 }
1645 ASSERT(list_empty(&sort_list));
1da177e4
LT
1646 return 0;
1647}
1648
1649/*
1650 * Build up the table of buf cancel records so that we don't replay
1651 * cancelled data in the second pass. For buffer records that are
1652 * not cancel records, there is nothing to do here so we just return.
1653 *
1654 * If we get a cancel record which is already in the table, this indicates
1655 * that the buffer was cancelled multiple times. In order to ensure
1656 * that during pass 2 we keep the record in the table until we reach its
1657 * last occurrence in the log, we keep a reference count in the cancel
1658 * record in the table to tell us how many times we expect to see this
1659 * record during the second pass.
1660 */
c9f71f5f
CH
1661STATIC int
1662xlog_recover_buffer_pass1(
ad223e60
MT
1663 struct xlog *log,
1664 struct xlog_recover_item *item)
1da177e4 1665{
c9f71f5f 1666 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
d5689eaa
CH
1667 struct list_head *bucket;
1668 struct xfs_buf_cancel *bcp;
1da177e4
LT
1669
1670 /*
1671 * If this isn't a cancel buffer item, then just return.
1672 */
e2714bf8 1673 if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
9abbc539 1674 trace_xfs_log_recover_buf_not_cancel(log, buf_f);
c9f71f5f 1675 return 0;
9abbc539 1676 }
1da177e4
LT
1677
1678 /*
d5689eaa
CH
1679 * Insert an xfs_buf_cancel record into the hash table of them.
1680 * If there is already an identical record, bump its reference count.
1da177e4 1681 */
d5689eaa
CH
1682 bucket = XLOG_BUF_CANCEL_BUCKET(log, buf_f->blf_blkno);
1683 list_for_each_entry(bcp, bucket, bc_list) {
1684 if (bcp->bc_blkno == buf_f->blf_blkno &&
1685 bcp->bc_len == buf_f->blf_len) {
1686 bcp->bc_refcount++;
9abbc539 1687 trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f);
c9f71f5f 1688 return 0;
1da177e4 1689 }
d5689eaa
CH
1690 }
1691
1692 bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), KM_SLEEP);
1693 bcp->bc_blkno = buf_f->blf_blkno;
1694 bcp->bc_len = buf_f->blf_len;
1da177e4 1695 bcp->bc_refcount = 1;
d5689eaa
CH
1696 list_add_tail(&bcp->bc_list, bucket);
1697
9abbc539 1698 trace_xfs_log_recover_buf_cancel_add(log, buf_f);
c9f71f5f 1699 return 0;
1da177e4
LT
1700}
1701
1702/*
1703 * Check to see whether the buffer being recovered has a corresponding
1704 * entry in the buffer cancel record table. If it does then return 1
1705 * so that it will be cancelled, otherwise return 0. If the buffer is
c1155410 1706 * actually a buffer cancel item (XFS_BLF_CANCEL is set), then decrement
1da177e4
LT
1707 * the refcount on the entry in the table and remove it from the table
1708 * if this is the last reference.
1709 *
1710 * We remove the cancel record from the table when we encounter its
1711 * last occurrence in the log so that if the same buffer is re-used
1712 * again after its last cancellation we actually replay the changes
1713 * made at that point.
1714 */
1715STATIC int
1716xlog_check_buffer_cancelled(
ad223e60 1717 struct xlog *log,
1da177e4
LT
1718 xfs_daddr_t blkno,
1719 uint len,
1720 ushort flags)
1721{
d5689eaa
CH
1722 struct list_head *bucket;
1723 struct xfs_buf_cancel *bcp;
1da177e4
LT
1724
1725 if (log->l_buf_cancel_table == NULL) {
1726 /*
1727 * There is nothing in the table built in pass one,
1728 * so this buffer must not be cancelled.
1729 */
c1155410 1730 ASSERT(!(flags & XFS_BLF_CANCEL));
1da177e4
LT
1731 return 0;
1732 }
1733
1da177e4 1734 /*
d5689eaa 1735 * Search for an entry in the cancel table that matches our buffer.
1da177e4 1736 */
d5689eaa
CH
1737 bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno);
1738 list_for_each_entry(bcp, bucket, bc_list) {
1739 if (bcp->bc_blkno == blkno && bcp->bc_len == len)
1740 goto found;
1da177e4 1741 }
d5689eaa 1742
1da177e4 1743 /*
d5689eaa
CH
1744 * We didn't find a corresponding entry in the table, so return 0 so
1745 * that the buffer is NOT cancelled.
1da177e4 1746 */
c1155410 1747 ASSERT(!(flags & XFS_BLF_CANCEL));
1da177e4 1748 return 0;
d5689eaa
CH
1749
1750found:
1751 /*
1752 * We've go a match, so return 1 so that the recovery of this buffer
1753 * is cancelled. If this buffer is actually a buffer cancel log
1754 * item, then decrement the refcount on the one in the table and
1755 * remove it if this is the last reference.
1756 */
1757 if (flags & XFS_BLF_CANCEL) {
1758 if (--bcp->bc_refcount == 0) {
1759 list_del(&bcp->bc_list);
1760 kmem_free(bcp);
1761 }
1762 }
1763 return 1;
1da177e4
LT
1764}
1765
1da177e4 1766/*
e2714bf8
CH
1767 * Perform recovery for a buffer full of inodes. In these buffers, the only
1768 * data which should be recovered is that which corresponds to the
1769 * di_next_unlinked pointers in the on disk inode structures. The rest of the
1770 * data for the inodes is always logged through the inodes themselves rather
1771 * than the inode buffer and is recovered in xlog_recover_inode_pass2().
1da177e4 1772 *
e2714bf8
CH
1773 * The only time when buffers full of inodes are fully recovered is when the
1774 * buffer is full of newly allocated inodes. In this case the buffer will
1775 * not be marked as an inode buffer and so will be sent to
1776 * xlog_recover_do_reg_buffer() below during recovery.
1da177e4
LT
1777 */
1778STATIC int
1779xlog_recover_do_inode_buffer(
e2714bf8 1780 struct xfs_mount *mp,
1da177e4 1781 xlog_recover_item_t *item,
e2714bf8 1782 struct xfs_buf *bp,
1da177e4
LT
1783 xfs_buf_log_format_t *buf_f)
1784{
1785 int i;
e2714bf8
CH
1786 int item_index = 0;
1787 int bit = 0;
1788 int nbits = 0;
1789 int reg_buf_offset = 0;
1790 int reg_buf_bytes = 0;
1da177e4
LT
1791 int next_unlinked_offset;
1792 int inodes_per_buf;
1793 xfs_agino_t *logged_nextp;
1794 xfs_agino_t *buffer_nextp;
1da177e4 1795
9abbc539 1796 trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
93848a99 1797 bp->b_ops = &xfs_inode_buf_ops;
9abbc539 1798
aa0e8833 1799 inodes_per_buf = BBTOB(bp->b_io_length) >> mp->m_sb.sb_inodelog;
1da177e4
LT
1800 for (i = 0; i < inodes_per_buf; i++) {
1801 next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
1802 offsetof(xfs_dinode_t, di_next_unlinked);
1803
1804 while (next_unlinked_offset >=
1805 (reg_buf_offset + reg_buf_bytes)) {
1806 /*
1807 * The next di_next_unlinked field is beyond
1808 * the current logged region. Find the next
1809 * logged region that contains or is beyond
1810 * the current di_next_unlinked field.
1811 */
1812 bit += nbits;
e2714bf8
CH
1813 bit = xfs_next_bit(buf_f->blf_data_map,
1814 buf_f->blf_map_size, bit);
1da177e4
LT
1815
1816 /*
1817 * If there are no more logged regions in the
1818 * buffer, then we're done.
1819 */
e2714bf8 1820 if (bit == -1)
1da177e4 1821 return 0;
1da177e4 1822
e2714bf8
CH
1823 nbits = xfs_contig_bits(buf_f->blf_data_map,
1824 buf_f->blf_map_size, bit);
1da177e4 1825 ASSERT(nbits > 0);
c1155410
DC
1826 reg_buf_offset = bit << XFS_BLF_SHIFT;
1827 reg_buf_bytes = nbits << XFS_BLF_SHIFT;
1da177e4
LT
1828 item_index++;
1829 }
1830
1831 /*
1832 * If the current logged region starts after the current
1833 * di_next_unlinked field, then move on to the next
1834 * di_next_unlinked field.
1835 */
e2714bf8 1836 if (next_unlinked_offset < reg_buf_offset)
1da177e4 1837 continue;
1da177e4
LT
1838
1839 ASSERT(item->ri_buf[item_index].i_addr != NULL);
c1155410 1840 ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0);
aa0e8833
DC
1841 ASSERT((reg_buf_offset + reg_buf_bytes) <=
1842 BBTOB(bp->b_io_length));
1da177e4
LT
1843
1844 /*
1845 * The current logged region contains a copy of the
1846 * current di_next_unlinked field. Extract its value
1847 * and copy it to the buffer copy.
1848 */
4e0d5f92
CH
1849 logged_nextp = item->ri_buf[item_index].i_addr +
1850 next_unlinked_offset - reg_buf_offset;
1da177e4 1851 if (unlikely(*logged_nextp == 0)) {
a0fa2b67
DC
1852 xfs_alert(mp,
1853 "Bad inode buffer log record (ptr = 0x%p, bp = 0x%p). "
1854 "Trying to replay bad (0) inode di_next_unlinked field.",
1da177e4
LT
1855 item, bp);
1856 XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
1857 XFS_ERRLEVEL_LOW, mp);
1858 return XFS_ERROR(EFSCORRUPTED);
1859 }
1860
1861 buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp,
1862 next_unlinked_offset);
87c199c2 1863 *buffer_nextp = *logged_nextp;
1da177e4
LT
1864 }
1865
1866 return 0;
1867}
1868
1869/*
d75afeb3
DC
1870 * Validate the recovered buffer is of the correct type and attach the
1871 * appropriate buffer operations to them for writeback. Magic numbers are in a
1872 * few places:
1873 * the first 16 bits of the buffer (inode buffer, dquot buffer),
1874 * the first 32 bits of the buffer (most blocks),
1875 * inside a struct xfs_da_blkinfo at the start of the buffer.
1da177e4 1876 */
d75afeb3
DC
1877static void
1878xlog_recovery_validate_buf_type(
9abbc539 1879 struct xfs_mount *mp,
e2714bf8 1880 struct xfs_buf *bp,
1da177e4
LT
1881 xfs_buf_log_format_t *buf_f)
1882{
d75afeb3
DC
1883 struct xfs_da_blkinfo *info = bp->b_addr;
1884 __uint32_t magic32;
1885 __uint16_t magic16;
1886 __uint16_t magicda;
1887
1888 magic32 = be32_to_cpu(*(__be32 *)bp->b_addr);
1889 magic16 = be16_to_cpu(*(__be16*)bp->b_addr);
1890 magicda = be16_to_cpu(info->magic);
61fe135c
DC
1891 switch (xfs_blft_from_flags(buf_f)) {
1892 case XFS_BLFT_BTREE_BUF:
d75afeb3 1893 switch (magic32) {
ee1a47ab
CH
1894 case XFS_ABTB_CRC_MAGIC:
1895 case XFS_ABTC_CRC_MAGIC:
1896 case XFS_ABTB_MAGIC:
1897 case XFS_ABTC_MAGIC:
1898 bp->b_ops = &xfs_allocbt_buf_ops;
1899 break;
1900 case XFS_IBT_CRC_MAGIC:
1901 case XFS_IBT_MAGIC:
1902 bp->b_ops = &xfs_inobt_buf_ops;
1903 break;
1904 case XFS_BMAP_CRC_MAGIC:
1905 case XFS_BMAP_MAGIC:
1906 bp->b_ops = &xfs_bmbt_buf_ops;
1907 break;
1908 default:
1909 xfs_warn(mp, "Bad btree block magic!");
1910 ASSERT(0);
1911 break;
1912 }
1913 break;
61fe135c 1914 case XFS_BLFT_AGF_BUF:
d75afeb3 1915 if (magic32 != XFS_AGF_MAGIC) {
4e0e6040
DC
1916 xfs_warn(mp, "Bad AGF block magic!");
1917 ASSERT(0);
1918 break;
1919 }
1920 bp->b_ops = &xfs_agf_buf_ops;
1921 break;
61fe135c 1922 case XFS_BLFT_AGFL_BUF:
77c95bba
CH
1923 if (!xfs_sb_version_hascrc(&mp->m_sb))
1924 break;
d75afeb3 1925 if (magic32 != XFS_AGFL_MAGIC) {
77c95bba
CH
1926 xfs_warn(mp, "Bad AGFL block magic!");
1927 ASSERT(0);
1928 break;
1929 }
1930 bp->b_ops = &xfs_agfl_buf_ops;
1931 break;
61fe135c 1932 case XFS_BLFT_AGI_BUF:
d75afeb3 1933 if (magic32 != XFS_AGI_MAGIC) {
983d09ff
DC
1934 xfs_warn(mp, "Bad AGI block magic!");
1935 ASSERT(0);
1936 break;
1937 }
1938 bp->b_ops = &xfs_agi_buf_ops;
1939 break;
61fe135c
DC
1940 case XFS_BLFT_UDQUOT_BUF:
1941 case XFS_BLFT_PDQUOT_BUF:
1942 case XFS_BLFT_GDQUOT_BUF:
123887e8 1943#ifdef CONFIG_XFS_QUOTA
d75afeb3 1944 if (magic16 != XFS_DQUOT_MAGIC) {
3fe58f30
CH
1945 xfs_warn(mp, "Bad DQUOT block magic!");
1946 ASSERT(0);
1947 break;
1948 }
1949 bp->b_ops = &xfs_dquot_buf_ops;
123887e8
DC
1950#else
1951 xfs_alert(mp,
1952 "Trying to recover dquots without QUOTA support built in!");
1953 ASSERT(0);
1954#endif
3fe58f30 1955 break;
61fe135c 1956 case XFS_BLFT_DINO_BUF:
93848a99
CH
1957 /*
1958 * we get here with inode allocation buffers, not buffers that
1959 * track unlinked list changes.
