userfaultfd: non-cooperative: rollback userfaultfd_exit
[GitHub/MotorolaMobilityLLC/kernel-slsi.git] / fs / userfaultfd.c
CommitLineData
86039bd3
AA
1/*
2 * fs/userfaultfd.c
3 *
4 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org>
5 * Copyright (C) 2008-2009 Red Hat, Inc.
6 * Copyright (C) 2015 Red Hat, Inc.
7 *
8 * This work is licensed under the terms of the GNU GPL, version 2. See
9 * the COPYING file in the top-level directory.
10 *
11 * Some part derived from fs/eventfd.c (anon inode setup) and
12 * mm/ksm.c (mm hashing).
13 */
14
9cd75c3c 15#include <linux/list.h>
86039bd3 16#include <linux/hashtable.h>
174cd4b1 17#include <linux/sched/signal.h>
6e84f315 18#include <linux/sched/mm.h>
86039bd3
AA
19#include <linux/mm.h>
20#include <linux/poll.h>
21#include <linux/slab.h>
22#include <linux/seq_file.h>
23#include <linux/file.h>
24#include <linux/bug.h>
25#include <linux/anon_inodes.h>
26#include <linux/syscalls.h>
27#include <linux/userfaultfd_k.h>
28#include <linux/mempolicy.h>
29#include <linux/ioctl.h>
30#include <linux/security.h>
cab350af 31#include <linux/hugetlb.h>
86039bd3 32
3004ec9c
AA
33static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly;
34
86039bd3
AA
35enum userfaultfd_state {
36 UFFD_STATE_WAIT_API,
37 UFFD_STATE_RUNNING,
38};
39
3004ec9c
AA
40/*
41 * Start with fault_pending_wqh and fault_wqh so they're more likely
42 * to be in the same cacheline.
43 */
86039bd3 44struct userfaultfd_ctx {
15b726ef
AA
45 /* waitqueue head for the pending (i.e. not read) userfaults */
46 wait_queue_head_t fault_pending_wqh;
47 /* waitqueue head for the userfaults */
86039bd3
AA
48 wait_queue_head_t fault_wqh;
49 /* waitqueue head for the pseudo fd to wakeup poll/read */
50 wait_queue_head_t fd_wqh;
9cd75c3c
PE
51 /* waitqueue head for events */
52 wait_queue_head_t event_wqh;
2c5b7e1b
AA
53 /* a refile sequence protected by fault_pending_wqh lock */
54 struct seqcount refile_seq;
3004ec9c
AA
55 /* pseudo fd refcounting */
56 atomic_t refcount;
86039bd3
AA
57 /* userfaultfd syscall flags */
58 unsigned int flags;
9cd75c3c
PE
59 /* features requested from the userspace */
60 unsigned int features;
86039bd3
AA
61 /* state machine */
62 enum userfaultfd_state state;
63 /* released */
64 bool released;
65 /* mm with one ore more vmas attached to this userfaultfd_ctx */
66 struct mm_struct *mm;
67};
68
893e26e6
PE
69struct userfaultfd_fork_ctx {
70 struct userfaultfd_ctx *orig;
71 struct userfaultfd_ctx *new;
72 struct list_head list;
73};
74
897ab3e0
MR
75struct userfaultfd_unmap_ctx {
76 struct userfaultfd_ctx *ctx;
77 unsigned long start;
78 unsigned long end;
79 struct list_head list;
80};
81
86039bd3 82struct userfaultfd_wait_queue {
a9b85f94 83 struct uffd_msg msg;
86039bd3 84 wait_queue_t wq;
86039bd3 85 struct userfaultfd_ctx *ctx;
15a77c6f 86 bool waken;
86039bd3
AA
87};
88
89struct userfaultfd_wake_range {
90 unsigned long start;
91 unsigned long len;
92};
93
94static int userfaultfd_wake_function(wait_queue_t *wq, unsigned mode,
95 int wake_flags, void *key)
96{
97 struct userfaultfd_wake_range *range = key;
98 int ret;
99 struct userfaultfd_wait_queue *uwq;
100 unsigned long start, len;
101
102 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
103 ret = 0;
86039bd3
AA
104 /* len == 0 means wake all */
105 start = range->start;
106 len = range->len;
a9b85f94
AA
107 if (len && (start > uwq->msg.arg.pagefault.address ||
108 start + len <= uwq->msg.arg.pagefault.address))
86039bd3 109 goto out;
15a77c6f
AA
110 WRITE_ONCE(uwq->waken, true);
111 /*
112 * The implicit smp_mb__before_spinlock in try_to_wake_up()
113 * renders uwq->waken visible to other CPUs before the task is
114 * waken.
115 */
86039bd3
AA
116 ret = wake_up_state(wq->private, mode);
117 if (ret)
118 /*
119 * Wake only once, autoremove behavior.
120 *
121 * After the effect of list_del_init is visible to the
122 * other CPUs, the waitqueue may disappear from under
123 * us, see the !list_empty_careful() in
124 * handle_userfault(). try_to_wake_up() has an
125 * implicit smp_mb__before_spinlock, and the
126 * wq->private is read before calling the extern
127 * function "wake_up_state" (which in turns calls
128 * try_to_wake_up). While the spin_lock;spin_unlock;
129 * wouldn't be enough, the smp_mb__before_spinlock is
130 * enough to avoid an explicit smp_mb() here.
131 */
132 list_del_init(&wq->task_list);
133out:
134 return ret;
135}
136
137/**
138 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
139 * context.
140 * @ctx: [in] Pointer to the userfaultfd context.
141 *
142 * Returns: In case of success, returns not zero.
143 */
144static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
145{
146 if (!atomic_inc_not_zero(&ctx->refcount))
147 BUG();
148}
149
150/**
151 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
152 * context.
153 * @ctx: [in] Pointer to userfaultfd context.
154 *
155 * The userfaultfd context reference must have been previously acquired either
156 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
157 */
158static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
159{
160 if (atomic_dec_and_test(&ctx->refcount)) {
161 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
162 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
163 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
164 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
9cd75c3c
PE
165 VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock));
166 VM_BUG_ON(waitqueue_active(&ctx->event_wqh));
86039bd3
AA
167 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
168 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
d2005e3f 169 mmdrop(ctx->mm);
3004ec9c 170 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
86039bd3
AA
171 }
172}
173
a9b85f94 174static inline void msg_init(struct uffd_msg *msg)
86039bd3 175{
a9b85f94
AA
176 BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
177 /*
178 * Must use memset to zero out the paddings or kernel data is
179 * leaked to userland.
180 */
181 memset(msg, 0, sizeof(struct uffd_msg));
182}
183
184static inline struct uffd_msg userfault_msg(unsigned long address,
185 unsigned int flags,
186 unsigned long reason)
187{
188 struct uffd_msg msg;
189 msg_init(&msg);
190 msg.event = UFFD_EVENT_PAGEFAULT;
191 msg.arg.pagefault.address = address;
86039bd3
AA
192 if (flags & FAULT_FLAG_WRITE)
193 /*
a4605a61 194 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
a9b85f94
AA
195 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE
196 * was not set in a UFFD_EVENT_PAGEFAULT, it means it
197 * was a read fault, otherwise if set it means it's
198 * a write fault.
86039bd3 199 */
a9b85f94 200 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
86039bd3
AA
201 if (reason & VM_UFFD_WP)
202 /*
a9b85f94
AA
203 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
204 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was
205 * not set in a UFFD_EVENT_PAGEFAULT, it means it was
206 * a missing fault, otherwise if set it means it's a
207 * write protect fault.
86039bd3 208 */
a9b85f94
AA
209 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
210 return msg;
86039bd3
AA
211}
212
369cd212
MK
213#ifdef CONFIG_HUGETLB_PAGE
214/*
215 * Same functionality as userfaultfd_must_wait below with modifications for
216 * hugepmd ranges.
217 */
218static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
219 unsigned long address,
220 unsigned long flags,
221 unsigned long reason)
222{
223 struct mm_struct *mm = ctx->mm;
224 pte_t *pte;
225 bool ret = true;
226
227 VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
228
229 pte = huge_pte_offset(mm, address);
230 if (!pte)
231 goto out;
232
233 ret = false;
234
235 /*
236 * Lockless access: we're in a wait_event so it's ok if it
237 * changes under us.
