xfs: introduce xfs_rw_lock() helpers for locking the inode
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / xfs / linux-2.6 / xfs_file.c
CommitLineData
1da177e4 1/*
7b718769
NS
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
dda35b8f 19#include "xfs_fs.h"
a844f451 20#include "xfs_bit.h"
1da177e4 21#include "xfs_log.h"
a844f451 22#include "xfs_inum.h"
1da177e4 23#include "xfs_sb.h"
a844f451 24#include "xfs_ag.h"
1da177e4 25#include "xfs_trans.h"
1da177e4
LT
26#include "xfs_mount.h"
27#include "xfs_bmap_btree.h"
1da177e4 28#include "xfs_alloc.h"
1da177e4
LT
29#include "xfs_dinode.h"
30#include "xfs_inode.h"
fd3200be 31#include "xfs_inode_item.h"
dda35b8f 32#include "xfs_bmap.h"
1da177e4 33#include "xfs_error.h"
739bfb2a 34#include "xfs_vnodeops.h"
f999a5bf 35#include "xfs_da_btree.h"
ddcd856d 36#include "xfs_ioctl.h"
dda35b8f 37#include "xfs_trace.h"
1da177e4
LT
38
39#include <linux/dcache.h>
1da177e4 40
f0f37e2f 41static const struct vm_operations_struct xfs_file_vm_ops;
1da177e4 42
487f84f3
DC
43/*
44 * Locking primitives for read and write IO paths to ensure we consistently use
45 * and order the inode->i_mutex, ip->i_lock and ip->i_iolock.
46 */
47static inline void
48xfs_rw_ilock(
49 struct xfs_inode *ip,
50 int type)
51{
52 if (type & XFS_IOLOCK_EXCL)
53 mutex_lock(&VFS_I(ip)->i_mutex);
54 xfs_ilock(ip, type);
55}
56
57static inline void
58xfs_rw_iunlock(
59 struct xfs_inode *ip,
60 int type)
61{
62 xfs_iunlock(ip, type);
63 if (type & XFS_IOLOCK_EXCL)
64 mutex_unlock(&VFS_I(ip)->i_mutex);
65}
66
67static inline void
68xfs_rw_ilock_demote(
69 struct xfs_inode *ip,
70 int type)
71{
72 xfs_ilock_demote(ip, type);
73 if (type & XFS_IOLOCK_EXCL)
74 mutex_unlock(&VFS_I(ip)->i_mutex);
75}
76
dda35b8f
CH
77/*
78 * xfs_iozero
79 *
80 * xfs_iozero clears the specified range of buffer supplied,
81 * and marks all the affected blocks as valid and modified. If
82 * an affected block is not allocated, it will be allocated. If
83 * an affected block is not completely overwritten, and is not
84 * valid before the operation, it will be read from disk before
85 * being partially zeroed.
86 */
87STATIC int
88xfs_iozero(
89 struct xfs_inode *ip, /* inode */
90 loff_t pos, /* offset in file */
91 size_t count) /* size of data to zero */
92{
93 struct page *page;
94 struct address_space *mapping;
95 int status;
96
97 mapping = VFS_I(ip)->i_mapping;
98 do {
99 unsigned offset, bytes;
100 void *fsdata;
101
102 offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
103 bytes = PAGE_CACHE_SIZE - offset;
104 if (bytes > count)
105 bytes = count;
106
107 status = pagecache_write_begin(NULL, mapping, pos, bytes,
108 AOP_FLAG_UNINTERRUPTIBLE,
109 &page, &fsdata);
110 if (status)
111 break;
112
113 zero_user(page, offset, bytes);
114
115 status = pagecache_write_end(NULL, mapping, pos, bytes, bytes,
116 page, fsdata);
117 WARN_ON(status <= 0); /* can't return less than zero! */
118 pos += bytes;
119 count -= bytes;
120 status = 0;
121 } while (count);
122
123 return (-status);
124}
125
fd3200be
CH
126STATIC int
127xfs_file_fsync(
128 struct file *file,
fd3200be
CH
129 int datasync)
130{
7ea80859
CH
131 struct inode *inode = file->f_mapping->host;
132 struct xfs_inode *ip = XFS_I(inode);
fd3200be
CH
133 struct xfs_trans *tp;
134 int error = 0;
135 int log_flushed = 0;
136
cca28fb8 137 trace_xfs_file_fsync(ip);
fd3200be
CH
138
139 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
140 return -XFS_ERROR(EIO);
141
142 xfs_iflags_clear(ip, XFS_ITRUNCATED);
143
37bc5743
CH
144 xfs_ioend_wait(ip);
145
fd3200be
CH
146 /*
147 * We always need to make sure that the required inode state is safe on
148 * disk. The inode might be clean but we still might need to force the
149 * log because of committed transactions that haven't hit the disk yet.