1960 */
d75afeb3 1961 if (magic16 != XFS_DINODE_MAGIC) {
93848a99
CH
1962 xfs_warn(mp, "Bad INODE block magic!");
1963 ASSERT(0);
1964 break;
1965 }
1966 bp->b_ops = &xfs_inode_buf_ops;
1967 break;
61fe135c 1968 case XFS_BLFT_SYMLINK_BUF:
d75afeb3 1969 if (magic32 != XFS_SYMLINK_MAGIC) {
f948dd76
DC
1970 xfs_warn(mp, "Bad symlink block magic!");
1971 ASSERT(0);
1972 break;
1973 }
1974 bp->b_ops = &xfs_symlink_buf_ops;
1975 break;
61fe135c 1976 case XFS_BLFT_DIR_BLOCK_BUF:
d75afeb3
DC
1977 if (magic32 != XFS_DIR2_BLOCK_MAGIC &&
1978 magic32 != XFS_DIR3_BLOCK_MAGIC) {
1979 xfs_warn(mp, "Bad dir block magic!");
1980 ASSERT(0);
1981 break;
1982 }
1983 bp->b_ops = &xfs_dir3_block_buf_ops;
1984 break;
61fe135c 1985 case XFS_BLFT_DIR_DATA_BUF:
d75afeb3
DC
1986 if (magic32 != XFS_DIR2_DATA_MAGIC &&
1987 magic32 != XFS_DIR3_DATA_MAGIC) {
1988 xfs_warn(mp, "Bad dir data magic!");
1989 ASSERT(0);
1990 break;
1991 }
1992 bp->b_ops = &xfs_dir3_data_buf_ops;
1993 break;
61fe135c 1994 case XFS_BLFT_DIR_FREE_BUF:
d75afeb3
DC
1995 if (magic32 != XFS_DIR2_FREE_MAGIC &&
1996 magic32 != XFS_DIR3_FREE_MAGIC) {
1997 xfs_warn(mp, "Bad dir3 free magic!");
1998 ASSERT(0);
1999 break;
2000 }
2001 bp->b_ops = &xfs_dir3_free_buf_ops;
2002 break;
61fe135c 2003 case XFS_BLFT_DIR_LEAF1_BUF:
d75afeb3
DC
2004 if (magicda != XFS_DIR2_LEAF1_MAGIC &&
2005 magicda != XFS_DIR3_LEAF1_MAGIC) {
2006 xfs_warn(mp, "Bad dir leaf1 magic!");
2007 ASSERT(0);
2008 break;
2009 }
2010 bp->b_ops = &xfs_dir3_leaf1_buf_ops;
2011 break;
61fe135c 2012 case XFS_BLFT_DIR_LEAFN_BUF:
d75afeb3
DC
2013 if (magicda != XFS_DIR2_LEAFN_MAGIC &&
2014 magicda != XFS_DIR3_LEAFN_MAGIC) {
2015 xfs_warn(mp, "Bad dir leafn magic!");
2016 ASSERT(0);
2017 break;
2018 }
2019 bp->b_ops = &xfs_dir3_leafn_buf_ops;
2020 break;
61fe135c 2021 case XFS_BLFT_DA_NODE_BUF:
d75afeb3
DC
2022 if (magicda != XFS_DA_NODE_MAGIC &&
2023 magicda != XFS_DA3_NODE_MAGIC) {
2024 xfs_warn(mp, "Bad da node magic!");
2025 ASSERT(0);
2026 break;
2027 }
2028 bp->b_ops = &xfs_da3_node_buf_ops;
2029 break;
61fe135c 2030 case XFS_BLFT_ATTR_LEAF_BUF:
d75afeb3
DC
2031 if (magicda != XFS_ATTR_LEAF_MAGIC &&
2032 magicda != XFS_ATTR3_LEAF_MAGIC) {
2033 xfs_warn(mp, "Bad attr leaf magic!");
2034 ASSERT(0);
2035 break;
2036 }
2037 bp->b_ops = &xfs_attr3_leaf_buf_ops;
2038 break;
61fe135c 2039 case XFS_BLFT_ATTR_RMT_BUF:
d75afeb3
DC
2040 if (!xfs_sb_version_hascrc(&mp->m_sb))
2041 break;
cab09a81 2042 if (magic32 != XFS_ATTR3_RMT_MAGIC) {
d75afeb3
DC
2043 xfs_warn(mp, "Bad attr remote magic!");
2044 ASSERT(0);
2045 break;
2046 }
2047 bp->b_ops = &xfs_attr3_rmt_buf_ops;
2048 break;
04a1e6c5
DC
2049 case XFS_BLFT_SB_BUF:
2050 if (magic32 != XFS_SB_MAGIC) {
2051 xfs_warn(mp, "Bad SB block magic!");
2052 ASSERT(0);
2053 break;
2054 }
2055 bp->b_ops = &xfs_sb_buf_ops;
2056 break;
ee1a47ab 2057 default:
61fe135c
DC
2058 xfs_warn(mp, "Unknown buffer type %d!",
2059 xfs_blft_from_flags(buf_f));
ee1a47ab
CH
2060 break;
2061 }
1da177e4
LT
2062}
2063
d75afeb3
DC
2064/*
2065 * Perform a 'normal' buffer recovery. Each logged region of the
2066 * buffer should be copied over the corresponding region in the
2067 * given buffer. The bitmap in the buf log format structure indicates
2068 * where to place the logged data.
2069 */
2070STATIC void
2071xlog_recover_do_reg_buffer(
2072 struct xfs_mount *mp,
2073 xlog_recover_item_t *item,
2074 struct xfs_buf *bp,
2075 xfs_buf_log_format_t *buf_f)
2076{
2077 int i;
2078 int bit;
2079 int nbits;
2080 int error;
2081
2082 trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
2083
2084 bit = 0;
2085 i = 1; /* 0 is the buf format structure */
2086 while (1) {
2087 bit = xfs_next_bit(buf_f->blf_data_map,
2088 buf_f->blf_map_size, bit);
2089 if (bit == -1)
2090 break;
2091 nbits = xfs_contig_bits(buf_f->blf_data_map,
2092 buf_f->blf_map_size, bit);
2093 ASSERT(nbits > 0);
2094 ASSERT(item->ri_buf[i].i_addr != NULL);
2095 ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0);
2096 ASSERT(BBTOB(bp->b_io_length) >=
2097 ((uint)bit << XFS_BLF_SHIFT) + (nbits << XFS_BLF_SHIFT));
2098
2099 /*
2100 * Do a sanity check if this is a dquot buffer. Just checking
2101 * the first dquot in the buffer should do. XXXThis is
2102 * probably a good thing to do for other buf types also.
2103 */
2104 error = 0;
2105 if (buf_f->blf_flags &
2106 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2107 if (item->ri_buf[i].i_addr == NULL) {
2108 xfs_alert(mp,
2109 "XFS: NULL dquot in %s.", __func__);
2110 goto next;
2111 }
2112 if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) {
2113 xfs_alert(mp,
2114 "XFS: dquot too small (%d) in %s.",
2115 item->ri_buf[i].i_len, __func__);
2116 goto next;
2117 }
2118 error = xfs_qm_dqcheck(mp, item->ri_buf[i].i_addr,
2119 -1, 0, XFS_QMOPT_DOWARN,
2120 "dquot_buf_recover");
2121 if (error)
2122 goto next;
2123 }
2124
2125 memcpy(xfs_buf_offset(bp,
2126 (uint)bit << XFS_BLF_SHIFT), /* dest */
2127 item->ri_buf[i].i_addr, /* source */
2128 nbits<<XFS_BLF_SHIFT); /* length */
2129 next:
2130 i++;
2131 bit += nbits;
2132 }
2133
2134 /* Shouldn't be any more regions */
2135 ASSERT(i == item->ri_total);
2136
2137 xlog_recovery_validate_buf_type(mp, bp, buf_f);
d75afeb3
DC
2138}
2139
1da177e4
LT
2140/*
2141 * Do some primitive error checking on ondisk dquot data structures.
2142 */
2143int
2144xfs_qm_dqcheck(
a0fa2b67 2145 struct xfs_mount *mp,
1da177e4
LT
2146 xfs_disk_dquot_t *ddq,
2147 xfs_dqid_t id,
2148 uint type, /* used only when IO_dorepair is true */
2149 uint flags,
2150 char *str)
2151{
2152 xfs_dqblk_t *d = (xfs_dqblk_t *)ddq;
2153 int errs = 0;
2154
2155 /*
2156 * We can encounter an uninitialized dquot buffer for 2 reasons:
2157 * 1. If we crash while deleting the quotainode(s), and those blks got
2158 * used for user data. This is because we take the path of regular
2159 * file deletion; however, the size field of quotainodes is never
2160 * updated, so all the tricks that we play in itruncate_finish
2161 * don't quite matter.
2162 *
2163 * 2. We don't play the quota buffers when there's a quotaoff logitem.
2164 * But the allocation will be replayed so we'll end up with an
2165 * uninitialized quota block.
2166 *
2167 * This is all fine; things are still consistent, and we haven't lost
2168 * any quota information. Just don't complain about bad dquot blks.
2169 */
69ef921b 2170 if (ddq->d_magic != cpu_to_be16(XFS_DQUOT_MAGIC)) {
1da177e4 2171 if (flags & XFS_QMOPT_DOWARN)
a0fa2b67 2172 xfs_alert(mp,
1da177e4 2173 "%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x",
1149d96a 2174 str, id, be16_to_cpu(ddq->d_magic), XFS_DQUOT_MAGIC);
1da177e4
LT
2175 errs++;
2176 }
1149d96a 2177 if (ddq->d_version != XFS_DQUOT_VERSION) {
1da177e4 2178 if (flags & XFS_QMOPT_DOWARN)
a0fa2b67 2179 xfs_alert(mp,
1da177e4 2180 "%s : XFS dquot ID 0x%x, version 0x%x != 0x%x",
1149d96a 2181 str, id, ddq->d_version, XFS_DQUOT_VERSION);
1da177e4
LT
2182 errs++;
2183 }
2184
1149d96a
CH
2185 if (ddq->d_flags != XFS_DQ_USER &&
2186 ddq->d_flags != XFS_DQ_PROJ &&
2187 ddq->d_flags != XFS_DQ_GROUP) {
1da177e4 2188 if (flags & XFS_QMOPT_DOWARN)
a0fa2b67 2189 xfs_alert(mp,
1da177e4 2190 "%s : XFS dquot ID 0x%x, unknown flags 0x%x",
1149d96a 2191 str, id, ddq->d_flags);
1da177e4
LT
2192 errs++;
2193 }
2194
1149d96a 2195 if (id != -1 && id != be32_to_cpu(ddq->d_id)) {
1da177e4 2196 if (flags & XFS_QMOPT_DOWARN)
a0fa2b67 2197 xfs_alert(mp,
1da177e4
LT
2198 "%s : ondisk-dquot 0x%p, ID mismatch: "
2199 "0x%x expected, found id 0x%x",
1149d96a 2200 str, ddq, id, be32_to_cpu(ddq->d_id));
1da177e4
LT
2201 errs++;
2202 }
2203
2204 if (!errs && ddq->d_id) {
1149d96a 2205 if (ddq->d_blk_softlimit &&
d0a3fe67 2206 be64_to_cpu(ddq->d_bcount) >
1149d96a 2207 be64_to_cpu(ddq->d_blk_softlimit)) {
1da177e4
LT
2208 if (!ddq->d_btimer) {
2209 if (flags & XFS_QMOPT_DOWARN)
a0fa2b67
DC
2210 xfs_alert(mp,
2211 "%s : Dquot ID 0x%x (0x%p) BLK TIMER NOT STARTED",
1149d96a 2212 str, (int)be32_to_cpu(ddq->d_id), ddq);
1da177e4
LT
2213 errs++;
2214 }
2215 }
1149d96a 2216 if (ddq->d_ino_softlimit &&
d0a3fe67 2217 be64_to_cpu(ddq->d_icount) >
1149d96a 2218 be64_to_cpu(ddq->d_ino_softlimit)) {
1da177e4
LT
2219 if (!ddq->d_itimer) {
2220 if (flags & XFS_QMOPT_DOWARN)
a0fa2b67
DC
2221 xfs_alert(mp,
2222 "%s : Dquot ID 0x%x (0x%p) INODE TIMER NOT STARTED",
1149d96a 2223 str, (int)be32_to_cpu(ddq->d_id), ddq);
1da177e4
LT
2224 errs++;
2225 }
2226 }
1149d96a 2227 if (ddq->d_rtb_softlimit &&
d0a3fe67 2228 be64_to_cpu(ddq->d_rtbcount) >
1149d96a 2229 be64_to_cpu(ddq->d_rtb_softlimit)) {
1da177e4
LT
2230 if (!ddq->d_rtbtimer) {
2231 if (flags & XFS_QMOPT_DOWARN)
a0fa2b67
DC
2232 xfs_alert(mp,
2233 "%s : Dquot ID 0x%x (0x%p) RTBLK TIMER NOT STARTED",
1149d96a 2234 str, (int)be32_to_cpu(ddq->d_id), ddq);
1da177e4
LT
2235 errs++;
2236 }
2237 }
2238 }
2239
2240 if (!errs || !(flags & XFS_QMOPT_DQREPAIR))
2241 return errs;
2242
2243 if (flags & XFS_QMOPT_DOWARN)
a0fa2b67 2244 xfs_notice(mp, "Re-initializing dquot ID 0x%x", id);
1da177e4
LT
2245
2246 /*
2247 * Typically, a repair is only requested by quotacheck.