238 */
239 if (huge_pte_none(*pte))
240 ret = true;
241 if (!huge_pte_write(*pte) && (reason & VM_UFFD_WP))
242 ret = true;
243out:
244 return ret;
245}
246#else
247static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
248 unsigned long address,
249 unsigned long flags,
250 unsigned long reason)
251{
252 return false; /* should never get here */
253}
254#endif /* CONFIG_HUGETLB_PAGE */
255
8d2afd96
AA
256/*
257 * Verify the pagetables are still not ok after having reigstered into
258 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
259 * userfault that has already been resolved, if userfaultfd_read and
260 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
261 * threads.
262 */
263static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
264 unsigned long address,
265 unsigned long flags,
266 unsigned long reason)
267{
268 struct mm_struct *mm = ctx->mm;
269 pgd_t *pgd;
270 pud_t *pud;
271 pmd_t *pmd, _pmd;
272 pte_t *pte;
273 bool ret = true;
274
275 VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
276
277 pgd = pgd_offset(mm, address);
278 if (!pgd_present(*pgd))
279 goto out;
280 pud = pud_offset(pgd, address);
281 if (!pud_present(*pud))
282 goto out;
283 pmd = pmd_offset(pud, address);
284 /*
285 * READ_ONCE must function as a barrier with narrower scope
286 * and it must be equivalent to:
287 * _pmd = *pmd; barrier();
288 *
289 * This is to deal with the instability (as in
290 * pmd_trans_unstable) of the pmd.
291 */
292 _pmd = READ_ONCE(*pmd);
293 if (!pmd_present(_pmd))
294 goto out;
295
296 ret = false;
297 if (pmd_trans_huge(_pmd))
298 goto out;
299
300 /*
301 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it
302 * and use the standard pte_offset_map() instead of parsing _pmd.
303 */
304 pte = pte_offset_map(pmd, address);
305 /*
306 * Lockless access: we're in a wait_event so it's ok if it
307 * changes under us.
308 */
309 if (pte_none(*pte))
310 ret = true;
311 pte_unmap(pte);
312
313out:
314 return ret;
315}
316
86039bd3
AA
317/*
318 * The locking rules involved in returning VM_FAULT_RETRY depending on
319 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
320 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
321 * recommendation in __lock_page_or_retry is not an understatement.
322 *
323 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_sem must be released
324 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
325 * not set.
326 *
327 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
328 * set, VM_FAULT_RETRY can still be returned if and only if there are
329 * fatal_signal_pending()s, and the mmap_sem must be released before
330 * returning it.
331 */
82b0f8c3 332int handle_userfault(struct vm_fault *vmf, unsigned long reason)
86039bd3 333{
82b0f8c3 334 struct mm_struct *mm = vmf->vma->vm_mm;
86039bd3
AA
335 struct userfaultfd_ctx *ctx;
336 struct userfaultfd_wait_queue uwq;
ba85c702 337 int ret;
dfa37dc3 338 bool must_wait, return_to_userland;
15a77c6f 339 long blocking_state;
86039bd3
AA
340
341 BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
342
ba85c702 343 ret = VM_FAULT_SIGBUS;
82b0f8c3 344 ctx = vmf->vma->vm_userfaultfd_ctx.ctx;
86039bd3 345 if (!ctx)
ba85c702 346 goto out;
86039bd3
AA
347
348 BUG_ON(ctx->mm != mm);
349
350 VM_BUG_ON(reason & ~(VM_UFFD_MISSING|VM_UFFD_WP));
351 VM_BUG_ON(!(reason & VM_UFFD_MISSING) ^ !!(reason & VM_UFFD_WP));
352
353 /*
354 * If it's already released don't get it. This avoids to loop
355 * in __get_user_pages if userfaultfd_release waits on the
356 * caller of handle_userfault to release the mmap_sem.
357 */
358 if (unlikely(ACCESS_ONCE(ctx->released)))
ba85c702 359 goto out;
86039bd3 360
39680f50
LT
361 /*
362 * We don't do userfault handling for the final child pid update.
363 */
364 if (current->flags & PF_EXITING)
365 goto out;
366
86039bd3
AA
367 /*
368 * Check that we can return VM_FAULT_RETRY.
369 *
370 * NOTE: it should become possible to return VM_FAULT_RETRY
371 * even if FAULT_FLAG_TRIED is set without leading to gup()
372 * -EBUSY failures, if the userfaultfd is to be extended for
373 * VM_UFFD_WP tracking and we intend to arm the userfault
374 * without first stopping userland access to the memory. For
375 * VM_UFFD_MISSING userfaults this is enough for now.
376 */
82b0f8c3 377 if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
86039bd3
AA
378 /*
379 * Validate the invariant that nowait must allow retry
380 * to be sure not to return SIGBUS erroneously on
381 * nowait invocations.
382 */
82b0f8c3 383 BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
86039bd3
AA
384#ifdef CONFIG_DEBUG_VM
385 if (printk_ratelimit()) {
386 printk(KERN_WARNING
82b0f8c3
JK
387 "FAULT_FLAG_ALLOW_RETRY missing %x\n",
388 vmf->flags);
86039bd3
AA
389 dump_stack();
390 }
391#endif
ba85c702 392 goto out;
86039bd3
AA
393 }
394
395 /*
396 * Handle nowait, not much to do other than tell it to retry
397 * and wait.
398 */
ba85c702 399 ret = VM_FAULT_RETRY;
82b0f8c3 400 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
ba85c702 401 goto out;
86039bd3
AA
402
403 /* take the reference before dropping the mmap_sem */
404 userfaultfd_ctx_get(ctx);
405
86039bd3
AA
406 init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
407 uwq.wq.private = current;
82b0f8c3 408 uwq.msg = userfault_msg(vmf->address, vmf->flags, reason);
86039bd3 409 uwq.ctx = ctx;
15a77c6f 410 uwq.waken = false;
86039bd3 411
bae473a4 412 return_to_userland =
82b0f8c3 413 (vmf->flags & (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE)) ==
dfa37dc3 414 (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE);
15a77c6f
AA
415 blocking_state = return_to_userland ? TASK_INTERRUPTIBLE :
416 TASK_KILLABLE;
dfa37dc3 417
15b726ef 418 spin_lock(&ctx->fault_pending_wqh.lock);
86039bd3
AA
419 /*
420 * After the __add_wait_queue the uwq is visible to userland
421 * through poll/read().
422 */
15b726ef
AA
423 __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
424 /*
425 * The smp_mb() after __set_current_state prevents the reads
426 * following the spin_unlock to happen before the list_add in
427 * __add_wait_queue.
428 */
15a77c6f 429 set_current_state(blocking_state);
15b726ef 430 spin_unlock(&ctx->fault_pending_wqh.lock);
86039bd3 431
369cd212
MK
432 if (!is_vm_hugetlb_page(vmf->vma))
433 must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags,
434 reason);
435 else
436 must_wait = userfaultfd_huge_must_wait(ctx, vmf->address,
437 vmf->flags, reason);
8d2afd96
AA
438 up_read(&mm->mmap_sem);
439
440 if (likely(must_wait && !ACCESS_ONCE(ctx->released) &&
dfa37dc3
AA
441 (return_to_userland ? !signal_pending(current) :
442 !fatal_signal_pending(current)))) {
86039bd3
AA
443 wake_up_poll(&ctx->fd_wqh, POLLIN);
444 schedule();
ba85c702 445 ret |= VM_FAULT_MAJOR;
15a77c6f
AA
446
447 /*
448 * False wakeups can orginate even from rwsem before
449 * up_read() however userfaults will wait either for a
450 * targeted wakeup on the specific uwq waitqueue from
451 * wake_userfault() or for signals or for uffd
452 * release.
453 */
454 while (!READ_ONCE(uwq.waken)) {
455 /*
456 * This needs the full smp_store_mb()
457 * guarantee as the state write must be
458 * visible to other CPUs before reading
459 * uwq.waken from other CPUs.
