[XFS] Remove xfs_macros.c, xfs_macros.h, rework headers a whole lot.
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / xfs / linux-2.6 / xfs_aops.c
CommitLineData
1da177e4
LT
1/*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc. All Rights Reserved.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of version 2 of the GNU General Public License as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it would be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
11 *
12 * Further, this software is distributed without any warranty that it is
13 * free of the rightful claim of any third person regarding infringement
14 * or the like. Any license provided herein, whether implied or
15 * otherwise, applies only to this software file. Patent licenses, if
16 * any, provided herein do not apply to combinations of this program with
17 * other software, or any other product whatsoever.
18 *
19 * You should have received a copy of the GNU General Public License along
20 * with this program; if not, write the Free Software Foundation, Inc., 59
21 * Temple Place - Suite 330, Boston MA 02111-1307, USA.
22 *
23 * Contact information: Silicon Graphics, Inc., 1600 Amphitheatre Pkwy,
24 * Mountain View, CA 94043, or:
25 *
26 * http://www.sgi.com
27 *
28 * For further information regarding this notice, see:
29 *
30 * http://oss.sgi.com/projects/GenInfo/SGIGPLNoticeExplan/
31 */
1da177e4 32#include "xfs.h"
a844f451 33#include "xfs_bit.h"
1da177e4 34#include "xfs_log.h"
a844f451 35#include "xfs_inum.h"
1da177e4 36#include "xfs_sb.h"
a844f451 37#include "xfs_ag.h"
1da177e4
LT
38#include "xfs_dir.h"
39#include "xfs_dir2.h"
40#include "xfs_trans.h"
41#include "xfs_dmapi.h"
42#include "xfs_mount.h"
43#include "xfs_bmap_btree.h"
44#include "xfs_alloc_btree.h"
45#include "xfs_ialloc_btree.h"
1da177e4
LT
46#include "xfs_dir_sf.h"
47#include "xfs_dir2_sf.h"
a844f451 48#include "xfs_attr_sf.h"
1da177e4
LT
49#include "xfs_dinode.h"
50#include "xfs_inode.h"
a844f451
NS
51#include "xfs_alloc.h"
52#include "xfs_btree.h"
1da177e4
LT
53#include "xfs_error.h"
54#include "xfs_rw.h"
55#include "xfs_iomap.h"
56#include <linux/mpage.h>
57#include <linux/writeback.h>
58
59STATIC void xfs_count_page_state(struct page *, int *, int *, int *);
60STATIC void xfs_convert_page(struct inode *, struct page *, xfs_iomap_t *,
61 struct writeback_control *wbc, void *, int, int);
62
63#if defined(XFS_RW_TRACE)
64void
65xfs_page_trace(
66 int tag,
67 struct inode *inode,
68 struct page *page,
69 int mask)
70{
71 xfs_inode_t *ip;
72 bhv_desc_t *bdp;
73 vnode_t *vp = LINVFS_GET_VP(inode);
74 loff_t isize = i_size_read(inode);
75 loff_t offset = (loff_t)page->index << PAGE_CACHE_SHIFT;
76 int delalloc = -1, unmapped = -1, unwritten = -1;
77
78 if (page_has_buffers(page))
79 xfs_count_page_state(page, &delalloc, &unmapped, &unwritten);
80
81 bdp = vn_bhv_lookup(VN_BHV_HEAD(vp), &xfs_vnodeops);
82 ip = XFS_BHVTOI(bdp);
83 if (!ip->i_rwtrace)
84 return;
85
86 ktrace_enter(ip->i_rwtrace,
87 (void *)((unsigned long)tag),
88 (void *)ip,
89 (void *)inode,
90 (void *)page,
91 (void *)((unsigned long)mask),
92 (void *)((unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff)),
93 (void *)((unsigned long)(ip->i_d.di_size & 0xffffffff)),
94 (void *)((unsigned long)((isize >> 32) & 0xffffffff)),
95 (void *)((unsigned long)(isize & 0xffffffff)),
96 (void *)((unsigned long)((offset >> 32) & 0xffffffff)),
97 (void *)((unsigned long)(offset & 0xffffffff)),
98 (void *)((unsigned long)delalloc),
99 (void *)((unsigned long)unmapped),
100 (void *)((unsigned long)unwritten),
101 (void *)NULL,
102 (void *)NULL);
103}
104#else
105#define xfs_page_trace(tag, inode, page, mask)
106#endif
107
0829c360
CH
108/*
109 * Schedule IO completion handling on a xfsdatad if this was
110 * the final hold on this ioend.
111 */
112STATIC void
113xfs_finish_ioend(
114 xfs_ioend_t *ioend)
115{
116 if (atomic_dec_and_test(&ioend->io_remaining))
117 queue_work(xfsdatad_workqueue, &ioend->io_work);
118}
119
120STATIC void
121xfs_destroy_ioend(
122 xfs_ioend_t *ioend)
123{
124 vn_iowake(ioend->io_vnode);
125 mempool_free(ioend, xfs_ioend_pool);
126}
127
128/*
129 * Issue transactions to convert a buffer range from unwritten
f0973863 130 * to written extents.
0829c360
CH
131 */
132STATIC void
133xfs_end_bio_unwritten(
134 void *data)
135{
136 xfs_ioend_t *ioend = data;
137 vnode_t *vp = ioend->io_vnode;
138 xfs_off_t offset = ioend->io_offset;
139 size_t size = ioend->io_size;
c1a073bd 140 struct buffer_head *bh, *next;
0829c360
CH
141 int error;
142
143 if (ioend->io_uptodate)
144 VOP_BMAP(vp, offset, size, BMAPI_UNWRITTEN, NULL, NULL, error);
c1a073bd
CH
145
146 /* ioend->io_buffer_head is only non-NULL for buffered I/O */
147 for (bh = ioend->io_buffer_head; bh; bh = next) {
148 next = bh->b_private;
149
150 bh->b_end_io = NULL;
151 clear_buffer_unwritten(bh);
152 end_buffer_async_write(bh, ioend->io_uptodate);
153 }
154
0829c360
CH
155 xfs_destroy_ioend(ioend);
156}
157
158/*
159 * Allocate and initialise an IO completion structure.
