Merge branch 'timer/cleanup' into late/mvebu2
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / xfs / xfs_buf_item.c
CommitLineData
1da177e4 1/*
7b718769
NS
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
a844f451 19#include "xfs_fs.h"
1da177e4 20#include "xfs_types.h"
a844f451 21#include "xfs_bit.h"
1da177e4
LT
22#include "xfs_log.h"
23#include "xfs_trans.h"
1da177e4 24#include "xfs_sb.h"
da353b0d 25#include "xfs_ag.h"
1da177e4 26#include "xfs_mount.h"
a844f451 27#include "xfs_buf_item.h"
1da177e4 28#include "xfs_trans_priv.h"
1da177e4 29#include "xfs_error.h"
0b1b213f 30#include "xfs_trace.h"
1da177e4
LT
31
32
33kmem_zone_t *xfs_buf_item_zone;
34
7bfa31d8
CH
35static inline struct xfs_buf_log_item *BUF_ITEM(struct xfs_log_item *lip)
36{
37 return container_of(lip, struct xfs_buf_log_item, bli_item);
38}
39
40
1da177e4
LT
41#ifdef XFS_TRANS_DEBUG
42/*
43 * This function uses an alternate strategy for tracking the bytes
44 * that the user requests to be logged. This can then be used
45 * in conjunction with the bli_orig array in the buf log item to
46 * catch bugs in our callers' code.
47 *
48 * We also double check the bits set in xfs_buf_item_log using a
49 * simple algorithm to check that every byte is accounted for.
50 */
51STATIC void
52xfs_buf_item_log_debug(
53 xfs_buf_log_item_t *bip,
54 uint first,
55 uint last)
56{
57 uint x;
58 uint byte;
59 uint nbytes;
60 uint chunk_num;
61 uint word_num;
62 uint bit_num;
63 uint bit_set;
64 uint *wordp;
65
66 ASSERT(bip->bli_logged != NULL);
67 byte = first;
68 nbytes = last - first + 1;
69 bfset(bip->bli_logged, first, nbytes);
70 for (x = 0; x < nbytes; x++) {
c1155410 71 chunk_num = byte >> XFS_BLF_SHIFT;
1da177e4
LT
72 word_num = chunk_num >> BIT_TO_WORD_SHIFT;
73 bit_num = chunk_num & (NBWORD - 1);
0f22f9d0 74 wordp = &(bip->__bli_format.blf_data_map[word_num]);
1da177e4
LT
75 bit_set = *wordp & (1 << bit_num);
76 ASSERT(bit_set);
77 byte++;
78 }
79}
80
81/*
82 * This function is called when we flush something into a buffer without
83 * logging it. This happens for things like inodes which are logged
84 * separately from the buffer.
85 */
86void
87xfs_buf_item_flush_log_debug(
88 xfs_buf_t *bp,
89 uint first,
90 uint last)
91{
adadbeef 92 xfs_buf_log_item_t *bip = bp->b_fspriv;
1da177e4
LT
93 uint nbytes;
94
adadbeef 95 if (bip == NULL || (bip->bli_item.li_type != XFS_LI_BUF))
1da177e4 96 return;
1da177e4
LT
97
98 ASSERT(bip->bli_logged != NULL);
99 nbytes = last - first + 1;
100 bfset(bip->bli_logged, first, nbytes);
101}
102
103/*
c41564b5 104 * This function is called to verify that our callers have logged
1da177e4
LT
105 * all the bytes that they changed.
106 *
107 * It does this by comparing the original copy of the buffer stored in
108 * the buf log item's bli_orig array to the current copy of the buffer
c41564b5 109 * and ensuring that all bytes which mismatch are set in the bli_logged
1da177e4
LT
110 * array of the buf log item.
111 */
112STATIC void
113xfs_buf_item_log_check(
114 xfs_buf_log_item_t *bip)
115{
116 char *orig;
117 char *buffer;
118 int x;
119 xfs_buf_t *bp;
120
121 ASSERT(bip->bli_orig != NULL);
122 ASSERT(bip->bli_logged != NULL);
123
124 bp = bip->bli_buf;
aa0e8833 125 ASSERT(bp->b_length > 0);
62926044 126 ASSERT(bp->b_addr != NULL);
1da177e4 127 orig = bip->bli_orig;
62926044 128 buffer = bp->b_addr;
aa0e8833 129 for (x = 0; x < BBTOB(bp->b_length); x++) {
0b932ccc
DC
130 if (orig[x] != buffer[x] && !btst(bip->bli_logged, x)) {
131 xfs_emerg(bp->b_mount,
132 "%s: bip %x buffer %x orig %x index %d",
133 __func__, bip, bp, orig, x);
134 ASSERT(0);
135 }
1da177e4
LT
136 }
137}
138#else
139#define xfs_buf_item_log_debug(x,y,z)
140#define xfs_buf_item_log_check(x)
141#endif
142
c90821a2 143STATIC void xfs_buf_do_callbacks(struct xfs_buf *bp);
1da177e4
LT
144
145/*
146 * This returns the number of log iovecs needed to log the
147 * given buf log item.
148 *
149 * It calculates this as 1 iovec for the buf log format structure
150 * and 1 for each stretch of non-contiguous chunks to be logged.
151 * Contiguous chunks are logged in a single iovec.
152 *
153 * If the XFS_BLI_STALE flag has been set, then log nothing.
154 */
ba0f32d4 155STATIC uint
372cc85e
DC
156xfs_buf_item_size_segment(
157 struct xfs_buf_log_item *bip,
158 struct xfs_buf_log_format *blfp)
1da177e4 159{
7bfa31d8
CH
160 struct xfs_buf *bp = bip->bli_buf;
161 uint nvecs;
162 int next_bit;
163 int last_bit;
1da177e4 164
372cc85e
DC
165 last_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0);
166 if (last_bit == -1)
167 return 0;
168
169 /*
170 * initial count for a dirty buffer is 2 vectors - the format structure
171 * and the first dirty region.
172 */
173 nvecs = 2;
1da177e4 174
1da177e4
LT
175 while (last_bit != -1) {
176 /*
177 * This takes the bit number to start looking from and
178 * returns the next set bit from there. It returns -1
179 * if there are no more bits set or the start bit is
180 * beyond the end of the bitmap.