460 */
461 set_current_state(blocking_state);
462 if (READ_ONCE(uwq.waken) ||
463 READ_ONCE(ctx->released) ||
464 (return_to_userland ? signal_pending(current) :
465 fatal_signal_pending(current)))
466 break;
467 schedule();
468 }
ba85c702 469 }
86039bd3 470
ba85c702 471 __set_current_state(TASK_RUNNING);
15b726ef 472
dfa37dc3
AA
473 if (return_to_userland) {
474 if (signal_pending(current) &&
475 !fatal_signal_pending(current)) {
476 /*
477 * If we got a SIGSTOP or SIGCONT and this is
478 * a normal userland page fault, just let
479 * userland return so the signal will be
480 * handled and gdb debugging works. The page
481 * fault code immediately after we return from
482 * this function is going to release the
483 * mmap_sem and it's not depending on it
484 * (unlike gup would if we were not to return
485 * VM_FAULT_RETRY).
486 *
487 * If a fatal signal is pending we still take
488 * the streamlined VM_FAULT_RETRY failure path
489 * and there's no need to retake the mmap_sem
490 * in such case.
491 */
492 down_read(&mm->mmap_sem);
6bbc4a41 493 ret = VM_FAULT_NOPAGE;
dfa37dc3
AA
494 }
495 }
496
15b726ef
AA
497 /*
498 * Here we race with the list_del; list_add in
499 * userfaultfd_ctx_read(), however because we don't ever run
500 * list_del_init() to refile across the two lists, the prev
501 * and next pointers will never point to self. list_add also
502 * would never let any of the two pointers to point to
503 * self. So list_empty_careful won't risk to see both pointers
504 * pointing to self at any time during the list refile. The
505 * only case where list_del_init() is called is the full
506 * removal in the wake function and there we don't re-list_add
507 * and it's fine not to block on the spinlock. The uwq on this
508 * kernel stack can be released after the list_del_init.
509 */
ba85c702 510 if (!list_empty_careful(&uwq.wq.task_list)) {
15b726ef
AA
511 spin_lock(&ctx->fault_pending_wqh.lock);
512 /*
513 * No need of list_del_init(), the uwq on the stack
514 * will be freed shortly anyway.
515 */
516 list_del(&uwq.wq.task_list);
517 spin_unlock(&ctx->fault_pending_wqh.lock);
86039bd3 518 }
86039bd3
AA
519
520 /*
521 * ctx may go away after this if the userfault pseudo fd is
522 * already released.
523 */
524 userfaultfd_ctx_put(ctx);
525
ba85c702
AA
526out:
527 return ret;
86039bd3
AA
528}
529
893e26e6
PE
530static int userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
531 struct userfaultfd_wait_queue *ewq)
9cd75c3c
PE
532{
533 int ret = 0;
534
535 ewq->ctx = ctx;
536 init_waitqueue_entry(&ewq->wq, current);
537
538 spin_lock(&ctx->event_wqh.lock);
539 /*
540 * After the __add_wait_queue the uwq is visible to userland
541 * through poll/read().
542 */
543 __add_wait_queue(&ctx->event_wqh, &ewq->wq);
544 for (;;) {
545 set_current_state(TASK_KILLABLE);
546 if (ewq->msg.event == 0)
547 break;
548 if (ACCESS_ONCE(ctx->released) ||
549 fatal_signal_pending(current)) {
550 ret = -1;
551 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
552 break;
553 }
554
555 spin_unlock(&ctx->event_wqh.lock);
556
557 wake_up_poll(&ctx->fd_wqh, POLLIN);
558 schedule();
559
560 spin_lock(&ctx->event_wqh.lock);
561 }
562 __set_current_state(TASK_RUNNING);
563 spin_unlock(&ctx->event_wqh.lock);
564
565 /*
566 * ctx may go away after this if the userfault pseudo fd is
567 * already released.
568 */
569
570 userfaultfd_ctx_put(ctx);
571 return ret;
572}
573
574static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
575 struct userfaultfd_wait_queue *ewq)
576{
577 ewq->msg.event = 0;
578 wake_up_locked(&ctx->event_wqh);
579 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
580}
581
893e26e6
PE
582int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
583{
584 struct userfaultfd_ctx *ctx = NULL, *octx;
585 struct userfaultfd_fork_ctx *fctx;
586
587 octx = vma->vm_userfaultfd_ctx.ctx;
588 if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) {
589 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
590 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
591 return 0;
592 }
593
594 list_for_each_entry(fctx, fcs, list)
595 if (fctx->orig == octx) {
596 ctx = fctx->new;
597 break;
598 }
599
600 if (!ctx) {
601 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
602 if (!fctx)
603 return -ENOMEM;
604
605 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
606 if (!ctx) {
607 kfree(fctx);
608 return -ENOMEM;
609 }
610
611 atomic_set(&ctx->refcount, 1);
612 ctx->flags = octx->flags;
613 ctx->state = UFFD_STATE_RUNNING;
614 ctx->features = octx->features;
615 ctx->released = false;
616 ctx->mm = vma->vm_mm;
d3aadc8e 617 atomic_inc(&ctx->mm->mm_count);
893e26e6
PE
618
619 userfaultfd_ctx_get(octx);
620 fctx->orig = octx;
621 fctx->new = ctx;
622 list_add_tail(&fctx->list, fcs);
623 }
624
625 vma->vm_userfaultfd_ctx.ctx = ctx;
626 return 0;
627}
628
629static int dup_fctx(struct userfaultfd_fork_ctx *fctx)
630{
631 struct userfaultfd_ctx *ctx = fctx->orig;
632 struct userfaultfd_wait_queue ewq;
633
634 msg_init(&ewq.msg);
635
636 ewq.msg.event = UFFD_EVENT_FORK;
637 ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;
638
639 return userfaultfd_event_wait_completion(ctx, &ewq);
640}
641
642void dup_userfaultfd_complete(struct list_head *fcs)
643{
644 int ret = 0;
645 struct userfaultfd_fork_ctx *fctx, *n;
646
647 list_for_each_entry_safe(fctx, n, fcs, list) {
648 if (!ret)
649 ret = dup_fctx(fctx);
650 list_del(&fctx->list);
651 kfree(fctx);
652 }
653}
654
72f87654
PE
655void mremap_userfaultfd_prep(struct vm_area_struct *vma,
656 struct vm_userfaultfd_ctx *vm_ctx)
657{
658 struct userfaultfd_ctx *ctx;
659
660 ctx = vma->vm_userfaultfd_ctx.ctx;
661 if (ctx && (ctx->features & UFFD_FEATURE_EVENT_REMAP)) {
662 vm_ctx->ctx = ctx;
663 userfaultfd_ctx_get(ctx);
664 }
665}
666
90794bf1 667void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx,
72f87654
PE
668 unsigned long from, unsigned long to,
669 unsigned long len)
670{
90794bf1 671 struct userfaultfd_ctx *ctx = vm_ctx->ctx;
72f87654
PE
672 struct userfaultfd_wait_queue ewq;
673
674 if (!ctx)
675 return;
676
677 if (to & ~PAGE_MASK) {
678 userfaultfd_ctx_put(ctx);
679 return;
680 }
681
682 msg_init(&ewq.msg);
683
684 ewq.msg.event = UFFD_EVENT_REMAP;
685 ewq.msg.arg.remap.from = from;
686 ewq.msg.arg.remap.to = to;
687 ewq.msg.arg.remap.len = len;
688
689 userfaultfd_event_wait_completion(ctx, &ewq);
690}
691
d811914d
MR
692void userfaultfd_remove(struct vm_area_struct *vma,
693 struct vm_area_struct **prev,
694 unsigned long start, unsigned long end)
05ce7724
PE
695{
696 struct mm_struct *mm = vma->vm_mm;
697 struct userfaultfd_ctx *ctx;
698 struct userfaultfd_wait_queue ewq;
699
700 ctx = vma->vm_userfaultfd_ctx.ctx;
d811914d 701 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE))
05ce7724
PE
702 return;
703
704 userfaultfd_ctx_get(ctx);
705 up_read(&mm->mmap_sem);
706
707 *prev = NULL; /* We wait for ACK w/o the mmap semaphore */
708
709 msg_init(&ewq.msg);
710
d811914d
MR
711 ewq.msg.event = UFFD_EVENT_REMOVE;
712 ewq.msg.arg.remove.start = start;
713 ewq.msg.arg.remove.end = end;
05ce7724
PE
714
715 userfaultfd_event_wait_completion(ctx, &ewq);
716
717 down_read(&mm->mmap_sem);
718}