150 * Likewise, there could be unflushed non-transactional changes to the
151 * inode core that have to go to disk and this requires us to issue
152 * a synchronous transaction to capture these changes correctly.
153 *
154 * This code relies on the assumption that if the i_update_core field
155 * of the inode is clear and the inode is unpinned then it is clean
156 * and no action is required.
157 */
158 xfs_ilock(ip, XFS_ILOCK_SHARED);
159
66d834ea
CH
160 /*
161 * First check if the VFS inode is marked dirty. All the dirtying
162 * of non-transactional updates no goes through mark_inode_dirty*,
163 * which allows us to distinguish beteeen pure timestamp updates
164 * and i_size updates which need to be caught for fdatasync.
165 * After that also theck for the dirty state in the XFS inode, which
166 * might gets cleared when the inode gets written out via the AIL
167 * or xfs_iflush_cluster.
168 */
7ea80859
CH
169 if (((inode->i_state & I_DIRTY_DATASYNC) ||
170 ((inode->i_state & I_DIRTY_SYNC) && !datasync)) &&
66d834ea 171 ip->i_update_core) {
fd3200be
CH
172 /*
173 * Kick off a transaction to log the inode core to get the
174 * updates. The sync transaction will also force the log.
175 */
176 xfs_iunlock(ip, XFS_ILOCK_SHARED);
177 tp = xfs_trans_alloc(ip->i_mount, XFS_TRANS_FSYNC_TS);
178 error = xfs_trans_reserve(tp, 0,
179 XFS_FSYNC_TS_LOG_RES(ip->i_mount), 0, 0, 0);
180 if (error) {
181 xfs_trans_cancel(tp, 0);
182 return -error;
183 }
184 xfs_ilock(ip, XFS_ILOCK_EXCL);
185
186 /*
187 * Note - it's possible that we might have pushed ourselves out
188 * of the way during trans_reserve which would flush the inode.
189 * But there's no guarantee that the inode buffer has actually
190 * gone out yet (it's delwri). Plus the buffer could be pinned
191 * anyway if it's part of an inode in another recent
192 * transaction. So we play it safe and fire off the
193 * transaction anyway.
194 */
898621d5 195 xfs_trans_ijoin(tp, ip);
fd3200be
CH
196 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
197 xfs_trans_set_sync(tp);
198 error = _xfs_trans_commit(tp, 0, &log_flushed);
199
200 xfs_iunlock(ip, XFS_ILOCK_EXCL);
201 } else {
202 /*
203 * Timestamps/size haven't changed since last inode flush or
204 * inode transaction commit. That means either nothing got
205 * written or a transaction committed which caught the updates.
206 * If the latter happened and the transaction hasn't hit the
207 * disk yet, the inode will be still be pinned. If it is,
208 * force the log.
209 */
fd3200be 210 if (xfs_ipincount(ip)) {
024910cb
CH
211 error = _xfs_log_force_lsn(ip->i_mount,
212 ip->i_itemp->ili_last_lsn,
213 XFS_LOG_SYNC, &log_flushed);
fd3200be 214 }
024910cb 215 xfs_iunlock(ip, XFS_ILOCK_SHARED);
fd3200be
CH
216 }
217
218 if (ip->i_mount->m_flags & XFS_MOUNT_BARRIER) {
219 /*
220 * If the log write didn't issue an ordered tag we need
221 * to flush the disk cache for the data device now.
222 */
223 if (!log_flushed)
224 xfs_blkdev_issue_flush(ip->i_mount->m_ddev_targp);
225
226 /*
227 * If this inode is on the RT dev we need to flush that
228 * cache as well.
229 */
230 if (XFS_IS_REALTIME_INODE(ip))
231 xfs_blkdev_issue_flush(ip->i_mount->m_rtdev_targp);
232 }
233
234 return -error;
235}
236
00258e36
CH
237STATIC ssize_t
238xfs_file_aio_read(
dda35b8f
CH
239 struct kiocb *iocb,
240 const struct iovec *iovp,
00258e36
CH
241 unsigned long nr_segs,
242 loff_t pos)
dda35b8f
CH
243{
244 struct file *file = iocb->ki_filp;
245 struct inode *inode = file->f_mapping->host;
00258e36
CH
246 struct xfs_inode *ip = XFS_I(inode);
247 struct xfs_mount *mp = ip->i_mount;
dda35b8f
CH
248 size_t size = 0;
249 ssize_t ret = 0;
00258e36 250 int ioflags = 0;
dda35b8f
CH
251 xfs_fsize_t n;
252 unsigned long seg;
253
dda35b8f
CH
254 XFS_STATS_INC(xs_read_calls);
255
00258e36
CH
256 BUG_ON(iocb->ki_pos != pos);
257
258 if (unlikely(file->f_flags & O_DIRECT))
259 ioflags |= IO_ISDIRECT;
260 if (file->f_mode & FMODE_NOCMTIME)
261 ioflags |= IO_INVIS;
262
dda35b8f 263 /* START copy & waste from filemap.c */
00258e36 264 for (seg = 0; seg < nr_segs; seg++) {
dda35b8f
CH
265 const struct iovec *iv = &iovp[seg];
266
267 /*
268 * If any segment has a negative length, or the cumulative
269 * length ever wraps negative then return -EINVAL.