160 * We need to track unwritten extent write completion here initially.
161 * We'll need to extend this for updating the ondisk inode size later
162 * (vs. incore size).
163 */
164STATIC xfs_ioend_t *
165xfs_alloc_ioend(
166 struct inode *inode)
167{
168 xfs_ioend_t *ioend;
169
170 ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS);
171
172 /*
173 * Set the count to 1 initially, which will prevent an I/O
174 * completion callback from happening before we have started
175 * all the I/O from calling the completion routine too early.
176 */
177 atomic_set(&ioend->io_remaining, 1);
178 ioend->io_uptodate = 1; /* cleared if any I/O fails */
179 ioend->io_vnode = LINVFS_GET_VP(inode);
c1a073bd 180 ioend->io_buffer_head = NULL;
0829c360
CH
181 atomic_inc(&ioend->io_vnode->v_iocount);
182 ioend->io_offset = 0;
183 ioend->io_size = 0;
184
185 INIT_WORK(&ioend->io_work, xfs_end_bio_unwritten, ioend);
186
187 return ioend;
188}
189
1da177e4
LT
190void
191linvfs_unwritten_done(
192 struct buffer_head *bh,
193 int uptodate)
194{
0829c360 195 xfs_ioend_t *ioend = bh->b_private;
c1a073bd
CH
196 static spinlock_t unwritten_done_lock = SPIN_LOCK_UNLOCKED;
197 unsigned long flags;
1da177e4
LT
198
199 ASSERT(buffer_unwritten(bh));
200 bh->b_end_io = NULL;
c1a073bd 201
1da177e4 202 if (!uptodate)
0829c360 203 ioend->io_uptodate = 0;
1da177e4 204
c1a073bd
CH
205 /*
206 * Deep magic here. We reuse b_private in the buffer_heads to build
207 * a chain for completing the I/O from user context after we've issued
208 * a transaction to convert the unwritten extent.
209 */
210 spin_lock_irqsave(&unwritten_done_lock, flags);
211 bh->b_private = ioend->io_buffer_head;
212 ioend->io_buffer_head = bh;
213 spin_unlock_irqrestore(&unwritten_done_lock, flags);
214
0829c360 215 xfs_finish_ioend(ioend);
1da177e4
LT
216}
217
1da177e4
LT
218STATIC int
219xfs_map_blocks(
220 struct inode *inode,
221 loff_t offset,
222 ssize_t count,
223 xfs_iomap_t *mapp,
224 int flags)
225{
226 vnode_t *vp = LINVFS_GET_VP(inode);
227 int error, nmaps = 1;
228
229 VOP_BMAP(vp, offset, count, flags, mapp, &nmaps, error);
230 if (!error && (flags & (BMAPI_WRITE|BMAPI_ALLOCATE)))
231 VMODIFY(vp);
232 return -error;
233}
234
235/*
236 * Finds the corresponding mapping in block @map array of the
237 * given @offset within a @page.
238 */
239STATIC xfs_iomap_t *
240xfs_offset_to_map(
241 struct page *page,
242 xfs_iomap_t *iomapp,
243 unsigned long offset)
244{
245 loff_t full_offset; /* offset from start of file */
246
247 ASSERT(offset < PAGE_CACHE_SIZE);
248
249 full_offset = page->index; /* NB: using 64bit number */
250 full_offset <<= PAGE_CACHE_SHIFT; /* offset from file start */
251 full_offset += offset; /* offset from page start */
252
253 if (full_offset < iomapp->iomap_offset)
254 return NULL;
255 if (iomapp->iomap_offset + (iomapp->iomap_bsize -1) >= full_offset)
256 return iomapp;
257 return NULL;
258}
259
260STATIC void
261xfs_map_at_offset(
262 struct page *page,
263 struct buffer_head *bh,
264 unsigned long offset,
265 int block_bits,
266 xfs_iomap_t *iomapp)
267{
268 xfs_daddr_t bn;
269 loff_t delta;
270 int sector_shift;
271
272 ASSERT(!(iomapp->iomap_flags & IOMAP_HOLE));
273 ASSERT(!(iomapp->iomap_flags & IOMAP_DELAY));
274 ASSERT(iomapp->iomap_bn != IOMAP_DADDR_NULL);
275
276 delta = page->index;
277 delta <<= PAGE_CACHE_SHIFT;
278 delta += offset;
279 delta -= iomapp->iomap_offset;
280 delta >>= block_bits;
281
282 sector_shift = block_bits - BBSHIFT;
283 bn = iomapp->iomap_bn >> sector_shift;
284 bn += delta;
285 BUG_ON(!bn && !(iomapp->iomap_flags & IOMAP_REALTIME));
286 ASSERT((bn << sector_shift) >= iomapp->iomap_bn);
287
288 lock_buffer(bh);
289 bh->b_blocknr = bn;
290 bh->b_bdev = iomapp->iomap_target->pbr_bdev;
291 set_buffer_mapped(bh);
292 clear_buffer_delay(bh);
293}
294
295/*
296 * Look for a page at index which is unlocked and contains our
297 * unwritten extent flagged buffers at its head. Returns page
298 * locked and with an extra reference count, and length of the
299 * unwritten extent component on this page that we can write,
300 * in units of filesystem blocks.