719
897ab3e0
MR
720static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps,
721 unsigned long start, unsigned long end)
722{
723 struct userfaultfd_unmap_ctx *unmap_ctx;
724
725 list_for_each_entry(unmap_ctx, unmaps, list)
726 if (unmap_ctx->ctx == ctx && unmap_ctx->start == start &&
727 unmap_ctx->end == end)
728 return true;
729
730 return false;
731}
732
733int userfaultfd_unmap_prep(struct vm_area_struct *vma,
734 unsigned long start, unsigned long end,
735 struct list_head *unmaps)
736{
737 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
738 struct userfaultfd_unmap_ctx *unmap_ctx;
739 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
740
741 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) ||
742 has_unmap_ctx(ctx, unmaps, start, end))
743 continue;
744
745 unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL);
746 if (!unmap_ctx)
747 return -ENOMEM;
748
749 userfaultfd_ctx_get(ctx);
750 unmap_ctx->ctx = ctx;
751 unmap_ctx->start = start;
752 unmap_ctx->end = end;
753 list_add_tail(&unmap_ctx->list, unmaps);
754 }
755
756 return 0;
757}
758
759void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf)
760{
761 struct userfaultfd_unmap_ctx *ctx, *n;
762 struct userfaultfd_wait_queue ewq;
763
764 list_for_each_entry_safe(ctx, n, uf, list) {
765 msg_init(&ewq.msg);
766
767 ewq.msg.event = UFFD_EVENT_UNMAP;
768 ewq.msg.arg.remove.start = ctx->start;
769 ewq.msg.arg.remove.end = ctx->end;
770
771 userfaultfd_event_wait_completion(ctx->ctx, &ewq);
772
773 list_del(&ctx->list);
774 kfree(ctx);
775 }
776}
777
86039bd3
AA
778static int userfaultfd_release(struct inode *inode, struct file *file)
779{
780 struct userfaultfd_ctx *ctx = file->private_data;
781 struct mm_struct *mm = ctx->mm;
782 struct vm_area_struct *vma, *prev;
783 /* len == 0 means wake all */
784 struct userfaultfd_wake_range range = { .len = 0, };
785 unsigned long new_flags;
786
787 ACCESS_ONCE(ctx->released) = true;
788
d2005e3f
ON
789 if (!mmget_not_zero(mm))
790 goto wakeup;
791
86039bd3
AA
792 /*
793 * Flush page faults out of all CPUs. NOTE: all page faults
794 * must be retried without returning VM_FAULT_SIGBUS if
795 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
796 * changes while handle_userfault released the mmap_sem. So
797 * it's critical that released is set to true (above), before
798 * taking the mmap_sem for writing.
799 */
800 down_write(&mm->mmap_sem);
801 prev = NULL;
802 for (vma = mm->mmap; vma; vma = vma->vm_next) {
803 cond_resched();
804 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
805 !!(vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
806 if (vma->vm_userfaultfd_ctx.ctx != ctx) {
807 prev = vma;
808 continue;
809 }
810 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
811 prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end,
812 new_flags, vma->anon_vma,
813 vma->vm_file, vma->vm_pgoff,
814 vma_policy(vma),
815 NULL_VM_UFFD_CTX);
816 if (prev)
817 vma = prev;
818 else
819 prev = vma;
820 vma->vm_flags = new_flags;
821 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
822 }
823 up_write(&mm->mmap_sem);
d2005e3f
ON
824 mmput(mm);
825wakeup:
86039bd3 826 /*
15b726ef 827 * After no new page faults can wait on this fault_*wqh, flush
86039bd3 828 * the last page faults that may have been already waiting on
15b726ef 829 * the fault_*wqh.
86039bd3 830 */
15b726ef 831 spin_lock(&ctx->fault_pending_wqh.lock);
ac5be6b4
AA
832 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
833 __wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, &range);
15b726ef 834 spin_unlock(&ctx->fault_pending_wqh.lock);
86039bd3
AA
835
836 wake_up_poll(&ctx->fd_wqh, POLLHUP);
837 userfaultfd_ctx_put(ctx);
838 return 0;
839}
840
15b726ef 841/* fault_pending_wqh.lock must be hold by the caller */
6dcc27fd
PE
842static inline struct userfaultfd_wait_queue *find_userfault_in(
843 wait_queue_head_t *wqh)
86039bd3
AA
844{
845 wait_queue_t *wq;
15b726ef 846 struct userfaultfd_wait_queue *uwq;
86039bd3 847
6dcc27fd 848 VM_BUG_ON(!spin_is_locked(&wqh->lock));
86039bd3 849
15b726ef 850 uwq = NULL;
6dcc27fd 851 if (!waitqueue_active(wqh))
15b726ef
AA
852 goto out;
853 /* walk in reverse to provide FIFO behavior to read userfaults */
6dcc27fd 854 wq = list_last_entry(&wqh->task_list, typeof(*wq), task_list);
15b726ef
AA
855 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
856out:
857 return uwq;
86039bd3 858}
6dcc27fd
PE
859
860static inline struct userfaultfd_wait_queue *find_userfault(
861 struct userfaultfd_ctx *ctx)
862{
863 return find_userfault_in(&ctx->fault_pending_wqh);
864}
86039bd3 865
9cd75c3c
PE
866static inline struct userfaultfd_wait_queue *find_userfault_evt(
867 struct userfaultfd_ctx *ctx)
868{
869 return find_userfault_in(&ctx->event_wqh);
870}
871
86039bd3
AA
872static unsigned int userfaultfd_poll(struct file *file, poll_table *wait)
873{
874 struct userfaultfd_ctx *ctx = file->private_data;
875 unsigned int ret;
876
877 poll_wait(file, &ctx->fd_wqh, wait);
878
879 switch (ctx->state) {
880 case UFFD_STATE_WAIT_API:
881 return POLLERR;
882 case UFFD_STATE_RUNNING:
ba85c702
AA
883 /*
884 * poll() never guarantees that read won't block.
885 * userfaults can be waken before they're read().
886 */
887 if (unlikely(!(file->f_flags & O_NONBLOCK)))
888 return POLLERR;
15b726ef
AA
889 /*
890 * lockless access to see if there are pending faults
891 * __pollwait last action is the add_wait_queue but
892 * the spin_unlock would allow the waitqueue_active to
893 * pass above the actual list_add inside
894 * add_wait_queue critical section. So use a full
895 * memory barrier to serialize the list_add write of
896 * add_wait_queue() with the waitqueue_active read
897 * below.
898 */
899 ret = 0;
900 smp_mb();
901 if (waitqueue_active(&ctx->fault_pending_wqh))
902 ret = POLLIN;
9cd75c3c
PE
903 else if (waitqueue_active(&ctx->event_wqh))
904 ret = POLLIN;
905
86039bd3
AA
906 return ret;
907 default:
8474901a
AA
908 WARN_ON_ONCE(1);
909 return POLLERR;
86039bd3
AA
910 }
911}
912
893e26e6
PE
913static const struct file_operations userfaultfd_fops;
914
915static int resolve_userfault_fork(struct userfaultfd_ctx *ctx,
916 struct userfaultfd_ctx *new,
917 struct uffd_msg *msg)
918{
919 int fd;
920 struct file *file;
921 unsigned int flags = new->flags & UFFD_SHARED_FCNTL_FLAGS;
922
923 fd = get_unused_fd_flags(flags);
924 if (fd < 0)
925 return fd;
926
927 file = anon_inode_getfile("[userfaultfd]", &userfaultfd_fops, new,
928 O_RDWR | flags);
929 if (IS_ERR(file)) {
930 put_unused_fd(fd);
931 return PTR_ERR(file);
932 }
933
934 fd_install(fd, file);
935 msg->arg.reserved.reserved1 = 0;
936 msg->arg.fork.ufd = fd;
937
938 return 0;
939}
940
86039bd3 941static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
a9b85f94 942 struct uffd_msg *msg)
86039bd3
AA
943{
944 ssize_t ret;
945 DECLARE_WAITQUEUE(wait, current);
15b726ef 946 struct userfaultfd_wait_queue *uwq;
893e26e6
PE
947 /*
948 * Handling fork event requires sleeping operations, so
949 * we drop the event_wqh lock, then do these ops, then
950 * lock it back and wake up the waiter. While the lock is
951 * dropped the ewq may go away so we keep track of it
952 * carefully.