181 */
372cc85e
DC
182 next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size,
183 last_bit + 1);
1da177e4
LT
184 /*
185 * If we run out of bits, leave the loop,
186 * else if we find a new set of bits bump the number of vecs,
187 * else keep scanning the current set of bits.
188 */
189 if (next_bit == -1) {
372cc85e 190 break;
1da177e4
LT
191 } else if (next_bit != last_bit + 1) {
192 last_bit = next_bit;
193 nvecs++;
c1155410
DC
194 } else if (xfs_buf_offset(bp, next_bit * XFS_BLF_CHUNK) !=
195 (xfs_buf_offset(bp, last_bit * XFS_BLF_CHUNK) +
196 XFS_BLF_CHUNK)) {
1da177e4
LT
197 last_bit = next_bit;
198 nvecs++;
199 } else {
200 last_bit++;
201 }
202 }
203
1da177e4
LT
204 return nvecs;
205}
206
207/*
372cc85e
DC
208 * This returns the number of log iovecs needed to log the given buf log item.
209 *
210 * It calculates this as 1 iovec for the buf log format structure and 1 for each
211 * stretch of non-contiguous chunks to be logged. Contiguous chunks are logged
212 * in a single iovec.
213 *
214 * Discontiguous buffers need a format structure per region that that is being
215 * logged. This makes the changes in the buffer appear to log recovery as though
216 * they came from separate buffers, just like would occur if multiple buffers
217 * were used instead of a single discontiguous buffer. This enables
218 * discontiguous buffers to be in-memory constructs, completely transparent to
219 * what ends up on disk.
220 *
221 * If the XFS_BLI_STALE flag has been set, then log nothing but the buf log
222 * format structures.
1da177e4 223 */
372cc85e
DC
224STATIC uint
225xfs_buf_item_size(
226 struct xfs_log_item *lip)
1da177e4 227{
7bfa31d8 228 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
372cc85e
DC
229 uint nvecs;
230 int i;
231
232 ASSERT(atomic_read(&bip->bli_refcount) > 0);
233 if (bip->bli_flags & XFS_BLI_STALE) {
234 /*
235 * The buffer is stale, so all we need to log
236 * is the buf log format structure with the
237 * cancel flag in it.
238 */
239 trace_xfs_buf_item_size_stale(bip);
0f22f9d0 240 ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
372cc85e
DC
241 return bip->bli_format_count;
242 }
243
244 ASSERT(bip->bli_flags & XFS_BLI_LOGGED);
245
246 /*
247 * the vector count is based on the number of buffer vectors we have
248 * dirty bits in. This will only be greater than one when we have a
249 * compound buffer with more than one segment dirty. Hence for compound
250 * buffers we need to track which segment the dirty bits correspond to,
251 * and when we move from one segment to the next increment the vector
252 * count for the extra buf log format structure that will need to be
253 * written.
254 */
255 nvecs = 0;
256 for (i = 0; i < bip->bli_format_count; i++) {
257 nvecs += xfs_buf_item_size_segment(bip, &bip->bli_formats[i]);
258 }
259
260 trace_xfs_buf_item_size(bip);
261 return nvecs;
262}
263
264static struct xfs_log_iovec *
265xfs_buf_item_format_segment(
266 struct xfs_buf_log_item *bip,
267 struct xfs_log_iovec *vecp,
268 uint offset,
269 struct xfs_buf_log_format *blfp)
270{
7bfa31d8 271 struct xfs_buf *bp = bip->bli_buf;
1da177e4
LT
272 uint base_size;
273 uint nvecs;
1da177e4
LT
274 int first_bit;
275 int last_bit;
276 int next_bit;
277 uint nbits;
278 uint buffer_offset;
279
372cc85e 280 /* copy the flags across from the base format item */
0f22f9d0 281 blfp->blf_flags = bip->__bli_format.blf_flags;
1da177e4
LT
282
283 /*
77c1a08f
DC
284 * Base size is the actual size of the ondisk structure - it reflects
285 * the actual size of the dirty bitmap rather than the size of the in
286 * memory structure.
1da177e4 287 */
77c1a08f 288 base_size = offsetof(struct xfs_buf_log_format, blf_data_map) +
372cc85e 289 (blfp->blf_map_size * sizeof(blfp->blf_data_map[0]));
2d0e9df5
MT
290
291 nvecs = 0;
292 first_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0);
293 if (!(bip->bli_flags & XFS_BLI_STALE) && first_bit == -1) {
294 /*
295 * If the map is not be dirty in the transaction, mark
296 * the size as zero and do not advance the vector pointer.
297 */
298 goto out;
299 }
300
372cc85e 301 vecp->i_addr = blfp;
1da177e4 302 vecp->i_len = base_size;
4139b3b3 303 vecp->i_type = XLOG_REG_TYPE_BFORMAT;
1da177e4
LT
304 vecp++;
305 nvecs = 1;
306
307 if (bip->bli_flags & XFS_BLI_STALE) {
308 /*
309 * The buffer is stale, so all we need to log
310 * is the buf log format structure with the
311 * cancel flag in it.
312 */
0b1b213f 313 trace_xfs_buf_item_format_stale(bip);
372cc85e 314 ASSERT(blfp->blf_flags & XFS_BLF_CANCEL);
2d0e9df5 315 goto out;
1da177e4
LT
316 }
317
318 /*
319 * Fill in an iovec for each set of contiguous chunks.
320 */
2d0e9df5 321
1da177e4
LT
322 last_bit = first_bit;
323 nbits = 1;
324 for (;;) {
325 /*
326 * This takes the bit number to start looking from and
327 * returns the next set bit from there. It returns -1
328 * if there are no more bits set or the start bit is
329 * beyond the end of the bitmap.
330 */
372cc85e
DC
331 next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size,
332 (uint)last_bit + 1);
1da177e4
LT
333 /*
334 * If we run out of bits fill in the last iovec and get
335 * out of the loop.
336 * Else if we start a new set of bits then fill in the
337 * iovec for the series we were looking at and start
338 * counting the bits in the new one.
