[XFS] 956618: Linux crashes on boot with XFS-DMAPI filesystem when
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / xfs / xfs_iget.c
CommitLineData
1da177e4 1/*
7b718769
NS
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
a844f451 19#include "xfs_fs.h"
1da177e4 20#include "xfs_types.h"
a844f451 21#include "xfs_bit.h"
1da177e4 22#include "xfs_log.h"
a844f451 23#include "xfs_inum.h"
1da177e4
LT
24#include "xfs_trans.h"
25#include "xfs_sb.h"
26#include "xfs_ag.h"
1da177e4
LT
27#include "xfs_dir2.h"
28#include "xfs_dmapi.h"
29#include "xfs_mount.h"
1da177e4 30#include "xfs_bmap_btree.h"
a844f451 31#include "xfs_alloc_btree.h"
1da177e4 32#include "xfs_ialloc_btree.h"
1da177e4 33#include "xfs_dir2_sf.h"
a844f451 34#include "xfs_attr_sf.h"
1da177e4
LT
35#include "xfs_dinode.h"
36#include "xfs_inode.h"
a844f451
NS
37#include "xfs_btree.h"
38#include "xfs_ialloc.h"
1da177e4
LT
39#include "xfs_quota.h"
40#include "xfs_utils.h"
1da177e4
LT
41
42/*
43 * Initialize the inode hash table for the newly mounted file system.
44 * Choose an initial table size based on user specified value, else
45 * use a simple algorithm using the maximum number of inodes as an
46 * indicator for table size, and clamp it between one and some large
47 * number of pages.
48 */
49void
50xfs_ihash_init(xfs_mount_t *mp)
51{
52 __uint64_t icount;
77e4635a 53 uint i;
1da177e4
LT
54
55 if (!mp->m_ihsize) {
56 icount = mp->m_maxicount ? mp->m_maxicount :
57 (mp->m_sb.sb_dblocks << mp->m_sb.sb_inopblog);
58 mp->m_ihsize = 1 << max_t(uint, 8,
59 (xfs_highbit64(icount) + 1) / 2);
60 mp->m_ihsize = min_t(uint, mp->m_ihsize,
61 (64 * NBPP) / sizeof(xfs_ihash_t));
62 }
63
77e4635a
NS
64 mp->m_ihash = kmem_zalloc_greedy(&mp->m_ihsize,
65 NBPC * sizeof(xfs_ihash_t),
66 mp->m_ihsize * sizeof(xfs_ihash_t),
67 KM_SLEEP | KM_MAYFAIL | KM_LARGE);
68 mp->m_ihsize /= sizeof(xfs_ihash_t);
69 for (i = 0; i < mp->m_ihsize; i++)
1da177e4 70 rwlock_init(&(mp->m_ihash[i].ih_lock));
1da177e4
LT
71}
72
73/*
74 * Free up structures allocated by xfs_ihash_init, at unmount time.
75 */
76void
77xfs_ihash_free(xfs_mount_t *mp)
78{
77e4635a 79 kmem_free(mp->m_ihash, mp->m_ihsize * sizeof(xfs_ihash_t));
1da177e4
LT
80 mp->m_ihash = NULL;
81}
82
83/*
84 * Initialize the inode cluster hash table for the newly mounted file system.
85 * Its size is derived from the ihash table size.
86 */
87void
88xfs_chash_init(xfs_mount_t *mp)
89{
90 uint i;
91
92 mp->m_chsize = max_t(uint, 1, mp->m_ihsize /
93 (XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog));
94 mp->m_chsize = min_t(uint, mp->m_chsize, mp->m_ihsize);
95 mp->m_chash = (xfs_chash_t *)kmem_zalloc(mp->m_chsize
96 * sizeof(xfs_chash_t),
efb8ad7e 97 KM_SLEEP | KM_LARGE);
1da177e4
LT
98 for (i = 0; i < mp->m_chsize; i++) {
99 spinlock_init(&mp->m_chash[i].ch_lock,"xfshash");
100 }
101}
102
103/*
104 * Free up structures allocated by xfs_chash_init, at unmount time.
105 */
106void
107xfs_chash_free(xfs_mount_t *mp)
108{
109 int i;
110
111 for (i = 0; i < mp->m_chsize; i++) {
112 spinlock_destroy(&mp->m_chash[i].ch_lock);
113 }
114
115 kmem_free(mp->m_chash, mp->m_chsize*sizeof(xfs_chash_t));
116 mp->m_chash = NULL;
117}
118
71bce256
NS
119/*
120 * Try to move an inode to the front of its hash list if possible
121 * (and if its not there already). Called right after obtaining
122 * the list version number and then dropping the read_lock on the
123 * hash list in question (which is done right after looking up the
124 * inode in question...).