953 */
954 LIST_HEAD(fork_event);
955 struct userfaultfd_ctx *fork_nctx = NULL;
86039bd3 956
15b726ef 957 /* always take the fd_wqh lock before the fault_pending_wqh lock */
86039bd3
AA
958 spin_lock(&ctx->fd_wqh.lock);
959 __add_wait_queue(&ctx->fd_wqh, &wait);
960 for (;;) {
961 set_current_state(TASK_INTERRUPTIBLE);
15b726ef
AA
962 spin_lock(&ctx->fault_pending_wqh.lock);
963 uwq = find_userfault(ctx);
964 if (uwq) {
2c5b7e1b
AA
965 /*
966 * Use a seqcount to repeat the lockless check
967 * in wake_userfault() to avoid missing
968 * wakeups because during the refile both
969 * waitqueue could become empty if this is the
970 * only userfault.
971 */
972 write_seqcount_begin(&ctx->refile_seq);
973
86039bd3 974 /*
15b726ef
AA
975 * The fault_pending_wqh.lock prevents the uwq
976 * to disappear from under us.
977 *
978 * Refile this userfault from
979 * fault_pending_wqh to fault_wqh, it's not
980 * pending anymore after we read it.
981 *
982 * Use list_del() by hand (as
983 * userfaultfd_wake_function also uses
984 * list_del_init() by hand) to be sure nobody
985 * changes __remove_wait_queue() to use
986 * list_del_init() in turn breaking the
987 * !list_empty_careful() check in
988 * handle_userfault(). The uwq->wq.task_list
989 * must never be empty at any time during the
990 * refile, or the waitqueue could disappear
991 * from under us. The "wait_queue_head_t"
992 * parameter of __remove_wait_queue() is unused
993 * anyway.
86039bd3 994 */
15b726ef
AA
995 list_del(&uwq->wq.task_list);
996 __add_wait_queue(&ctx->fault_wqh, &uwq->wq);
997
2c5b7e1b
AA
998 write_seqcount_end(&ctx->refile_seq);
999
a9b85f94
AA
1000 /* careful to always initialize msg if ret == 0 */
1001 *msg = uwq->msg;
15b726ef 1002 spin_unlock(&ctx->fault_pending_wqh.lock);
86039bd3
AA
1003 ret = 0;
1004 break;
1005 }
15b726ef 1006 spin_unlock(&ctx->fault_pending_wqh.lock);
9cd75c3c
PE
1007
1008 spin_lock(&ctx->event_wqh.lock);
1009 uwq = find_userfault_evt(ctx);
1010 if (uwq) {
1011 *msg = uwq->msg;
1012
893e26e6
PE
1013 if (uwq->msg.event == UFFD_EVENT_FORK) {
1014 fork_nctx = (struct userfaultfd_ctx *)
1015 (unsigned long)
1016 uwq->msg.arg.reserved.reserved1;
1017 list_move(&uwq->wq.task_list, &fork_event);
1018 spin_unlock(&ctx->event_wqh.lock);
1019 ret = 0;
1020 break;
1021 }
1022
9cd75c3c
PE
1023 userfaultfd_event_complete(ctx, uwq);
1024 spin_unlock(&ctx->event_wqh.lock);
1025 ret = 0;
1026 break;
1027 }
1028 spin_unlock(&ctx->event_wqh.lock);
1029
86039bd3
AA
1030 if (signal_pending(current)) {
1031 ret = -ERESTARTSYS;
1032 break;
1033 }
1034 if (no_wait) {
1035 ret = -EAGAIN;
1036 break;
1037 }
1038 spin_unlock(&ctx->fd_wqh.lock);
1039 schedule();
1040 spin_lock(&ctx->fd_wqh.lock);
1041 }
1042 __remove_wait_queue(&ctx->fd_wqh, &wait);
1043 __set_current_state(TASK_RUNNING);
1044 spin_unlock(&ctx->fd_wqh.lock);
1045
893e26e6
PE
1046 if (!ret && msg->event == UFFD_EVENT_FORK) {
1047 ret = resolve_userfault_fork(ctx, fork_nctx, msg);
1048
1049 if (!ret) {
1050 spin_lock(&ctx->event_wqh.lock);
1051 if (!list_empty(&fork_event)) {
1052 uwq = list_first_entry(&fork_event,
1053 typeof(*uwq),
1054 wq.task_list);
1055 list_del(&uwq->wq.task_list);
1056 __add_wait_queue(&ctx->event_wqh, &uwq->wq);
1057 userfaultfd_event_complete(ctx, uwq);
1058 }
1059 spin_unlock(&ctx->event_wqh.lock);
1060 }
1061 }
1062
86039bd3
AA
1063 return ret;
1064}
1065
1066static ssize_t userfaultfd_read(struct file *file, char __user *buf,
1067 size_t count, loff_t *ppos)
1068{
1069 struct userfaultfd_ctx *ctx = file->private_data;
1070 ssize_t _ret, ret = 0;
a9b85f94 1071 struct uffd_msg msg;
86039bd3
AA
1072 int no_wait = file->f_flags & O_NONBLOCK;
1073
1074 if (ctx->state == UFFD_STATE_WAIT_API)
1075 return -EINVAL;
86039bd3
AA
1076
1077 for (;;) {
a9b85f94 1078 if (count < sizeof(msg))
86039bd3 1079 return ret ? ret : -EINVAL;
a9b85f94 1080 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg);
86039bd3
AA
1081 if (_ret < 0)
1082 return ret ? ret : _ret;
a9b85f94 1083 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
86039bd3 1084 return ret ? ret : -EFAULT;
a9b85f94
AA
1085 ret += sizeof(msg);
1086 buf += sizeof(msg);
1087 count -= sizeof(msg);
86039bd3
AA
1088 /*
1089 * Allow to read more than one fault at time but only
1090 * block if waiting for the very first one.
1091 */
1092 no_wait = O_NONBLOCK;
1093 }
1094}
1095
1096static void __wake_userfault(struct userfaultfd_ctx *ctx,
1097 struct userfaultfd_wake_range *range)
1098{
1099 unsigned long start, end;
1100
1101 start = range->start;
1102 end = range->start + range->len;
1103
15b726ef 1104 spin_lock(&ctx->fault_pending_wqh.lock);
86039bd3 1105 /* wake all in the range and autoremove */
15b726ef 1106 if (waitqueue_active(&ctx->fault_pending_wqh))
ac5be6b4 1107 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
15b726ef
AA
1108 range);
1109 if (waitqueue_active(&ctx->fault_wqh))
ac5be6b4 1110 __wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, range);
15b726ef 1111 spin_unlock(&ctx->fault_pending_wqh.lock);
86039bd3
AA
1112}
1113
1114static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
1115 struct userfaultfd_wake_range *range)
1116{
2c5b7e1b
AA
1117 unsigned seq;
1118 bool need_wakeup;
1119
86039bd3
AA
1120 /*
1121 * To be sure waitqueue_active() is not reordered by the CPU
1122 * before the pagetable update, use an explicit SMP memory
1123 * barrier here. PT lock release or up_read(mmap_sem) still
1124 * have release semantics that can allow the
1125 * waitqueue_active() to be reordered before the pte update.
1126 */
1127 smp_mb();
1128
1129 /*
1130 * Use waitqueue_active because it's very frequent to
1131 * change the address space atomically even if there are no
1132 * userfaults yet. So we take the spinlock only when we're
1133 * sure we've userfaults to wake.