339 * Else we're still in the same set of bits so just
340 * keep counting and scanning.
341 */
342 if (next_bit == -1) {
372cc85e 343 buffer_offset = offset + first_bit * XFS_BLF_CHUNK;
1da177e4 344 vecp->i_addr = xfs_buf_offset(bp, buffer_offset);
c1155410 345 vecp->i_len = nbits * XFS_BLF_CHUNK;
4139b3b3 346 vecp->i_type = XLOG_REG_TYPE_BCHUNK;
1da177e4
LT
347 nvecs++;
348 break;
349 } else if (next_bit != last_bit + 1) {
372cc85e 350 buffer_offset = offset + first_bit * XFS_BLF_CHUNK;
1da177e4 351 vecp->i_addr = xfs_buf_offset(bp, buffer_offset);
c1155410 352 vecp->i_len = nbits * XFS_BLF_CHUNK;
4139b3b3 353 vecp->i_type = XLOG_REG_TYPE_BCHUNK;
1da177e4
LT
354 nvecs++;
355 vecp++;
356 first_bit = next_bit;
357 last_bit = next_bit;
358 nbits = 1;
372cc85e
DC
359 } else if (xfs_buf_offset(bp, offset +
360 (next_bit << XFS_BLF_SHIFT)) !=
361 (xfs_buf_offset(bp, offset +
362 (last_bit << XFS_BLF_SHIFT)) +
c1155410 363 XFS_BLF_CHUNK)) {
372cc85e 364 buffer_offset = offset + first_bit * XFS_BLF_CHUNK;
1da177e4 365 vecp->i_addr = xfs_buf_offset(bp, buffer_offset);
c1155410 366 vecp->i_len = nbits * XFS_BLF_CHUNK;
4139b3b3 367 vecp->i_type = XLOG_REG_TYPE_BCHUNK;
372cc85e
DC
368/*
369 * You would think we need to bump the nvecs here too, but we do not
1da177e4
LT
370 * this number is used by recovery, and it gets confused by the boundary
371 * split here
372 * nvecs++;
373 */
374 vecp++;
375 first_bit = next_bit;
376 last_bit = next_bit;
377 nbits = 1;
378 } else {
379 last_bit++;
380 nbits++;
381 }
382 }
2d0e9df5
MT
383out:
384 blfp->blf_size = nvecs;
372cc85e
DC
385 return vecp;
386}
387
388/*
389 * This is called to fill in the vector of log iovecs for the
390 * given log buf item. It fills the first entry with a buf log
391 * format structure, and the rest point to contiguous chunks
392 * within the buffer.
393 */
394STATIC void
395xfs_buf_item_format(
396 struct xfs_log_item *lip,
397 struct xfs_log_iovec *vecp)
398{
399 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
400 struct xfs_buf *bp = bip->bli_buf;
401 uint offset = 0;
402 int i;
403
404 ASSERT(atomic_read(&bip->bli_refcount) > 0);
405 ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
406 (bip->bli_flags & XFS_BLI_STALE));
407
408 /*
409 * If it is an inode buffer, transfer the in-memory state to the
410 * format flags and clear the in-memory state. We do not transfer
411 * this state if the inode buffer allocation has not yet been committed
412 * to the log as setting the XFS_BLI_INODE_BUF flag will prevent
413 * correct replay of the inode allocation.
414 */
415 if (bip->bli_flags & XFS_BLI_INODE_BUF) {
416 if (!((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) &&
417 xfs_log_item_in_current_chkpt(lip)))
0f22f9d0 418 bip->__bli_format.blf_flags |= XFS_BLF_INODE_BUF;
372cc85e
DC
419 bip->bli_flags &= ~XFS_BLI_INODE_BUF;
420 }
421
422 for (i = 0; i < bip->bli_format_count; i++) {
423 vecp = xfs_buf_item_format_segment(bip, vecp, offset,
424 &bip->bli_formats[i]);
425 offset += bp->b_maps[i].bm_len;
426 }
1da177e4
LT
427
428 /*
429 * Check to make sure everything is consistent.
430 */
0b1b213f 431 trace_xfs_buf_item_format(bip);
1da177e4
LT
432 xfs_buf_item_log_check(bip);
433}
434
435/*
64fc35de 436 * This is called to pin the buffer associated with the buf log item in memory
4d16e924 437 * so it cannot be written out.
64fc35de
DC
438 *
439 * We also always take a reference to the buffer log item here so that the bli
440 * is held while the item is pinned in memory. This means that we can
441 * unconditionally drop the reference count a transaction holds when the
442 * transaction is completed.
1da177e4 443 */
ba0f32d4 444STATIC void
1da177e4 445xfs_buf_item_pin(
7bfa31d8 446 struct xfs_log_item *lip)
1da177e4 447{
7bfa31d8 448 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
1da177e4 449
1da177e4
LT
450 ASSERT(atomic_read(&bip->bli_refcount) > 0);
451 ASSERT((bip->bli_flags & XFS_BLI_LOGGED) ||
452 (bip->bli_flags & XFS_BLI_STALE));
7bfa31d8 453
0b1b213f 454 trace_xfs_buf_item_pin(bip);
4d16e924
CH
455
456 atomic_inc(&bip->bli_refcount);
457 atomic_inc(&bip->bli_buf->b_pin_count);
1da177e4
LT
458}
459
1da177e4
LT
460/*
461 * This is called to unpin the buffer associated with the buf log
462 * item which was previously pinned with a call to xfs_buf_item_pin().
1da177e4
LT
463 *
464 * Also drop the reference to the buf item for the current transaction.
465 * If the XFS_BLI_STALE flag is set and we are the last reference,
466 * then free up the buf log item and unlock the buffer.
9412e318
CH
467 *
468 * If the remove flag is set we are called from uncommit in the
469 * forced-shutdown path. If that is true and the reference count on
470 * the log item is going to drop to zero we need to free the item's
471 * descriptor in the transaction.