125 */
126STATIC void
127xfs_ihash_promote(
128 xfs_ihash_t *ih,
129 xfs_inode_t *ip,
130 ulong version)
131{
132 xfs_inode_t *iq;
133
134 if ((ip->i_prevp != &ih->ih_next) && write_trylock(&ih->ih_lock)) {
135 if (likely(version == ih->ih_version)) {
136 /* remove from list */
137 if ((iq = ip->i_next)) {
138 iq->i_prevp = ip->i_prevp;
139 }
140 *ip->i_prevp = iq;
141
142 /* insert at list head */
143 iq = ih->ih_next;
144 iq->i_prevp = &ip->i_next;
145 ip->i_next = iq;
146 ip->i_prevp = &ih->ih_next;
147 ih->ih_next = ip;
148 }
149 write_unlock(&ih->ih_lock);
150 }
151}
152
1da177e4
LT
153/*
154 * Look up an inode by number in the given file system.
155 * The inode is looked up in the hash table for the file system
156 * represented by the mount point parameter mp. Each bucket of
157 * the hash table is guarded by an individual semaphore.
158 *
159 * If the inode is found in the hash table, its corresponding vnode
160 * is obtained with a call to vn_get(). This call takes care of
161 * coordination with the reclamation of the inode and vnode. Note
162 * that the vmap structure is filled in while holding the hash lock.
163 * This gives us the state of the inode/vnode when we found it and
164 * is used for coordination in vn_get().
165 *
166 * If it is not in core, read it in from the file system's device and
167 * add the inode into the hash table.
168 *
169 * The inode is locked according to the value of the lock_flags parameter.
170 * This flag parameter indicates how and if the inode's IO lock and inode lock
171 * should be taken.
172 *
173 * mp -- the mount point structure for the current file system. It points
174 * to the inode hash table.
175 * tp -- a pointer to the current transaction if there is one. This is
176 * simply passed through to the xfs_iread() call.
177 * ino -- the number of the inode desired. This is the unique identifier
178 * within the file system for the inode being requested.
179 * lock_flags -- flags indicating how to lock the inode. See the comment
180 * for xfs_ilock() for a list of valid values.
181 * bno -- the block number starting the buffer containing the inode,
182 * if known (as by bulkstat), else 0.
183 */
184STATIC int
185xfs_iget_core(
67fcaa73 186 bhv_vnode_t *vp,
1da177e4
LT
187 xfs_mount_t *mp,
188 xfs_trans_t *tp,
189 xfs_ino_t ino,
190 uint flags,
191 uint lock_flags,
192 xfs_inode_t **ipp,
193 xfs_daddr_t bno)
194{
195 xfs_ihash_t *ih;
196 xfs_inode_t *ip;
197 xfs_inode_t *iq;
67fcaa73 198 bhv_vnode_t *inode_vp;
1da177e4
LT
199 ulong version;
200 int error;
201 /* REFERENCED */
202 xfs_chash_t *ch;
203 xfs_chashlist_t *chl, *chlnew;
204 SPLDECL(s);
205
206
207 ih = XFS_IHASH(mp, ino);
208
209again:
210 read_lock(&ih->ih_lock);
211
212 for (ip = ih->ih_next; ip != NULL; ip = ip->i_next) {
213 if (ip->i_ino == ino) {
214 /*
215 * If INEW is set this inode is being set up
216 * we need to pause and try again.
217 */
218 if (ip->i_flags & XFS_INEW) {
219 read_unlock(&ih->ih_lock);
220 delay(1);
221 XFS_STATS_INC(xs_ig_frecycle);
222
223 goto again;
224 }
225
226 inode_vp = XFS_ITOV_NULL(ip);
227 if (inode_vp == NULL) {
228 /*
229 * If IRECLAIM is set this inode is
230 * on its way out of the system,
231 * we need to pause and try again.
232 */
233 if (ip->i_flags & XFS_IRECLAIM) {
234 read_unlock(&ih->ih_lock);
235 delay(1);
236 XFS_STATS_INC(xs_ig_frecycle);
237
238 goto again;
239 }
240
241 vn_trace_exit(vp, "xfs_iget.alloc",
242 (inst_t *)__return_address);
243
244 XFS_STATS_INC(xs_ig_found);
245
f273ab84 246 spin_lock(&ip->i_flags_lock);
1da177e4 247 ip->i_flags &= ~XFS_IRECLAIMABLE;
f273ab84 248 spin_unlock(&ip->i_flags_lock);
71bce256 249 version = ih->ih_version;
1da177e4 250 read_unlock(&ih->ih_lock);
71bce256 251 xfs_ihash_promote(ih, ip, version);
1da177e4
LT
252
253 XFS_MOUNT_ILOCK(mp);
254 list_del_init(&ip->i_reclaim);
255 XFS_MOUNT_IUNLOCK(mp);
256
257 goto finish_inode;
258
259 } else if (vp != inode_vp) {
ec86dc02 260 struct inode *inode = vn_to_inode(inode_vp);
1da177e4
LT
261
262 /* The inode is being torn down, pause and
263 * try again.
