kernel:optimize cdp thermal charGing limitation
[GitHub/moto-9609/android_kernel_motorola_exynos9610.git] / fs / userfaultfd.c
CommitLineData
86039bd3
AA
1/*
2 * fs/userfaultfd.c
3 *
4 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org>
5 * Copyright (C) 2008-2009 Red Hat, Inc.
6 * Copyright (C) 2015 Red Hat, Inc.
7 *
8 * This work is licensed under the terms of the GNU GPL, version 2. See
9 * the COPYING file in the top-level directory.
10 *
11 * Some part derived from fs/eventfd.c (anon inode setup) and
12 * mm/ksm.c (mm hashing).
13 */
14
9cd75c3c 15#include <linux/list.h>
86039bd3 16#include <linux/hashtable.h>
174cd4b1 17#include <linux/sched/signal.h>
6e84f315 18#include <linux/sched/mm.h>
86039bd3
AA
19#include <linux/mm.h>
20#include <linux/poll.h>
21#include <linux/slab.h>
22#include <linux/seq_file.h>
23#include <linux/file.h>
24#include <linux/bug.h>
25#include <linux/anon_inodes.h>
26#include <linux/syscalls.h>
27#include <linux/userfaultfd_k.h>
28#include <linux/mempolicy.h>
29#include <linux/ioctl.h>
30#include <linux/security.h>
cab350af 31#include <linux/hugetlb.h>
86039bd3 32
3004ec9c
AA
33static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly;
34
86039bd3
AA
35enum userfaultfd_state {
36 UFFD_STATE_WAIT_API,
37 UFFD_STATE_RUNNING,
38};
39
3004ec9c
AA
40/*
41 * Start with fault_pending_wqh and fault_wqh so they're more likely
42 * to be in the same cacheline.
43 */
86039bd3 44struct userfaultfd_ctx {
15b726ef
AA
45 /* waitqueue head for the pending (i.e. not read) userfaults */
46 wait_queue_head_t fault_pending_wqh;
47 /* waitqueue head for the userfaults */
86039bd3
AA
48 wait_queue_head_t fault_wqh;
49 /* waitqueue head for the pseudo fd to wakeup poll/read */
50 wait_queue_head_t fd_wqh;
9cd75c3c
PE
51 /* waitqueue head for events */
52 wait_queue_head_t event_wqh;
2c5b7e1b
AA
53 /* a refile sequence protected by fault_pending_wqh lock */
54 struct seqcount refile_seq;
3004ec9c
AA
55 /* pseudo fd refcounting */
56 atomic_t refcount;
86039bd3
AA
57 /* userfaultfd syscall flags */
58 unsigned int flags;
9cd75c3c
PE
59 /* features requested from the userspace */
60 unsigned int features;
86039bd3
AA
61 /* state machine */
62 enum userfaultfd_state state;
63 /* released */
64 bool released;
65 /* mm with one ore more vmas attached to this userfaultfd_ctx */
66 struct mm_struct *mm;
67};
68
893e26e6
PE
69struct userfaultfd_fork_ctx {
70 struct userfaultfd_ctx *orig;
71 struct userfaultfd_ctx *new;
72 struct list_head list;
73};
74
897ab3e0
MR
75struct userfaultfd_unmap_ctx {
76 struct userfaultfd_ctx *ctx;
77 unsigned long start;
78 unsigned long end;
79 struct list_head list;
80};
81
86039bd3 82struct userfaultfd_wait_queue {
a9b85f94 83 struct uffd_msg msg;
ac6424b9 84 wait_queue_entry_t wq;
86039bd3 85 struct userfaultfd_ctx *ctx;
15a77c6f 86 bool waken;
86039bd3
AA
87};
88
89struct userfaultfd_wake_range {
90 unsigned long start;
91 unsigned long len;
92};
93
ac6424b9 94static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode,
86039bd3
AA
95 int wake_flags, void *key)
96{
97 struct userfaultfd_wake_range *range = key;
98 int ret;
99 struct userfaultfd_wait_queue *uwq;
100 unsigned long start, len;
101
102 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
103 ret = 0;
86039bd3
AA
104 /* len == 0 means wake all */
105 start = range->start;
106 len = range->len;
a9b85f94
AA
107 if (len && (start > uwq->msg.arg.pagefault.address ||
108 start + len <= uwq->msg.arg.pagefault.address))
86039bd3 109 goto out;
15a77c6f
AA
110 WRITE_ONCE(uwq->waken, true);
111 /*
a9668cd6
PZ
112 * The Program-Order guarantees provided by the scheduler
113 * ensure uwq->waken is visible before the task is woken.