301 */
302STATIC struct page *
303xfs_probe_unwritten_page(
304 struct address_space *mapping,
305 pgoff_t index,
306 xfs_iomap_t *iomapp,
0829c360 307 xfs_ioend_t *ioend,
1da177e4
LT
308 unsigned long max_offset,
309 unsigned long *fsbs,
310 unsigned int bbits)
311{
312 struct page *page;
313
314 page = find_trylock_page(mapping, index);
315 if (!page)
316 return NULL;
317 if (PageWriteback(page))
318 goto out;
319
320 if (page->mapping && page_has_buffers(page)) {
321 struct buffer_head *bh, *head;
322 unsigned long p_offset = 0;
323
324 *fsbs = 0;
325 bh = head = page_buffers(page);
326 do {
327 if (!buffer_unwritten(bh) || !buffer_uptodate(bh))
328 break;
329 if (!xfs_offset_to_map(page, iomapp, p_offset))
330 break;
331 if (p_offset >= max_offset)
332 break;
333 xfs_map_at_offset(page, bh, p_offset, bbits, iomapp);
334 set_buffer_unwritten_io(bh);
0829c360 335 bh->b_private = ioend;
1da177e4
LT
336 p_offset += bh->b_size;
337 (*fsbs)++;
338 } while ((bh = bh->b_this_page) != head);
339
340 if (p_offset)
341 return page;
342 }
343
344out:
345 unlock_page(page);
346 return NULL;
347}
348
349/*
350 * Look for a page at index which is unlocked and not mapped
351 * yet - clustering for mmap write case.
352 */
353STATIC unsigned int
354xfs_probe_unmapped_page(
355 struct address_space *mapping,
356 pgoff_t index,
357 unsigned int pg_offset)
358{
359 struct page *page;
360 int ret = 0;
361
362 page = find_trylock_page(mapping, index);
363 if (!page)
364 return 0;
365 if (PageWriteback(page))
366 goto out;
367
368 if (page->mapping && PageDirty(page)) {
369 if (page_has_buffers(page)) {
370 struct buffer_head *bh, *head;
371
372 bh = head = page_buffers(page);
373 do {
374 if (buffer_mapped(bh) || !buffer_uptodate(bh))
375 break;
376 ret += bh->b_size;
377 if (ret >= pg_offset)
378 break;
379 } while ((bh = bh->b_this_page) != head);
380 } else
381 ret = PAGE_CACHE_SIZE;
382 }
383
384out:
385 unlock_page(page);
386 return ret;
387}
388
389STATIC unsigned int
390xfs_probe_unmapped_cluster(
391 struct inode *inode,
392 struct page *startpage,
393 struct buffer_head *bh,
394 struct buffer_head *head)
395{
396 pgoff_t tindex, tlast, tloff;
397 unsigned int pg_offset, len, total = 0;
398 struct address_space *mapping = inode->i_mapping;
399
400 /* First sum forwards in this page */
401 do {
402 if (buffer_mapped(bh))
403 break;
404 total += bh->b_size;
405 } while ((bh = bh->b_this_page) != head);
406
407 /* If we reached the end of the page, sum forwards in
408 * following pages.
409 */
410 if (bh == head) {
411 tlast = i_size_read(inode) >> PAGE_CACHE_SHIFT;
412 /* Prune this back to avoid pathological behavior */
413 tloff = min(tlast, startpage->index + 64);
414 for (tindex = startpage->index + 1; tindex < tloff; tindex++) {
415 len = xfs_probe_unmapped_page(mapping, tindex,
416 PAGE_CACHE_SIZE);
417 if (!len)
418 return total;
419 total += len;
420 }
421 if (tindex == tlast &&
422 (pg_offset = i_size_read(inode) & (PAGE_CACHE_SIZE - 1))) {
423 total += xfs_probe_unmapped_page(mapping,
424 tindex, pg_offset);
425 }
426 }
427 return total;
428}
429
430/*
431 * Probe for a given page (index) in the inode and test if it is delayed
432 * and without unwritten buffers. Returns page locked and with an extra
433 * reference count.
434 */
435STATIC struct page *
436xfs_probe_delalloc_page(
437 struct inode *inode,
438 pgoff_t index)
439{
440 struct page *page;
441
442 page = find_trylock_page(inode->i_mapping, index);
443 if (!page)
444 return NULL;
445 if (PageWriteback(page))
446 goto out;
447
448 if (page->mapping && page_has_buffers(page)) {
449 struct buffer_head *bh, *head;
450 int acceptable = 0;
451
452 bh = head = page_buffers(page);
453 do {
454 if (buffer_unwritten(bh)) {
455 acceptable = 0;
456 break;
457 } else if (buffer_delay(bh)) {
458 acceptable = 1;
459 }
460 } while ((bh = bh->b_this_page) != head);
461
462 if (acceptable)
463 return page;
464 }
465
466out:
467 unlock_page(page);
468 return NULL;
469}
470
471STATIC int
472xfs_map_unwritten(
473 struct inode *inode,
474 struct page *start_page,
475 struct buffer_head *head,
476 struct buffer_head *curr,
477 unsigned long p_offset,
478 int block_bits,
479 xfs_iomap_t *iomapp,
480 struct writeback_control *wbc,
481 int startio,
482 int all_bh)
483{
484 struct buffer_head *bh = curr;
485 xfs_iomap_t *tmp;
0829c360
CH
486 xfs_ioend_t *ioend;
487 loff_t offset;
1da177e4
LT
488 unsigned long nblocks = 0;
489
490 offset = start_page->index;
491 offset <<= PAGE_CACHE_SHIFT;
492 offset += p_offset;
493
0829c360 494 ioend = xfs_alloc_ioend(inode);
1da177e4
LT
495
496 /* First map forwards in the page consecutive buffers
497 * covering this unwritten extent
498 */
499 do {
500 if (!buffer_unwritten(bh))
501 break;
502 tmp = xfs_offset_to_map(start_page, iomapp, p_offset);
503 if (!tmp)
504 break;
505 xfs_map_at_offset(start_page, bh, p_offset, block_bits, iomapp);
506 set_buffer_unwritten_io(bh);
0829c360 507 bh->b_private = ioend;
1da177e4
LT
508 p_offset += bh->b_size;
509 nblocks++;
510 } while ((bh = bh->b_this_page) != head);
511
0829c360 512 atomic_add(nblocks, &ioend->io_remaining);
1da177e4
LT
513
514 /* If we reached the end of the page, map forwards in any
515 * following pages which are also covered by this extent.