264 */
265 if (inode->i_state & (I_FREEING | I_CLEAR)) {
266 read_unlock(&ih->ih_lock);
267 delay(1);
268 XFS_STATS_INC(xs_ig_frecycle);
269
270 goto again;
271 }
272/* Chances are the other vnode (the one in the inode) is being torn
273 * down right now, and we landed on top of it. Question is, what do
274 * we do? Unhook the old inode and hook up the new one?
275 */
276 cmn_err(CE_PANIC,
277 "xfs_iget_core: ambiguous vns: vp/0x%p, invp/0x%p",
278 inode_vp, vp);
279 }
280
71bce256
NS
281 /*
282 * Inode cache hit: if ip is not at the front of
283 * its hash chain, move it there now.
284 * Do this with the lock held for update, but
285 * do statistics after releasing the lock.
286 */
287 version = ih->ih_version;
1da177e4 288 read_unlock(&ih->ih_lock);
71bce256 289 xfs_ihash_promote(ih, ip, version);
1da177e4
LT
290 XFS_STATS_INC(xs_ig_found);
291
292finish_inode:
293 if (ip->i_d.di_mode == 0) {
745b1f47 294 if (!(flags & XFS_IGET_CREATE))
1da177e4
LT
295 return ENOENT;
296 xfs_iocore_inode_reinit(ip);
297 }
745b1f47 298
1da177e4
LT
299 if (lock_flags != 0)
300 xfs_ilock(ip, lock_flags);
301
f273ab84 302 spin_lock(&ip->i_flags_lock);
1da177e4 303 ip->i_flags &= ~XFS_ISTALE;
f273ab84 304 spin_unlock(&ip->i_flags_lock);
1da177e4
LT
305
306 vn_trace_exit(vp, "xfs_iget.found",
307 (inst_t *)__return_address);
308 goto return_ip;
309 }
310 }
311
312 /*
313 * Inode cache miss: save the hash chain version stamp and unlock
314 * the chain, so we don't deadlock in vn_alloc.
315 */
316 XFS_STATS_INC(xs_ig_missed);
317
318 version = ih->ih_version;
319
320 read_unlock(&ih->ih_lock);
321
322 /*
323 * Read the disk inode attributes into a new inode structure and get
324 * a new vnode for it. This should also initialize i_ino and i_mount.
325 */
745b1f47
NS
326 error = xfs_iread(mp, tp, ino, &ip, bno,
327 (flags & XFS_IGET_BULKSTAT) ? XFS_IMAP_BULKSTAT : 0);
328 if (error)
1da177e4 329 return error;
1da177e4
LT
330
331 vn_trace_exit(vp, "xfs_iget.alloc", (inst_t *)__return_address);
332
333 xfs_inode_lock_init(ip, vp);
334 xfs_iocore_inode_init(ip);
335
745b1f47 336 if (lock_flags)
1da177e4 337 xfs_ilock(ip, lock_flags);
745b1f47
NS
338
339 if ((ip->i_d.di_mode == 0) && !(flags & XFS_IGET_CREATE)) {
1da177e4
LT
340 xfs_idestroy(ip);
341 return ENOENT;
342 }
343
344 /*
345 * Put ip on its hash chain, unless someone else hashed a duplicate
346 * after we released the hash lock.
347 */
348 write_lock(&ih->ih_lock);
349
350 if (ih->ih_version != version) {
351 for (iq = ih->ih_next; iq != NULL; iq = iq->i_next) {
352 if (iq->i_ino == ino) {
353 write_unlock(&ih->ih_lock);
354 xfs_idestroy(ip);
355
356 XFS_STATS_INC(xs_ig_dup);
357 goto again;
358 }
359 }
360 }
361
362 /*
363 * These values _must_ be set before releasing ihlock!