1da177e4 472 */
ba0f32d4 473STATIC void
1da177e4 474xfs_buf_item_unpin(
7bfa31d8 475 struct xfs_log_item *lip,
9412e318 476 int remove)
1da177e4 477{
7bfa31d8 478 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
9412e318 479 xfs_buf_t *bp = bip->bli_buf;
7bfa31d8 480 struct xfs_ail *ailp = lip->li_ailp;
8e123850 481 int stale = bip->bli_flags & XFS_BLI_STALE;
7bfa31d8 482 int freed;
1da177e4 483
adadbeef 484 ASSERT(bp->b_fspriv == bip);
1da177e4 485 ASSERT(atomic_read(&bip->bli_refcount) > 0);
9412e318 486
0b1b213f 487 trace_xfs_buf_item_unpin(bip);
1da177e4
LT
488
489 freed = atomic_dec_and_test(&bip->bli_refcount);
4d16e924
CH
490
491 if (atomic_dec_and_test(&bp->b_pin_count))
492 wake_up_all(&bp->b_waiters);
7bfa31d8 493
1da177e4
LT
494 if (freed && stale) {
495 ASSERT(bip->bli_flags & XFS_BLI_STALE);
0c842ad4 496 ASSERT(xfs_buf_islocked(bp));
1da177e4 497 ASSERT(XFS_BUF_ISSTALE(bp));
0f22f9d0 498 ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
9412e318 499
0b1b213f
CH
500 trace_xfs_buf_item_unpin_stale(bip);
501
9412e318
CH
502 if (remove) {
503 /*
e34a314c
DC
504 * If we are in a transaction context, we have to
505 * remove the log item from the transaction as we are
506 * about to release our reference to the buffer. If we
507 * don't, the unlock that occurs later in
508 * xfs_trans_uncommit() will try to reference the
9412e318
CH
509 * buffer which we no longer have a hold on.
510 */
e34a314c
DC
511 if (lip->li_desc)
512 xfs_trans_del_item(lip);
9412e318
CH
513
514 /*
515 * Since the transaction no longer refers to the buffer,
516 * the buffer should no longer refer to the transaction.
517 */
bf9d9013 518 bp->b_transp = NULL;
9412e318
CH
519 }
520
1da177e4
LT
521 /*
522 * If we get called here because of an IO error, we may
783a2f65 523 * or may not have the item on the AIL. xfs_trans_ail_delete()
1da177e4 524 * will take care of that situation.
783a2f65 525 * xfs_trans_ail_delete() drops the AIL lock.
1da177e4
LT
526 */
527 if (bip->bli_flags & XFS_BLI_STALE_INODE) {
c90821a2 528 xfs_buf_do_callbacks(bp);
adadbeef 529 bp->b_fspriv = NULL;
cb669ca5 530 bp->b_iodone = NULL;
1da177e4 531 } else {
783a2f65 532 spin_lock(&ailp->xa_lock);
04913fdd 533 xfs_trans_ail_delete(ailp, lip, SHUTDOWN_LOG_IO_ERROR);
1da177e4 534 xfs_buf_item_relse(bp);
adadbeef 535 ASSERT(bp->b_fspriv == NULL);
1da177e4
LT
536 }
537 xfs_buf_relse(bp);
960c60af 538 } else if (freed && remove) {
03b1293e
DC
539 /*
540 * There are currently two references to the buffer - the active
541 * LRU reference and the buf log item. What we are about to do
542 * here - simulate a failed IO completion - requires 3
543 * references.
544 *
545 * The LRU reference is removed by the xfs_buf_stale() call. The
546 * buf item reference is removed by the xfs_buf_iodone()
547 * callback that is run by xfs_buf_do_callbacks() during ioend
548 * processing (via the bp->b_iodone callback), and then finally
549 * the ioend processing will drop the IO reference if the buffer
550 * is marked XBF_ASYNC.
551 *
552 * Hence we need to take an additional reference here so that IO
553 * completion processing doesn't free the buffer prematurely.
554 */
960c60af 555 xfs_buf_lock(bp);
03b1293e
DC
556 xfs_buf_hold(bp);
557 bp->b_flags |= XBF_ASYNC;
960c60af
CH
558 xfs_buf_ioerror(bp, EIO);
559 XFS_BUF_UNDONE(bp);
560 xfs_buf_stale(bp);
561 xfs_buf_ioend(bp, 0);
1da177e4
LT
562 }
563}
564
ba0f32d4 565STATIC uint
43ff2122
CH
566xfs_buf_item_push(
567 struct xfs_log_item *lip,
568 struct list_head *buffer_list)
1da177e4 569{
7bfa31d8
CH
570 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
571 struct xfs_buf *bp = bip->bli_buf;
43ff2122 572 uint rval = XFS_ITEM_SUCCESS;
1da177e4 573
811e64c7 574 if (xfs_buf_ispinned(bp))
1da177e4 575 return XFS_ITEM_PINNED;
0c842ad4 576 if (!xfs_buf_trylock(bp))
1da177e4 577 return XFS_ITEM_LOCKED;
1da177e4 578
1da177e4 579 ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
43ff2122
CH
580
581 trace_xfs_buf_item_push(bip);
582
583 if (!xfs_buf_delwri_queue(bp, buffer_list))
584 rval = XFS_ITEM_FLUSHING;
585 xfs_buf_unlock(bp);
586 return rval;
1da177e4
LT
587}
588
589/*
64fc35de
DC
590 * Release the buffer associated with the buf log item. If there is no dirty
591 * logged data associated with the buffer recorded in the buf log item, then
592 * free the buf log item and remove the reference to it in the buffer.
1da177e4 593 *
64fc35de
DC
594 * This call ignores the recursion count. It is only called when the buffer
595 * should REALLY be unlocked, regardless of the recursion count.
1da177e4 596 *
64fc35de
DC
597 * We unconditionally drop the transaction's reference to the log item. If the
598 * item was logged, then another reference was taken when it was pinned, so we
599 * can safely drop the transaction reference now. This also allows us to avoid
600 * potential races with the unpin code freeing the bli by not referencing the
601 * bli after we've dropped the reference count.
602 *
603 * If the XFS_BLI_HOLD flag is set in the buf log item, then free the log item
604 * if necessary but do not unlock the buffer. This is for support of
605 * xfs_trans_bhold(). Make sure the XFS_BLI_HOLD field is cleared if we don't
606 * free the item.