270 */
271 size += iv->iov_len;
272 if (unlikely((ssize_t)(size|iv->iov_len) < 0))
273 return XFS_ERROR(-EINVAL);
274 }
275 /* END copy & waste from filemap.c */
276
277 if (unlikely(ioflags & IO_ISDIRECT)) {
278 xfs_buftarg_t *target =
279 XFS_IS_REALTIME_INODE(ip) ?
280 mp->m_rtdev_targp : mp->m_ddev_targp;
00258e36 281 if ((iocb->ki_pos & target->bt_smask) ||
dda35b8f 282 (size & target->bt_smask)) {
00258e36
CH
283 if (iocb->ki_pos == ip->i_size)
284 return 0;
dda35b8f
CH
285 return -XFS_ERROR(EINVAL);
286 }
287 }
288
00258e36
CH
289 n = XFS_MAXIOFFSET(mp) - iocb->ki_pos;
290 if (n <= 0 || size == 0)
dda35b8f
CH
291 return 0;
292
293 if (n < size)
294 size = n;
295
296 if (XFS_FORCED_SHUTDOWN(mp))
297 return -EIO;
298
dda35b8f 299 if (unlikely(ioflags & IO_ISDIRECT)) {
487f84f3
DC
300 xfs_rw_ilock(ip, XFS_IOLOCK_EXCL);
301
00258e36
CH
302 if (inode->i_mapping->nrpages) {
303 ret = -xfs_flushinval_pages(ip,
304 (iocb->ki_pos & PAGE_CACHE_MASK),
305 -1, FI_REMAPF_LOCKED);
487f84f3
DC
306 if (ret) {
307 xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL);
308 return ret;
309 }
00258e36 310 }
487f84f3
DC
311 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
312 } else
313 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
dda35b8f 314
00258e36 315 trace_xfs_file_read(ip, size, iocb->ki_pos, ioflags);
dda35b8f 316
00258e36 317 ret = generic_file_aio_read(iocb, iovp, nr_segs, iocb->ki_pos);
dda35b8f
CH
318 if (ret > 0)
319 XFS_STATS_ADD(xs_read_bytes, ret);
320
487f84f3 321 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
dda35b8f
CH
322 return ret;
323}
324
00258e36
CH
325STATIC ssize_t
326xfs_file_splice_read(
dda35b8f
CH
327 struct file *infilp,
328 loff_t *ppos,
329 struct pipe_inode_info *pipe,
330 size_t count,
00258e36 331 unsigned int flags)
dda35b8f 332{
00258e36 333 struct xfs_inode *ip = XFS_I(infilp->f_mapping->host);
00258e36 334 int ioflags = 0;
dda35b8f
CH
335 ssize_t ret;
336
337 XFS_STATS_INC(xs_read_calls);
00258e36
CH
338
339 if (infilp->f_mode & FMODE_NOCMTIME)
340 ioflags |= IO_INVIS;
341
dda35b8f
CH
342 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
343 return -EIO;
344
487f84f3 345 xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
dda35b8f 346
dda35b8f
CH
347 trace_xfs_file_splice_read(ip, count, *ppos, ioflags);
348
349 ret = generic_file_splice_read(infilp, ppos, pipe, count, flags);
350 if (ret > 0)
351 XFS_STATS_ADD(xs_read_bytes, ret);
352
487f84f3 353 xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
dda35b8f
CH
354 return ret;
355}
356
edafb6da
DC
357STATIC void
358xfs_aio_write_isize_update(
359 struct inode *inode,
360 loff_t *ppos,
361 ssize_t bytes_written)
362{
363 struct xfs_inode *ip = XFS_I(inode);
364 xfs_fsize_t isize = i_size_read(inode);
365
366 if (bytes_written > 0)
367 XFS_STATS_ADD(xs_write_bytes, bytes_written);
368
369 if (unlikely(bytes_written < 0 && bytes_written != -EFAULT &&
370 *ppos > isize))
371 *ppos = isize;
372
373 if (*ppos > ip->i_size) {
487f84f3 374 xfs_rw_ilock(ip, XFS_ILOCK_EXCL);
edafb6da
DC
375 if (*ppos > ip->i_size)
376 ip->i_size = *ppos;
487f84f3 377 xfs_rw_iunlock(ip, XFS_ILOCK_EXCL);
edafb6da
DC
378 }
379}
380
4c5cfd1b
DC
381/*
382 * If this was a direct or synchronous I/O that failed (such as ENOSPC) then
383 * part of the I/O may have been written to disk before the error occured. In
384 * this case the on-disk file size may have been adjusted beyond the in-memory
385 * file size and now needs to be truncated back.