364 */
365 ip->i_hash = ih;
366 if ((iq = ih->ih_next)) {
367 iq->i_prevp = &ip->i_next;
368 }
369 ip->i_next = iq;
370 ip->i_prevp = &ih->ih_next;
371 ih->ih_next = ip;
372 ip->i_udquot = ip->i_gdquot = NULL;
373 ih->ih_version++;
f273ab84 374 spin_lock(&ip->i_flags_lock);
1da177e4 375 ip->i_flags |= XFS_INEW;
f273ab84 376 spin_unlock(&ip->i_flags_lock);
1da177e4
LT
377
378 write_unlock(&ih->ih_lock);
379
380 /*
381 * put ip on its cluster's hash chain
382 */
383 ASSERT(ip->i_chash == NULL && ip->i_cprev == NULL &&
384 ip->i_cnext == NULL);
385
386 chlnew = NULL;
387 ch = XFS_CHASH(mp, ip->i_blkno);
388 chlredo:
389 s = mutex_spinlock(&ch->ch_lock);
390 for (chl = ch->ch_list; chl != NULL; chl = chl->chl_next) {
391 if (chl->chl_blkno == ip->i_blkno) {
392
393 /* insert this inode into the doubly-linked list
394 * where chl points */
395 if ((iq = chl->chl_ip)) {
396 ip->i_cprev = iq->i_cprev;
397 iq->i_cprev->i_cnext = ip;
398 iq->i_cprev = ip;
399 ip->i_cnext = iq;
400 } else {
401 ip->i_cnext = ip;
402 ip->i_cprev = ip;
403 }
404 chl->chl_ip = ip;
405 ip->i_chash = chl;
406 break;
407 }
408 }
409
410 /* no hash list found for this block; add a new hash list */
411 if (chl == NULL) {
412 if (chlnew == NULL) {
413 mutex_spinunlock(&ch->ch_lock, s);
414 ASSERT(xfs_chashlist_zone != NULL);
415 chlnew = (xfs_chashlist_t *)
416 kmem_zone_alloc(xfs_chashlist_zone,
417 KM_SLEEP);
418 ASSERT(chlnew != NULL);
419 goto chlredo;
420 } else {
421 ip->i_cnext = ip;
422 ip->i_cprev = ip;
423 ip->i_chash = chlnew;
424 chlnew->chl_ip = ip;
425 chlnew->chl_blkno = ip->i_blkno;
1fc5d959
DC
426 if (ch->ch_list)
427 ch->ch_list->chl_prev = chlnew;
1da177e4 428 chlnew->chl_next = ch->ch_list;
1fc5d959 429 chlnew->chl_prev = NULL;
1da177e4
LT
430 ch->ch_list = chlnew;
431 chlnew = NULL;
432 }
433 } else {
434 if (chlnew != NULL) {
435 kmem_zone_free(xfs_chashlist_zone, chlnew);
436 }
437 }
438
439 mutex_spinunlock(&ch->ch_lock, s);
440
441
442 /*
443 * Link ip to its mount and thread it on the mount's inode list.
444 */
445 XFS_MOUNT_ILOCK(mp);
446 if ((iq = mp->m_inodes)) {
447 ASSERT(iq->i_mprev->i_mnext == iq);
448 ip->i_mprev = iq->i_mprev;
449 iq->i_mprev->i_mnext = ip;
450 iq->i_mprev = ip;
451 ip->i_mnext = iq;
452 } else {
453 ip->i_mnext = ip;
454 ip->i_mprev = ip;
455 }
456 mp->m_inodes = ip;
457
458 XFS_MOUNT_IUNLOCK(mp);
459
460 return_ip:
461 ASSERT(ip->i_df.if_ext_max ==
462 XFS_IFORK_DSIZE(ip) / sizeof(xfs_bmbt_rec_t));
463
464 ASSERT(((ip->i_d.di_flags & XFS_DIFLAG_REALTIME) != 0) ==
465 ((ip->i_iocore.io_flags & XFS_IOCORE_RT) != 0));
466
467 *ipp = ip;
468
469 /*
470 * If we have a real type for an on-disk inode, we can set ops(&unlock)
471 * now. If it's a new inode being created, xfs_ialloc will handle it.
472 */
b83bd138 473 bhv_vfs_init_vnode(XFS_MTOVFS(mp), vp, XFS_ITOBHV(ip), 1);
1da177e4
LT
474
475 return 0;
476}
477
478
479/*
480 * The 'normal' internal xfs_iget, if needed it will
481 * 'allocate', or 'get', the vnode.
482 */
483int
484xfs_iget(
485 xfs_mount_t *mp,
486 xfs_trans_t *tp,
487 xfs_ino_t ino,
488 uint flags,
489 uint lock_flags,
490 xfs_inode_t **ipp,
491 xfs_daddr_t bno)
492{
493 struct inode *inode;
67fcaa73 494 bhv_vnode_t *vp = NULL;
1da177e4
LT
495 int error;
496
1da177e4
LT
497 XFS_STATS_INC(xs_ig_attempts);
498
ba403ab4 499retry:
1da177e4 500 if ((inode = iget_locked(XFS_MTOVFS(mp)->vfs_super, ino))) {
1da177e4 501 xfs_inode_t *ip;
1da177e4 502
ec86dc02 503 vp = vn_from_inode(inode);
1da177e4 504 if (inode->i_state & I_NEW) {
1da177e4
LT
505 vn_initialize(inode);
506 error = xfs_iget_core(vp, mp, tp, ino, flags,
507 lock_flags, ipp, bno);
508 if (error) {
509 vn_mark_bad(vp);
510 if (inode->i_state & I_NEW)
511 unlock_new_inode(inode);
512 iput(inode);
513 }
514 } else {
ba403ab4
CH
515 /*
516 * If the inode is not fully constructed due to
c41564b5 517 * filehandle mismatches wait for the inode to go
ba403ab4
CH
518 * away and try again.