2248 */
2249 ASSERT(id != -1);
2250 ASSERT(flags & XFS_QMOPT_DQREPAIR);
2251 memset(d, 0, sizeof(xfs_dqblk_t));
1149d96a
CH
2252
2253 d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC);
2254 d->dd_diskdq.d_version = XFS_DQUOT_VERSION;
2255 d->dd_diskdq.d_flags = type;
2256 d->dd_diskdq.d_id = cpu_to_be32(id);
1da177e4
LT
2257
2258 return errs;
2259}
2260
2261/*
2262 * Perform a dquot buffer recovery.
2263 * Simple algorithm: if we have found a QUOTAOFF logitem of the same type
2264 * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2265 * Else, treat it as a regular buffer and do recovery.
2266 */
2267STATIC void
2268xlog_recover_do_dquot_buffer(
9a8d2fdb
MT
2269 struct xfs_mount *mp,
2270 struct xlog *log,
2271 struct xlog_recover_item *item,
2272 struct xfs_buf *bp,
2273 struct xfs_buf_log_format *buf_f)
1da177e4
LT
2274{
2275 uint type;
2276
9abbc539
DC
2277 trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
2278
1da177e4
LT
2279 /*
2280 * Filesystems are required to send in quota flags at mount time.
2281 */
2282 if (mp->m_qflags == 0) {
2283 return;
2284 }
2285
2286 type = 0;
c1155410 2287 if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF)
1da177e4 2288 type |= XFS_DQ_USER;
c1155410 2289 if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF)
c8ad20ff 2290 type |= XFS_DQ_PROJ;
c1155410 2291 if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF)
1da177e4
LT
2292 type |= XFS_DQ_GROUP;
2293 /*
2294 * This type of quotas was turned off, so ignore this buffer
2295 */
2296 if (log->l_quotaoffs_flag & type)
2297 return;
2298
9abbc539 2299 xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
1da177e4
LT
2300}
2301
2302/*
2303 * This routine replays a modification made to a buffer at runtime.
2304 * There are actually two types of buffer, regular and inode, which
2305 * are handled differently. Inode buffers are handled differently
2306 * in that we only recover a specific set of data from them, namely
2307 * the inode di_next_unlinked fields. This is because all other inode
2308 * data is actually logged via inode records and any data we replay
2309 * here which overlaps that may be stale.
2310 *
2311 * When meta-data buffers are freed at run time we log a buffer item
c1155410 2312 * with the XFS_BLF_CANCEL bit set to indicate that previous copies
1da177e4
LT
2313 * of the buffer in the log should not be replayed at recovery time.
2314 * This is so that if the blocks covered by the buffer are reused for
2315 * file data before we crash we don't end up replaying old, freed
2316 * meta-data into a user's file.
2317 *
2318 * To handle the cancellation of buffer log items, we make two passes
2319 * over the log during recovery. During the first we build a table of
2320 * those buffers which have been cancelled, and during the second we
2321 * only replay those buffers which do not have corresponding cancel
2322 * records in the table. See xlog_recover_do_buffer_pass[1,2] above
2323 * for more details on the implementation of the table of cancel records.
2324 */
2325STATIC int
c9f71f5f 2326xlog_recover_buffer_pass2(
9a8d2fdb
MT
2327 struct xlog *log,
2328 struct list_head *buffer_list,
2329 struct xlog_recover_item *item)
1da177e4 2330{
4e0d5f92 2331 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
e2714bf8 2332 xfs_mount_t *mp = log->l_mp;
1da177e4
LT
2333 xfs_buf_t *bp;
2334 int error;
6ad112bf 2335 uint buf_flags;
1da177e4 2336
c9f71f5f
CH
2337 /*
2338 * In this pass we only want to recover all the buffers which have
2339 * not been cancelled and are not cancellation buffers themselves.
2340 */
2341 if (xlog_check_buffer_cancelled(log, buf_f->blf_blkno,
2342 buf_f->blf_len, buf_f->blf_flags)) {
2343 trace_xfs_log_recover_buf_cancel(log, buf_f);
1da177e4 2344 return 0;
1da177e4 2345 }
c9f71f5f 2346
9abbc539 2347 trace_xfs_log_recover_buf_recover(log, buf_f);
1da177e4 2348
a8acad70 2349 buf_flags = 0;
611c9946
DC
2350 if (buf_f->blf_flags & XFS_BLF_INODE_BUF)
2351 buf_flags |= XBF_UNMAPPED;
6ad112bf 2352
e2714bf8 2353 bp = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len,
c3f8fc73 2354 buf_flags, NULL);
ac4d6888
CS
2355 if (!bp)
2356 return XFS_ERROR(ENOMEM);
e5702805 2357 error = bp->b_error;
5a52c2a5 2358 if (error) {
901796af 2359 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#1)");
1da177e4
LT
2360 xfs_buf_relse(bp);
2361 return error;
2362 }
2363
e2714bf8 2364 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
1da177e4 2365 error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
e2714bf8 2366 } else if (buf_f->blf_flags &
c1155410 2367 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
1da177e4
LT
2368 xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2369 } else {
9abbc539 2370 xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
1da177e4
LT
2371 }
2372 if (error)
2373 return XFS_ERROR(error);
2374
2375 /*
2376 * Perform delayed write on the buffer. Asynchronous writes will be
2377 * slower when taking into account all the buffers to be flushed.
2378 *
2379 * Also make sure that only inode buffers with good sizes stay in
2380 * the buffer cache. The kernel moves inodes in buffers of 1 block
2381 * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger. The inode
2382 * buffers in the log can be a different size if the log was generated
2383 * by an older kernel using unclustered inode buffers or a newer kernel
2384 * running with a different inode cluster size. Regardless, if the
2385 * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE)
2386 * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep
2387 * the buffer out of the buffer cache so that the buffer won't
2388 * overlap with future reads of those inodes.
2389 */
2390 if (XFS_DINODE_MAGIC ==
b53e675d 2391 be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
aa0e8833 2392 (BBTOB(bp->b_io_length) != MAX(log->l_mp->m_sb.sb_blocksize,
1da177e4 2393 (__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) {
c867cb61 2394 xfs_buf_stale(bp);
c2b006c1 2395 error = xfs_bwrite(bp);
1da177e4 2396 } else {
ebad861b 2397 ASSERT(bp->b_target->bt_mount == mp);
cb669ca5 2398 bp->b_iodone = xlog_recover_iodone;
43ff2122 2399 xfs_buf_delwri_queue(bp, buffer_list);
1da177e4
LT
2400 }
2401
c2b006c1
CH
2402 xfs_buf_relse(bp);
2403 return error;
1da177e4
LT
2404}
2405
2406STATIC int
c9f71f5f 2407xlog_recover_inode_pass2(
9a8d2fdb
MT
2408 struct xlog *log,
2409 struct list_head *buffer_list,
2410 struct xlog_recover_item *item)
1da177e4
LT
2411{
2412 xfs_inode_log_format_t *in_f;
c9f71f5f 2413 xfs_mount_t *mp = log->l_mp;
1da177e4 2414 xfs_buf_t *bp;
1da177e4 2415 xfs_dinode_t *dip;
1da177e4
LT
2416 int len;
2417 xfs_caddr_t src;
2418 xfs_caddr_t dest;
2419 int error;
2420 int attr_index;
2421 uint fields;
347d1c01 2422 xfs_icdinode_t *dicp;
93848a99 2423 uint isize;
6d192a9b 2424 int need_free = 0;
1da177e4 2425
6d192a9b 2426 if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
4e0d5f92 2427 in_f = item->ri_buf[0].i_addr;
6d192a9b 2428 } else {
4e0d5f92 2429 in_f = kmem_alloc(sizeof(xfs_inode_log_format_t), KM_SLEEP);
6d192a9b
TS
2430 need_free = 1;
2431 error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
2432 if (error)
2433 goto error;
2434 }
1da177e4
LT
2435
2436 /*
2437 * Inode buffers can be freed, look out for it,
2438 * and do not replay the inode.
2439 */
a1941895
CH
2440 if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
2441 in_f->ilf_len, 0)) {
6d192a9b 2442 error = 0;
9abbc539 2443 trace_xfs_log_recover_inode_cancel(log, in_f);
6d192a9b
TS
2444 goto error;
2445 }
9abbc539 2446 trace_xfs_log_recover_inode_recover(log, in_f);
1da177e4 2447
c3f8fc73 2448 bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len, 0,
93848a99 2449 &xfs_inode_buf_ops);
ac4d6888
CS
2450 if (!bp) {
2451 error = ENOMEM;
2452 goto error;
2453 }
e5702805 2454 error = bp->b_error;
5a52c2a5 2455 if (error) {
901796af 2456 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#2)");
1da177e4 2457 xfs_buf_relse(bp);
6d192a9b 2458 goto error;
1da177e4 2459 }
1da177e4 2460 ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
a1941895 2461 dip = (xfs_dinode_t *)xfs_buf_offset(bp, in_f->ilf_boffset);
1da177e4
LT
2462
2463 /*
2464 * Make sure the place we're flushing out to really looks
2465 * like an inode!