516 */
517 if (bh == head) {
518 struct address_space *mapping = inode->i_mapping;
519 pgoff_t tindex, tloff, tlast;
520 unsigned long bs;
521 unsigned int pg_offset, bbits = inode->i_blkbits;
522 struct page *page;
523
524 tlast = i_size_read(inode) >> PAGE_CACHE_SHIFT;
525 tloff = (iomapp->iomap_offset + iomapp->iomap_bsize) >> PAGE_CACHE_SHIFT;
526 tloff = min(tlast, tloff);
527 for (tindex = start_page->index + 1; tindex < tloff; tindex++) {
528 page = xfs_probe_unwritten_page(mapping,
0829c360 529 tindex, iomapp, ioend,
1da177e4
LT
530 PAGE_CACHE_SIZE, &bs, bbits);
531 if (!page)
532 break;
533 nblocks += bs;
0829c360
CH
534 atomic_add(bs, &ioend->io_remaining);
535 xfs_convert_page(inode, page, iomapp, wbc, ioend,
1da177e4
LT
536 startio, all_bh);
537 /* stop if converting the next page might add
538 * enough blocks that the corresponding byte
539 * count won't fit in our ulong page buf length */
540 if (nblocks >= ((ULONG_MAX - PAGE_SIZE) >> block_bits))
541 goto enough;
542 }
543
544 if (tindex == tlast &&
545 (pg_offset = (i_size_read(inode) & (PAGE_CACHE_SIZE - 1)))) {
546 page = xfs_probe_unwritten_page(mapping,
0829c360 547 tindex, iomapp, ioend,
1da177e4
LT
548 pg_offset, &bs, bbits);
549 if (page) {
550 nblocks += bs;
0829c360
CH
551 atomic_add(bs, &ioend->io_remaining);
552 xfs_convert_page(inode, page, iomapp, wbc, ioend,
1da177e4
LT
553 startio, all_bh);
554 if (nblocks >= ((ULONG_MAX - PAGE_SIZE) >> block_bits))
555 goto enough;
556 }
557 }
558 }
559
560enough:
0829c360
CH
561 ioend->io_size = (xfs_off_t)nblocks << block_bits;
562 ioend->io_offset = offset;
563 xfs_finish_ioend(ioend);
1da177e4
LT
564 return 0;
565}
566
567STATIC void
568xfs_submit_page(
569 struct page *page,
570 struct writeback_control *wbc,
571 struct buffer_head *bh_arr[],
572 int bh_count,
573 int probed_page,
574 int clear_dirty)
575{
576 struct buffer_head *bh;
577 int i;
578
579 BUG_ON(PageWriteback(page));
24e17b5f
NS
580 if (bh_count)
581 set_page_writeback(page);
1da177e4
LT
582 if (clear_dirty)
583 clear_page_dirty(page);
584 unlock_page(page);
585
586 if (bh_count) {
587 for (i = 0; i < bh_count; i++) {
588 bh = bh_arr[i];
589 mark_buffer_async_write(bh);
590 if (buffer_unwritten(bh))
591 set_buffer_unwritten_io(bh);
592 set_buffer_uptodate(bh);
593 clear_buffer_dirty(bh);
594 }
595
596 for (i = 0; i < bh_count; i++)
597 submit_bh(WRITE, bh_arr[i]);
598
599 if (probed_page && clear_dirty)
600 wbc->nr_to_write--; /* Wrote an "extra" page */
1da177e4
LT
601 }
602}
603
604/*
605 * Allocate & map buffers for page given the extent map. Write it out.
606 * except for the original page of a writepage, this is called on
607 * delalloc/unwritten pages only, for the original page it is possible
608 * that the page has no mapping at all.
609 */
610STATIC void
611xfs_convert_page(
612 struct inode *inode,
613 struct page *page,
614 xfs_iomap_t *iomapp,
615 struct writeback_control *wbc,
616 void *private,
617 int startio,
618 int all_bh)
619{
620 struct buffer_head *bh_arr[MAX_BUF_PER_PAGE], *bh, *head;
621 xfs_iomap_t *mp = iomapp, *tmp;
24e17b5f
NS
622 unsigned long offset, end_offset;
623 int index = 0;
1da177e4 624 int bbits = inode->i_blkbits;
24e17b5f 625 int len, page_dirty;
1da177e4 626
24e17b5f
NS
627 end_offset = (i_size_read(inode) & (PAGE_CACHE_SIZE - 1));
628
629 /*
630 * page_dirty is initially a count of buffers on the page before
631 * EOF and is decrememted as we move each into a cleanable state.
632 */
633 len = 1 << inode->i_blkbits;
634 end_offset = max(end_offset, PAGE_CACHE_SIZE);
635 end_offset = roundup(end_offset, len);
636 page_dirty = end_offset / len;
637
638 offset = 0;
1da177e4
LT
639 bh = head = page_buffers(page);
640 do {
24e17b5f 641 if (offset >= end_offset)
1da177e4
LT
642 break;
643 if (!(PageUptodate(page) || buffer_uptodate(bh)))
644 continue;
645 if (buffer_mapped(bh) && all_bh &&
646 !(buffer_unwritten(bh) || buffer_delay(bh))) {
647 if (startio) {
648 lock_buffer(bh);
649 bh_arr[index++] = bh;
24e17b5f 650 page_dirty--;
1da177e4
LT
651 }
652 continue;
653 }
654 tmp = xfs_offset_to_map(page, mp, offset);
655 if (!tmp)
656 continue;
657 ASSERT(!(tmp->iomap_flags & IOMAP_HOLE));
658 ASSERT(!(tmp->iomap_flags & IOMAP_DELAY));
659
660 /* If this is a new unwritten extent buffer (i.e. one
661 * that we haven't passed in private data for, we must
662 * now map this buffer too.