1134 */
2c5b7e1b
AA
1135 do {
1136 seq = read_seqcount_begin(&ctx->refile_seq);
1137 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
1138 waitqueue_active(&ctx->fault_wqh);
1139 cond_resched();
1140 } while (read_seqcount_retry(&ctx->refile_seq, seq));
1141 if (need_wakeup)
86039bd3
AA
1142 __wake_userfault(ctx, range);
1143}
1144
1145static __always_inline int validate_range(struct mm_struct *mm,
1146 __u64 start, __u64 len)
1147{
1148 __u64 task_size = mm->task_size;
1149
1150 if (start & ~PAGE_MASK)
1151 return -EINVAL;
1152 if (len & ~PAGE_MASK)
1153 return -EINVAL;
1154 if (!len)
1155 return -EINVAL;
1156 if (start < mmap_min_addr)
1157 return -EINVAL;
1158 if (start >= task_size)
1159 return -EINVAL;
1160 if (len > task_size - start)
1161 return -EINVAL;
1162 return 0;
1163}
1164
ba6907db
MR
1165static inline bool vma_can_userfault(struct vm_area_struct *vma)
1166{
cac67329
MR
1167 return vma_is_anonymous(vma) || is_vm_hugetlb_page(vma) ||
1168 vma_is_shmem(vma);
ba6907db
MR
1169}
1170
86039bd3
AA
1171static int userfaultfd_register(struct userfaultfd_ctx *ctx,
1172 unsigned long arg)
1173{
1174 struct mm_struct *mm = ctx->mm;
1175 struct vm_area_struct *vma, *prev, *cur;
1176 int ret;
1177 struct uffdio_register uffdio_register;
1178 struct uffdio_register __user *user_uffdio_register;
1179 unsigned long vm_flags, new_flags;
1180 bool found;
cac67329 1181 bool non_anon_pages;
86039bd3
AA
1182 unsigned long start, end, vma_end;
1183
1184 user_uffdio_register = (struct uffdio_register __user *) arg;
1185
1186 ret = -EFAULT;
1187 if (copy_from_user(&uffdio_register, user_uffdio_register,
1188 sizeof(uffdio_register)-sizeof(__u64)))
1189 goto out;
1190
1191 ret = -EINVAL;
1192 if (!uffdio_register.mode)
1193 goto out;
1194 if (uffdio_register.mode & ~(UFFDIO_REGISTER_MODE_MISSING|
1195 UFFDIO_REGISTER_MODE_WP))
1196 goto out;
1197 vm_flags = 0;
1198 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
1199 vm_flags |= VM_UFFD_MISSING;
1200 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
1201 vm_flags |= VM_UFFD_WP;
1202 /*
1203 * FIXME: remove the below error constraint by
1204 * implementing the wprotect tracking mode.
1205 */
1206 ret = -EINVAL;
1207 goto out;
1208 }
1209
1210 ret = validate_range(mm, uffdio_register.range.start,
1211 uffdio_register.range.len);
1212 if (ret)
1213 goto out;
1214
1215 start = uffdio_register.range.start;
1216 end = start + uffdio_register.range.len;
1217
d2005e3f
ON
1218 ret = -ENOMEM;
1219 if (!mmget_not_zero(mm))
1220 goto out;
1221
86039bd3
AA
1222 down_write(&mm->mmap_sem);
1223 vma = find_vma_prev(mm, start, &prev);
86039bd3
AA
1224 if (!vma)
1225 goto out_unlock;
1226
1227 /* check that there's at least one vma in the range */
1228 ret = -EINVAL;
1229 if (vma->vm_start >= end)
1230 goto out_unlock;
1231
cab350af
MK
1232 /*
1233 * If the first vma contains huge pages, make sure start address
1234 * is aligned to huge page size.
1235 */
1236 if (is_vm_hugetlb_page(vma)) {
1237 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1238
1239 if (start & (vma_hpagesize - 1))
1240 goto out_unlock;
1241 }
1242
86039bd3
AA
1243 /*
1244 * Search for not compatible vmas.
86039bd3
AA
1245 */
1246 found = false;
cac67329 1247 non_anon_pages = false;
86039bd3
AA
1248 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1249 cond_resched();
1250
1251 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1252 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1253
1254 /* check not compatible vmas */
1255 ret = -EINVAL;
ba6907db 1256 if (!vma_can_userfault(cur))
86039bd3 1257 goto out_unlock;
cab350af
MK
1258 /*
1259 * If this vma contains ending address, and huge pages
1260 * check alignment.
1261 */
1262 if (is_vm_hugetlb_page(cur) && end <= cur->vm_end &&
1263 end > cur->vm_start) {
1264 unsigned long vma_hpagesize = vma_kernel_pagesize(cur);
1265
1266 ret = -EINVAL;
1267
1268 if (end & (vma_hpagesize - 1))
1269 goto out_unlock;
1270 }
86039bd3
AA
1271
1272 /*
1273 * Check that this vma isn't already owned by a
1274 * different userfaultfd. We can't allow more than one
1275 * userfaultfd to own a single vma simultaneously or we
1276 * wouldn't know which one to deliver the userfaults to.
1277 */
1278 ret = -EBUSY;
1279 if (cur->vm_userfaultfd_ctx.ctx &&
1280 cur->vm_userfaultfd_ctx.ctx != ctx)
1281 goto out_unlock;
1282
cab350af
MK
1283 /*
1284 * Note vmas containing huge pages
1285 */
cac67329
MR
1286 if (is_vm_hugetlb_page(cur) || vma_is_shmem(cur))
1287 non_anon_pages = true;
cab350af 1288
86039bd3
AA
1289 found = true;
1290 }
1291 BUG_ON(!found);
1292
1293 if (vma->vm_start < start)
1294 prev = vma;
1295
1296 ret = 0;
1297 do {
1298 cond_resched();
1299
ba6907db 1300 BUG_ON(!vma_can_userfault(vma));
86039bd3
AA
1301 BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
1302 vma->vm_userfaultfd_ctx.ctx != ctx);
1303
1304 /*
1305 * Nothing to do: this vma is already registered into this
1306 * userfaultfd and with the right tracking mode too.
1307 */
1308 if (vma->vm_userfaultfd_ctx.ctx == ctx &&
1309 (vma->vm_flags & vm_flags) == vm_flags)
1310 goto skip;
1311
1312 if (vma->vm_start > start)
1313 start = vma->vm_start;
1314 vma_end = min(end, vma->vm_end);
1315
1316 new_flags = (vma->vm_flags & ~vm_flags) | vm_flags;
1317 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1318 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1319 vma_policy(vma),
1320 ((struct vm_userfaultfd_ctx){ ctx }));
1321 if (prev) {
1322 vma = prev;
1323 goto next;
1324 }
1325 if (vma->vm_start < start) {
1326 ret = split_vma(mm, vma, start, 1);
1327 if (ret)
1328 break;
1329 }
1330 if (vma->vm_end > end) {
1331 ret = split_vma(mm, vma, end, 0);
1332 if (ret)
1333 break;
1334 }
1335 next:
1336 /*
1337 * In the vma_merge() successful mprotect-like case 8:
1338 * the next vma was merged into the current one and
1339 * the current one has not been updated yet.
1340 */
1341 vma->vm_flags = new_flags;
1342 vma->vm_userfaultfd_ctx.ctx = ctx;
1343
1344 skip:
1345 prev = vma;
1346 start = vma->vm_end;
1347 vma = vma->vm_next;
1348 } while (vma && vma->vm_start < end);
1349out_unlock:
1350 up_write(&mm->mmap_sem);
d2005e3f 1351 mmput(mm);
86039bd3
AA
1352 if (!ret) {
1353 /*
1354 * Now that we scanned all vmas we can already tell
1355 * userland which ioctls methods are guaranteed to
1356 * succeed on this range.