15a77c6f 114 */
86039bd3 115 ret = wake_up_state(wq->private, mode);
a9668cd6 116 if (ret) {
86039bd3
AA
117 /*
118 * Wake only once, autoremove behavior.
119 *
a9668cd6
PZ
120 * After the effect of list_del_init is visible to the other
121 * CPUs, the waitqueue may disappear from under us, see the
122 * !list_empty_careful() in handle_userfault().
123 *
124 * try_to_wake_up() has an implicit smp_mb(), and the
125 * wq->private is read before calling the extern function
126 * "wake_up_state" (which in turns calls try_to_wake_up).
86039bd3 127 */
2055da97 128 list_del_init(&wq->entry);
a9668cd6 129 }
86039bd3
AA
130out:
131 return ret;
132}
133
134/**
135 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
136 * context.
137 * @ctx: [in] Pointer to the userfaultfd context.
86039bd3
AA
138 */
139static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
140{
141 if (!atomic_inc_not_zero(&ctx->refcount))
142 BUG();
143}
144
145/**
146 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
147 * context.
148 * @ctx: [in] Pointer to userfaultfd context.
149 *
150 * The userfaultfd context reference must have been previously acquired either
151 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
152 */
153static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
154{
155 if (atomic_dec_and_test(&ctx->refcount)) {
156 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
157 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
158 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
159 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
9cd75c3c
PE
160 VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock));
161 VM_BUG_ON(waitqueue_active(&ctx->event_wqh));
86039bd3
AA
162 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
163 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
d2005e3f 164 mmdrop(ctx->mm);
3004ec9c 165 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
86039bd3
AA
166 }
167}
168
a9b85f94 169static inline void msg_init(struct uffd_msg *msg)
86039bd3 170{
a9b85f94
AA
171 BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
172 /*
173 * Must use memset to zero out the paddings or kernel data is
174 * leaked to userland.
175 */
176 memset(msg, 0, sizeof(struct uffd_msg));
177}
178
179static inline struct uffd_msg userfault_msg(unsigned long address,
180 unsigned int flags,
9d4ac934
AP
181 unsigned long reason,
182 unsigned int features)
a9b85f94
AA
183{
184 struct uffd_msg msg;
185 msg_init(&msg);
186 msg.event = UFFD_EVENT_PAGEFAULT;
187 msg.arg.pagefault.address = address;
86039bd3
AA
188 if (flags & FAULT_FLAG_WRITE)
189 /*
a4605a61 190 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
a9b85f94
AA
191 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE
192 * was not set in a UFFD_EVENT_PAGEFAULT, it means it
193 * was a read fault, otherwise if set it means it's
194 * a write fault.
86039bd3 195 */
a9b85f94 196 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
86039bd3
AA
197 if (reason & VM_UFFD_WP)
198 /*
a9b85f94
AA
199 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
200 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was
201 * not set in a UFFD_EVENT_PAGEFAULT, it means it was
202 * a missing fault, otherwise if set it means it's a
203 * write protect fault.
86039bd3 204 */
a9b85f94 205 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
9d4ac934 206 if (features & UFFD_FEATURE_THREAD_ID)
a36985d3 207 msg.arg.pagefault.feat.ptid = task_pid_vnr(current);
a9b85f94 208 return msg;
86039bd3
AA
209}
210
369cd212
MK
211#ifdef CONFIG_HUGETLB_PAGE
212/*
213 * Same functionality as userfaultfd_must_wait below with modifications for
214 * hugepmd ranges.