519 *
520 * iget_locked will call __wait_on_freeing_inode
521 * to wait for the inode to go away.
522 */
523 if (is_bad_inode(inode) ||
75e17b3c 524 ((ip = xfs_vtoi(vp)) == NULL)) {
1da177e4 525 iput(inode);
ba403ab4
CH
526 delay(1);
527 goto retry;
1da177e4
LT
528 }
529
1da177e4
LT
530 if (lock_flags != 0)
531 xfs_ilock(ip, lock_flags);
1da177e4
LT
532 XFS_STATS_INC(xs_ig_found);
533 *ipp = ip;
534 error = 0;
535 }
536 } else
537 error = ENOMEM; /* If we got no inode we are out of memory */
538
539 return error;
540}
541
542/*
543 * Do the setup for the various locks within the incore inode.
544 */
545void
546xfs_inode_lock_init(
547 xfs_inode_t *ip,
67fcaa73 548 bhv_vnode_t *vp)
1da177e4
LT
549{
550 mrlock_init(&ip->i_lock, MRLOCK_ALLOW_EQUAL_PRI|MRLOCK_BARRIER,
551 "xfsino", (long)vp->v_number);
552 mrlock_init(&ip->i_iolock, MRLOCK_BARRIER, "xfsio", vp->v_number);
553 init_waitqueue_head(&ip->i_ipin_wait);
554 atomic_set(&ip->i_pincount, 0);
7ae67d78 555 initnsema(&ip->i_flock, 1, "xfsfino");
1da177e4
LT
556}
557
558/*
559 * Look for the inode corresponding to the given ino in the hash table.
560 * If it is there and its i_transp pointer matches tp, return it.
561 * Otherwise, return NULL.
562 */
563xfs_inode_t *
564xfs_inode_incore(xfs_mount_t *mp,
565 xfs_ino_t ino,
566 xfs_trans_t *tp)
567{
568 xfs_ihash_t *ih;
569 xfs_inode_t *ip;
71bce256 570 ulong version;
1da177e4
LT
571
572 ih = XFS_IHASH(mp, ino);
573 read_lock(&ih->ih_lock);
574 for (ip = ih->ih_next; ip != NULL; ip = ip->i_next) {
575 if (ip->i_ino == ino) {
576 /*
577 * If we find it and tp matches, return it.
71bce256
NS
578 * Also move it to the front of the hash list
579 * if we find it and it is not already there.
1da177e4
LT
580 * Otherwise break from the loop and return
581 * NULL.
582 */
583 if (ip->i_transp == tp) {
71bce256 584 version = ih->ih_version;
1da177e4 585 read_unlock(&ih->ih_lock);
71bce256 586 xfs_ihash_promote(ih, ip, version);
1da177e4
LT
587 return (ip);
588 }
589 break;
590 }
591 }
592 read_unlock(&ih->ih_lock);
593 return (NULL);
594}
595
596/*
597 * Decrement reference count of an inode structure and unlock it.
598 *
599 * ip -- the inode being released
600 * lock_flags -- this parameter indicates the inode's locks to be
601 * to be released. See the comment on xfs_iunlock() for a list
602 * of valid values.
603 */
604void
605xfs_iput(xfs_inode_t *ip,
606 uint lock_flags)
607{
67fcaa73 608 bhv_vnode_t *vp = XFS_ITOV(ip);
1da177e4
LT
609
610 vn_trace_entry(vp, "xfs_iput", (inst_t *)__return_address);
1da177e4 611 xfs_iunlock(ip, lock_flags);
1da177e4
LT
612 VN_RELE(vp);
613}
614
615/*
616 * Special iput for brand-new inodes that are still locked
617 */
618void
619xfs_iput_new(xfs_inode_t *ip,
620 uint lock_flags)
621{
67fcaa73 622 bhv_vnode_t *vp = XFS_ITOV(ip);
ec86dc02 623 struct inode *inode = vn_to_inode(vp);
1da177e4
LT
624
625 vn_trace_entry(vp, "xfs_iput_new", (inst_t *)__return_address);
626
627 if ((ip->i_d.di_mode == 0)) {
628 ASSERT(!(ip->i_flags & XFS_IRECLAIMABLE));
629 vn_mark_bad(vp);
630 }
631 if (inode->i_state & I_NEW)
632 unlock_new_inode(inode);
633 if (lock_flags)
634 xfs_iunlock(ip, lock_flags);
635 VN_RELE(vp);
636}
637
638
639/*
640 * This routine embodies the part of the reclaim code that pulls
641 * the inode from the inode hash table and the mount structure's
642 * inode list.