1da177e4 607 */
ba0f32d4 608STATIC void
1da177e4 609xfs_buf_item_unlock(
7bfa31d8 610 struct xfs_log_item *lip)
1da177e4 611{
7bfa31d8
CH
612 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
613 struct xfs_buf *bp = bip->bli_buf;
91e4bac0 614 int aborted, clean, i;
7bfa31d8 615 uint hold;
1da177e4 616
64fc35de 617 /* Clear the buffer's association with this transaction. */
bf9d9013 618 bp->b_transp = NULL;
1da177e4
LT
619
620 /*
64fc35de
DC
621 * If this is a transaction abort, don't return early. Instead, allow
622 * the brelse to happen. Normally it would be done for stale
623 * (cancelled) buffers at unpin time, but we'll never go through the
624 * pin/unpin cycle if we abort inside commit.
1da177e4 625 */
7bfa31d8 626 aborted = (lip->li_flags & XFS_LI_ABORTED) != 0;
1da177e4
LT
627
628 /*
64fc35de
DC
629 * Before possibly freeing the buf item, determine if we should
630 * release the buffer at the end of this routine.
631 */
632 hold = bip->bli_flags & XFS_BLI_HOLD;
633
634 /* Clear the per transaction state. */
635 bip->bli_flags &= ~(XFS_BLI_LOGGED | XFS_BLI_HOLD);
636
637 /*
638 * If the buf item is marked stale, then don't do anything. We'll
639 * unlock the buffer and free the buf item when the buffer is unpinned
640 * for the last time.
1da177e4
LT
641 */
642 if (bip->bli_flags & XFS_BLI_STALE) {
0b1b213f 643 trace_xfs_buf_item_unlock_stale(bip);
0f22f9d0 644 ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
64fc35de
DC
645 if (!aborted) {
646 atomic_dec(&bip->bli_refcount);
1da177e4 647 return;
64fc35de 648 }
1da177e4
LT
649 }
650
0b1b213f 651 trace_xfs_buf_item_unlock(bip);
1da177e4
LT
652
653 /*
64fc35de 654 * If the buf item isn't tracking any data, free it, otherwise drop the
9f87832a
DC
655 * reference we hold to it. If we are aborting the transaction, this may
656 * be the only reference to the buf item, so we free it anyway
657 * regardless of whether it is dirty or not. A dirty abort implies a
658 * shutdown, anyway.
1da177e4 659 */
91e4bac0
MT
660 clean = 1;
661 for (i = 0; i < bip->bli_format_count; i++) {
662 if (!xfs_bitmap_empty(bip->bli_formats[i].blf_data_map,
663 bip->bli_formats[i].blf_map_size)) {
664 clean = 0;
665 break;
666 }
667 }
668 if (clean)
1da177e4 669 xfs_buf_item_relse(bp);
9f87832a
DC
670 else if (aborted) {
671 if (atomic_dec_and_test(&bip->bli_refcount)) {
672 ASSERT(XFS_FORCED_SHUTDOWN(lip->li_mountp));
673 xfs_buf_item_relse(bp);
674 }
675 } else
64fc35de 676 atomic_dec(&bip->bli_refcount);
1da177e4 677
64fc35de 678 if (!hold)
1da177e4 679 xfs_buf_relse(bp);
1da177e4
LT
680}
681
682/*
683 * This is called to find out where the oldest active copy of the
684 * buf log item in the on disk log resides now that the last log
685 * write of it completed at the given lsn.
686 * We always re-log all the dirty data in a buffer, so usually the
687 * latest copy in the on disk log is the only one that matters. For
688 * those cases we simply return the given lsn.
689 *
690 * The one exception to this is for buffers full of newly allocated
691 * inodes. These buffers are only relogged with the XFS_BLI_INODE_BUF
692 * flag set, indicating that only the di_next_unlinked fields from the
693 * inodes in the buffers will be replayed during recovery. If the
694 * original newly allocated inode images have not yet been flushed
695 * when the buffer is so relogged, then we need to make sure that we
696 * keep the old images in the 'active' portion of the log. We do this
697 * by returning the original lsn of that transaction here rather than
698 * the current one.
699 */
ba0f32d4 700STATIC xfs_lsn_t
1da177e4 701xfs_buf_item_committed(
7bfa31d8 702 struct xfs_log_item *lip,
1da177e4
LT
703 xfs_lsn_t lsn)
704{
7bfa31d8
CH
705 struct xfs_buf_log_item *bip = BUF_ITEM(lip);
706
0b1b213f
CH
707 trace_xfs_buf_item_committed(bip);
708
7bfa31d8
CH
709 if ((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) && lip->li_lsn != 0)
710 return lip->li_lsn;
711 return lsn;
1da177e4
LT
712}
713
ba0f32d4 714STATIC void
7bfa31d8
CH
715xfs_buf_item_committing(
716 struct xfs_log_item *lip,
717 xfs_lsn_t commit_lsn)
1da177e4
LT
718{
719}
720
721/*
722 * This is the ops vector shared by all buf log items.
723 */
272e42b2 724static const struct xfs_item_ops xfs_buf_item_ops = {
7bfa31d8
CH
725 .iop_size = xfs_buf_item_size,
726 .iop_format = xfs_buf_item_format,
727 .iop_pin = xfs_buf_item_pin,
728 .iop_unpin = xfs_buf_item_unpin,
7bfa31d8
CH
729 .iop_unlock = xfs_buf_item_unlock,
730 .iop_committed = xfs_buf_item_committed,
731 .iop_push = xfs_buf_item_push,
7bfa31d8 732 .iop_committing = xfs_buf_item_committing
1da177e4
LT
733};
734
372cc85e
DC
735STATIC int
736xfs_buf_item_get_format(
737 struct xfs_buf_log_item *bip,
738 int count)
739{
740 ASSERT(bip->bli_formats == NULL);
741 bip->bli_format_count = count;
742
743 if (count == 1) {
0f22f9d0 744 bip->bli_formats = &bip->__bli_format;
372cc85e
DC
745 return 0;
746 }
747
748 bip->bli_formats = kmem_zalloc(count * sizeof(struct xfs_buf_log_format),
749 KM_SLEEP);
750 if (!bip->bli_formats)
751 return ENOMEM;
752 return 0;
753}
754
755STATIC void
756xfs_buf_item_free_format(
757 struct xfs_buf_log_item *bip)
758{
0f22f9d0 759 if (bip->bli_formats != &bip->__bli_format) {
372cc85e
DC
760 kmem_free(bip->bli_formats);
761 bip->bli_formats = NULL;
762 }
763}
1da177e4
LT
764
765/*
766 * Allocate a new buf log item to go with the given buffer.