215 */
216static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
7868a208 217 struct vm_area_struct *vma,
369cd212
MK
218 unsigned long address,
219 unsigned long flags,
220 unsigned long reason)
221{
222 struct mm_struct *mm = ctx->mm;
6fe74fb8 223 pte_t *ptep, pte;
369cd212
MK
224 bool ret = true;
225
226 VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
227
6fe74fb8
JF
228 ptep = huge_pte_offset(mm, address, vma_mmu_pagesize(vma));
229
230 if (!ptep)
369cd212
MK
231 goto out;
232
233 ret = false;
6fe74fb8 234 pte = huge_ptep_get(ptep);
369cd212
MK
235
236 /*
237 * Lockless access: we're in a wait_event so it's ok if it
238 * changes under us.
239 */
6fe74fb8 240 if (huge_pte_none(pte))
369cd212 241 ret = true;
6fe74fb8 242 if (!huge_pte_write(pte) && (reason & VM_UFFD_WP))
369cd212
MK
243 ret = true;
244out:
245 return ret;
246}
247#else
248static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
7868a208 249 struct vm_area_struct *vma,
369cd212
MK
250 unsigned long address,
251 unsigned long flags,
252 unsigned long reason)
253{
254 return false; /* should never get here */
255}
256#endif /* CONFIG_HUGETLB_PAGE */
257
8d2afd96
AA
258/*
259 * Verify the pagetables are still not ok after having reigstered into
260 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
261 * userfault that has already been resolved, if userfaultfd_read and
262 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
263 * threads.
264 */
265static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
266 unsigned long address,
267 unsigned long flags,
268 unsigned long reason)
269{
270 struct mm_struct *mm = ctx->mm;
271 pgd_t *pgd;
c2febafc 272 p4d_t *p4d;
8d2afd96
AA
273 pud_t *pud;
274 pmd_t *pmd, _pmd;
275 pte_t *pte;
276 bool ret = true;
277
278 VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
279
280 pgd = pgd_offset(mm, address);
281 if (!pgd_present(*pgd))
282 goto out;
c2febafc
KS
283 p4d = p4d_offset(pgd, address);
284 if (!p4d_present(*p4d))
285 goto out;
286 pud = pud_offset(p4d, address);
8d2afd96
AA
287 if (!pud_present(*pud))
288 goto out;
289 pmd = pmd_offset(pud, address);
290 /*
291 * READ_ONCE must function as a barrier with narrower scope
292 * and it must be equivalent to:
293 * _pmd = *pmd; barrier();
294 *
295 * This is to deal with the instability (as in
296 * pmd_trans_unstable) of the pmd.
297 */
298 _pmd = READ_ONCE(*pmd);
299 if (!pmd_present(_pmd))
300 goto out;
301
302 ret = false;
303 if (pmd_trans_huge(_pmd))
304 goto out;
305
306 /*
307 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it
308 * and use the standard pte_offset_map() instead of parsing _pmd.
309 */
310 pte = pte_offset_map(pmd, address);
311 /*
312 * Lockless access: we're in a wait_event so it's ok if it
313 * changes under us.
314 */
315 if (pte_none(*pte))
316 ret = true;
317 pte_unmap(pte);
318
319out:
320 return ret;
321}
322
86039bd3
AA
323/*
324 * The locking rules involved in returning VM_FAULT_RETRY depending on
325 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
326 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
327 * recommendation in __lock_page_or_retry is not an understatement.
328 *
329 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_sem must be released
330 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
331 * not set.
332 *
333 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
334 * set, VM_FAULT_RETRY can still be returned if and only if there are
335 * fatal_signal_pending()s, and the mmap_sem must be released before
336 * returning it.
337 */
82b0f8c3 338int handle_userfault(struct vm_fault *vmf, unsigned long reason)
86039bd3 339{
82b0f8c3 340 struct mm_struct *mm = vmf->vma->vm_mm;
86039bd3
AA
341 struct userfaultfd_ctx *ctx;
342 struct userfaultfd_wait_queue uwq;
ba85c702 343 int ret;
dfa37dc3 344 bool must_wait, return_to_userland;
15a77c6f 345 long blocking_state;
86039bd3 346
ba85c702 347 ret = VM_FAULT_SIGBUS;
64c2b203
AA
348
349 /*
350 * We don't do userfault handling for the final child pid update.