643 * This should only be called from xfs_reclaim().
644 */
645void
646xfs_ireclaim(xfs_inode_t *ip)
647{
67fcaa73 648 bhv_vnode_t *vp;
1da177e4
LT
649
650 /*
651 * Remove from old hash list and mount list.
652 */
653 XFS_STATS_INC(xs_ig_reclaims);
654
655 xfs_iextract(ip);
656
657 /*
658 * Here we do a spurious inode lock in order to coordinate with
659 * xfs_sync(). This is because xfs_sync() references the inodes
660 * in the mount list without taking references on the corresponding
661 * vnodes. We make that OK here by ensuring that we wait until
662 * the inode is unlocked in xfs_sync() before we go ahead and
663 * free it. We get both the regular lock and the io lock because
664 * the xfs_sync() code may need to drop the regular one but will
665 * still hold the io lock.
666 */
667 xfs_ilock(ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
668
669 /*
670 * Release dquots (and their references) if any. An inode may escape
671 * xfs_inactive and get here via vn_alloc->vn_reclaim path.
672 */
673 XFS_QM_DQDETACH(ip->i_mount, ip);
674
675 /*
676 * Pull our behavior descriptor from the vnode chain.
677 */
678 vp = XFS_ITOV_NULL(ip);
679 if (vp) {
680 vn_bhv_remove(VN_BHV_HEAD(vp), XFS_ITOBHV(ip));
681 }
682
683 /*
684 * Free all memory associated with the inode.
685 */
686 xfs_idestroy(ip);
687}
688
689/*
690 * This routine removes an about-to-be-destroyed inode from
691 * all of the lists in which it is located with the exception
692 * of the behavior chain.
693 */
694void
695xfs_iextract(
696 xfs_inode_t *ip)
697{
698 xfs_ihash_t *ih;
699 xfs_inode_t *iq;
700 xfs_mount_t *mp;
701 xfs_chash_t *ch;
702 xfs_chashlist_t *chl, *chm;
703 SPLDECL(s);
704
705 ih = ip->i_hash;
706 write_lock(&ih->ih_lock);
707 if ((iq = ip->i_next)) {
708 iq->i_prevp = ip->i_prevp;
709 }
710 *ip->i_prevp = iq;
71bce256 711 ih->ih_version++;
1da177e4
LT
712 write_unlock(&ih->ih_lock);
713
714 /*
715 * Remove from cluster hash list
716 * 1) delete the chashlist if this is the last inode on the chashlist
717 * 2) unchain from list of inodes
718 * 3) point chashlist->chl_ip to 'chl_next' if to this inode.
719 */
720 mp = ip->i_mount;
721 ch = XFS_CHASH(mp, ip->i_blkno);
722 s = mutex_spinlock(&ch->ch_lock);
723
724 if (ip->i_cnext == ip) {
725 /* Last inode on chashlist */
726 ASSERT(ip->i_cnext == ip && ip->i_cprev == ip);
727 ASSERT(ip->i_chash != NULL);
728 chm=NULL;
1fc5d959
DC
729 chl = ip->i_chash;
730 if (chl->chl_prev)
731 chl->chl_prev->chl_next = chl->chl_next;
732 else
733 ch->ch_list = chl->chl_next;
734 if (chl->chl_next)
735 chl->chl_next->chl_prev = chl->chl_prev;
736 kmem_zone_free(xfs_chashlist_zone, chl);
737 } else {
1da177e4
LT
738 /* delete one inode from a non-empty list */
739 iq = ip->i_cnext;
740 iq->i_cprev = ip->i_cprev;
741 ip->i_cprev->i_cnext = iq;
742 if (ip->i_chash->chl_ip == ip) {
743 ip->i_chash->chl_ip = iq;
744 }
745 ip->i_chash = __return_address;
746 ip->i_cprev = __return_address;
747 ip->i_cnext = __return_address;
748 }
749 mutex_spinunlock(&ch->ch_lock, s);
750
751 /*
752 * Remove from mount's inode list.
753 */
754 XFS_MOUNT_ILOCK(mp);
755 ASSERT((ip->i_mnext != NULL) && (ip->i_mprev != NULL));
756 iq = ip->i_mnext;
757 iq->i_mprev = ip->i_mprev;
758 ip->i_mprev->i_mnext = iq;
759
760 /*
761 * Fix up the head pointer if it points to the inode being deleted.