1357 */
cac67329 1358 if (put_user(non_anon_pages ? UFFD_API_RANGE_IOCTLS_BASIC :
cab350af 1359 UFFD_API_RANGE_IOCTLS,
86039bd3
AA
1360 &user_uffdio_register->ioctls))
1361 ret = -EFAULT;
1362 }
1363out:
1364 return ret;
1365}
1366
1367static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
1368 unsigned long arg)
1369{
1370 struct mm_struct *mm = ctx->mm;
1371 struct vm_area_struct *vma, *prev, *cur;
1372 int ret;
1373 struct uffdio_range uffdio_unregister;
1374 unsigned long new_flags;
1375 bool found;
1376 unsigned long start, end, vma_end;
1377 const void __user *buf = (void __user *)arg;
1378
1379 ret = -EFAULT;
1380 if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
1381 goto out;
1382
1383 ret = validate_range(mm, uffdio_unregister.start,
1384 uffdio_unregister.len);
1385 if (ret)
1386 goto out;
1387
1388 start = uffdio_unregister.start;
1389 end = start + uffdio_unregister.len;
1390
d2005e3f
ON
1391 ret = -ENOMEM;
1392 if (!mmget_not_zero(mm))
1393 goto out;
1394
86039bd3
AA
1395 down_write(&mm->mmap_sem);
1396 vma = find_vma_prev(mm, start, &prev);
86039bd3
AA
1397 if (!vma)
1398 goto out_unlock;
1399
1400 /* check that there's at least one vma in the range */
1401 ret = -EINVAL;
1402 if (vma->vm_start >= end)
1403 goto out_unlock;
1404
cab350af
MK
1405 /*
1406 * If the first vma contains huge pages, make sure start address
1407 * is aligned to huge page size.
1408 */
1409 if (is_vm_hugetlb_page(vma)) {
1410 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1411
1412 if (start & (vma_hpagesize - 1))
1413 goto out_unlock;
1414 }
1415
86039bd3
AA
1416 /*
1417 * Search for not compatible vmas.
86039bd3
AA
1418 */
1419 found = false;
1420 ret = -EINVAL;
1421 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1422 cond_resched();
1423
1424 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1425 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1426
1427 /*
1428 * Check not compatible vmas, not strictly required
1429 * here as not compatible vmas cannot have an
1430 * userfaultfd_ctx registered on them, but this
1431 * provides for more strict behavior to notice
1432 * unregistration errors.
1433 */
ba6907db 1434 if (!vma_can_userfault(cur))
86039bd3
AA
1435 goto out_unlock;
1436
1437 found = true;
1438 }
1439 BUG_ON(!found);
1440
1441 if (vma->vm_start < start)
1442 prev = vma;
1443
1444 ret = 0;
1445 do {
1446 cond_resched();
1447
ba6907db 1448 BUG_ON(!vma_can_userfault(vma));
86039bd3
AA
1449
1450 /*
1451 * Nothing to do: this vma is already registered into this
1452 * userfaultfd and with the right tracking mode too.
1453 */
1454 if (!vma->vm_userfaultfd_ctx.ctx)
1455 goto skip;
1456
1457 if (vma->vm_start > start)
1458 start = vma->vm_start;
1459 vma_end = min(end, vma->vm_end);
1460
09fa5296
AA
1461 if (userfaultfd_missing(vma)) {
1462 /*
1463 * Wake any concurrent pending userfault while
1464 * we unregister, so they will not hang
1465 * permanently and it avoids userland to call
1466 * UFFDIO_WAKE explicitly.
1467 */
1468 struct userfaultfd_wake_range range;
1469 range.start = start;
1470 range.len = vma_end - start;
1471 wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range);
1472 }
1473
86039bd3
AA
1474 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
1475 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1476 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1477 vma_policy(vma),
1478 NULL_VM_UFFD_CTX);
1479 if (prev) {
1480 vma = prev;
1481 goto next;
1482 }
1483 if (vma->vm_start < start) {
1484 ret = split_vma(mm, vma, start, 1);
1485 if (ret)
1486 break;
1487 }
1488 if (vma->vm_end > end) {
1489 ret = split_vma(mm, vma, end, 0);
1490 if (ret)
1491 break;
1492 }
1493 next:
1494 /*
1495 * In the vma_merge() successful mprotect-like case 8:
1496 * the next vma was merged into the current one and
1497 * the current one has not been updated yet.
1498 */
1499 vma->vm_flags = new_flags;
1500 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1501
1502 skip:
1503 prev = vma;
1504 start = vma->vm_end;
1505 vma = vma->vm_next;
1506 } while (vma && vma->vm_start < end);
1507out_unlock:
1508 up_write(&mm->mmap_sem);
d2005e3f 1509 mmput(mm);
86039bd3
AA
1510out:
1511 return ret;
1512}
1513
1514/*
ba85c702
AA
1515 * userfaultfd_wake may be used in combination with the
1516 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
86039bd3
AA
1517 */
1518static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1519 unsigned long arg)
1520{
1521 int ret;
1522 struct uffdio_range uffdio_wake;
1523 struct userfaultfd_wake_range range;
1524 const void __user *buf = (void __user *)arg;
1525
1526 ret = -EFAULT;
1527 if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1528 goto out;
1529
1530 ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len);
1531 if (ret)
1532 goto out;
1533
1534 range.start = uffdio_wake.start;
1535 range.len = uffdio_wake.len;
1536
1537 /*
1538 * len == 0 means wake all and we don't want to wake all here,
1539 * so check it again to be sure.
1540 */
1541 VM_BUG_ON(!range.len);
1542
1543 wake_userfault(ctx, &range);
1544 ret = 0;
1545
1546out:
1547 return ret;
1548}
1549
ad465cae
AA
1550static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1551 unsigned long arg)
1552{
1553 __s64 ret;
1554 struct uffdio_copy uffdio_copy;
1555 struct uffdio_copy __user *user_uffdio_copy;
1556 struct userfaultfd_wake_range range;
1557
1558 user_uffdio_copy = (struct uffdio_copy __user *) arg;
1559
1560 ret = -EFAULT;
1561 if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1562 /* don't copy "copy" last field */
1563 sizeof(uffdio_copy)-sizeof(__s64)))
1564 goto out;
1565
1566 ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len);
1567 if (ret)
1568 goto out;
1569 /*
1570 * double check for wraparound just in case. copy_from_user()
1571 * will later check uffdio_copy.src + uffdio_copy.len to fit
1572 * in the userland range.
1573 */
1574 ret = -EINVAL;
1575 if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src)
1576 goto out;
1577 if (uffdio_copy.mode & ~UFFDIO_COPY_MODE_DONTWAKE)
1578 goto out;
d2005e3f
ON
1579 if (mmget_not_zero(ctx->mm)) {
1580 ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src,
1581 uffdio_copy.len);
1582 mmput(ctx->mm);
96333187
MR
1583 } else {
1584 return -ENOSPC;
d2005e3f 1585 }
ad465cae
AA
1586 if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1587 return -EFAULT;
1588 if (ret < 0)
1589 goto out;
1590 BUG_ON(!ret);
1591 /* len == 0 would wake all */
1592 range.len = ret;
1593 if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1594 range.start = uffdio_copy.dst;
1595 wake_userfault(ctx, &range);
1596 }
1597 ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1598out:
1599 return ret;
1600}
1601
1602static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1603 unsigned long arg)
1604{
1605 __s64 ret;
1606 struct uffdio_zeropage uffdio_zeropage;
1607 struct uffdio_zeropage __user *user_uffdio_zeropage;
1608 struct userfaultfd_wake_range range;
1609
1610 user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1611
1612 ret = -EFAULT;
1613 if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1614 /* don't copy "zeropage" last field */
1615 sizeof(uffdio_zeropage)-sizeof(__s64)))
1616 goto out;
1617
1618 ret = validate_range(ctx->mm, uffdio_zeropage.range.start,
1619 uffdio_zeropage.range.len);
1620 if (ret)
1621 goto out;
1622 ret = -EINVAL;
1623 if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1624 goto out;
1625
d2005e3f
ON
1626 if (mmget_not_zero(ctx->mm)) {
1627 ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start,
1628 uffdio_zeropage.range.len);
1629 mmput(ctx->mm);
1630 }
ad465cae
AA
1631 if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1632 return -EFAULT;
1633 if (ret < 0)
1634 goto out;
1635 /* len == 0 would wake all */
1636 BUG_ON(!ret);
1637 range.len = ret;
1638 if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1639 range.start = uffdio_zeropage.range.start;
1640 wake_userfault(ctx, &range);
1641 }
1642 ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1643out:
1644 return ret;
1645}
1646
9cd75c3c
PE
1647static inline unsigned int uffd_ctx_features(__u64 user_features)
1648{
1649 /*
1650 * For the current set of features the bits just coincide
1651 */
1652 return (unsigned int)user_features;
1653}
1654
86039bd3
AA
1655/*
1656 * userland asks for a certain API version and we return which bits
1657 * and ioctl commands are implemented in this kernel for such API
1658 * version or -EINVAL if unknown.