351 *
352 * We also don't do userfault handling during
353 * coredumping. hugetlbfs has the special
354 * follow_hugetlb_page() to skip missing pages in the
355 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with
356 * the no_page_table() helper in follow_page_mask(), but the
357 * shmem_vm_ops->fault method is invoked even during
358 * coredumping without mmap_sem and it ends up here.
359 */
360 if (current->flags & (PF_EXITING|PF_DUMPCORE))
361 goto out;
362
363 /*
364 * Coredumping runs without mmap_sem so we can only check that
365 * the mmap_sem is held, if PF_DUMPCORE was not set.
366 */
367 WARN_ON_ONCE(!rwsem_is_locked(&mm->mmap_sem));
368
82b0f8c3 369 ctx = vmf->vma->vm_userfaultfd_ctx.ctx;
86039bd3 370 if (!ctx)
ba85c702 371 goto out;
86039bd3
AA
372
373 BUG_ON(ctx->mm != mm);
374
375 VM_BUG_ON(reason & ~(VM_UFFD_MISSING|VM_UFFD_WP));
376 VM_BUG_ON(!(reason & VM_UFFD_MISSING) ^ !!(reason & VM_UFFD_WP));
377
2d6d6f5a
PS
378 if (ctx->features & UFFD_FEATURE_SIGBUS)
379 goto out;
380
86039bd3
AA
381 /*
382 * If it's already released don't get it. This avoids to loop
383 * in __get_user_pages if userfaultfd_release waits on the
384 * caller of handle_userfault to release the mmap_sem.
385 */
656710a6
AA
386 if (unlikely(ACCESS_ONCE(ctx->released))) {
387 /*
388 * Don't return VM_FAULT_SIGBUS in this case, so a non
389 * cooperative manager can close the uffd after the
390 * last UFFDIO_COPY, without risking to trigger an
391 * involuntary SIGBUS if the process was starting the
392 * userfaultfd while the userfaultfd was still armed
393 * (but after the last UFFDIO_COPY). If the uffd
394 * wasn't already closed when the userfault reached
395 * this point, that would normally be solved by
396 * userfaultfd_must_wait returning 'false'.
397 *
398 * If we were to return VM_FAULT_SIGBUS here, the non
399 * cooperative manager would be instead forced to
400 * always call UFFDIO_UNREGISTER before it can safely
401 * close the uffd.
402 */
403 ret = VM_FAULT_NOPAGE;
ba85c702 404 goto out;
656710a6 405 }
86039bd3
AA
406
407 /*
408 * Check that we can return VM_FAULT_RETRY.
409 *
410 * NOTE: it should become possible to return VM_FAULT_RETRY
411 * even if FAULT_FLAG_TRIED is set without leading to gup()
412 * -EBUSY failures, if the userfaultfd is to be extended for
413 * VM_UFFD_WP tracking and we intend to arm the userfault
414 * without first stopping userland access to the memory. For
415 * VM_UFFD_MISSING userfaults this is enough for now.
416 */
82b0f8c3 417 if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
86039bd3
AA
418 /*
419 * Validate the invariant that nowait must allow retry
420 * to be sure not to return SIGBUS erroneously on
421 * nowait invocations.
422 */
82b0f8c3 423 BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
86039bd3
AA
424#ifdef CONFIG_DEBUG_VM
425 if (printk_ratelimit()) {
426 printk(KERN_WARNING
82b0f8c3
JK
427 "FAULT_FLAG_ALLOW_RETRY missing %x\n",
428 vmf->flags);
86039bd3
AA
429 dump_stack();
430 }
431#endif
ba85c702 432 goto out;
86039bd3
AA
433 }
434
435 /*
436 * Handle nowait, not much to do other than tell it to retry
437 * and wait.
438 */
ba85c702 439 ret = VM_FAULT_RETRY;
82b0f8c3 440 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
ba85c702 441 goto out;
86039bd3
AA
442
443 /* take the reference before dropping the mmap_sem */
444 userfaultfd_ctx_get(ctx);
445
86039bd3
AA
446 init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
447 uwq.wq.private = current;
9d4ac934
AP
448 uwq.msg = userfault_msg(vmf->address, vmf->flags, reason,
449 ctx->features);
86039bd3 450 uwq.ctx = ctx;
15a77c6f 451 uwq.waken = false;
86039bd3 452
bae473a4 453 return_to_userland =
82b0f8c3 454 (vmf->flags & (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE)) ==
dfa37dc3 455 (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE);
15a77c6f
AA
456 blocking_state = return_to_userland ? TASK_INTERRUPTIBLE :
457 TASK_KILLABLE;
dfa37dc3 458
15b726ef 459 spin_lock(&ctx->fault_pending_wqh.lock);
86039bd3
AA
460 /*
461 * After the __add_wait_queue the uwq is visible to userland
462 * through poll/read().