386 */
387STATIC void
388xfs_aio_write_newsize_update(
389 struct xfs_inode *ip)
390{
391 if (ip->i_new_size) {
487f84f3 392 xfs_rw_ilock(ip, XFS_ILOCK_EXCL);
4c5cfd1b
DC
393 ip->i_new_size = 0;
394 if (ip->i_d.di_size > ip->i_size)
395 ip->i_d.di_size = ip->i_size;
487f84f3 396 xfs_rw_iunlock(ip, XFS_ILOCK_EXCL);
4c5cfd1b
DC
397 }
398}
399
487f84f3
DC
400/*
401 * xfs_file_splice_write() does not use xfs_rw_ilock() because
402 * generic_file_splice_write() takes the i_mutex itself. This, in theory,
403 * couuld cause lock inversions between the aio_write path and the splice path
404 * if someone is doing concurrent splice(2) based writes and write(2) based
405 * writes to the same inode. The only real way to fix this is to re-implement
406 * the generic code here with correct locking orders.
407 */
00258e36
CH
408STATIC ssize_t
409xfs_file_splice_write(
dda35b8f
CH
410 struct pipe_inode_info *pipe,
411 struct file *outfilp,
412 loff_t *ppos,
413 size_t count,
00258e36 414 unsigned int flags)
dda35b8f 415{
dda35b8f 416 struct inode *inode = outfilp->f_mapping->host;
00258e36 417 struct xfs_inode *ip = XFS_I(inode);
edafb6da 418 xfs_fsize_t new_size;
00258e36
CH
419 int ioflags = 0;
420 ssize_t ret;
dda35b8f
CH
421
422 XFS_STATS_INC(xs_write_calls);
00258e36
CH
423
424 if (outfilp->f_mode & FMODE_NOCMTIME)
425 ioflags |= IO_INVIS;
426
dda35b8f
CH
427 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
428 return -EIO;
429
430 xfs_ilock(ip, XFS_IOLOCK_EXCL);
431
dda35b8f
CH
432 new_size = *ppos + count;
433
434 xfs_ilock(ip, XFS_ILOCK_EXCL);
435 if (new_size > ip->i_size)
436 ip->i_new_size = new_size;
437 xfs_iunlock(ip, XFS_ILOCK_EXCL);
438
439 trace_xfs_file_splice_write(ip, count, *ppos, ioflags);
440
441 ret = generic_file_splice_write(pipe, outfilp, ppos, count, flags);
dda35b8f 442
edafb6da 443 xfs_aio_write_isize_update(inode, ppos, ret);
4c5cfd1b 444 xfs_aio_write_newsize_update(ip);
dda35b8f
CH
445 xfs_iunlock(ip, XFS_IOLOCK_EXCL);
446 return ret;
447}
448
449/*
450 * This routine is called to handle zeroing any space in the last
451 * block of the file that is beyond the EOF. We do this since the
452 * size is being increased without writing anything to that block
453 * and we don't want anyone to read the garbage on the disk.
454 */
455STATIC int /* error (positive) */
456xfs_zero_last_block(
457 xfs_inode_t *ip,
458 xfs_fsize_t offset,
459 xfs_fsize_t isize)
460{
461 xfs_fileoff_t last_fsb;
462 xfs_mount_t *mp = ip->i_mount;
463 int nimaps;
464 int zero_offset;
465 int zero_len;
466 int error = 0;
467 xfs_bmbt_irec_t imap;
468
469 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
470
471 zero_offset = XFS_B_FSB_OFFSET(mp, isize);
472 if (zero_offset == 0) {
473 /*
474 * There are no extra bytes in the last block on disk to
475 * zero, so return.
476 */
477 return 0;
478 }
479
480 last_fsb = XFS_B_TO_FSBT(mp, isize);
481 nimaps = 1;
482 error = xfs_bmapi(NULL, ip, last_fsb, 1, 0, NULL, 0, &imap,
b4e9181e 483 &nimaps, NULL);
dda35b8f
CH
484 if (error) {
485 return error;
486 }
487 ASSERT(nimaps > 0);
488 /*
489 * If the block underlying isize is just a hole, then there
490 * is nothing to zero.
491 */
492 if (imap.br_startblock == HOLESTARTBLOCK) {
493 return 0;
494 }
495 /*
496 * Zero the part of the last block beyond the EOF, and write it
497 * out sync. We need to drop the ilock while we do this so we
498 * don't deadlock when the buffer cache calls back to us.