663 */
664 if (buffer_unwritten(bh) && !bh->b_end_io) {
665 ASSERT(tmp->iomap_flags & IOMAP_UNWRITTEN);
666 xfs_map_unwritten(inode, page, head, bh, offset,
667 bbits, tmp, wbc, startio, all_bh);
668 } else if (! (buffer_unwritten(bh) && buffer_locked(bh))) {
669 xfs_map_at_offset(page, bh, offset, bbits, tmp);
670 if (buffer_unwritten(bh)) {
671 set_buffer_unwritten_io(bh);
672 bh->b_private = private;
673 ASSERT(private);
674 }
675 }
676 if (startio) {
677 bh_arr[index++] = bh;
678 } else {
679 set_buffer_dirty(bh);
680 unlock_buffer(bh);
681 mark_buffer_dirty(bh);
682 }
24e17b5f
NS
683 page_dirty--;
684 } while (offset += len, (bh = bh->b_this_page) != head);
1da177e4 685
24e17b5f
NS
686 if (startio && index) {
687 xfs_submit_page(page, wbc, bh_arr, index, 1, !page_dirty);
1da177e4
LT
688 } else {
689 unlock_page(page);
690 }
691}
692
693/*
694 * Convert & write out a cluster of pages in the same extent as defined
695 * by mp and following the start page.
696 */
697STATIC void
698xfs_cluster_write(
699 struct inode *inode,
700 pgoff_t tindex,
701 xfs_iomap_t *iomapp,
702 struct writeback_control *wbc,
703 int startio,
704 int all_bh,
705 pgoff_t tlast)
706{
707 struct page *page;
708
709 for (; tindex <= tlast; tindex++) {
710 page = xfs_probe_delalloc_page(inode, tindex);
711 if (!page)
712 break;
713 xfs_convert_page(inode, page, iomapp, wbc, NULL,
714 startio, all_bh);
715 }
716}
717
718/*
719 * Calling this without startio set means we are being asked to make a dirty
720 * page ready for freeing it's buffers. When called with startio set then
721 * we are coming from writepage.
722 *
723 * When called with startio set it is important that we write the WHOLE
724 * page if possible.
725 * The bh->b_state's cannot know if any of the blocks or which block for
726 * that matter are dirty due to mmap writes, and therefore bh uptodate is
727 * only vaild if the page itself isn't completely uptodate. Some layers
728 * may clear the page dirty flag prior to calling write page, under the
729 * assumption the entire page will be written out; by not writing out the
730 * whole page the page can be reused before all valid dirty data is
731 * written out. Note: in the case of a page that has been dirty'd by
732 * mapwrite and but partially setup by block_prepare_write the
733 * bh->b_states's will not agree and only ones setup by BPW/BCW will have
734 * valid state, thus the whole page must be written out thing.
735 */
736
737STATIC int
738xfs_page_state_convert(
739 struct inode *inode,
740 struct page *page,
741 struct writeback_control *wbc,
742 int startio,
743 int unmapped) /* also implies page uptodate */
744{
745 struct buffer_head *bh_arr[MAX_BUF_PER_PAGE], *bh, *head;
746 xfs_iomap_t *iomp, iomap;
747 loff_t offset;
748 unsigned long p_offset = 0;
749 __uint64_t end_offset;
750 pgoff_t end_index, last_index, tlast;
751 int len, err, i, cnt = 0, uptodate = 1;
3ba0815a 752 int flags;
775bf6c9 753 int page_dirty;
1da177e4 754
3ba0815a
DM
755 /* wait for other IO threads? */
756 flags = (startio && wbc->sync_mode != WB_SYNC_NONE) ? 0 : BMAPI_TRYLOCK;
757
1da177e4
LT
758 /* Is this page beyond the end of the file? */
759 offset = i_size_read(inode);
760 end_index = offset >> PAGE_CACHE_SHIFT;
761 last_index = (offset - 1) >> PAGE_CACHE_SHIFT;
762 if (page->index >= end_index) {
763 if ((page->index >= end_index + 1) ||
764 !(i_size_read(inode) & (PAGE_CACHE_SIZE - 1))) {
765 err = -EIO;
766 goto error;
767 }
768 }
769
1da177e4 770 end_offset = min_t(unsigned long long,
24e17b5f
NS
771 (loff_t)(page->index + 1) << PAGE_CACHE_SHIFT, offset);
772 offset = (loff_t)page->index << PAGE_CACHE_SHIFT;
1da177e4
LT
773
774 /*
24e17b5f
NS
775 * page_dirty is initially a count of buffers on the page before
776 * EOF and is decrememted as we move each into a cleanable state.
1da177e4 777 */
24e17b5f
NS
778 len = 1 << inode->i_blkbits;
779 p_offset = max(p_offset, PAGE_CACHE_SIZE);
780 p_offset = roundup(p_offset, len);
781 page_dirty = p_offset / len;
782
783 iomp = NULL;
784 p_offset = 0;
785 bh = head = page_buffers(page);
1da177e4
LT
786
787 do {
788 if (offset >= end_offset)
789 break;
790 if (!buffer_uptodate(bh))
791 uptodate = 0;
792 if (!(PageUptodate(page) || buffer_uptodate(bh)) && !startio)
793 continue;
794
795 if (iomp) {
796 iomp = xfs_offset_to_map(page, &iomap, p_offset);
797 }
798
799 /*
800 * First case, map an unwritten extent and prepare for
801 * extent state conversion transaction on completion.
802 */
803 if (buffer_unwritten(bh)) {
804 if (!startio)
805 continue;
806 if (!iomp) {
807 err = xfs_map_blocks(inode, offset, len, &iomap,
c31e8878 808 BMAPI_WRITE|BMAPI_IGNSTATE);
1da177e4
LT
809 if (err) {
810 goto error;
811 }
812 iomp = xfs_offset_to_map(page, &iomap,
813 p_offset);
814 }
815 if (iomp) {
816 if (!bh->b_end_io) {
817 err = xfs_map_unwritten(inode, page,
818 head, bh, p_offset,
819 inode->i_blkbits, iomp,
820 wbc, startio, unmapped);
821 if (err) {
822 goto error;
823 }
824 } else {
825 set_bit(BH_Lock, &bh->b_state);
826 }
827 BUG_ON(!buffer_locked(bh));
828 bh_arr[cnt++] = bh;
829 page_dirty--;
830 }
831 /*
832 * Second case, allocate space for a delalloc buffer.
833 * We can return EAGAIN here in the release page case.