2466 */
69ef921b 2467 if (unlikely(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC))) {
1da177e4 2468 xfs_buf_relse(bp);
a0fa2b67
DC
2469 xfs_alert(mp,
2470 "%s: Bad inode magic number, dip = 0x%p, dino bp = 0x%p, ino = %Ld",
2471 __func__, dip, bp, in_f->ilf_ino);
c9f71f5f 2472 XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)",
1da177e4 2473 XFS_ERRLEVEL_LOW, mp);
6d192a9b
TS
2474 error = EFSCORRUPTED;
2475 goto error;
1da177e4 2476 }
4e0d5f92 2477 dicp = item->ri_buf[1].i_addr;
1da177e4
LT
2478 if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
2479 xfs_buf_relse(bp);
a0fa2b67
DC
2480 xfs_alert(mp,
2481 "%s: Bad inode log record, rec ptr 0x%p, ino %Ld",
2482 __func__, item, in_f->ilf_ino);
c9f71f5f 2483 XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)",
1da177e4 2484 XFS_ERRLEVEL_LOW, mp);
6d192a9b
TS
2485 error = EFSCORRUPTED;
2486 goto error;
1da177e4
LT
2487 }
2488
2489 /* Skip replay when the on disk inode is newer than the log one */
81591fe2 2490 if (dicp->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
1da177e4
LT
2491 /*
2492 * Deal with the wrap case, DI_MAX_FLUSH is less
2493 * than smaller numbers
2494 */
81591fe2 2495 if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
347d1c01 2496 dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) {
1da177e4
LT
2497 /* do nothing */
2498 } else {
2499 xfs_buf_relse(bp);
9abbc539 2500 trace_xfs_log_recover_inode_skip(log, in_f);
6d192a9b
TS
2501 error = 0;
2502 goto error;
1da177e4
LT
2503 }
2504 }
2505 /* Take the opportunity to reset the flush iteration count */
2506 dicp->di_flushiter = 0;
2507
abbede1b 2508 if (unlikely(S_ISREG(dicp->di_mode))) {
1da177e4
LT
2509 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2510 (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
c9f71f5f 2511 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)",
1da177e4
LT
2512 XFS_ERRLEVEL_LOW, mp, dicp);
2513 xfs_buf_relse(bp);
a0fa2b67
DC
2514 xfs_alert(mp,
2515 "%s: Bad regular inode log record, rec ptr 0x%p, "
2516 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2517 __func__, item, dip, bp, in_f->ilf_ino);
6d192a9b
TS
2518 error = EFSCORRUPTED;
2519 goto error;
1da177e4 2520 }
abbede1b 2521 } else if (unlikely(S_ISDIR(dicp->di_mode))) {
1da177e4
LT
2522 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2523 (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
2524 (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
c9f71f5f 2525 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)",
1da177e4
LT
2526 XFS_ERRLEVEL_LOW, mp, dicp);
2527 xfs_buf_relse(bp);
a0fa2b67
DC
2528 xfs_alert(mp,
2529 "%s: Bad dir inode log record, rec ptr 0x%p, "
2530 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2531 __func__, item, dip, bp, in_f->ilf_ino);
6d192a9b
TS
2532 error = EFSCORRUPTED;
2533 goto error;
1da177e4
LT
2534 }
2535 }
2536 if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
c9f71f5f 2537 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)",
1da177e4
LT
2538 XFS_ERRLEVEL_LOW, mp, dicp);
2539 xfs_buf_relse(bp);
a0fa2b67
DC
2540 xfs_alert(mp,
2541 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
2542 "dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
2543 __func__, item, dip, bp, in_f->ilf_ino,
1da177e4
LT
2544 dicp->di_nextents + dicp->di_anextents,
2545 dicp->di_nblocks);
6d192a9b
TS
2546 error = EFSCORRUPTED;
2547 goto error;
1da177e4
LT
2548 }
2549 if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
c9f71f5f 2550 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)",
1da177e4
LT
2551 XFS_ERRLEVEL_LOW, mp, dicp);
2552 xfs_buf_relse(bp);
a0fa2b67
DC
2553 xfs_alert(mp,
2554 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
2555 "dino bp 0x%p, ino %Ld, forkoff 0x%x", __func__,
c9f71f5f 2556 item, dip, bp, in_f->ilf_ino, dicp->di_forkoff);
6d192a9b
TS
2557 error = EFSCORRUPTED;
2558 goto error;
1da177e4 2559 }
93848a99
CH
2560 isize = xfs_icdinode_size(dicp->di_version);
2561 if (unlikely(item->ri_buf[1].i_len > isize)) {
c9f71f5f 2562 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)",
1da177e4
LT
2563 XFS_ERRLEVEL_LOW, mp, dicp);
2564 xfs_buf_relse(bp);
a0fa2b67
DC
2565 xfs_alert(mp,
2566 "%s: Bad inode log record length %d, rec ptr 0x%p",
2567 __func__, item->ri_buf[1].i_len, item);
6d192a9b
TS
2568 error = EFSCORRUPTED;
2569 goto error;
1da177e4
LT
2570 }
2571
2572 /* The core is in in-core format */
93848a99 2573 xfs_dinode_to_disk(dip, dicp);
1da177e4
LT
2574
2575 /* the rest is in on-disk format */
93848a99
CH
2576 if (item->ri_buf[1].i_len > isize) {
2577 memcpy((char *)dip + isize,
2578 item->ri_buf[1].i_addr + isize,
2579 item->ri_buf[1].i_len - isize);
1da177e4
LT
2580 }
2581
2582 fields = in_f->ilf_fields;
2583 switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
2584 case XFS_ILOG_DEV:
81591fe2 2585 xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
1da177e4
LT
2586 break;
2587 case XFS_ILOG_UUID:
81591fe2
CH
2588 memcpy(XFS_DFORK_DPTR(dip),
2589 &in_f->ilf_u.ilfu_uuid,
2590 sizeof(uuid_t));
1da177e4
LT
2591 break;
2592 }
2593
2594 if (in_f->ilf_size == 2)
2595 goto write_inode_buffer;
2596 len = item->ri_buf[2].i_len;
2597 src = item->ri_buf[2].i_addr;
2598 ASSERT(in_f->ilf_size <= 4);
2599 ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
2600 ASSERT(!(fields & XFS_ILOG_DFORK) ||
2601 (len == in_f->ilf_dsize));
2602
2603 switch (fields & XFS_ILOG_DFORK) {
2604 case XFS_ILOG_DDATA:
2605 case XFS_ILOG_DEXT:
81591fe2 2606 memcpy(XFS_DFORK_DPTR(dip), src, len);
1da177e4
LT
2607 break;
2608
2609 case XFS_ILOG_DBROOT:
7cc95a82 2610 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
81591fe2 2611 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
1da177e4
LT
2612 XFS_DFORK_DSIZE(dip, mp));
2613 break;
2614
2615 default:
2616 /*
2617 * There are no data fork flags set.
2618 */
2619 ASSERT((fields & XFS_ILOG_DFORK) == 0);
2620 break;
2621 }
2622
2623 /*
2624 * If we logged any attribute data, recover it. There may or
2625 * may not have been any other non-core data logged in this
2626 * transaction.
2627 */
2628 if (in_f->ilf_fields & XFS_ILOG_AFORK) {
2629 if (in_f->ilf_fields & XFS_ILOG_DFORK) {
2630 attr_index = 3;
2631 } else {
2632 attr_index = 2;
2633 }
2634 len = item->ri_buf[attr_index].i_len;
2635 src = item->ri_buf[attr_index].i_addr;
2636 ASSERT(len == in_f->ilf_asize);
2637
2638 switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
2639 case XFS_ILOG_ADATA:
2640 case XFS_ILOG_AEXT:
2641 dest = XFS_DFORK_APTR(dip);
2642 ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
2643 memcpy(dest, src, len);
2644 break;
2645
2646 case XFS_ILOG_ABROOT:
2647 dest = XFS_DFORK_APTR(dip);
7cc95a82
CH
2648 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
2649 len, (xfs_bmdr_block_t*)dest,
1da177e4
LT
2650 XFS_DFORK_ASIZE(dip, mp));
2651 break;
2652
2653 default:
a0fa2b67 2654 xfs_warn(log->l_mp, "%s: Invalid flag", __func__);
1da177e4
LT
2655 ASSERT(0);
2656 xfs_buf_relse(bp);
6d192a9b
TS
2657 error = EIO;
2658 goto error;
1da177e4
LT
2659 }
2660 }
2661
2662write_inode_buffer:
93848a99
CH
2663 /* re-generate the checksum. */
2664 xfs_dinode_calc_crc(log->l_mp, dip);
2665
ebad861b 2666 ASSERT(bp->b_target->bt_mount == mp);
cb669ca5 2667 bp->b_iodone = xlog_recover_iodone;
43ff2122 2668 xfs_buf_delwri_queue(bp, buffer_list);
61551f1e 2669 xfs_buf_relse(bp);
6d192a9b
TS
2670error:
2671 if (need_free)
f0e2d93c 2672 kmem_free(in_f);
6d192a9b 2673 return XFS_ERROR(error);
1da177e4
LT
2674}
2675
2676/*
9a8d2fdb 2677 * Recover QUOTAOFF records. We simply make a note of it in the xlog
1da177e4
LT
2678 * structure, so that we know not to do any dquot item or dquot buffer recovery,
2679 * of that type.
2680 */
2681STATIC int
c9f71f5f 2682xlog_recover_quotaoff_pass1(
9a8d2fdb
MT
2683 struct xlog *log,
2684 struct xlog_recover_item *item)
1da177e4 2685{
c9f71f5f 2686 xfs_qoff_logformat_t *qoff_f = item->ri_buf[0].i_addr;
1da177e4
LT
2687 ASSERT(qoff_f);
2688
2689 /*
2690 * The logitem format's flag tells us if this was user quotaoff,
77a7cce4 2691 * group/project quotaoff or both.
1da177e4
LT
2692 */
2693 if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
2694 log->l_quotaoffs_flag |= XFS_DQ_USER;
77a7cce4
NS
2695 if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
2696 log->l_quotaoffs_flag |= XFS_DQ_PROJ;
1da177e4
LT
2697 if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
2698 log->l_quotaoffs_flag |= XFS_DQ_GROUP;
2699
2700 return (0);
2701}
2702
2703/*
2704 * Recover a dquot record
2705 */
2706STATIC int
c9f71f5f 2707xlog_recover_dquot_pass2(
9a8d2fdb
MT
2708 struct xlog *log,
2709 struct list_head *buffer_list,
2710 struct xlog_recover_item *item)
1da177e4 2711{
c9f71f5f 2712 xfs_mount_t *mp = log->l_mp;
1da177e4
LT
2713 xfs_buf_t *bp;
2714 struct xfs_disk_dquot *ddq, *recddq;
2715 int error;
2716 xfs_dq_logformat_t *dq_f;
2717 uint type;
2718
1da177e4
LT
2719
2720 /*
2721 * Filesystems are required to send in quota flags at mount time.
2722 */
2723 if (mp->m_qflags == 0)
2724 return (0);
2725
4e0d5f92
CH
2726 recddq = item->ri_buf[1].i_addr;
2727 if (recddq == NULL) {
a0fa2b67 2728 xfs_alert(log->l_mp, "NULL dquot in %s.", __func__);
0c5e1ce8
CH
2729 return XFS_ERROR(EIO);
2730 }
8ec6dba2 2731 if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) {
a0fa2b67 2732 xfs_alert(log->l_mp, "dquot too small (%d) in %s.",
0c5e1ce8
CH
2733 item->ri_buf[1].i_len, __func__);
2734 return XFS_ERROR(EIO);
2735 }
2736
1da177e4
LT
2737 /*
2738 * This type of quotas was turned off, so ignore this record.
2739 */
b53e675d 2740 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
1da177e4
LT
2741 ASSERT(type);
2742 if (log->l_quotaoffs_flag & type)
2743 return (0);
2744
2745 /*
2746 * At this point we know that quota was _not_ turned off.
2747 * Since the mount flags are not indicating to us otherwise, this
2748 * must mean that quota is on, and the dquot needs to be replayed.
2749 * Remember that we may not have fully recovered the superblock yet,
2750 * so we can't do the usual trick of looking at the SB quota bits.
2751 *
2752 * The other possibility, of course, is that the quota subsystem was
2753 * removed since the last mount - ENOSYS.
2754 */
4e0d5f92 2755 dq_f = item->ri_buf[0].i_addr;
1da177e4 2756 ASSERT(dq_f);
a0fa2b67
DC
2757 error = xfs_qm_dqcheck(mp, recddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
2758 "xlog_recover_dquot_pass2 (log copy)");
2759 if (error)
1da177e4 2760 return XFS_ERROR(EIO);
1da177e4
LT
2761 ASSERT(dq_f->qlf_len == 1);
2762
7ca790a5 2763 error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dq_f->qlf_blkno,
c3f8fc73
DC
2764 XFS_FSB_TO_BB(mp, dq_f->qlf_len), 0, &bp,
2765 NULL);
7ca790a5 2766 if (error)
1da177e4 2767 return error;
7ca790a5 2768
1da177e4
LT
2769 ASSERT(bp);
2770 ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset);
2771
2772 /*
2773 * At least the magic num portion should be on disk because this
2774 * was among a chunk of dquots created earlier, and we did some
2775 * minimal initialization then.
2776 */
a0fa2b67
DC
2777 error = xfs_qm_dqcheck(mp, ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
2778 "xlog_recover_dquot_pass2");
2779 if (error) {
1da177e4
LT
2780 xfs_buf_relse(bp);
2781 return XFS_ERROR(EIO);
2782 }
2783
2784 memcpy(ddq, recddq, item->ri_buf[1].i_len);
2785
2786 ASSERT(dq_f->qlf_size == 2);
ebad861b 2787 ASSERT(bp->b_target->bt_mount == mp);
cb669ca5 2788 bp->b_iodone = xlog_recover_iodone;
43ff2122 2789 xfs_buf_delwri_queue(bp, buffer_list);
61551f1e 2790 xfs_buf_relse(bp);
1da177e4
LT
2791
2792 return (0);
2793}
2794
2795/*
2796 * This routine is called to create an in-core extent free intent
2797 * item from the efi format structure which was logged on disk.
2798 * It allocates an in-core efi, copies the extents from the format
2799 * structure into it, and adds the efi to the AIL with the given
2800 * LSN.
2801 */
6d192a9b 2802STATIC int
c9f71f5f 2803xlog_recover_efi_pass2(
9a8d2fdb
MT
2804 struct xlog *log,
2805 struct xlog_recover_item *item,
2806 xfs_lsn_t lsn)
1da177e4 2807{
6d192a9b 2808 int error;
c9f71f5f 2809 xfs_mount_t *mp = log->l_mp;
1da177e4
LT
2810 xfs_efi_log_item_t *efip;
2811 xfs_efi_log_format_t *efi_formatp;
1da177e4 2812
4e0d5f92 2813 efi_formatp = item->ri_buf[0].i_addr;
1da177e4 2814
1da177e4 2815 efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
6d192a9b
TS
2816 if ((error = xfs_efi_copy_format(&(item->ri_buf[0]),
2817 &(efip->efi_format)))) {
2818 xfs_efi_item_free(efip);
2819 return error;
2820 }
b199c8a4 2821 atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
1da177e4 2822
a9c21c1b 2823 spin_lock(&log->l_ailp->xa_lock);
1da177e4 2824 /*
783a2f65 2825 * xfs_trans_ail_update() drops the AIL lock.