463 */
15b726ef
AA
464 __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
465 /*
466 * The smp_mb() after __set_current_state prevents the reads
467 * following the spin_unlock to happen before the list_add in
468 * __add_wait_queue.
469 */
15a77c6f 470 set_current_state(blocking_state);
15b726ef 471 spin_unlock(&ctx->fault_pending_wqh.lock);
86039bd3 472
369cd212
MK
473 if (!is_vm_hugetlb_page(vmf->vma))
474 must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags,
475 reason);
476 else
7868a208
PA
477 must_wait = userfaultfd_huge_must_wait(ctx, vmf->vma,
478 vmf->address,
369cd212 479 vmf->flags, reason);
8d2afd96
AA
480 up_read(&mm->mmap_sem);
481
482 if (likely(must_wait && !ACCESS_ONCE(ctx->released) &&
dfa37dc3
AA
483 (return_to_userland ? !signal_pending(current) :
484 !fatal_signal_pending(current)))) {
86039bd3
AA
485 wake_up_poll(&ctx->fd_wqh, POLLIN);
486 schedule();
ba85c702 487 ret |= VM_FAULT_MAJOR;
15a77c6f
AA
488
489 /*
490 * False wakeups can orginate even from rwsem before
491 * up_read() however userfaults will wait either for a
492 * targeted wakeup on the specific uwq waitqueue from
493 * wake_userfault() or for signals or for uffd
494 * release.
495 */
496 while (!READ_ONCE(uwq.waken)) {
497 /*
498 * This needs the full smp_store_mb()
499 * guarantee as the state write must be
500 * visible to other CPUs before reading
501 * uwq.waken from other CPUs.
502 */
503 set_current_state(blocking_state);
504 if (READ_ONCE(uwq.waken) ||
505 READ_ONCE(ctx->released) ||
506 (return_to_userland ? signal_pending(current) :
507 fatal_signal_pending(current)))
508 break;
509 schedule();
510 }
ba85c702 511 }
86039bd3 512
ba85c702 513 __set_current_state(TASK_RUNNING);
15b726ef 514
dfa37dc3
AA
515 if (return_to_userland) {
516 if (signal_pending(current) &&
517 !fatal_signal_pending(current)) {
518 /*
519 * If we got a SIGSTOP or SIGCONT and this is
520 * a normal userland page fault, just let
521 * userland return so the signal will be
522 * handled and gdb debugging works. The page
523 * fault code immediately after we return from
524 * this function is going to release the
525 * mmap_sem and it's not depending on it
526 * (unlike gup would if we were not to return
527 * VM_FAULT_RETRY).
528 *
529 * If a fatal signal is pending we still take
530 * the streamlined VM_FAULT_RETRY failure path
531 * and there's no need to retake the mmap_sem
532 * in such case.
533 */
534 down_read(&mm->mmap_sem);
6bbc4a41 535 ret = VM_FAULT_NOPAGE;
dfa37dc3
AA
536 }
537 }
538
15b726ef
AA
539 /*
540 * Here we race with the list_del; list_add in
541 * userfaultfd_ctx_read(), however because we don't ever run
542 * list_del_init() to refile across the two lists, the prev
543 * and next pointers will never point to self. list_add also
544 * would never let any of the two pointers to point to
545 * self. So list_empty_careful won't risk to see both pointers
546 * pointing to self at any time during the list refile. The
547 * only case where list_del_init() is called is the full
548 * removal in the wake function and there we don't re-list_add
549 * and it's fine not to block on the spinlock. The uwq on this
550 * kernel stack can be released after the list_del_init.