1659 */
1660static int userfaultfd_api(struct userfaultfd_ctx *ctx,
1661 unsigned long arg)
1662{
1663 struct uffdio_api uffdio_api;
1664 void __user *buf = (void __user *)arg;
1665 int ret;
65603144 1666 __u64 features;
86039bd3
AA
1667
1668 ret = -EINVAL;
1669 if (ctx->state != UFFD_STATE_WAIT_API)
1670 goto out;
1671 ret = -EFAULT;
a9b85f94 1672 if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
86039bd3 1673 goto out;
65603144
AA
1674 features = uffdio_api.features;
1675 if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES)) {
86039bd3
AA
1676 memset(&uffdio_api, 0, sizeof(uffdio_api));
1677 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1678 goto out;
1679 ret = -EINVAL;
1680 goto out;
1681 }
65603144
AA
1682 /* report all available features and ioctls to userland */
1683 uffdio_api.features = UFFD_API_FEATURES;
86039bd3
AA
1684 uffdio_api.ioctls = UFFD_API_IOCTLS;
1685 ret = -EFAULT;
1686 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1687 goto out;
1688 ctx->state = UFFD_STATE_RUNNING;
65603144
AA
1689 /* only enable the requested features for this uffd context */
1690 ctx->features = uffd_ctx_features(features);
86039bd3
AA
1691 ret = 0;
1692out:
1693 return ret;
1694}
1695
1696static long userfaultfd_ioctl(struct file *file, unsigned cmd,
1697 unsigned long arg)
1698{
1699 int ret = -EINVAL;
1700 struct userfaultfd_ctx *ctx = file->private_data;
1701
e6485a47
AA
1702 if (cmd != UFFDIO_API && ctx->state == UFFD_STATE_WAIT_API)
1703 return -EINVAL;
1704
86039bd3
AA
1705 switch(cmd) {
1706 case UFFDIO_API:
1707 ret = userfaultfd_api(ctx, arg);
1708 break;
1709 case UFFDIO_REGISTER:
1710 ret = userfaultfd_register(ctx, arg);
1711 break;
1712 case UFFDIO_UNREGISTER:
1713 ret = userfaultfd_unregister(ctx, arg);
1714 break;
1715 case UFFDIO_WAKE:
1716 ret = userfaultfd_wake(ctx, arg);
1717 break;
ad465cae
AA
1718 case UFFDIO_COPY:
1719 ret = userfaultfd_copy(ctx, arg);
1720 break;
1721 case UFFDIO_ZEROPAGE:
1722 ret = userfaultfd_zeropage(ctx, arg);
1723 break;
86039bd3
AA
1724 }
1725 return ret;
1726}
1727
1728#ifdef CONFIG_PROC_FS
1729static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
1730{
1731 struct userfaultfd_ctx *ctx = f->private_data;
1732 wait_queue_t *wq;
1733 struct userfaultfd_wait_queue *uwq;
1734 unsigned long pending = 0, total = 0;
1735
15b726ef
AA
1736 spin_lock(&ctx->fault_pending_wqh.lock);
1737 list_for_each_entry(wq, &ctx->fault_pending_wqh.task_list, task_list) {
1738 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
1739 pending++;
1740 total++;
1741 }
86039bd3
AA
1742 list_for_each_entry(wq, &ctx->fault_wqh.task_list, task_list) {
1743 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
86039bd3
AA
1744 total++;
1745 }
15b726ef 1746 spin_unlock(&ctx->fault_pending_wqh.lock);
86039bd3
AA
1747
1748 /*
1749 * If more protocols will be added, there will be all shown
1750 * separated by a space. Like this:
1751 * protocols: aa:... bb:...
1752 */
1753 seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
3f602d27 1754 pending, total, UFFD_API, UFFD_API_FEATURES,
86039bd3
AA
1755 UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
1756}
1757#endif
1758
1759static const struct file_operations userfaultfd_fops = {
1760#ifdef CONFIG_PROC_FS
1761 .show_fdinfo = userfaultfd_show_fdinfo,
1762#endif
1763 .release = userfaultfd_release,
1764 .poll = userfaultfd_poll,
1765 .read = userfaultfd_read,
1766 .unlocked_ioctl = userfaultfd_ioctl,
1767 .compat_ioctl = userfaultfd_ioctl,
1768 .llseek = noop_llseek,
1769};
1770
3004ec9c
AA
1771static void init_once_userfaultfd_ctx(void *mem)
1772{
1773 struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
1774
1775 init_waitqueue_head(&ctx->fault_pending_wqh);
1776 init_waitqueue_head(&ctx->fault_wqh);
9cd75c3c 1777 init_waitqueue_head(&ctx->event_wqh);
3004ec9c 1778 init_waitqueue_head(&ctx->fd_wqh);
2c5b7e1b 1779 seqcount_init(&ctx->refile_seq);
3004ec9c
AA
1780}
1781
86039bd3 1782/**
9332ef9d 1783 * userfaultfd_file_create - Creates a userfaultfd file pointer.
86039bd3
AA
1784 * @flags: Flags for the userfaultfd file.
1785 *
9332ef9d 1786 * This function creates a userfaultfd file pointer, w/out installing
86039bd3
AA
1787 * it into the fd table. This is useful when the userfaultfd file is
1788 * used during the initialization of data structures that require
1789 * extra setup after the userfaultfd creation. So the userfaultfd
1790 * creation is split into the file pointer creation phase, and the
1791 * file descriptor installation phase. In this way races with
1792 * userspace closing the newly installed file descriptor can be
9332ef9d 1793 * avoided. Returns a userfaultfd file pointer, or a proper error
86039bd3
AA
1794 * pointer.
1795 */
1796static struct file *userfaultfd_file_create(int flags)
1797{
1798 struct file *file;
1799 struct userfaultfd_ctx *ctx;
1800
1801 BUG_ON(!current->mm);
1802
1803 /* Check the UFFD_* constants for consistency. */
1804 BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
1805 BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
1806
1807 file = ERR_PTR(-EINVAL);
1808 if (flags & ~UFFD_SHARED_FCNTL_FLAGS)
1809 goto out;
1810
1811 file = ERR_PTR(-ENOMEM);
3004ec9c 1812 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
86039bd3
AA
1813 if (!ctx)
1814 goto out;
1815
1816 atomic_set(&ctx->refcount, 1);
86039bd3 1817 ctx->flags = flags;
9cd75c3c 1818 ctx->features = 0;
86039bd3
AA
1819 ctx->state = UFFD_STATE_WAIT_API;
1820 ctx->released = false;
1821 ctx->mm = current->mm;
1822 /* prevent the mm struct to be freed */
f1f10076 1823 mmgrab(ctx->mm);
86039bd3
AA
1824
1825 file = anon_inode_getfile("[userfaultfd]", &userfaultfd_fops, ctx,
1826 O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS));
c03e946f 1827 if (IS_ERR(file)) {
d2005e3f 1828 mmdrop(ctx->mm);
3004ec9c 1829 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
c03e946f 1830 }
86039bd3
AA
1831out:
1832 return file;
1833}
1834
1835SYSCALL_DEFINE1(userfaultfd, int, flags)
1836{
1837 int fd, error;
1838 struct file *file;
1839
1840 error = get_unused_fd_flags(flags & UFFD_SHARED_FCNTL_FLAGS);
1841 if (error < 0)
1842 return error;
1843 fd = error;
1844
1845 file = userfaultfd_file_create(flags);
1846 if (IS_ERR(file)) {
1847 error = PTR_ERR(file);
1848 goto err_put_unused_fd;
1849 }
1850 fd_install(fd, file);
1851
1852 return fd;
1853
1854err_put_unused_fd:
1855 put_unused_fd(fd);
1856
1857 return error;
1858}
3004ec9c
AA
1859
1860static int __init userfaultfd_init(void)
1861{
1862 userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
1863 sizeof(struct userfaultfd_ctx),
1864 0,
1865 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
1866 init_once_userfaultfd_ctx);
1867 return 0;
1868}
1869__initcall(userfaultfd_init);