762 */
763 if (mp->m_inodes == ip) {
764 if (ip == iq) {
765 mp->m_inodes = NULL;
766 } else {
767 mp->m_inodes = iq;
768 }
769 }
770
771 /* Deal with the deleted inodes list */
772 list_del_init(&ip->i_reclaim);
773
774 mp->m_ireclaims++;
775 XFS_MOUNT_IUNLOCK(mp);
776}
777
778/*
779 * This is a wrapper routine around the xfs_ilock() routine
780 * used to centralize some grungy code. It is used in places
781 * that wish to lock the inode solely for reading the extents.
782 * The reason these places can't just call xfs_ilock(SHARED)
783 * is that the inode lock also guards to bringing in of the
784 * extents from disk for a file in b-tree format. If the inode
785 * is in b-tree format, then we need to lock the inode exclusively
786 * until the extents are read in. Locking it exclusively all
787 * the time would limit our parallelism unnecessarily, though.
788 * What we do instead is check to see if the extents have been
789 * read in yet, and only lock the inode exclusively if they
790 * have not.
791 *
792 * The function returns a value which should be given to the
793 * corresponding xfs_iunlock_map_shared(). This value is
794 * the mode in which the lock was actually taken.
795 */
796uint
797xfs_ilock_map_shared(
798 xfs_inode_t *ip)
799{
800 uint lock_mode;
801
802 if ((ip->i_d.di_format == XFS_DINODE_FMT_BTREE) &&
803 ((ip->i_df.if_flags & XFS_IFEXTENTS) == 0)) {
804 lock_mode = XFS_ILOCK_EXCL;
805 } else {
806 lock_mode = XFS_ILOCK_SHARED;
807 }
808
809 xfs_ilock(ip, lock_mode);
810
811 return lock_mode;
812}
813
814/*
815 * This is simply the unlock routine to go with xfs_ilock_map_shared().
816 * All it does is call xfs_iunlock() with the given lock_mode.
817 */
818void
819xfs_iunlock_map_shared(
820 xfs_inode_t *ip,
821 unsigned int lock_mode)
822{
823 xfs_iunlock(ip, lock_mode);
824}
825
826/*
827 * The xfs inode contains 2 locks: a multi-reader lock called the
828 * i_iolock and a multi-reader lock called the i_lock. This routine
829 * allows either or both of the locks to be obtained.
830 *
831 * The 2 locks should always be ordered so that the IO lock is
832 * obtained first in order to prevent deadlock.
833 *
834 * ip -- the inode being locked
835 * lock_flags -- this parameter indicates the inode's locks
836 * to be locked. It can be:
837 * XFS_IOLOCK_SHARED,
838 * XFS_IOLOCK_EXCL,
839 * XFS_ILOCK_SHARED,
840 * XFS_ILOCK_EXCL,
841 * XFS_IOLOCK_SHARED | XFS_ILOCK_SHARED,
842 * XFS_IOLOCK_SHARED | XFS_ILOCK_EXCL,
843 * XFS_IOLOCK_EXCL | XFS_ILOCK_SHARED,
844 * XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL
845 */
846void
847xfs_ilock(xfs_inode_t *ip,
848 uint lock_flags)
849{
850 /*
851 * You can't set both SHARED and EXCL for the same lock,
852 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
853 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
854 */
855 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
856 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
857 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
858 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
859 ASSERT((lock_flags & ~XFS_LOCK_MASK) == 0);
860
861 if (lock_flags & XFS_IOLOCK_EXCL) {
862 mrupdate(&ip->i_iolock);
863 } else if (lock_flags & XFS_IOLOCK_SHARED) {
864 mraccess(&ip->i_iolock);
865 }
866 if (lock_flags & XFS_ILOCK_EXCL) {
867 mrupdate(&ip->i_lock);
868 } else if (lock_flags & XFS_ILOCK_SHARED) {
869 mraccess(&ip->i_lock);
870 }
871 xfs_ilock_trace(ip, 1, lock_flags, (inst_t *)__return_address);
872}
873
874/*
875 * This is just like xfs_ilock(), except that the caller
876 * is guaranteed not to sleep. It returns 1 if it gets
877 * the requested locks and 0 otherwise. If the IO lock is
878 * obtained but the inode lock cannot be, then the IO lock
879 * is dropped before returning.
880 *
881 * ip -- the inode being locked
882 * lock_flags -- this parameter indicates the inode's locks to be
883 * to be locked. See the comment for xfs_ilock() for a list
884 * of valid values.