551 */
2055da97 552 if (!list_empty_careful(&uwq.wq.entry)) {
15b726ef
AA
553 spin_lock(&ctx->fault_pending_wqh.lock);
554 /*
555 * No need of list_del_init(), the uwq on the stack
556 * will be freed shortly anyway.
557 */
2055da97 558 list_del(&uwq.wq.entry);
15b726ef 559 spin_unlock(&ctx->fault_pending_wqh.lock);
86039bd3 560 }
86039bd3
AA
561
562 /*
563 * ctx may go away after this if the userfault pseudo fd is
564 * already released.
565 */
566 userfaultfd_ctx_put(ctx);
567
ba85c702
AA
568out:
569 return ret;
86039bd3
AA
570}
571
8c9e7bb7
AA
572static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
573 struct userfaultfd_wait_queue *ewq)
9cd75c3c 574{
319122a7
AA
575 struct userfaultfd_ctx *release_new_ctx;
576
9a69a829
AA
577 if (WARN_ON_ONCE(current->flags & PF_EXITING))
578 goto out;
9cd75c3c
PE
579
580 ewq->ctx = ctx;
581 init_waitqueue_entry(&ewq->wq, current);
319122a7 582 release_new_ctx = NULL;
9cd75c3c
PE
583
584 spin_lock(&ctx->event_wqh.lock);
585 /*
586 * After the __add_wait_queue the uwq is visible to userland
587 * through poll/read().
588 */
589 __add_wait_queue(&ctx->event_wqh, &ewq->wq);
590 for (;;) {
591 set_current_state(TASK_KILLABLE);
592 if (ewq->msg.event == 0)
593 break;
594 if (ACCESS_ONCE(ctx->released) ||
595 fatal_signal_pending(current)) {
384632e6
AA
596 /*
597 * &ewq->wq may be queued in fork_event, but
598 * __remove_wait_queue ignores the head
599 * parameter. It would be a problem if it
600 * didn't.
601 */
9cd75c3c 602 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
7eb76d45
MR
603 if (ewq->msg.event == UFFD_EVENT_FORK) {
604 struct userfaultfd_ctx *new;
605
606 new = (struct userfaultfd_ctx *)
607 (unsigned long)
608 ewq->msg.arg.reserved.reserved1;
319122a7 609 release_new_ctx = new;
7eb76d45 610 }
9cd75c3c
PE
611 break;
612 }
613
614 spin_unlock(&ctx->event_wqh.lock);
615
616 wake_up_poll(&ctx->fd_wqh, POLLIN);
617 schedule();
618
619 spin_lock(&ctx->event_wqh.lock);
620 }
621 __set_current_state(TASK_RUNNING);
622 spin_unlock(&ctx->event_wqh.lock);
623
319122a7
AA
624 if (release_new_ctx) {
625 struct vm_area_struct *vma;
626 struct mm_struct *mm = release_new_ctx->mm;
627
628 /* the various vma->vm_userfaultfd_ctx still points to it */
629 down_write(&mm->mmap_sem);
630 for (vma = mm->mmap; vma; vma = vma->vm_next)
0eba9f5d 631 if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) {
319122a7 632 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
0eba9f5d
MR
633 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
634 }
319122a7
AA
635 up_write(&mm->mmap_sem);
636
637 userfaultfd_ctx_put(release_new_ctx);
638 }
639
9cd75c3c
PE
640 /*
641 * ctx may go away after this if the userfault pseudo fd is
642 * already released.