767 * Set the buffer's b_fsprivate field to point to the new
768 * buf log item. If there are other item's attached to the
769 * buffer (see xfs_buf_attach_iodone() below), then put the
770 * buf log item at the front.
771 */
772void
773xfs_buf_item_init(
774 xfs_buf_t *bp,
775 xfs_mount_t *mp)
776{
adadbeef 777 xfs_log_item_t *lip = bp->b_fspriv;
1da177e4
LT
778 xfs_buf_log_item_t *bip;
779 int chunks;
780 int map_size;
372cc85e
DC
781 int error;
782 int i;
1da177e4
LT
783
784 /*
785 * Check to see if there is already a buf log item for
786 * this buffer. If there is, it is guaranteed to be
787 * the first. If we do already have one, there is
788 * nothing to do here so return.
789 */
ebad861b 790 ASSERT(bp->b_target->bt_mount == mp);
adadbeef
CH
791 if (lip != NULL && lip->li_type == XFS_LI_BUF)
792 return;
1da177e4 793
372cc85e 794 bip = kmem_zone_zalloc(xfs_buf_item_zone, KM_SLEEP);
43f5efc5 795 xfs_log_item_init(mp, &bip->bli_item, XFS_LI_BUF, &xfs_buf_item_ops);
1da177e4 796 bip->bli_buf = bp;
e1f5dbd7 797 xfs_buf_hold(bp);
372cc85e
DC
798
799 /*
800 * chunks is the number of XFS_BLF_CHUNK size pieces the buffer
801 * can be divided into. Make sure not to truncate any pieces.
802 * map_size is the size of the bitmap needed to describe the
803 * chunks of the buffer.
804 *
805 * Discontiguous buffer support follows the layout of the underlying
806 * buffer. This makes the implementation as simple as possible.
807 */
808 error = xfs_buf_item_get_format(bip, bp->b_map_count);
809 ASSERT(error == 0);
810
811 for (i = 0; i < bip->bli_format_count; i++) {
812 chunks = DIV_ROUND_UP(BBTOB(bp->b_maps[i].bm_len),
813 XFS_BLF_CHUNK);
814 map_size = DIV_ROUND_UP(chunks, NBWORD);
815
816 bip->bli_formats[i].blf_type = XFS_LI_BUF;
817 bip->bli_formats[i].blf_blkno = bp->b_maps[i].bm_bn;
818 bip->bli_formats[i].blf_len = bp->b_maps[i].bm_len;
819 bip->bli_formats[i].blf_map_size = map_size;
820 }
1da177e4
LT
821
822#ifdef XFS_TRANS_DEBUG
823 /*
824 * Allocate the arrays for tracking what needs to be logged
825 * and what our callers request to be logged. bli_orig
826 * holds a copy of the original, clean buffer for comparison
827 * against, and bli_logged keeps a 1 bit flag per byte in
828 * the buffer to indicate which bytes the callers have asked
829 * to have logged.
830 */
aa0e8833
DC
831 bip->bli_orig = kmem_alloc(BBTOB(bp->b_length), KM_SLEEP);
832 memcpy(bip->bli_orig, bp->b_addr, BBTOB(bp->b_length));
833 bip->bli_logged = kmem_zalloc(BBTOB(bp->b_length) / NBBY, KM_SLEEP);
1da177e4
LT
834#endif
835
836 /*
837 * Put the buf item into the list of items attached to the
838 * buffer at the front.
839 */
adadbeef
CH
840 if (bp->b_fspriv)
841 bip->bli_item.li_bio_list = bp->b_fspriv;
842 bp->b_fspriv = bip;
1da177e4
LT
843}
844
845
846/*
847 * Mark bytes first through last inclusive as dirty in the buf
848 * item's bitmap.
849 */
850void
372cc85e
DC
851xfs_buf_item_log_segment(
852 struct xfs_buf_log_item *bip,
1da177e4 853 uint first,
372cc85e
DC
854 uint last,
855 uint *map)
1da177e4
LT
856{
857 uint first_bit;
858 uint last_bit;
859 uint bits_to_set;
860 uint bits_set;
861 uint word_num;
862 uint *wordp;
863 uint bit;
864 uint end_bit;
865 uint mask;
866
1da177e4
LT
867 /*
868 * Convert byte offsets to bit numbers.
869 */
c1155410
DC
870 first_bit = first >> XFS_BLF_SHIFT;
871 last_bit = last >> XFS_BLF_SHIFT;
1da177e4
LT
872
873 /*
874 * Calculate the total number of bits to be set.
875 */
876 bits_to_set = last_bit - first_bit + 1;
877
878 /*
879 * Get a pointer to the first word in the bitmap
880 * to set a bit in.
881 */
882 word_num = first_bit >> BIT_TO_WORD_SHIFT;
372cc85e 883 wordp = &map[word_num];
1da177e4
LT
884
885 /*
886 * Calculate the starting bit in the first word.
887 */
888 bit = first_bit & (uint)(NBWORD - 1);
889
890 /*
891 * First set any bits in the first word of our range.
892 * If it starts at bit 0 of the word, it will be
893 * set below rather than here. That is what the variable
894 * bit tells us. The variable bits_set tracks the number
895 * of bits that have been set so far. End_bit is the number
896 * of the last bit to be set in this word plus one.
897 */
898 if (bit) {
899 end_bit = MIN(bit + bits_to_set, (uint)NBWORD);
900 mask = ((1 << (end_bit - bit)) - 1) << bit;
901 *wordp |= mask;
902 wordp++;
903 bits_set = end_bit - bit;
904 } else {
905 bits_set = 0;
906 }
907
908 /*
909 * Now set bits a whole word at a time that are between
910 * first_bit and last_bit.