885 *
886 */
887int
888xfs_ilock_nowait(xfs_inode_t *ip,
889 uint lock_flags)
890{
891 int iolocked;
892 int ilocked;
893
894 /*
895 * You can't set both SHARED and EXCL for the same lock,
896 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
897 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
898 */
899 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
900 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
901 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
902 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
903 ASSERT((lock_flags & ~XFS_LOCK_MASK) == 0);
904
905 iolocked = 0;
906 if (lock_flags & XFS_IOLOCK_EXCL) {
907 iolocked = mrtryupdate(&ip->i_iolock);
908 if (!iolocked) {
909 return 0;
910 }
911 } else if (lock_flags & XFS_IOLOCK_SHARED) {
912 iolocked = mrtryaccess(&ip->i_iolock);
913 if (!iolocked) {
914 return 0;
915 }
916 }
917 if (lock_flags & XFS_ILOCK_EXCL) {
918 ilocked = mrtryupdate(&ip->i_lock);
919 if (!ilocked) {
920 if (iolocked) {
921 mrunlock(&ip->i_iolock);
922 }
923 return 0;
924 }
925 } else if (lock_flags & XFS_ILOCK_SHARED) {
926 ilocked = mrtryaccess(&ip->i_lock);
927 if (!ilocked) {
928 if (iolocked) {
929 mrunlock(&ip->i_iolock);
930 }
931 return 0;
932 }
933 }
934 xfs_ilock_trace(ip, 2, lock_flags, (inst_t *)__return_address);
935 return 1;
936}
937
938/*
939 * xfs_iunlock() is used to drop the inode locks acquired with
940 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass
941 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
942 * that we know which locks to drop.
943 *
944 * ip -- the inode being unlocked
945 * lock_flags -- this parameter indicates the inode's locks to be
946 * to be unlocked. See the comment for xfs_ilock() for a list
947 * of valid values for this parameter.
948 *
949 */
950void
951xfs_iunlock(xfs_inode_t *ip,
952 uint lock_flags)
953{
954 /*
955 * You can't set both SHARED and EXCL for the same lock,
956 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
957 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
958 */
959 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
960 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
961 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
962 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
963 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_IUNLOCK_NONOTIFY)) == 0);
964 ASSERT(lock_flags != 0);
965
966 if (lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) {
967 ASSERT(!(lock_flags & XFS_IOLOCK_SHARED) ||
968 (ismrlocked(&ip->i_iolock, MR_ACCESS)));
969 ASSERT(!(lock_flags & XFS_IOLOCK_EXCL) ||
970 (ismrlocked(&ip->i_iolock, MR_UPDATE)));
971 mrunlock(&ip->i_iolock);
972 }
973
974 if (lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) {
975 ASSERT(!(lock_flags & XFS_ILOCK_SHARED) ||
976 (ismrlocked(&ip->i_lock, MR_ACCESS)));
977 ASSERT(!(lock_flags & XFS_ILOCK_EXCL) ||
978 (ismrlocked(&ip->i_lock, MR_UPDATE)));
979 mrunlock(&ip->i_lock);
980
981 /*
982 * Let the AIL know that this item has been unlocked in case
983 * it is in the AIL and anyone is waiting on it. Don't do
984 * this if the caller has asked us not to.
985 */
986 if (!(lock_flags & XFS_IUNLOCK_NONOTIFY) &&
987 ip->i_itemp != NULL) {
988 xfs_trans_unlocked_item(ip->i_mount,
989 (xfs_log_item_t*)(ip->i_itemp));
990 }
991 }
992 xfs_ilock_trace(ip, 3, lock_flags, (inst_t *)__return_address);
993}
994
995/*
996 * give up write locks. the i/o lock cannot be held nested
997 * if it is being demoted.
998 */
999void
1000xfs_ilock_demote(xfs_inode_t *ip,
1001 uint lock_flags)
1002{
1003 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_ILOCK_EXCL));
1004 ASSERT((lock_flags & ~(XFS_IOLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
1005
1006 if (lock_flags & XFS_ILOCK_EXCL) {
1007 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
1008 mrdemote(&ip->i_lock);
1009 }
1010 if (lock_flags & XFS_IOLOCK_EXCL) {
1011 ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE));
1012 mrdemote(&ip->i_iolock);
1013 }
1014}
1015
1016/*
1017 * The following three routines simply manage the i_flock
1018 * semaphore embedded in the inode. This semaphore synchronizes
1019 * processes attempting to flush the in-core inode back to disk.
1020 */
1021void
1022xfs_iflock(xfs_inode_t *ip)
1023{
1024 psema(&(ip->i_flock), PINOD|PLTWAIT);
1025}
1026
1027int
1028xfs_iflock_nowait(xfs_inode_t *ip)
1029{
1030 return (cpsema(&(ip->i_flock)));
1031}
1032
1033void
1034xfs_ifunlock(xfs_inode_t *ip)
1035{
0d8fee32 1036 ASSERT(issemalocked(&(ip->i_flock)));
1da177e4
LT
1037 vsema(&(ip->i_flock));
1038}