499 */
500 xfs_iunlock(ip, XFS_ILOCK_EXCL);
501
502 zero_len = mp->m_sb.sb_blocksize - zero_offset;
503 if (isize + zero_len > offset)
504 zero_len = offset - isize;
505 error = xfs_iozero(ip, isize, zero_len);
506
507 xfs_ilock(ip, XFS_ILOCK_EXCL);
508 ASSERT(error >= 0);
509 return error;
510}
511
512/*
513 * Zero any on disk space between the current EOF and the new,
514 * larger EOF. This handles the normal case of zeroing the remainder
515 * of the last block in the file and the unusual case of zeroing blocks
516 * out beyond the size of the file. This second case only happens
517 * with fixed size extents and when the system crashes before the inode
518 * size was updated but after blocks were allocated. If fill is set,
519 * then any holes in the range are filled and zeroed. If not, the holes
520 * are left alone as holes.
521 */
522
523int /* error (positive) */
524xfs_zero_eof(
525 xfs_inode_t *ip,
526 xfs_off_t offset, /* starting I/O offset */
527 xfs_fsize_t isize) /* current inode size */
528{
529 xfs_mount_t *mp = ip->i_mount;
530 xfs_fileoff_t start_zero_fsb;
531 xfs_fileoff_t end_zero_fsb;
532 xfs_fileoff_t zero_count_fsb;
533 xfs_fileoff_t last_fsb;
534 xfs_fileoff_t zero_off;
535 xfs_fsize_t zero_len;
536 int nimaps;
537 int error = 0;
538 xfs_bmbt_irec_t imap;
539
540 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
541 ASSERT(offset > isize);
542
543 /*
544 * First handle zeroing the block on which isize resides.
545 * We only zero a part of that block so it is handled specially.
546 */
547 error = xfs_zero_last_block(ip, offset, isize);
548 if (error) {
549 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
550 return error;
551 }
552
553 /*
554 * Calculate the range between the new size and the old
555 * where blocks needing to be zeroed may exist. To get the
556 * block where the last byte in the file currently resides,
557 * we need to subtract one from the size and truncate back
558 * to a block boundary. We subtract 1 in case the size is
559 * exactly on a block boundary.
560 */
561 last_fsb = isize ? XFS_B_TO_FSBT(mp, isize - 1) : (xfs_fileoff_t)-1;
562 start_zero_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
563 end_zero_fsb = XFS_B_TO_FSBT(mp, offset - 1);
564 ASSERT((xfs_sfiloff_t)last_fsb < (xfs_sfiloff_t)start_zero_fsb);
565 if (last_fsb == end_zero_fsb) {
566 /*
567 * The size was only incremented on its last block.
568 * We took care of that above, so just return.
569 */
570 return 0;
571 }
572
573 ASSERT(start_zero_fsb <= end_zero_fsb);
574 while (start_zero_fsb <= end_zero_fsb) {
575 nimaps = 1;
576 zero_count_fsb = end_zero_fsb - start_zero_fsb + 1;
577 error = xfs_bmapi(NULL, ip, start_zero_fsb, zero_count_fsb,
b4e9181e 578 0, NULL, 0, &imap, &nimaps, NULL);
dda35b8f
CH
579 if (error) {
580 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
581 return error;
582 }
583 ASSERT(nimaps > 0);
584
585 if (imap.br_state == XFS_EXT_UNWRITTEN ||
586 imap.br_startblock == HOLESTARTBLOCK) {
587 /*
588 * This loop handles initializing pages that were
589 * partially initialized by the code below this
590 * loop. It basically zeroes the part of the page
591 * that sits on a hole and sets the page as P_HOLE
592 * and calls remapf if it is a mapped file.
593 */
594 start_zero_fsb = imap.br_startoff + imap.br_blockcount;
595 ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
596 continue;
597 }
598
599 /*
600 * There are blocks we need to zero.
601 * Drop the inode lock while we're doing the I/O.
602 * We'll still have the iolock to protect us.