834 */
835 } else if (buffer_delay(bh)) {
836 if (!iomp) {
1da177e4
LT
837 err = xfs_map_blocks(inode, offset, len, &iomap,
838 BMAPI_ALLOCATE | flags);
839 if (err) {
840 goto error;
841 }
842 iomp = xfs_offset_to_map(page, &iomap,
843 p_offset);
844 }
845 if (iomp) {
846 xfs_map_at_offset(page, bh, p_offset,
847 inode->i_blkbits, iomp);
848 if (startio) {
849 bh_arr[cnt++] = bh;
850 } else {
851 set_buffer_dirty(bh);
852 unlock_buffer(bh);
853 mark_buffer_dirty(bh);
854 }
855 page_dirty--;
856 }
857 } else if ((buffer_uptodate(bh) || PageUptodate(page)) &&
858 (unmapped || startio)) {
859
860 if (!buffer_mapped(bh)) {
861 int size;
862
863 /*
864 * Getting here implies an unmapped buffer
865 * was found, and we are in a path where we
866 * need to write the whole page out.
867 */
868 if (!iomp) {
869 size = xfs_probe_unmapped_cluster(
870 inode, page, bh, head);
871 err = xfs_map_blocks(inode, offset,
872 size, &iomap,
873 BMAPI_WRITE|BMAPI_MMAP);
874 if (err) {
875 goto error;
876 }
877 iomp = xfs_offset_to_map(page, &iomap,
878 p_offset);
879 }
880 if (iomp) {
881 xfs_map_at_offset(page,
882 bh, p_offset,
883 inode->i_blkbits, iomp);
884 if (startio) {
885 bh_arr[cnt++] = bh;
886 } else {
887 set_buffer_dirty(bh);
888 unlock_buffer(bh);
889 mark_buffer_dirty(bh);
890 }
891 page_dirty--;
892 }
893 } else if (startio) {
894 if (buffer_uptodate(bh) &&
895 !test_and_set_bit(BH_Lock, &bh->b_state)) {
896 bh_arr[cnt++] = bh;
897 page_dirty--;
898 }
899 }
900 }
901 } while (offset += len, p_offset += len,
902 ((bh = bh->b_this_page) != head));
903
904 if (uptodate && bh == head)
905 SetPageUptodate(page);
906
24e17b5f 907 if (startio) {
24e17b5f
NS
908 xfs_submit_page(page, wbc, bh_arr, cnt, 0, !page_dirty);
909 }
1da177e4
LT
910
911 if (iomp) {
775bf6c9 912 offset = (iomp->iomap_offset + iomp->iomap_bsize - 1) >>
1da177e4 913 PAGE_CACHE_SHIFT;
775bf6c9 914 tlast = min_t(pgoff_t, offset, last_index);
1da177e4
LT
915 xfs_cluster_write(inode, page->index + 1, iomp, wbc,
916 startio, unmapped, tlast);
917 }
918
919 return page_dirty;
920
921error:
922 for (i = 0; i < cnt; i++) {
923 unlock_buffer(bh_arr[i]);
924 }
925
926 /*
927 * If it's delalloc and we have nowhere to put it,
928 * throw it away, unless the lower layers told
929 * us to try again.
930 */
931 if (err != -EAGAIN) {
932 if (!unmapped) {
933 block_invalidatepage(page, 0);
934 }
935 ClearPageUptodate(page);
936 }
937 return err;
938}
939
940STATIC int
941__linvfs_get_block(
942 struct inode *inode,
943 sector_t iblock,
944 unsigned long blocks,
945 struct buffer_head *bh_result,
946 int create,
947 int direct,
948 bmapi_flags_t flags)
949{
950 vnode_t *vp = LINVFS_GET_VP(inode);
951 xfs_iomap_t iomap;
952 int retpbbm = 1;
953 int error;
954 ssize_t size;
955 loff_t offset = (loff_t)iblock << inode->i_blkbits;
956
957 if (blocks)
958 size = blocks << inode->i_blkbits;
959 else
960 size = 1 << inode->i_blkbits;
961
962 VOP_BMAP(vp, offset, size,
963 create ? flags : BMAPI_READ, &iomap, &retpbbm, error);
964 if (error)
965 return -error;
966
967 if (retpbbm == 0)
968 return 0;
969
970 if (iomap.iomap_bn != IOMAP_DADDR_NULL) {
971 xfs_daddr_t bn;
972 loff_t delta;
973
974 /* For unwritten extents do not report a disk address on
975 * the read case (treat as if we're reading into a hole).
976 */
977 if (create || !(iomap.iomap_flags & IOMAP_UNWRITTEN)) {
978 delta = offset - iomap.iomap_offset;
979 delta >>= inode->i_blkbits;
980
981 bn = iomap.iomap_bn >> (inode->i_blkbits - BBSHIFT);
982 bn += delta;
983 BUG_ON(!bn && !(iomap.iomap_flags & IOMAP_REALTIME));
984 bh_result->b_blocknr = bn;
985 set_buffer_mapped(bh_result);
986 }
987 if (create && (iomap.iomap_flags & IOMAP_UNWRITTEN)) {
988 if (direct)
989 bh_result->b_private = inode;
990 set_buffer_unwritten(bh_result);
991 set_buffer_delay(bh_result);
992 }
993 }
994
995 /* If this is a realtime file, data might be on a new device */
996 bh_result->b_bdev = iomap.iomap_target->pbr_bdev;
997
998 /* If we previously allocated a block out beyond eof and
999 * we are now coming back to use it then we will need to
1000 * flag it as new even if it has a disk address.