643 */
9a69a829 644out:
9cd75c3c 645 userfaultfd_ctx_put(ctx);
9cd75c3c
PE
646}
647
648static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
649 struct userfaultfd_wait_queue *ewq)
650{
651 ewq->msg.event = 0;
652 wake_up_locked(&ctx->event_wqh);
653 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
654}
655
893e26e6
PE
656int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
657{
658 struct userfaultfd_ctx *ctx = NULL, *octx;
659 struct userfaultfd_fork_ctx *fctx;
660
661 octx = vma->vm_userfaultfd_ctx.ctx;
662 if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) {
663 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
664 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
665 return 0;
666 }
667
668 list_for_each_entry(fctx, fcs, list)
669 if (fctx->orig == octx) {
670 ctx = fctx->new;
671 break;
672 }
673
674 if (!ctx) {
675 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
676 if (!fctx)
677 return -ENOMEM;
678
679 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
680 if (!ctx) {
681 kfree(fctx);
682 return -ENOMEM;
683 }
684
685 atomic_set(&ctx->refcount, 1);
686 ctx->flags = octx->flags;
687 ctx->state = UFFD_STATE_RUNNING;
688 ctx->features = octx->features;
689 ctx->released = false;
690 ctx->mm = vma->vm_mm;
d3aadc8e 691 atomic_inc(&ctx->mm->mm_count);
893e26e6
PE
692
693 userfaultfd_ctx_get(octx);
694 fctx->orig = octx;
695 fctx->new = ctx;
696 list_add_tail(&fctx->list, fcs);
697 }
698
699 vma->vm_userfaultfd_ctx.ctx = ctx;
700 return 0;
701}
702
8c9e7bb7 703static void dup_fctx(struct userfaultfd_fork_ctx *fctx)
893e26e6
PE
704{
705 struct userfaultfd_ctx *ctx = fctx->orig;
706 struct userfaultfd_wait_queue ewq;
707
708 msg_init(&ewq.msg);
709
710 ewq.msg.event = UFFD_EVENT_FORK;
711 ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;
712
8c9e7bb7 713 userfaultfd_event_wait_completion(ctx, &ewq);
893e26e6
PE
714}
715
716void dup_userfaultfd_complete(struct list_head *fcs)
717{
893e26e6
PE
718 struct userfaultfd_fork_ctx *fctx, *n;
719
720 list_for_each_entry_safe(fctx, n, fcs, list) {
8c9e7bb7 721 dup_fctx(fctx);
893e26e6
PE
722 list_del(&fctx->list);
723 kfree(fctx);
724 }
725}
726
72f87654
PE
727void mremap_userfaultfd_prep(struct vm_area_struct *vma,
728 struct vm_userfaultfd_ctx *vm_ctx)
729{
730 struct userfaultfd_ctx *ctx;
731
732 ctx = vma->vm_userfaultfd_ctx.ctx;
733 if (ctx && (ctx->features & UFFD_FEATURE_EVENT_REMAP)) {
734 vm_ctx->ctx = ctx;
735 userfaultfd_ctx_get(ctx);
736 }
737}
738
90794bf1 739void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx,
72f87654
PE
740 unsigned long from, unsigned long to,
741 unsigned long len)
742{
90794bf1 743 struct userfaultfd_ctx *ctx = vm_ctx->ctx;
72f87654
PE
744 struct userfaultfd_wait_queue ewq;
745
746 if (!ctx)
747 return;
748
749 if (to & ~PAGE_MASK) {
750 userfaultfd_ctx_put(ctx);
751 return;
752 }
753
754 msg_init(&ewq.msg);
755
756 ewq.msg.event = UFFD_EVENT_REMAP;
757 ewq.msg.arg.remap.from = from;
758 ewq.msg.arg.remap.to = to;
759 ewq.msg.arg.remap.len = len;
760
761 userfaultfd_event_wait_completion(ctx, &ewq);
762}
763
70ccb92f 764bool userfaultfd_remove(struct vm_area_struct *vma,
d811914d 765 unsigned long start, unsigned long end)
05ce7724
PE
766{
767 struct mm_struct *mm = vma->vm_mm;
768 struct userfaultfd_ctx *ctx;
769 struct userfaultfd_wait_queue ewq;
770
771 ctx = vma->vm_userfaultfd_ctx.ctx;
d811914d 772 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE))
70ccb92f 773 return true;
05ce7724
PE
774
775 userfaultfd_ctx_get(ctx);
776 up_read(&mm->mmap_sem);
777
05ce7724
PE
778 msg_init(&ewq.msg);
779
d811914d
MR
780 ewq.msg.event = UFFD_EVENT_REMOVE;
781 ewq.msg.arg.remove.start = start;
782 ewq.msg.arg.remove.end = end;
05ce7724
PE
783
784 userfaultfd_event_wait_completion(ctx, &ewq);
785
70ccb92f 786 return false;
05ce7724
PE
787}
788
897ab3e0
MR