603 */
604 xfs_iunlock(ip, XFS_ILOCK_EXCL);
605
606 zero_off = XFS_FSB_TO_B(mp, start_zero_fsb);
607 zero_len = XFS_FSB_TO_B(mp, imap.br_blockcount);
608
609 if ((zero_off + zero_len) > offset)
610 zero_len = offset - zero_off;
611
612 error = xfs_iozero(ip, zero_off, zero_len);
613 if (error) {
614 goto out_lock;
615 }
616
617 start_zero_fsb = imap.br_startoff + imap.br_blockcount;
618 ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
619
620 xfs_ilock(ip, XFS_ILOCK_EXCL);
621 }
622
623 return 0;
624
625out_lock:
626 xfs_ilock(ip, XFS_ILOCK_EXCL);
627 ASSERT(error >= 0);
628 return error;
629}
630
00258e36
CH
631STATIC ssize_t
632xfs_file_aio_write(
dda35b8f
CH
633 struct kiocb *iocb,
634 const struct iovec *iovp,
00258e36
CH
635 unsigned long nr_segs,
636 loff_t pos)
dda35b8f
CH
637{
638 struct file *file = iocb->ki_filp;
639 struct address_space *mapping = file->f_mapping;
640 struct inode *inode = mapping->host;
00258e36
CH
641 struct xfs_inode *ip = XFS_I(inode);
642 struct xfs_mount *mp = ip->i_mount;
a363f0c2 643 ssize_t ret = 0;
00258e36 644 int ioflags = 0;
edafb6da 645 xfs_fsize_t new_size;
dda35b8f 646 int iolock;
dda35b8f 647 size_t ocount = 0, count;
dda35b8f
CH
648
649 XFS_STATS_INC(xs_write_calls);
650
00258e36
CH
651 BUG_ON(iocb->ki_pos != pos);
652
653 if (unlikely(file->f_flags & O_DIRECT))
654 ioflags |= IO_ISDIRECT;
655 if (file->f_mode & FMODE_NOCMTIME)
656 ioflags |= IO_INVIS;
657
a363f0c2
DC
658 ret = generic_segment_checks(iovp, &nr_segs, &ocount, VERIFY_READ);
659 if (ret)
660 return ret;
dda35b8f
CH
661
662 count = ocount;
dda35b8f
CH
663 if (count == 0)
664 return 0;
665
dda35b8f
CH
666 xfs_wait_for_freeze(mp, SB_FREEZE_WRITE);
667
668 if (XFS_FORCED_SHUTDOWN(mp))
669 return -EIO;
670
671relock:
672 if (ioflags & IO_ISDIRECT) {
673 iolock = XFS_IOLOCK_SHARED;
dda35b8f
CH
674 } else {
675 iolock = XFS_IOLOCK_EXCL;
dda35b8f
CH
676 }
677
dda35b8f 678start:
487f84f3 679 xfs_rw_ilock(ip, XFS_ILOCK_EXCL|iolock);
a363f0c2 680 ret = generic_write_checks(file, &pos, &count,
dda35b8f 681 S_ISBLK(inode->i_mode));
a363f0c2 682 if (ret) {
487f84f3
DC
683 xfs_rw_iunlock(ip, XFS_ILOCK_EXCL|iolock);
684 return ret;
dda35b8f
CH
685 }
686
dda35b8f
CH
687 if (ioflags & IO_ISDIRECT) {
688 xfs_buftarg_t *target =
00258e36 689 XFS_IS_REALTIME_INODE(ip) ?
dda35b8f
CH
690 mp->m_rtdev_targp : mp->m_ddev_targp;
691
692 if ((pos & target->bt_smask) || (count & target->bt_smask)) {
487f84f3 693 xfs_rw_iunlock(ip, XFS_ILOCK_EXCL|iolock);
dda35b8f
CH
694 return XFS_ERROR(-EINVAL);
695 }
696
487f84f3
DC
697 /*
698 * For direct I/O, if there are cached pages or we're extending
699 * the file, we need IOLOCK_EXCL until we're sure the bytes at
700 * the new EOF have been zeroed and/or the cached pages are
701 * flushed out. Upgrade the I/O lock and start again.
702 */
703 if (iolock != XFS_IOLOCK_EXCL &&
704 (mapping->nrpages || pos > ip->i_size)) {
705 xfs_rw_iunlock(ip, XFS_ILOCK_EXCL|iolock);
dda35b8f 706 iolock = XFS_IOLOCK_EXCL;
dda35b8f
CH
707 goto start;
708 }
709 }
710
711 new_size = pos + count;
00258e36
CH
712 if (new_size > ip->i_size)
713 ip->i_new_size = new_size;
dda35b8f
CH
714
715 if (likely(!(ioflags & IO_INVIS)))
716 file_update_time(file);
717
718 /*
719 * If the offset is beyond the size of the file, we have a couple
720 * of things to do. First, if there is already space allocated
721 * we need to either create holes or zero the disk or ...
722 *
723 * If there is a page where the previous size lands, we need
724 * to zero it out up to the new size.
725 */
726
00258e36 727 if (pos > ip->i_size) {
a363f0c2
DC
728 ret = -xfs_zero_eof(ip, pos, ip->i_size);
729 if (ret) {
487f84f3 730 xfs_rw_iunlock(ip, XFS_ILOCK_EXCL);
dda35b8f
CH
731 goto out_unlock_internal;
732 }
733 }
487f84f3 734 xfs_rw_iunlock(ip, XFS_ILOCK_EXCL);
dda35b8f
CH
735
736 /*
737 * If we're writing the file then make sure to clear the
738 * setuid and setgid bits if the process is not being run
739 * by root. This keeps people from modifying setuid and
740 * setgid binaries.