1da177e4 2826 */
e6059949 2827 xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn);
6d192a9b 2828 return 0;
1da177e4
LT
2829}
2830
2831
2832/*
2833 * This routine is called when an efd format structure is found in
2834 * a committed transaction in the log. It's purpose is to cancel
2835 * the corresponding efi if it was still in the log. To do this
2836 * it searches the AIL for the efi with an id equal to that in the
2837 * efd format structure. If we find it, we remove the efi from the
2838 * AIL and free it.
2839 */
c9f71f5f
CH
2840STATIC int
2841xlog_recover_efd_pass2(
9a8d2fdb
MT
2842 struct xlog *log,
2843 struct xlog_recover_item *item)
1da177e4 2844{
1da177e4
LT
2845 xfs_efd_log_format_t *efd_formatp;
2846 xfs_efi_log_item_t *efip = NULL;
2847 xfs_log_item_t *lip;
1da177e4 2848 __uint64_t efi_id;
27d8d5fe 2849 struct xfs_ail_cursor cur;
783a2f65 2850 struct xfs_ail *ailp = log->l_ailp;
1da177e4 2851
4e0d5f92 2852 efd_formatp = item->ri_buf[0].i_addr;
6d192a9b
TS
2853 ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
2854 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
2855 (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
2856 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
1da177e4
LT
2857 efi_id = efd_formatp->efd_efi_id;
2858
2859 /*
2860 * Search for the efi with the id in the efd format structure
2861 * in the AIL.
2862 */
a9c21c1b
DC
2863 spin_lock(&ailp->xa_lock);
2864 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
1da177e4
LT
2865 while (lip != NULL) {
2866 if (lip->li_type == XFS_LI_EFI) {
2867 efip = (xfs_efi_log_item_t *)lip;
2868 if (efip->efi_format.efi_id == efi_id) {
2869 /*
783a2f65 2870 * xfs_trans_ail_delete() drops the
1da177e4
LT
2871 * AIL lock.
2872 */
04913fdd
DC
2873 xfs_trans_ail_delete(ailp, lip,
2874 SHUTDOWN_CORRUPT_INCORE);
8ae2c0f6 2875 xfs_efi_item_free(efip);
a9c21c1b 2876 spin_lock(&ailp->xa_lock);
27d8d5fe 2877 break;
1da177e4
LT
2878 }
2879 }
a9c21c1b 2880 lip = xfs_trans_ail_cursor_next(ailp, &cur);
1da177e4 2881 }
a9c21c1b
DC
2882 xfs_trans_ail_cursor_done(ailp, &cur);
2883 spin_unlock(&ailp->xa_lock);
c9f71f5f
CH
2884
2885 return 0;
1da177e4
LT
2886}
2887
1da177e4
LT
2888/*
2889 * Free up any resources allocated by the transaction
2890 *
2891 * Remember that EFIs, EFDs, and IUNLINKs are handled later.
2892 */
2893STATIC void
2894xlog_recover_free_trans(
d0450948 2895 struct xlog_recover *trans)
1da177e4 2896{
f0a76953 2897 xlog_recover_item_t *item, *n;
1da177e4
LT
2898 int i;
2899
f0a76953
DC
2900 list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
2901 /* Free the regions in the item. */
2902 list_del(&item->ri_list);
2903 for (i = 0; i < item->ri_cnt; i++)
2904 kmem_free(item->ri_buf[i].i_addr);
1da177e4 2905 /* Free the item itself */
f0a76953
DC
2906 kmem_free(item->ri_buf);
2907 kmem_free(item);
2908 }
1da177e4 2909 /* Free the transaction recover structure */
f0e2d93c 2910 kmem_free(trans);
1da177e4
LT
2911}
2912
d0450948 2913STATIC int
c9f71f5f 2914xlog_recover_commit_pass1(
ad223e60
MT
2915 struct xlog *log,
2916 struct xlog_recover *trans,
2917 struct xlog_recover_item *item)
d0450948 2918{
c9f71f5f 2919 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1);
d0450948
CH
2920
2921 switch (ITEM_TYPE(item)) {
2922 case XFS_LI_BUF:
c9f71f5f
CH
2923 return xlog_recover_buffer_pass1(log, item);
2924 case XFS_LI_QUOTAOFF:
2925 return xlog_recover_quotaoff_pass1(log, item);
d0450948 2926 case XFS_LI_INODE:
d0450948 2927 case XFS_LI_EFI:
d0450948 2928 case XFS_LI_EFD:
c9f71f5f
CH
2929 case XFS_LI_DQUOT:
2930 /* nothing to do in pass 1 */
d0450948 2931 return 0;
c9f71f5f 2932 default:
a0fa2b67
DC
2933 xfs_warn(log->l_mp, "%s: invalid item type (%d)",
2934 __func__, ITEM_TYPE(item));
c9f71f5f
CH
2935 ASSERT(0);
2936 return XFS_ERROR(EIO);
2937 }
2938}
2939
2940STATIC int
2941xlog_recover_commit_pass2(
ad223e60
MT
2942 struct xlog *log,
2943 struct xlog_recover *trans,
2944 struct list_head *buffer_list,
2945 struct xlog_recover_item *item)
c9f71f5f
CH
2946{
2947 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2);
2948
2949 switch (ITEM_TYPE(item)) {
2950 case XFS_LI_BUF:
43ff2122 2951 return xlog_recover_buffer_pass2(log, buffer_list, item);
c9f71f5f 2952 case XFS_LI_INODE:
43ff2122 2953 return xlog_recover_inode_pass2(log, buffer_list, item);
c9f71f5f
CH
2954 case XFS_LI_EFI:
2955 return xlog_recover_efi_pass2(log, item, trans->r_lsn);
2956 case XFS_LI_EFD:
2957 return xlog_recover_efd_pass2(log, item);
d0450948 2958 case XFS_LI_DQUOT:
43ff2122 2959 return xlog_recover_dquot_pass2(log, buffer_list, item);
d0450948 2960 case XFS_LI_QUOTAOFF:
c9f71f5f
CH
2961 /* nothing to do in pass2 */
2962 return 0;
d0450948 2963 default:
a0fa2b67
DC
2964 xfs_warn(log->l_mp, "%s: invalid item type (%d)",
2965 __func__, ITEM_TYPE(item));
d0450948
CH
2966 ASSERT(0);
2967 return XFS_ERROR(EIO);
2968 }
2969}
2970
2971/*
2972 * Perform the transaction.
2973 *
2974 * If the transaction modifies a buffer or inode, do it now. Otherwise,
2975 * EFIs and EFDs get queued up by adding entries into the AIL for them.
2976 */
1da177e4
LT
2977STATIC int
2978xlog_recover_commit_trans(
ad223e60 2979 struct xlog *log,
d0450948 2980 struct xlog_recover *trans,
1da177e4
LT
2981 int pass)
2982{
43ff2122 2983 int error = 0, error2;
d0450948 2984 xlog_recover_item_t *item;
43ff2122 2985 LIST_HEAD (buffer_list);
1da177e4 2986
f0a76953 2987 hlist_del(&trans->r_list);
d0450948
CH
2988
2989 error = xlog_recover_reorder_trans(log, trans, pass);
2990 if (error)
1da177e4 2991 return error;
d0450948
CH
2992
2993 list_for_each_entry(item, &trans->r_itemq, ri_list) {
43ff2122
CH
2994 switch (pass) {
2995 case XLOG_RECOVER_PASS1:
c9f71f5f 2996 error = xlog_recover_commit_pass1(log, trans, item);
43ff2122
CH
2997 break;
2998 case XLOG_RECOVER_PASS2:
2999 error = xlog_recover_commit_pass2(log, trans,
3000 &buffer_list, item);
3001 break;
3002 default:
3003 ASSERT(0);
3004 }
3005
d0450948 3006 if (error)
43ff2122 3007 goto out;
d0450948
CH
3008 }
3009
3010 xlog_recover_free_trans(trans);
43ff2122
CH
3011
3012out:
3013 error2 = xfs_buf_delwri_submit(&buffer_list);
3014 return error ? error : error2;
1da177e4
LT
3015}
3016
3017STATIC int
3018xlog_recover_unmount_trans(
ad223e60
MT
3019 struct xlog *log,
3020 struct xlog_recover *trans)
1da177e4
LT
3021{
3022 /* Do nothing now */
a0fa2b67 3023 xfs_warn(log->l_mp, "%s: Unmount LR", __func__);
1da177e4
LT
3024 return 0;
3025}
3026
3027/*
3028 * There are two valid states of the r_state field. 0 indicates that the
3029 * transaction structure is in a normal state. We have either seen the
3030 * start of the transaction or the last operation we added was not a partial
3031 * operation. If the last operation we added to the transaction was a
3032 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
3033 *
3034 * NOTE: skip LRs with 0 data length.
3035 */
3036STATIC int
3037xlog_recover_process_data(
9a8d2fdb 3038 struct xlog *log,
f0a76953 3039 struct hlist_head rhash[],
9a8d2fdb 3040 struct xlog_rec_header *rhead,
1da177e4
LT
3041 xfs_caddr_t dp,
3042 int pass)
3043{
3044 xfs_caddr_t lp;
3045 int num_logops;
3046 xlog_op_header_t *ohead;
3047 xlog_recover_t *trans;
3048 xlog_tid_t tid;
3049 int error;
3050 unsigned long hash;
3051 uint flags;
3052
b53e675d
CH
3053 lp = dp + be32_to_cpu(rhead->h_len);
3054 num_logops = be32_to_cpu(rhead->h_num_logops);
1da177e4
LT
3055
3056 /* check the log format matches our own - else we can't recover */
3057 if (xlog_header_check_recover(log->l_mp, rhead))
3058 return (XFS_ERROR(EIO));
3059
3060 while ((dp < lp) && num_logops) {
3061 ASSERT(dp + sizeof(xlog_op_header_t) <= lp);
3062 ohead = (xlog_op_header_t *)dp;
3063 dp += sizeof(xlog_op_header_t);
3064 if (ohead->oh_clientid != XFS_TRANSACTION &&
3065 ohead->oh_clientid != XFS_LOG) {
a0fa2b67
DC
3066 xfs_warn(log->l_mp, "%s: bad clientid 0x%x",
3067 __func__, ohead->oh_clientid);
1da177e4
LT
3068 ASSERT(0);
3069 return (XFS_ERROR(EIO));
3070 }
67fcb7bf 3071 tid = be32_to_cpu(ohead->oh_tid);
1da177e4 3072 hash = XLOG_RHASH(tid);
f0a76953 3073 trans = xlog_recover_find_tid(&rhash[hash], tid);
1da177e4
LT
3074 if (trans == NULL) { /* not found; add new tid */
3075 if (ohead->oh_flags & XLOG_START_TRANS)
3076 xlog_recover_new_tid(&rhash[hash], tid,
b53e675d 3077 be64_to_cpu(rhead->h_lsn));
1da177e4 3078 } else {
9742bb93 3079 if (dp + be32_to_cpu(ohead->oh_len) > lp) {
a0fa2b67
DC
3080 xfs_warn(log->l_mp, "%s: bad length 0x%x",
3081 __func__, be32_to_cpu(ohead->oh_len));
9742bb93
LM
3082 WARN_ON(1);
3083 return (XFS_ERROR(EIO));
3084 }
1da177e4
LT
3085 flags = ohead->oh_flags & ~XLOG_END_TRANS;
3086 if (flags & XLOG_WAS_CONT_TRANS)
3087 flags &= ~XLOG_CONTINUE_TRANS;
3088 switch (flags) {
3089 case XLOG_COMMIT_TRANS:
3090 error = xlog_recover_commit_trans(log,
f0a76953 3091 trans, pass);
1da177e4
LT
3092 break;
3093 case XLOG_UNMOUNT_TRANS:
a0fa2b67 3094 error = xlog_recover_unmount_trans(log, trans);
1da177e4
LT
3095 break;
3096 case XLOG_WAS_CONT_TRANS:
9abbc539
DC
3097 error = xlog_recover_add_to_cont_trans(log,
3098 trans, dp,
3099 be32_to_cpu(ohead->oh_len));
1da177e4
LT
3100 break;
3101 case XLOG_START_TRANS:
a0fa2b67
DC
3102 xfs_warn(log->l_mp, "%s: bad transaction",
3103 __func__);
1da177e4
LT
3104 ASSERT(0);
3105 error = XFS_ERROR(EIO);
3106 break;
3107 case 0:
3108 case XLOG_CONTINUE_TRANS:
9abbc539 3109 error = xlog_recover_add_to_trans(log, trans,
67fcb7bf 3110 dp, be32_to_cpu(ohead->oh_len));
1da177e4
LT
3111 break;
3112 default:
a0fa2b67
DC
3113 xfs_warn(log->l_mp, "%s: bad flag 0x%x",
3114 __func__, flags);
1da177e4
LT
3115 ASSERT(0);
3116 error = XFS_ERROR(EIO);
3117 break;
3118 }
3119 if (error)
3120 return error;
3121 }
67fcb7bf 3122 dp += be32_to_cpu(ohead->oh_len);
1da177e4
LT
3123 num_logops--;
3124 }
3125 return 0;
3126}
3127
3128/*
3129 * Process an extent free intent item that was recovered from
3130 * the log. We need to free the extents that it describes.