911 */
912 while ((bits_to_set - bits_set) >= NBWORD) {
913 *wordp |= 0xffffffff;
914 bits_set += NBWORD;
915 wordp++;
916 }
917
918 /*
919 * Finally, set any bits left to be set in one last partial word.
920 */
921 end_bit = bits_to_set - bits_set;
922 if (end_bit) {
923 mask = (1 << end_bit) - 1;
924 *wordp |= mask;
925 }
926
927 xfs_buf_item_log_debug(bip, first, last);
928}
929
372cc85e
DC
930/*
931 * Mark bytes first through last inclusive as dirty in the buf
932 * item's bitmap.
933 */
934void
935xfs_buf_item_log(
936 xfs_buf_log_item_t *bip,
937 uint first,
938 uint last)
939{
940 int i;
941 uint start;
942 uint end;
943 struct xfs_buf *bp = bip->bli_buf;
944
945 /*
946 * Mark the item as having some dirty data for
947 * quick reference in xfs_buf_item_dirty.
948 */
949 bip->bli_flags |= XFS_BLI_DIRTY;
950
951 /*
952 * walk each buffer segment and mark them dirty appropriately.
953 */
954 start = 0;
955 for (i = 0; i < bip->bli_format_count; i++) {
956 if (start > last)
957 break;
958 end = start + BBTOB(bp->b_maps[i].bm_len);
959 if (first > end) {
960 start += BBTOB(bp->b_maps[i].bm_len);
961 continue;
962 }
963 if (first < start)
964 first = start;
965 if (end > last)
966 end = last;
967
968 xfs_buf_item_log_segment(bip, first, end,
969 &bip->bli_formats[i].blf_data_map[0]);
970
971 start += bp->b_maps[i].bm_len;
972 }
973}
974
1da177e4
LT
975
976/*
977 * Return 1 if the buffer has some data that has been logged (at any
978 * point, not just the current transaction) and 0 if not.
979 */
980uint
981xfs_buf_item_dirty(
982 xfs_buf_log_item_t *bip)
983{
984 return (bip->bli_flags & XFS_BLI_DIRTY);
985}
986
e1f5dbd7
LM
987STATIC void
988xfs_buf_item_free(
989 xfs_buf_log_item_t *bip)
990{
991#ifdef XFS_TRANS_DEBUG
992 kmem_free(bip->bli_orig);
993 kmem_free(bip->bli_logged);
994#endif /* XFS_TRANS_DEBUG */
995
372cc85e 996 xfs_buf_item_free_format(bip);
e1f5dbd7
LM
997 kmem_zone_free(xfs_buf_item_zone, bip);
998}
999
1da177e4
LT
1000/*
1001 * This is called when the buf log item is no longer needed. It should
1002 * free the buf log item associated with the given buffer and clear
1003 * the buffer's pointer to the buf log item. If there are no more
1004 * items in the list, clear the b_iodone field of the buffer (see
1005 * xfs_buf_attach_iodone() below).
1006 */
1007void
1008xfs_buf_item_relse(
1009 xfs_buf_t *bp)
1010{
1011 xfs_buf_log_item_t *bip;
1012
0b1b213f
CH
1013 trace_xfs_buf_item_relse(bp, _RET_IP_);
1014
adadbeef
CH
1015 bip = bp->b_fspriv;
1016 bp->b_fspriv = bip->bli_item.li_bio_list;
cb669ca5
CH
1017 if (bp->b_fspriv == NULL)
1018 bp->b_iodone = NULL;
adadbeef 1019
e1f5dbd7
LM
1020 xfs_buf_rele(bp);
1021 xfs_buf_item_free(bip);
1da177e4
LT
1022}
1023
1024
1025/*
1026 * Add the given log item with its callback to the list of callbacks
1027 * to be called when the buffer's I/O completes. If it is not set
1028 * already, set the buffer's b_iodone() routine to be
1029 * xfs_buf_iodone_callbacks() and link the log item into the list of
1030 * items rooted at b_fsprivate. Items are always added as the second
1031 * entry in the list if there is a first, because the buf item code
1032 * assumes that the buf log item is first.
1033 */
1034void
1035xfs_buf_attach_iodone(
1036 xfs_buf_t *bp,
1037 void (*cb)(xfs_buf_t *, xfs_log_item_t *),
1038 xfs_log_item_t *lip)
1039{
1040 xfs_log_item_t *head_lip;
1041
0c842ad4 1042 ASSERT(xfs_buf_islocked(bp));
1da177e4
LT
1043
1044 lip->li_cb = cb;
adadbeef
CH
1045 head_lip = bp->b_fspriv;
1046 if (head_lip) {
1da177e4
LT
1047 lip->li_bio_list = head_lip->li_bio_list;
1048 head_lip->li_bio_list = lip;
1049 } else {
adadbeef 1050 bp->b_fspriv = lip;
1da177e4
LT
1051 }
1052
cb669ca5
CH
1053 ASSERT(bp->b_iodone == NULL ||
1054 bp->b_iodone == xfs_buf_iodone_callbacks);
1055 bp->b_iodone = xfs_buf_iodone_callbacks;
1da177e4
LT
1056}
1057
c90821a2
DC
1058/*
1059 * We can have many callbacks on a buffer. Running the callbacks individually
1060 * can cause a lot of contention on the AIL lock, so we allow for a single
1061 * callback to be able to scan the remaining lip->li_bio_list for other items
1062 * of the same type and callback to be processed in the first call.
1063 *
1064 * As a result, the loop walking the callback list below will also modify the
1065 * list. it removes the first item from the list and then runs the callback.
1066 * The loop then restarts from the new head of the list. This allows the
1067 * callback to scan and modify the list attached to the buffer and we don't
1068 * have to care about maintaining a next item pointer.