741 */
a363f0c2
DC
742 ret = file_remove_suid(file);
743 if (unlikely(ret))
dda35b8f
CH
744 goto out_unlock_internal;
745
746 /* We can write back this queue in page reclaim */
747 current->backing_dev_info = mapping->backing_dev_info;
748
749 if ((ioflags & IO_ISDIRECT)) {
750 if (mapping->nrpages) {
487f84f3 751 WARN_ON(iolock != XFS_IOLOCK_EXCL);
a363f0c2 752 ret = -xfs_flushinval_pages(ip,
dda35b8f
CH
753 (pos & PAGE_CACHE_MASK),
754 -1, FI_REMAPF_LOCKED);
a363f0c2 755 if (ret)
dda35b8f
CH
756 goto out_unlock_internal;
757 }
758
487f84f3 759 if (iolock == XFS_IOLOCK_EXCL) {
dda35b8f 760 /* demote the lock now the cached pages are gone */
487f84f3 761 xfs_rw_ilock_demote(ip, XFS_IOLOCK_EXCL);
dda35b8f 762 iolock = XFS_IOLOCK_SHARED;
dda35b8f
CH
763 }
764
00258e36 765 trace_xfs_file_direct_write(ip, count, iocb->ki_pos, ioflags);
dda35b8f 766 ret = generic_file_direct_write(iocb, iovp,
00258e36 767 &nr_segs, pos, &iocb->ki_pos, count, ocount);
dda35b8f
CH
768
769 /*
770 * direct-io write to a hole: fall through to buffered I/O
771 * for completing the rest of the request.
772 */
773 if (ret >= 0 && ret != count) {
774 XFS_STATS_ADD(xs_write_bytes, ret);
775
776 pos += ret;
777 count -= ret;
778
779 ioflags &= ~IO_ISDIRECT;
487f84f3 780 xfs_rw_iunlock(ip, iolock);
dda35b8f
CH
781 goto relock;
782 }
783 } else {
784 int enospc = 0;
dda35b8f
CH
785
786write_retry:
00258e36 787 trace_xfs_file_buffered_write(ip, count, iocb->ki_pos, ioflags);
a363f0c2 788 ret = generic_file_buffered_write(iocb, iovp, nr_segs,
00258e36 789 pos, &iocb->ki_pos, count, ret);
dda35b8f
CH
790 /*
791 * if we just got an ENOSPC, flush the inode now we
792 * aren't holding any page locks and retry *once*
793 */
a363f0c2
DC
794 if (ret == -ENOSPC && !enospc) {
795 ret = xfs_flush_pages(ip, 0, -1, 0, FI_NONE);
796 if (ret)
dda35b8f
CH
797 goto out_unlock_internal;
798 enospc = 1;
799 goto write_retry;
800 }
dda35b8f
CH
801 }
802
803 current->backing_dev_info = NULL;
804
edafb6da 805 xfs_aio_write_isize_update(inode, &iocb->ki_pos, ret);
dda35b8f 806
dda35b8f
CH
807 if (ret <= 0)
808 goto out_unlock_internal;
809
dda35b8f
CH
810 /* Handle various SYNC-type writes */
811 if ((file->f_flags & O_DSYNC) || IS_SYNC(inode)) {
812 loff_t end = pos + ret - 1;
a363f0c2 813 int error, error2;
dda35b8f 814
487f84f3 815 xfs_rw_iunlock(ip, iolock);
a363f0c2 816 error = filemap_write_and_wait_range(mapping, pos, end);
487f84f3 817 xfs_rw_ilock(ip, iolock);
dda35b8f 818
7ea80859 819 error2 = -xfs_file_fsync(file,
fd3200be 820 (file->f_flags & __O_SYNC) ? 0 : 1);
a363f0c2
DC
821 if (error)
822 ret = error;
823 else if (error2)
824 ret = error2;
dda35b8f
CH
825 }
826
827 out_unlock_internal:
4c5cfd1b 828 xfs_aio_write_newsize_update(ip);
487f84f3 829 xfs_rw_iunlock(ip, iolock);
a363f0c2 830 return ret;
dda35b8f
CH
831}
832
1da177e4 833STATIC int
3562fd45 834xfs_file_open(
1da177e4 835 struct inode *inode,
f999a5bf 836 struct file *file)
1da177e4 837{
f999a5bf 838 if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
1da177e4 839 return -EFBIG;
f999a5bf
CH
840 if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
841 return -EIO;
842 return 0;
843}
844
845STATIC int
846xfs_dir_open(
847 struct inode *inode,
848 struct file *file)
849{
850 struct xfs_inode *ip = XFS_I(inode);
851 int mode;
852 int error;
853
854 error = xfs_file_open(inode, file);
855 if (error)
856 return error;
857
858 /*
859 * If there are any blocks, read-ahead block 0 as we're almost
860 * certain to have the next operation be a read there.