3131 */
3c1e2bbe 3132STATIC int
1da177e4
LT
3133xlog_recover_process_efi(
3134 xfs_mount_t *mp,
3135 xfs_efi_log_item_t *efip)
3136{
3137 xfs_efd_log_item_t *efdp;
3138 xfs_trans_t *tp;
3139 int i;
3c1e2bbe 3140 int error = 0;
1da177e4
LT
3141 xfs_extent_t *extp;
3142 xfs_fsblock_t startblock_fsb;
3143
b199c8a4 3144 ASSERT(!test_bit(XFS_EFI_RECOVERED, &efip->efi_flags));
1da177e4
LT
3145
3146 /*
3147 * First check the validity of the extents described by the
3148 * EFI. If any are bad, then assume that all are bad and
3149 * just toss the EFI.
3150 */
3151 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3152 extp = &(efip->efi_format.efi_extents[i]);
3153 startblock_fsb = XFS_BB_TO_FSB(mp,
3154 XFS_FSB_TO_DADDR(mp, extp->ext_start));
3155 if ((startblock_fsb == 0) ||
3156 (extp->ext_len == 0) ||
3157 (startblock_fsb >= mp->m_sb.sb_dblocks) ||
3158 (extp->ext_len >= mp->m_sb.sb_agblocks)) {
3159 /*
3160 * This will pull the EFI from the AIL and
3161 * free the memory associated with it.
3162 */
666d644c 3163 set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
1da177e4 3164 xfs_efi_release(efip, efip->efi_format.efi_nextents);
3c1e2bbe 3165 return XFS_ERROR(EIO);
1da177e4
LT
3166 }
3167 }
3168
3169 tp = xfs_trans_alloc(mp, 0);
3c1e2bbe 3170 error = xfs_trans_reserve(tp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 0, 0);
fc6149d8
DC
3171 if (error)
3172 goto abort_error;
1da177e4
LT
3173 efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
3174
3175 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3176 extp = &(efip->efi_format.efi_extents[i]);
fc6149d8
DC
3177 error = xfs_free_extent(tp, extp->ext_start, extp->ext_len);
3178 if (error)
3179 goto abort_error;
1da177e4
LT
3180 xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
3181 extp->ext_len);
3182 }
3183
b199c8a4 3184 set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
e5720eec 3185 error = xfs_trans_commit(tp, 0);
3c1e2bbe 3186 return error;
fc6149d8
DC
3187
3188abort_error:
3189 xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3190 return error;
1da177e4
LT
3191}
3192
1da177e4
LT
3193/*
3194 * When this is called, all of the EFIs which did not have
3195 * corresponding EFDs should be in the AIL. What we do now
3196 * is free the extents associated with each one.
3197 *
3198 * Since we process the EFIs in normal transactions, they
3199 * will be removed at some point after the commit. This prevents
3200 * us from just walking down the list processing each one.
3201 * We'll use a flag in the EFI to skip those that we've already
3202 * processed and use the AIL iteration mechanism's generation
3203 * count to try to speed this up at least a bit.
3204 *
3205 * When we start, we know that the EFIs are the only things in
3206 * the AIL. As we process them, however, other items are added
3207 * to the AIL. Since everything added to the AIL must come after
3208 * everything already in the AIL, we stop processing as soon as
3209 * we see something other than an EFI in the AIL.
3210 */
3c1e2bbe 3211STATIC int
1da177e4 3212xlog_recover_process_efis(
9a8d2fdb 3213 struct xlog *log)
1da177e4
LT
3214{
3215 xfs_log_item_t *lip;
3216 xfs_efi_log_item_t *efip;
3c1e2bbe 3217 int error = 0;
27d8d5fe 3218 struct xfs_ail_cursor cur;
a9c21c1b 3219 struct xfs_ail *ailp;
1da177e4 3220
a9c21c1b
DC
3221 ailp = log->l_ailp;
3222 spin_lock(&ailp->xa_lock);
3223 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
1da177e4
LT
3224 while (lip != NULL) {
3225 /*
3226 * We're done when we see something other than an EFI.
27d8d5fe 3227 * There should be no EFIs left in the AIL now.
1da177e4
LT
3228 */
3229 if (lip->li_type != XFS_LI_EFI) {
27d8d5fe 3230#ifdef DEBUG
a9c21c1b 3231 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
27d8d5fe
DC
3232 ASSERT(lip->li_type != XFS_LI_EFI);
3233#endif
1da177e4
LT
3234 break;
3235 }
3236
3237 /*
3238 * Skip EFIs that we've already processed.
3239 */
3240 efip = (xfs_efi_log_item_t *)lip;
b199c8a4 3241 if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags)) {
a9c21c1b 3242 lip = xfs_trans_ail_cursor_next(ailp, &cur);
1da177e4
LT
3243 continue;
3244 }
3245
a9c21c1b
DC
3246 spin_unlock(&ailp->xa_lock);
3247 error = xlog_recover_process_efi(log->l_mp, efip);
3248 spin_lock(&ailp->xa_lock);
27d8d5fe
DC
3249 if (error)
3250 goto out;
a9c21c1b 3251 lip = xfs_trans_ail_cursor_next(ailp, &cur);
1da177e4 3252 }
27d8d5fe 3253out:
a9c21c1b
DC
3254 xfs_trans_ail_cursor_done(ailp, &cur);
3255 spin_unlock(&ailp->xa_lock);
3c1e2bbe 3256 return error;
1da177e4
LT
3257}
3258
3259/*
3260 * This routine performs a transaction to null out a bad inode pointer
3261 * in an agi unlinked inode hash bucket.
3262 */
3263STATIC void
3264xlog_recover_clear_agi_bucket(
3265 xfs_mount_t *mp,
3266 xfs_agnumber_t agno,
3267 int bucket)
3268{
3269 xfs_trans_t *tp;
3270 xfs_agi_t *agi;
3271 xfs_buf_t *agibp;
3272 int offset;
3273 int error;
3274
3275 tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
5e1be0fb
CH
3276 error = xfs_trans_reserve(tp, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp),
3277 0, 0, 0);
e5720eec
DC
3278 if (error)
3279 goto out_abort;
1da177e4 3280
5e1be0fb
CH
3281 error = xfs_read_agi(mp, tp, agno, &agibp);
3282 if (error)
e5720eec 3283 goto out_abort;
1da177e4 3284
5e1be0fb 3285 agi = XFS_BUF_TO_AGI(agibp);
16259e7d 3286 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
1da177e4
LT
3287 offset = offsetof(xfs_agi_t, agi_unlinked) +
3288 (sizeof(xfs_agino_t) * bucket);
3289 xfs_trans_log_buf(tp, agibp, offset,
3290 (offset + sizeof(xfs_agino_t) - 1));
3291
e5720eec
DC
3292 error = xfs_trans_commit(tp, 0);
3293 if (error)
3294 goto out_error;
3295 return;
3296
3297out_abort:
3298 xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3299out_error:
a0fa2b67 3300 xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno);
e5720eec 3301 return;
1da177e4
LT
3302}
3303
23fac50f
CH
3304STATIC xfs_agino_t
3305xlog_recover_process_one_iunlink(
3306 struct xfs_mount *mp,
3307 xfs_agnumber_t agno,
3308 xfs_agino_t agino,
3309 int bucket)
3310{
3311 struct xfs_buf *ibp;
3312 struct xfs_dinode *dip;
3313 struct xfs_inode *ip;
3314 xfs_ino_t ino;
3315 int error;
3316
3317 ino = XFS_AGINO_TO_INO(mp, agno, agino);
7b6259e7 3318 error = xfs_iget(mp, NULL, ino, 0, 0, &ip);
23fac50f
CH
3319 if (error)
3320 goto fail;
3321
3322 /*
3323 * Get the on disk inode to find the next inode in the bucket.
3324 */
475ee413 3325 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &ibp, 0, 0);
23fac50f 3326 if (error)
0e446673 3327 goto fail_iput;
23fac50f 3328
23fac50f 3329 ASSERT(ip->i_d.di_nlink == 0);
0e446673 3330 ASSERT(ip->i_d.di_mode != 0);
23fac50f
CH
3331
3332 /* setup for the next pass */
3333 agino = be32_to_cpu(dip->di_next_unlinked);
3334 xfs_buf_relse(ibp);
3335
3336 /*
3337 * Prevent any DMAPI event from being sent when the reference on
3338 * the inode is dropped.
3339 */
3340 ip->i_d.di_dmevmask = 0;
3341
0e446673 3342 IRELE(ip);
23fac50f
CH
3343 return agino;
3344
0e446673
CH
3345 fail_iput:
3346 IRELE(ip);
23fac50f
CH
3347 fail:
3348 /*
3349 * We can't read in the inode this bucket points to, or this inode
3350 * is messed up. Just ditch this bucket of inodes. We will lose
3351 * some inodes and space, but at least we won't hang.
3352 *
3353 * Call xlog_recover_clear_agi_bucket() to perform a transaction to
3354 * clear the inode pointer in the bucket.
3355 */
3356 xlog_recover_clear_agi_bucket(mp, agno, bucket);
3357 return NULLAGINO;
3358}
3359
1da177e4
LT
3360/*
3361 * xlog_iunlink_recover
3362 *
3363 * This is called during recovery to process any inodes which
3364 * we unlinked but not freed when the system crashed. These
3365 * inodes will be on the lists in the AGI blocks. What we do
3366 * here is scan all the AGIs and fully truncate and free any
3367 * inodes found on the lists. Each inode is removed from the
3368 * lists when it has been fully truncated and is freed. The
3369 * freeing of the inode and its removal from the list must be
3370 * atomic.
3371 */
d96f8f89 3372STATIC void
1da177e4 3373xlog_recover_process_iunlinks(
9a8d2fdb 3374 struct xlog *log)
1da177e4
LT
3375{
3376 xfs_mount_t *mp;
3377 xfs_agnumber_t agno;
3378 xfs_agi_t *agi;
3379 xfs_buf_t *agibp;
1da177e4 3380 xfs_agino_t agino;
1da177e4
LT
3381 int bucket;
3382 int error;
3383 uint mp_dmevmask;
3384
3385 mp = log->l_mp;
3386
3387 /*
3388 * Prevent any DMAPI event from being sent while in this function.
3389 */
3390 mp_dmevmask = mp->m_dmevmask;
3391 mp->m_dmevmask = 0;
3392
3393 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3394 /*
3395 * Find the agi for this ag.
3396 */
5e1be0fb
CH
3397 error = xfs_read_agi(mp, NULL, agno, &agibp);
3398 if (error) {
3399 /*
3400 * AGI is b0rked. Don't process it.
3401 *
3402 * We should probably mark the filesystem as corrupt
3403 * after we've recovered all the ag's we can....
3404 */
3405 continue;
1da177e4 3406 }
d97d32ed
JK
3407 /*
3408 * Unlock the buffer so that it can be acquired in the normal
3409 * course of the transaction to truncate and free each inode.
3410 * Because we are not racing with anyone else here for the AGI
3411 * buffer, we don't even need to hold it locked to read the
3412 * initial unlinked bucket entries out of the buffer. We keep
3413 * buffer reference though, so that it stays pinned in memory
3414 * while we need the buffer.
3415 */
1da177e4 3416 agi = XFS_BUF_TO_AGI(agibp);
d97d32ed 3417 xfs_buf_unlock(agibp);
1da177e4
LT
3418
3419 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
16259e7d 3420 agino = be32_to_cpu(agi->agi_unlinked[bucket]);
1da177e4 3421 while (agino != NULLAGINO) {
23fac50f
CH
3422 agino = xlog_recover_process_one_iunlink(mp,
3423 agno, agino, bucket);
1da177e4
LT
3424 }
3425 }
d97d32ed 3426 xfs_buf_rele(agibp);
1da177e4
LT
3427 }
3428
3429 mp->m_dmevmask = mp_dmevmask;
3430}
3431
1da177e4 3432/*
0e446be4
CH
3433 * Upack the log buffer data and crc check it. If the check fails, issue a
3434 * warning if and only if the CRC in the header is non-zero. This makes the
3435 * check an advisory warning, and the zero CRC check will prevent failure
3436 * warnings from being emitted when upgrading the kernel from one that does not
3437 * add CRCs by default.