1001 */
1002 if (create &&
1003 ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
1004 (offset >= i_size_read(inode)) || (iomap.iomap_flags & IOMAP_NEW))) {
1005 set_buffer_new(bh_result);
1006 }
1007
1008 if (iomap.iomap_flags & IOMAP_DELAY) {
1009 BUG_ON(direct);
1010 if (create) {
1011 set_buffer_uptodate(bh_result);
1012 set_buffer_mapped(bh_result);
1013 set_buffer_delay(bh_result);
1014 }
1015 }
1016
1017 if (blocks) {
1018 bh_result->b_size = (ssize_t)min(
1019 (loff_t)(iomap.iomap_bsize - iomap.iomap_delta),
1020 (loff_t)(blocks << inode->i_blkbits));
1021 }
1022
1023 return 0;
1024}
1025
1026int
1027linvfs_get_block(
1028 struct inode *inode,
1029 sector_t iblock,
1030 struct buffer_head *bh_result,
1031 int create)
1032{
1033 return __linvfs_get_block(inode, iblock, 0, bh_result,
1034 create, 0, BMAPI_WRITE);
1035}
1036
1037STATIC int
1038linvfs_get_blocks_direct(
1039 struct inode *inode,
1040 sector_t iblock,
1041 unsigned long max_blocks,
1042 struct buffer_head *bh_result,
1043 int create)
1044{
1045 return __linvfs_get_block(inode, iblock, max_blocks, bh_result,
1046 create, 1, BMAPI_WRITE|BMAPI_DIRECT);
1047}
1048
f0973863
CH
1049STATIC void
1050linvfs_end_io_direct(
1051 struct kiocb *iocb,
1052 loff_t offset,
1053 ssize_t size,
1054 void *private)
1055{
1056 xfs_ioend_t *ioend = iocb->private;
1057
1058 /*
1059 * Non-NULL private data means we need to issue a transaction to
1060 * convert a range from unwritten to written extents. This needs
1061 * to happen from process contect but aio+dio I/O completion
1062 * happens from irq context so we need to defer it to a workqueue.
1063 * This is not nessecary for synchronous direct I/O, but we do
1064 * it anyway to keep the code uniform and simpler.
1065 *
1066 * The core direct I/O code might be changed to always call the
1067 * completion handler in the future, in which case all this can
1068 * go away.
1069 */
1070 if (private && size > 0) {
1071 ioend->io_offset = offset;
1072 ioend->io_size = size;
1073 xfs_finish_ioend(ioend);
1074 } else {
1075 ASSERT(size >= 0);
1076 xfs_destroy_ioend(ioend);
1077 }
1078
1079 /*
1080 * blockdev_direct_IO can return an error even afer the I/O
1081 * completion handler was called. Thus we need to protect
1082 * against double-freeing.
1083 */
1084 iocb->private = NULL;
1085}
1086
1da177e4
LT
1087STATIC ssize_t
1088linvfs_direct_IO(
1089 int rw,
1090 struct kiocb *iocb,
1091 const struct iovec *iov,
1092 loff_t offset,
1093 unsigned long nr_segs)
1094{
1095 struct file *file = iocb->ki_filp;
1096 struct inode *inode = file->f_mapping->host;
1097 vnode_t *vp = LINVFS_GET_VP(inode);
1098 xfs_iomap_t iomap;
1099 int maps = 1;
1100 int error;
f0973863 1101 ssize_t ret;
1da177e4
LT
1102
1103 VOP_BMAP(vp, offset, 0, BMAPI_DEVICE, &iomap, &maps, error);
1104 if (error)
1105 return -error;
1106
f0973863
CH
1107 iocb->private = xfs_alloc_ioend(inode);
1108
1109 ret = blockdev_direct_IO_own_locking(rw, iocb, inode,
1da177e4
LT
1110 iomap.iomap_target->pbr_bdev,
1111 iov, offset, nr_segs,
1112 linvfs_get_blocks_direct,
f0973863
CH
1113 linvfs_end_io_direct);
1114
1115 if (unlikely(ret <= 0 && iocb->private))
1116 xfs_destroy_ioend(iocb->private);
1117 return ret;
1da177e4
LT
1118}
1119
1120
1121STATIC sector_t
1122linvfs_bmap(
1123 struct address_space *mapping,
1124 sector_t block)
1125{
1126 struct inode *inode = (struct inode *)mapping->host;
1127 vnode_t *vp = LINVFS_GET_VP(inode);
1128 int error;
1129
1130 vn_trace_entry(vp, "linvfs_bmap", (inst_t *)__return_address);
1131
1132 VOP_RWLOCK(vp, VRWLOCK_READ);
1133 VOP_FLUSH_PAGES(vp, (xfs_off_t)0, -1, 0, FI_REMAPF, error);
1134 VOP_RWUNLOCK(vp, VRWLOCK_READ);
1135 return generic_block_bmap(mapping, block, linvfs_get_block);
1136}
1137
1138STATIC int
1139linvfs_readpage(
1140 struct file *unused,
1141 struct page *page)
1142{
1143 return mpage_readpage(page, linvfs_get_block);
1144}
1145
1146STATIC int
1147linvfs_readpages(
1148 struct file *unused,
1149 struct address_space *mapping,
1150 struct list_head *pages,
1151 unsigned nr_pages)
1152{
1153 return mpage_readpages(mapping, pages, nr_pages, linvfs_get_block);
1154}
1155
1156STATIC void
1157xfs_count_page_state(
1158 struct page *page,
1159 int *delalloc,
1160 int *unmapped,
1161 int *unwritten)
1162{
1163 struct buffer_head *bh, *head;
1164
1165 *delalloc = *unmapped = *unwritten = 0;
1166
1167 bh = head = page_buffers(page);
1168 do {
1169 if (buffer_uptodate(bh) && !buffer_mapped(bh))
1170 (*unmapped) = 1;
1171 else if (buffer_unwritten(bh) && !buffer_delay(bh))
1172 clear_buffer_unwritten(bh);
1173 else if (buffer_unwritten(bh))
1174 (*unwritten) = 1;
1175 else if (buffer_delay(bh))
1176 (*delalloc) = 1;
1177 } while ((bh = bh->b_this_page) != head);
1178}
1179
1180
1181/*
1182 * writepage: Called from one of two places:
1183 *
1184 * 1. we are flushing a delalloc buffer head.
1185 *
1186 * 2. we are writing out a dirty page. Typically the page dirty
1187 * state is cleared before we get here. In this case is it
1188 * conceivable we have no buffer heads.