861 */
862 mode = xfs_ilock_map_shared(ip);
863 if (ip->i_d.di_nextents > 0)
864 xfs_da_reada_buf(NULL, ip, 0, XFS_DATA_FORK);
865 xfs_iunlock(ip, mode);
866 return 0;
1da177e4
LT
867}
868
1da177e4 869STATIC int
3562fd45 870xfs_file_release(
1da177e4
LT
871 struct inode *inode,
872 struct file *filp)
873{
739bfb2a 874 return -xfs_release(XFS_I(inode));
1da177e4
LT
875}
876
1da177e4 877STATIC int
3562fd45 878xfs_file_readdir(
1da177e4
LT
879 struct file *filp,
880 void *dirent,
881 filldir_t filldir)
882{
051e7cd4 883 struct inode *inode = filp->f_path.dentry->d_inode;
739bfb2a 884 xfs_inode_t *ip = XFS_I(inode);
051e7cd4
CH
885 int error;
886 size_t bufsize;
887
888 /*
889 * The Linux API doesn't pass down the total size of the buffer
890 * we read into down to the filesystem. With the filldir concept
891 * it's not needed for correct information, but the XFS dir2 leaf
892 * code wants an estimate of the buffer size to calculate it's
893 * readahead window and size the buffers used for mapping to
894 * physical blocks.
895 *
896 * Try to give it an estimate that's good enough, maybe at some
897 * point we can change the ->readdir prototype to include the
a9cc799e 898 * buffer size. For now we use the current glibc buffer size.
051e7cd4 899 */
a9cc799e 900 bufsize = (size_t)min_t(loff_t, 32768, ip->i_d.di_size);
051e7cd4 901
739bfb2a 902 error = xfs_readdir(ip, dirent, bufsize,
051e7cd4
CH
903 (xfs_off_t *)&filp->f_pos, filldir);
904 if (error)
905 return -error;
906 return 0;
1da177e4
LT
907}
908
1da177e4 909STATIC int
3562fd45 910xfs_file_mmap(
1da177e4
LT
911 struct file *filp,
912 struct vm_area_struct *vma)
913{
3562fd45 914 vma->vm_ops = &xfs_file_vm_ops;
d0217ac0 915 vma->vm_flags |= VM_CAN_NONLINEAR;
6fac0cb4 916
fbc1462b 917 file_accessed(filp);
1da177e4
LT
918 return 0;
919}
920
4f57dbc6
DC
921/*
922 * mmap()d file has taken write protection fault and is being made
923 * writable. We can set the page state up correctly for a writable
924 * page, which means we can do correct delalloc accounting (ENOSPC
925 * checking!) and unwritten extent mapping.
926 */
927STATIC int
928xfs_vm_page_mkwrite(
929 struct vm_area_struct *vma,
c2ec175c 930 struct vm_fault *vmf)
4f57dbc6 931{
c2ec175c 932 return block_page_mkwrite(vma, vmf, xfs_get_blocks);
4f57dbc6
DC
933}
934
4b6f5d20 935const struct file_operations xfs_file_operations = {
1da177e4
LT
936 .llseek = generic_file_llseek,
937 .read = do_sync_read,
bb3f724e 938 .write = do_sync_write,
3562fd45
NS
939 .aio_read = xfs_file_aio_read,
940 .aio_write = xfs_file_aio_write,
1b895840
NS
941 .splice_read = xfs_file_splice_read,
942 .splice_write = xfs_file_splice_write,
3562fd45 943 .unlocked_ioctl = xfs_file_ioctl,
1da177e4 944#ifdef CONFIG_COMPAT
3562fd45 945 .compat_ioctl = xfs_file_compat_ioctl,
1da177e4 946#endif
3562fd45
NS
947 .mmap = xfs_file_mmap,
948 .open = xfs_file_open,
949 .release = xfs_file_release,
950 .fsync = xfs_file_fsync,
1da177e4
LT
951};
952
4b6f5d20 953const struct file_operations xfs_dir_file_operations = {
f999a5bf 954 .open = xfs_dir_open,
1da177e4 955 .read = generic_read_dir,
3562fd45 956 .readdir = xfs_file_readdir,
59af1584 957 .llseek = generic_file_llseek,
3562fd45 958 .unlocked_ioctl = xfs_file_ioctl,
d3870398 959#ifdef CONFIG_COMPAT
3562fd45 960 .compat_ioctl = xfs_file_compat_ioctl,
d3870398 961#endif
3562fd45 962 .fsync = xfs_file_fsync,
1da177e4
LT
963};
964
f0f37e2f 965static const struct vm_operations_struct xfs_file_vm_ops = {
54cb8821 966 .fault = filemap_fault,
4f57dbc6 967 .page_mkwrite = xfs_vm_page_mkwrite,
6fac0cb4 968};