1069 */
1da177e4
LT
1070STATIC void
1071xfs_buf_do_callbacks(
c90821a2 1072 struct xfs_buf *bp)
1da177e4 1073{
c90821a2 1074 struct xfs_log_item *lip;
1da177e4 1075
adadbeef
CH
1076 while ((lip = bp->b_fspriv) != NULL) {
1077 bp->b_fspriv = lip->li_bio_list;
1da177e4
LT
1078 ASSERT(lip->li_cb != NULL);
1079 /*
1080 * Clear the next pointer so we don't have any
1081 * confusion if the item is added to another buf.
1082 * Don't touch the log item after calling its
1083 * callback, because it could have freed itself.
1084 */
1085 lip->li_bio_list = NULL;
1086 lip->li_cb(bp, lip);
1da177e4
LT
1087 }
1088}
1089
1090/*
1091 * This is the iodone() function for buffers which have had callbacks
1092 * attached to them by xfs_buf_attach_iodone(). It should remove each
1093 * log item from the buffer's list and call the callback of each in turn.
1094 * When done, the buffer's fsprivate field is set to NULL and the buffer
1095 * is unlocked with a call to iodone().
1096 */
1097void
1098xfs_buf_iodone_callbacks(
bfc60177 1099 struct xfs_buf *bp)
1da177e4 1100{
bfc60177
CH
1101 struct xfs_log_item *lip = bp->b_fspriv;
1102 struct xfs_mount *mp = lip->li_mountp;
1103 static ulong lasttime;
1104 static xfs_buftarg_t *lasttarg;
1da177e4 1105
5a52c2a5 1106 if (likely(!xfs_buf_geterror(bp)))
bfc60177 1107 goto do_callbacks;
1da177e4 1108
bfc60177
CH
1109 /*
1110 * If we've already decided to shutdown the filesystem because of
1111 * I/O errors, there's no point in giving this a retry.
1112 */
1113 if (XFS_FORCED_SHUTDOWN(mp)) {
c867cb61 1114 xfs_buf_stale(bp);
c867cb61 1115 XFS_BUF_DONE(bp);
bfc60177
CH
1116 trace_xfs_buf_item_iodone(bp, _RET_IP_);
1117 goto do_callbacks;
1118 }
1da177e4 1119
49074c06 1120 if (bp->b_target != lasttarg ||
bfc60177
CH
1121 time_after(jiffies, (lasttime + 5*HZ))) {
1122 lasttime = jiffies;
b38505b0 1123 xfs_buf_ioerror_alert(bp, __func__);
bfc60177 1124 }
49074c06 1125 lasttarg = bp->b_target;
1da177e4 1126
bfc60177 1127 /*
25985edc 1128 * If the write was asynchronous then no one will be looking for the
bfc60177
CH
1129 * error. Clear the error state and write the buffer out again.
1130 *
43ff2122
CH
1131 * XXX: This helps against transient write errors, but we need to find
1132 * a way to shut the filesystem down if the writes keep failing.
1133 *
1134 * In practice we'll shut the filesystem down soon as non-transient
1135 * erorrs tend to affect the whole device and a failing log write
1136 * will make us give up. But we really ought to do better here.
bfc60177
CH
1137 */
1138 if (XFS_BUF_ISASYNC(bp)) {
43ff2122
CH
1139 ASSERT(bp->b_iodone != NULL);
1140
1141 trace_xfs_buf_item_iodone_async(bp, _RET_IP_);
1142
5a52c2a5 1143 xfs_buf_ioerror(bp, 0); /* errno of 0 unsets the flag */
bfc60177
CH
1144
1145 if (!XFS_BUF_ISSTALE(bp)) {
43ff2122 1146 bp->b_flags |= XBF_WRITE | XBF_ASYNC | XBF_DONE;
a2dcf5df 1147 xfs_buf_iorequest(bp);
43ff2122
CH
1148 } else {
1149 xfs_buf_relse(bp);
1da177e4 1150 }
43ff2122 1151
1da177e4
LT
1152 return;
1153 }
0b1b213f 1154
bfc60177
CH
1155 /*
1156 * If the write of the buffer was synchronous, we want to make
1157 * sure to return the error to the caller of xfs_bwrite().
1158 */
c867cb61 1159 xfs_buf_stale(bp);
1da177e4 1160 XFS_BUF_DONE(bp);
0b1b213f
CH
1161
1162 trace_xfs_buf_error_relse(bp, _RET_IP_);
1163
bfc60177 1164do_callbacks:
c90821a2 1165 xfs_buf_do_callbacks(bp);
adadbeef 1166 bp->b_fspriv = NULL;
cb669ca5 1167 bp->b_iodone = NULL;
bfc60177 1168 xfs_buf_ioend(bp, 0);
1da177e4
LT
1169}
1170
1da177e4
LT
1171/*
1172 * This is the iodone() function for buffers which have been
1173 * logged. It is called when they are eventually flushed out.
1174 * It should remove the buf item from the AIL, and free the buf item.
1175 * It is called by xfs_buf_iodone_callbacks() above which will take
1176 * care of cleaning up the buffer itself.
1177 */
1da177e4
LT
1178void
1179xfs_buf_iodone(
ca30b2a7
CH
1180 struct xfs_buf *bp,
1181 struct xfs_log_item *lip)
1da177e4 1182{
ca30b2a7 1183 struct xfs_ail *ailp = lip->li_ailp;
1da177e4 1184
ca30b2a7 1185 ASSERT(BUF_ITEM(lip)->bli_buf == bp);
1da177e4 1186
e1f5dbd7 1187 xfs_buf_rele(bp);
1da177e4
LT
1188
1189 /*
1190 * If we are forcibly shutting down, this may well be
1191 * off the AIL already. That's because we simulate the
1192 * log-committed callbacks to unpin these buffers. Or we may never
1193 * have put this item on AIL because of the transaction was
783a2f65 1194 * aborted forcibly. xfs_trans_ail_delete() takes care of these.
1da177e4
LT
1195 *
1196 * Either way, AIL is useless if we're forcing a shutdown.
1197 */
fc1829f3 1198 spin_lock(&ailp->xa_lock);
04913fdd 1199 xfs_trans_ail_delete(ailp, lip, SHUTDOWN_CORRUPT_INCORE);
ca30b2a7 1200 xfs_buf_item_free(BUF_ITEM(lip));
1da177e4 1201}