3438 *
3439 * When filesystems are CRC enabled, this CRC mismatch becomes a fatal log
3440 * corruption failure
1da177e4 3441 */
0e446be4
CH
3442STATIC int
3443xlog_unpack_data_crc(
3444 struct xlog_rec_header *rhead,
3445 xfs_caddr_t dp,
3446 struct xlog *log)
1da177e4 3447{
f9668a09 3448 __le32 crc;
0e446be4
CH
3449
3450 crc = xlog_cksum(log, rhead, dp, be32_to_cpu(rhead->h_len));
3451 if (crc != rhead->h_crc) {
3452 if (rhead->h_crc || xfs_sb_version_hascrc(&log->l_mp->m_sb)) {
3453 xfs_alert(log->l_mp,
3454 "log record CRC mismatch: found 0x%x, expected 0x%x.\n",
f9668a09
DC
3455 le32_to_cpu(rhead->h_crc),
3456 le32_to_cpu(crc));
0e446be4 3457 xfs_hex_dump(dp, 32);
1da177e4
LT
3458 }
3459
0e446be4
CH
3460 /*
3461 * If we've detected a log record corruption, then we can't
3462 * recover past this point. Abort recovery if we are enforcing
3463 * CRC protection by punting an error back up the stack.
3464 */
3465 if (xfs_sb_version_hascrc(&log->l_mp->m_sb))
3466 return EFSCORRUPTED;
1da177e4 3467 }
0e446be4
CH
3468
3469 return 0;
1da177e4
LT
3470}
3471
0e446be4 3472STATIC int
1da177e4 3473xlog_unpack_data(
9a8d2fdb 3474 struct xlog_rec_header *rhead,
1da177e4 3475 xfs_caddr_t dp,
9a8d2fdb 3476 struct xlog *log)
1da177e4
LT
3477{
3478 int i, j, k;
0e446be4
CH
3479 int error;
3480
3481 error = xlog_unpack_data_crc(rhead, dp, log);
3482 if (error)
3483 return error;
1da177e4 3484
b53e675d 3485 for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
1da177e4 3486 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
b53e675d 3487 *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
1da177e4
LT
3488 dp += BBSIZE;
3489 }
3490
62118709 3491 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
b28708d6 3492 xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
b53e675d 3493 for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
1da177e4
LT
3494 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3495 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
b53e675d 3496 *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
1da177e4
LT
3497 dp += BBSIZE;
3498 }
3499 }
0e446be4
CH
3500
3501 return 0;
1da177e4
LT
3502}
3503
3504STATIC int
3505xlog_valid_rec_header(
9a8d2fdb
MT
3506 struct xlog *log,
3507 struct xlog_rec_header *rhead,
1da177e4
LT
3508 xfs_daddr_t blkno)
3509{
3510 int hlen;
3511
69ef921b 3512 if (unlikely(rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))) {
1da177e4
LT
3513 XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
3514 XFS_ERRLEVEL_LOW, log->l_mp);
3515 return XFS_ERROR(EFSCORRUPTED);
3516 }
3517 if (unlikely(
3518 (!rhead->h_version ||
b53e675d 3519 (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
a0fa2b67 3520 xfs_warn(log->l_mp, "%s: unrecognised log version (%d).",
34a622b2 3521 __func__, be32_to_cpu(rhead->h_version));
1da177e4
LT
3522 return XFS_ERROR(EIO);
3523 }
3524
3525 /* LR body must have data or it wouldn't have been written */
b53e675d 3526 hlen = be32_to_cpu(rhead->h_len);
1da177e4
LT
3527 if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
3528 XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
3529 XFS_ERRLEVEL_LOW, log->l_mp);
3530 return XFS_ERROR(EFSCORRUPTED);
3531 }
3532 if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
3533 XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
3534 XFS_ERRLEVEL_LOW, log->l_mp);
3535 return XFS_ERROR(EFSCORRUPTED);
3536 }
3537 return 0;
3538}
3539
3540/*
3541 * Read the log from tail to head and process the log records found.
3542 * Handle the two cases where the tail and head are in the same cycle
3543 * and where the active portion of the log wraps around the end of
3544 * the physical log separately. The pass parameter is passed through
3545 * to the routines called to process the data and is not looked at
3546 * here.
3547 */
3548STATIC int
3549xlog_do_recovery_pass(
9a8d2fdb 3550 struct xlog *log,
1da177e4
LT
3551 xfs_daddr_t head_blk,
3552 xfs_daddr_t tail_blk,
3553 int pass)
3554{
3555 xlog_rec_header_t *rhead;
3556 xfs_daddr_t blk_no;
fc5bc4c8 3557 xfs_caddr_t offset;
1da177e4
LT
3558 xfs_buf_t *hbp, *dbp;
3559 int error = 0, h_size;
3560 int bblks, split_bblks;
3561 int hblks, split_hblks, wrapped_hblks;
f0a76953 3562 struct hlist_head rhash[XLOG_RHASH_SIZE];
1da177e4
LT
3563
3564 ASSERT(head_blk != tail_blk);
3565
3566 /*
3567 * Read the header of the tail block and get the iclog buffer size from
3568 * h_size. Use this to tell how many sectors make up the log header.
3569 */
62118709 3570 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1da177e4
LT
3571 /*
3572 * When using variable length iclogs, read first sector of
3573 * iclog header and extract the header size from it. Get a
3574 * new hbp that is the correct size.
3575 */
3576 hbp = xlog_get_bp(log, 1);
3577 if (!hbp)
3578 return ENOMEM;
076e6acb
CH
3579
3580 error = xlog_bread(log, tail_blk, 1, hbp, &offset);
3581 if (error)
1da177e4 3582 goto bread_err1;
076e6acb 3583
1da177e4
LT
3584 rhead = (xlog_rec_header_t *)offset;
3585 error = xlog_valid_rec_header(log, rhead, tail_blk);
3586 if (error)
3587 goto bread_err1;
b53e675d
CH
3588 h_size = be32_to_cpu(rhead->h_size);
3589 if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
1da177e4
LT
3590 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
3591 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
3592 if (h_size % XLOG_HEADER_CYCLE_SIZE)
3593 hblks++;
3594 xlog_put_bp(hbp);
3595 hbp = xlog_get_bp(log, hblks);
3596 } else {
3597 hblks = 1;
3598 }
3599 } else {
69ce58f0 3600 ASSERT(log->l_sectBBsize == 1);
1da177e4
LT
3601 hblks = 1;
3602 hbp = xlog_get_bp(log, 1);
3603 h_size = XLOG_BIG_RECORD_BSIZE;
3604 }
3605
3606 if (!hbp)
3607 return ENOMEM;
3608 dbp = xlog_get_bp(log, BTOBB(h_size));
3609 if (!dbp) {
3610 xlog_put_bp(hbp);
3611 return ENOMEM;
3612 }
3613
3614 memset(rhash, 0, sizeof(rhash));
3615 if (tail_blk <= head_blk) {
3616 for (blk_no = tail_blk; blk_no < head_blk; ) {
076e6acb
CH
3617 error = xlog_bread(log, blk_no, hblks, hbp, &offset);
3618 if (error)
1da177e4 3619 goto bread_err2;
076e6acb 3620
1da177e4
LT
3621 rhead = (xlog_rec_header_t *)offset;
3622 error = xlog_valid_rec_header(log, rhead, blk_no);
3623 if (error)
3624 goto bread_err2;
3625
3626 /* blocks in data section */
b53e675d 3627 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
076e6acb
CH
3628 error = xlog_bread(log, blk_no + hblks, bblks, dbp,
3629 &offset);
1da177e4
LT
3630 if (error)
3631 goto bread_err2;
076e6acb 3632
0e446be4
CH
3633 error = xlog_unpack_data(rhead, offset, log);
3634 if (error)
3635 goto bread_err2;
3636
3637 error = xlog_recover_process_data(log,
3638 rhash, rhead, offset, pass);
3639 if (error)
1da177e4
LT
3640 goto bread_err2;
3641 blk_no += bblks + hblks;
3642 }
3643 } else {
3644 /*
3645 * Perform recovery around the end of the physical log.
3646 * When the head is not on the same cycle number as the tail,
3647 * we can't do a sequential recovery as above.
3648 */
3649 blk_no = tail_blk;
3650 while (blk_no < log->l_logBBsize) {
3651 /*
3652 * Check for header wrapping around physical end-of-log
3653 */
62926044 3654 offset = hbp->b_addr;
1da177e4
LT
3655 split_hblks = 0;
3656 wrapped_hblks = 0;
3657 if (blk_no + hblks <= log->l_logBBsize) {
3658 /* Read header in one read */
076e6acb
CH
3659 error = xlog_bread(log, blk_no, hblks, hbp,
3660 &offset);
1da177e4
LT
3661 if (error)
3662 goto bread_err2;
1da177e4
LT
3663 } else {
3664 /* This LR is split across physical log end */
3665 if (blk_no != log->l_logBBsize) {
3666 /* some data before physical log end */
3667 ASSERT(blk_no <= INT_MAX);
3668 split_hblks = log->l_logBBsize - (int)blk_no;
3669 ASSERT(split_hblks > 0);
076e6acb
CH
3670 error = xlog_bread(log, blk_no,
3671 split_hblks, hbp,
3672 &offset);
3673 if (error)
1da177e4 3674 goto bread_err2;
1da177e4 3675 }
076e6acb 3676
1da177e4
LT
3677 /*
3678 * Note: this black magic still works with
3679 * large sector sizes (non-512) only because:
3680 * - we increased the buffer size originally
3681 * by 1 sector giving us enough extra space
3682 * for the second read;
3683 * - the log start is guaranteed to be sector
3684 * aligned;
3685 * - we read the log end (LR header start)
3686 * _first_, then the log start (LR header end)
3687 * - order is important.
3688 */
234f56ac 3689 wrapped_hblks = hblks - split_hblks;
44396476
DC
3690 error = xlog_bread_offset(log, 0,
3691 wrapped_hblks, hbp,
3692 offset + BBTOB(split_hblks));
1da177e4
LT
3693 if (error)
3694 goto bread_err2;
1da177e4
LT
3695 }
3696 rhead = (xlog_rec_header_t *)offset;
3697 error = xlog_valid_rec_header(log, rhead,
3698 split_hblks ? blk_no : 0);
3699 if (error)
3700 goto bread_err2;
3701
b53e675d 3702 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
1da177e4
LT
3703 blk_no += hblks;
3704
3705 /* Read in data for log record */
3706 if (blk_no + bblks <= log->l_logBBsize) {
076e6acb
CH
3707 error = xlog_bread(log, blk_no, bblks, dbp,
3708 &offset);
1da177e4
LT
3709 if (error)
3710 goto bread_err2;
1da177e4
LT
3711 } else {
3712 /* This log record is split across the
3713 * physical end of log */
62926044 3714 offset = dbp->b_addr;
1da177e4
LT
3715 split_bblks = 0;
3716 if (blk_no != log->l_logBBsize) {
3717 /* some data is before the physical
3718 * end of log */
3719 ASSERT(!wrapped_hblks);
3720 ASSERT(blk_no <= INT_MAX);
3721 split_bblks =
3722 log->l_logBBsize - (int)blk_no;
3723 ASSERT(split_bblks > 0);
076e6acb
CH
3724 error = xlog_bread(log, blk_no,
3725 split_bblks, dbp,
3726 &offset);
3727 if (error)
1da177e4 3728 goto bread_err2;
1da177e4 3729 }
076e6acb 3730
1da177e4
LT
3731 /*
3732 * Note: this black magic still works with
3733 * large sector sizes (non-512) only because:
3734 * - we increased the buffer size originally
3735 * by 1 sector giving us enough extra space
3736 * for the second read;
3737 * - the log start is guaranteed to be sector
3738 * aligned;
3739 * - we read the log end (LR header start)
3740 * _first_, then the log start (LR header end)
3741 * - order is important.