1189 *
1190 * For delalloc space on the page we need to allocate space and
1191 * flush it. For unmapped buffer heads on the page we should
1192 * allocate space if the page is uptodate. For any other dirty
1193 * buffer heads on the page we should flush them.
1194 *
1195 * If we detect that a transaction would be required to flush
1196 * the page, we have to check the process flags first, if we
1197 * are already in a transaction or disk I/O during allocations
1198 * is off, we need to fail the writepage and redirty the page.
1199 */
1200
1201STATIC int
1202linvfs_writepage(
1203 struct page *page,
1204 struct writeback_control *wbc)
1205{
1206 int error;
1207 int need_trans;
1208 int delalloc, unmapped, unwritten;
1209 struct inode *inode = page->mapping->host;
1210
1211 xfs_page_trace(XFS_WRITEPAGE_ENTER, inode, page, 0);
1212
1213 /*
1214 * We need a transaction if:
1215 * 1. There are delalloc buffers on the page
1216 * 2. The page is uptodate and we have unmapped buffers
1217 * 3. The page is uptodate and we have no buffers
1218 * 4. There are unwritten buffers on the page
1219 */
1220
1221 if (!page_has_buffers(page)) {
1222 unmapped = 1;
1223 need_trans = 1;
1224 } else {
1225 xfs_count_page_state(page, &delalloc, &unmapped, &unwritten);
1226 if (!PageUptodate(page))
1227 unmapped = 0;
1228 need_trans = delalloc + unmapped + unwritten;
1229 }
1230
1231 /*
1232 * If we need a transaction and the process flags say
1233 * we are already in a transaction, or no IO is allowed
1234 * then mark the page dirty again and leave the page
1235 * as is.
1236 */
1237 if (PFLAGS_TEST_FSTRANS() && need_trans)
1238 goto out_fail;
1239
1240 /*
1241 * Delay hooking up buffer heads until we have
1242 * made our go/no-go decision.
1243 */
1244 if (!page_has_buffers(page))
1245 create_empty_buffers(page, 1 << inode->i_blkbits, 0);
1246
1247 /*
1248 * Convert delayed allocate, unwritten or unmapped space
1249 * to real space and flush out to disk.
1250 */
1251 error = xfs_page_state_convert(inode, page, wbc, 1, unmapped);
1252 if (error == -EAGAIN)
1253 goto out_fail;
1254 if (unlikely(error < 0))
1255 goto out_unlock;
1256
1257 return 0;
1258
1259out_fail:
1260 redirty_page_for_writepage(wbc, page);
1261 unlock_page(page);
1262 return 0;
1263out_unlock:
1264 unlock_page(page);
1265 return error;
1266}
1267
bcec2b7f
NS
1268STATIC int
1269linvfs_invalidate_page(
1270 struct page *page,
1271 unsigned long offset)
1272{
1273 xfs_page_trace(XFS_INVALIDPAGE_ENTER,
1274 page->mapping->host, page, offset);
1275 return block_invalidatepage(page, offset);
1276}
1277
1da177e4
LT
1278/*
1279 * Called to move a page into cleanable state - and from there
1280 * to be released. Possibly the page is already clean. We always
1281 * have buffer heads in this call.
1282 *
1283 * Returns 0 if the page is ok to release, 1 otherwise.
1284 *
1285 * Possible scenarios are:
1286 *
1287 * 1. We are being called to release a page which has been written
1288 * to via regular I/O. buffer heads will be dirty and possibly
1289 * delalloc. If no delalloc buffer heads in this case then we
1290 * can just return zero.
1291 *
1292 * 2. We are called to release a page which has been written via
1293 * mmap, all we need to do is ensure there is no delalloc
1294 * state in the buffer heads, if not we can let the caller
1295 * free them and we should come back later via writepage.
1296 */
1297STATIC int
1298linvfs_release_page(
1299 struct page *page,
27496a8c 1300 gfp_t gfp_mask)
1da177e4
LT
1301{
1302 struct inode *inode = page->mapping->host;
1303 int dirty, delalloc, unmapped, unwritten;
1304 struct writeback_control wbc = {
1305 .sync_mode = WB_SYNC_ALL,
1306 .nr_to_write = 1,
1307 };
1308
1309 xfs_page_trace(XFS_RELEASEPAGE_ENTER, inode, page, gfp_mask);
1310
1311 xfs_count_page_state(page, &delalloc, &unmapped, &unwritten);
1312 if (!delalloc && !unwritten)
1313 goto free_buffers;
1314
1315 if (!(gfp_mask & __GFP_FS))
1316 return 0;
1317
1318 /* If we are already inside a transaction or the thread cannot
1319 * do I/O, we cannot release this page.
1320 */
1321 if (PFLAGS_TEST_FSTRANS())
1322 return 0;
1323
1324 /*
1325 * Convert delalloc space to real space, do not flush the
1326 * data out to disk, that will be done by the caller.
1327 * Never need to allocate space here - we will always
1328 * come back to writepage in that case.
1329 */
1330 dirty = xfs_page_state_convert(inode, page, &wbc, 0, 0);
1331 if (dirty == 0 && !unwritten)
1332 goto free_buffers;
1333 return 0;
1334
1335free_buffers:
1336 return try_to_free_buffers(page);
1337}
1338
1339STATIC int
1340linvfs_prepare_write(
1341 struct file *file,
1342 struct page *page,
1343 unsigned int from,
1344 unsigned int to)
1345{
1346 return block_prepare_write(page, from, to, linvfs_get_block);
1347}
1348
1349struct address_space_operations linvfs_aops = {
1350 .readpage = linvfs_readpage,
1351 .readpages = linvfs_readpages,
1352 .writepage = linvfs_writepage,
1353 .sync_page = block_sync_page,
1354 .releasepage = linvfs_release_page,
bcec2b7f 1355 .invalidatepage = linvfs_invalidate_page,
1da177e4
LT
1356 .prepare_write = linvfs_prepare_write,
1357 .commit_write = generic_commit_write,
1358 .bmap = linvfs_bmap,
1359 .direct_IO = linvfs_direct_IO,
1360};