3742 */
44396476 3743 error = xlog_bread_offset(log, 0,
009507b0 3744 bblks - split_bblks, dbp,
44396476 3745 offset + BBTOB(split_bblks));
076e6acb
CH
3746 if (error)
3747 goto bread_err2;
1da177e4 3748 }
0e446be4
CH
3749
3750 error = xlog_unpack_data(rhead, offset, log);
3751 if (error)
3752 goto bread_err2;
3753
3754 error = xlog_recover_process_data(log, rhash,
3755 rhead, offset, pass);
3756 if (error)
1da177e4
LT
3757 goto bread_err2;
3758 blk_no += bblks;
3759 }
3760
3761 ASSERT(blk_no >= log->l_logBBsize);
3762 blk_no -= log->l_logBBsize;
3763
3764 /* read first part of physical log */
3765 while (blk_no < head_blk) {
076e6acb
CH
3766 error = xlog_bread(log, blk_no, hblks, hbp, &offset);
3767 if (error)
1da177e4 3768 goto bread_err2;
076e6acb 3769
1da177e4
LT
3770 rhead = (xlog_rec_header_t *)offset;
3771 error = xlog_valid_rec_header(log, rhead, blk_no);
3772 if (error)
3773 goto bread_err2;
076e6acb 3774
b53e675d 3775 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
076e6acb
CH
3776 error = xlog_bread(log, blk_no+hblks, bblks, dbp,
3777 &offset);
3778 if (error)
1da177e4 3779 goto bread_err2;
076e6acb 3780
0e446be4
CH
3781 error = xlog_unpack_data(rhead, offset, log);
3782 if (error)
3783 goto bread_err2;
3784
3785 error = xlog_recover_process_data(log, rhash,
3786 rhead, offset, pass);
3787 if (error)
1da177e4
LT
3788 goto bread_err2;
3789 blk_no += bblks + hblks;
3790 }
3791 }
3792
3793 bread_err2:
3794 xlog_put_bp(dbp);
3795 bread_err1:
3796 xlog_put_bp(hbp);
3797 return error;
3798}
3799
3800/*
3801 * Do the recovery of the log. We actually do this in two phases.
3802 * The two passes are necessary in order to implement the function
3803 * of cancelling a record written into the log. The first pass
3804 * determines those things which have been cancelled, and the
3805 * second pass replays log items normally except for those which
3806 * have been cancelled. The handling of the replay and cancellations
3807 * takes place in the log item type specific routines.
3808 *
3809 * The table of items which have cancel records in the log is allocated
3810 * and freed at this level, since only here do we know when all of
3811 * the log recovery has been completed.
3812 */
3813STATIC int
3814xlog_do_log_recovery(
9a8d2fdb 3815 struct xlog *log,
1da177e4
LT
3816 xfs_daddr_t head_blk,
3817 xfs_daddr_t tail_blk)
3818{
d5689eaa 3819 int error, i;
1da177e4
LT
3820
3821 ASSERT(head_blk != tail_blk);
3822
3823 /*
3824 * First do a pass to find all of the cancelled buf log items.
3825 * Store them in the buf_cancel_table for use in the second pass.
3826 */
d5689eaa
CH
3827 log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE *
3828 sizeof(struct list_head),
1da177e4 3829 KM_SLEEP);
d5689eaa
CH
3830 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
3831 INIT_LIST_HEAD(&log->l_buf_cancel_table[i]);
3832
1da177e4
LT
3833 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3834 XLOG_RECOVER_PASS1);
3835 if (error != 0) {
f0e2d93c 3836 kmem_free(log->l_buf_cancel_table);
1da177e4
LT
3837 log->l_buf_cancel_table = NULL;
3838 return error;
3839 }
3840 /*
3841 * Then do a second pass to actually recover the items in the log.
3842 * When it is complete free the table of buf cancel items.
3843 */
3844 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3845 XLOG_RECOVER_PASS2);
3846#ifdef DEBUG
6d192a9b 3847 if (!error) {
1da177e4
LT
3848 int i;
3849
3850 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
d5689eaa 3851 ASSERT(list_empty(&log->l_buf_cancel_table[i]));
1da177e4
LT
3852 }
3853#endif /* DEBUG */
3854
f0e2d93c 3855 kmem_free(log->l_buf_cancel_table);
1da177e4
LT
3856 log->l_buf_cancel_table = NULL;
3857
3858 return error;
3859}
3860
3861/*
3862 * Do the actual recovery
3863 */
3864STATIC int
3865xlog_do_recover(
9a8d2fdb 3866 struct xlog *log,
1da177e4
LT
3867 xfs_daddr_t head_blk,
3868 xfs_daddr_t tail_blk)
3869{
3870 int error;
3871 xfs_buf_t *bp;
3872 xfs_sb_t *sbp;
3873
3874 /*
3875 * First replay the images in the log.
3876 */
3877 error = xlog_do_log_recovery(log, head_blk, tail_blk);
43ff2122 3878 if (error)
1da177e4 3879 return error;
1da177e4
LT
3880
3881 /*
3882 * If IO errors happened during recovery, bail out.
3883 */
3884 if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
3885 return (EIO);
3886 }
3887
3888 /*
3889 * We now update the tail_lsn since much of the recovery has completed
3890 * and there may be space available to use. If there were no extent
3891 * or iunlinks, we can free up the entire log and set the tail_lsn to
3892 * be the last_sync_lsn. This was set in xlog_find_tail to be the
3893 * lsn of the last known good LR on disk. If there are extent frees
3894 * or iunlinks they will have some entries in the AIL; so we look at
3895 * the AIL to determine how to set the tail_lsn.
3896 */
3897 xlog_assign_tail_lsn(log->l_mp);
3898
3899 /*
3900 * Now that we've finished replaying all buffer and inode
98021821 3901 * updates, re-read in the superblock and reverify it.
1da177e4
LT
3902 */
3903 bp = xfs_getsb(log->l_mp, 0);
3904 XFS_BUF_UNDONE(bp);
bebf963f 3905 ASSERT(!(XFS_BUF_ISWRITE(bp)));
1da177e4 3906 XFS_BUF_READ(bp);
bebf963f 3907 XFS_BUF_UNASYNC(bp);
1813dd64 3908 bp->b_ops = &xfs_sb_buf_ops;
1da177e4 3909 xfsbdstrat(log->l_mp, bp);
1a1a3e97 3910 error = xfs_buf_iowait(bp);
d64e31a2 3911 if (error) {
901796af 3912 xfs_buf_ioerror_alert(bp, __func__);
1da177e4
LT
3913 ASSERT(0);
3914 xfs_buf_relse(bp);
3915 return error;
3916 }
3917
3918 /* Convert superblock from on-disk format */
3919 sbp = &log->l_mp->m_sb;
98021821 3920 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
1da177e4 3921 ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
62118709 3922 ASSERT(xfs_sb_good_version(sbp));
1da177e4
LT
3923 xfs_buf_relse(bp);
3924
5478eead
LM
3925 /* We've re-read the superblock so re-initialize per-cpu counters */
3926 xfs_icsb_reinit_counters(log->l_mp);
3927
1da177e4
LT
3928 xlog_recover_check_summary(log);
3929
3930 /* Normal transactions can now occur */
3931 log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
3932 return 0;
3933}
3934
3935/*
3936 * Perform recovery and re-initialize some log variables in xlog_find_tail.
3937 *
3938 * Return error or zero.
3939 */
3940int
3941xlog_recover(
9a8d2fdb 3942 struct xlog *log)
1da177e4
LT
3943{
3944 xfs_daddr_t head_blk, tail_blk;
3945 int error;
3946
3947 /* find the tail of the log */
65be6054 3948 if ((error = xlog_find_tail(log, &head_blk, &tail_blk)))
1da177e4
LT
3949 return error;
3950
3951 if (tail_blk != head_blk) {
3952 /* There used to be a comment here:
3953 *
3954 * disallow recovery on read-only mounts. note -- mount
3955 * checks for ENOSPC and turns it into an intelligent
3956 * error message.
3957 * ...but this is no longer true. Now, unless you specify
3958 * NORECOVERY (in which case this function would never be
3959 * called), we just go ahead and recover. We do this all
3960 * under the vfs layer, so we can get away with it unless
3961 * the device itself is read-only, in which case we fail.
3962 */
3a02ee18 3963 if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
1da177e4
LT
3964 return error;
3965 }
3966
e721f504
DC
3967 /*
3968 * Version 5 superblock log feature mask validation. We know the
3969 * log is dirty so check if there are any unknown log features
3970 * in what we need to recover. If there are unknown features
3971 * (e.g. unsupported transactions, then simply reject the
3972 * attempt at recovery before touching anything.
3973 */
3974 if (XFS_SB_VERSION_NUM(&log->l_mp->m_sb) == XFS_SB_VERSION_5 &&
3975 xfs_sb_has_incompat_log_feature(&log->l_mp->m_sb,
3976 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)) {
3977 xfs_warn(log->l_mp,
3978"Superblock has unknown incompatible log features (0x%x) enabled.\n"
3979"The log can not be fully and/or safely recovered by this kernel.\n"
3980"Please recover the log on a kernel that supports the unknown features.",
3981 (log->l_mp->m_sb.sb_features_log_incompat &
3982 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN));
3983 return EINVAL;
3984 }
3985
a0fa2b67
DC
3986 xfs_notice(log->l_mp, "Starting recovery (logdev: %s)",
3987 log->l_mp->m_logname ? log->l_mp->m_logname
3988 : "internal");
1da177e4
LT
3989
3990 error = xlog_do_recover(log, head_blk, tail_blk);
3991 log->l_flags |= XLOG_RECOVERY_NEEDED;
3992 }
3993 return error;
3994}
3995
3996/*
3997 * In the first part of recovery we replay inodes and buffers and build
3998 * up the list of extent free items which need to be processed. Here
3999 * we process the extent free items and clean up the on disk unlinked
4000 * inode lists. This is separated from the first part of recovery so
4001 * that the root and real-time bitmap inodes can be read in from disk in
4002 * between the two stages. This is necessary so that we can free space
4003 * in the real-time portion of the file system.
4004 */
4005int
4006xlog_recover_finish(
9a8d2fdb 4007 struct xlog *log)
1da177e4
LT
4008{
4009 /*
4010 * Now we're ready to do the transactions needed for the
4011 * rest of recovery. Start with completing all the extent
4012 * free intent records and then process the unlinked inode
4013 * lists. At this point, we essentially run in normal mode
4014 * except that we're still performing recovery actions
4015 * rather than accepting new requests.
4016 */
4017 if (log->l_flags & XLOG_RECOVERY_NEEDED) {
3c1e2bbe
DC
4018 int error;
4019 error = xlog_recover_process_efis(log);
4020 if (error) {
a0fa2b67 4021 xfs_alert(log->l_mp, "Failed to recover EFIs");
3c1e2bbe
DC
4022 return error;
4023 }
1da177e4
LT
4024 /*
4025 * Sync the log to get all the EFIs out of the AIL.
4026 * This isn't absolutely necessary, but it helps in
4027 * case the unlink transactions would have problems
4028 * pushing the EFIs out of the way.
4029 */
a14a348b 4030 xfs_log_force(log->l_mp, XFS_LOG_SYNC);
1da177e4 4031
4249023a 4032 xlog_recover_process_iunlinks(log);
1da177e4
LT
4033
4034 xlog_recover_check_summary(log);
4035
a0fa2b67
DC
4036 xfs_notice(log->l_mp, "Ending recovery (logdev: %s)",
4037 log->l_mp->m_logname ? log->l_mp->m_logname
4038 : "internal");
1da177e4
LT
4039 log->l_flags &= ~XLOG_RECOVERY_NEEDED;
4040 } else {
a0fa2b67 4041 xfs_info(log->l_mp, "Ending clean mount");
1da177e4
LT
4042 }
4043 return 0;
4044}
4045
4046
4047#if defined(DEBUG)
4048/*
4049 * Read all of the agf and agi counters and check that they
4050 * are consistent with the superblock counters.
4051 */
4052void
4053xlog_recover_check_summary(
9a8d2fdb 4054 struct xlog *log)
1da177e4
LT
4055{
4056 xfs_mount_t *mp;
4057 xfs_agf_t *agfp;
1da177e4
LT
4058 xfs_buf_t *agfbp;
4059 xfs_buf_t *agibp;
1da177e4
LT
4060 xfs_agnumber_t agno;
4061 __uint64_t freeblks;
4062 __uint64_t itotal;
4063 __uint64_t ifree;
5e1be0fb 4064 int error;
1da177e4
LT
4065
4066 mp = log->l_mp;
4067
4068 freeblks = 0LL;
4069 itotal = 0LL;
4070 ifree = 0LL;
4071 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
4805621a
CH
4072 error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
4073 if (error) {
a0fa2b67
DC
4074 xfs_alert(mp, "%s agf read failed agno %d error %d",
4075 __func__, agno, error);
4805621a
CH
4076 } else {
4077 agfp = XFS_BUF_TO_AGF(agfbp);
4078 freeblks += be32_to_cpu(agfp->agf_freeblks) +
4079 be32_to_cpu(agfp->agf_flcount);
4080 xfs_buf_relse(agfbp);
1da177e4 4081 }
1da177e4 4082
5e1be0fb 4083 error = xfs_read_agi(mp, NULL, agno, &agibp);
a0fa2b67
DC
4084 if (error) {
4085 xfs_alert(mp, "%s agi read failed agno %d error %d",
4086 __func__, agno, error);
4087 } else {
5e1be0fb 4088 struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp);
16259e7d 4089
5e1be0fb
CH
4090 itotal += be32_to_cpu(agi->agi_count);
4091 ifree += be32_to_cpu(agi->agi_freecount);
4092 xfs_buf_relse(agibp);
4093 }
1da177e4 4094 }
1da177e4
LT
4095}
4096#endif /* DEBUG */