789static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps,
790 unsigned long start, unsigned long end)
791{
792 struct userfaultfd_unmap_ctx *unmap_ctx;
793
794 list_for_each_entry(unmap_ctx, unmaps, list)
795 if (unmap_ctx->ctx == ctx && unmap_ctx->start == start &&
796 unmap_ctx->end == end)
797 return true;
798
799 return false;
800}
801
802int userfaultfd_unmap_prep(struct vm_area_struct *vma,
803 unsigned long start, unsigned long end,
804 struct list_head *unmaps)
805{
806 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
807 struct userfaultfd_unmap_ctx *unmap_ctx;
808 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
809
810 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) ||
811 has_unmap_ctx(ctx, unmaps, start, end))
812 continue;
813
814 unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL);
815 if (!unmap_ctx)
816 return -ENOMEM;
817
818 userfaultfd_ctx_get(ctx);
819 unmap_ctx->ctx = ctx;
820 unmap_ctx->start = start;
821 unmap_ctx->end = end;
822 list_add_tail(&unmap_ctx->list, unmaps);
823 }
824
825 return 0;
826}
827
828void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf)
829{
830 struct userfaultfd_unmap_ctx *ctx, *n;
831 struct userfaultfd_wait_queue ewq;
832
833 list_for_each_entry_safe(ctx, n, uf, list) {
834 msg_init(&ewq.msg);
835
836 ewq.msg.event = UFFD_EVENT_UNMAP;
837 ewq.msg.arg.remove.start = ctx->start;
838 ewq.msg.arg.remove.end = ctx->end;
839
840 userfaultfd_event_wait_completion(ctx->ctx, &ewq);
841
842 list_del(&ctx->list);
843 kfree(ctx);
844 }
845}
846
86039bd3
AA
847static int userfaultfd_release(struct inode *inode, struct file *file)
848{
849 struct userfaultfd_ctx *ctx = file->private_data;
850 struct mm_struct *mm = ctx->mm;
851 struct vm_area_struct *vma, *prev;
852 /* len == 0 means wake all */
853 struct userfaultfd_wake_range range = { .len = 0, };
854 unsigned long new_flags;
855
856 ACCESS_ONCE(ctx->released) = true;
857
d2005e3f
ON
858 if (!mmget_not_zero(mm))
859 goto wakeup;
860
86039bd3
AA
861 /*
862 * Flush page faults out of all CPUs. NOTE: all page faults
863 * must be retried without returning VM_FAULT_SIGBUS if
864 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
865 * changes while handle_userfault released the mmap_sem. So
866 * it's critical that released is set to true (above), before
867 * taking the mmap_sem for writing.
868 */
869 down_write(&mm->mmap_sem);
870 prev = NULL;
871 for (vma = mm->mmap; vma; vma = vma->vm_next) {
872 cond_resched();
873 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
874 !!(vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
875 if (vma->vm_userfaultfd_ctx.ctx != ctx) {
876 prev = vma;
877 continue;
878 }
879 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
880 prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end,
881 new_flags, vma->anon_vma,
882 vma->vm_file, vma->vm_pgoff,
883 vma_policy(vma),
8392add7
CC
884 NULL_VM_UFFD_CTX,
885 vma_get_anon_name(vma));
86039bd3
AA
886 if (prev)
887 vma = prev;
888 else
889 prev = vma;
890 vma->vm_flags = new_flags;
891 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
892 }
893 up_write(&mm->mmap_sem);
d2005e3f
ON
894 mmput(mm);
895wakeup:
86039bd3 896 /*
15b726ef 897 * After no new page faults can wait on this fault_*wqh, flush
86039bd3 898 * the last page faults that may have been already waiting on
15b726ef 899 * the fault_*wqh.
86039bd3 900 */
15b726ef 901 spin_lock(&ctx->fault_pending_wqh.lock);
ac5be6b4
AA
902 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
903 __wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, &range);
15b726ef 904 spin_unlock(&ctx->fault_pending_wqh.lock);
86039bd3 905
5a18b64e
MR
906 /* Flush pending events that may still wait on event_wqh */
907 wake_up_all(&ctx->event_wqh);
908
86039bd3
AA
909 wake_up_poll(&ctx->fd_wqh, POLLHUP);
910 userfaultfd_ctx_put(ctx);
911 return 0;
912}
913
15b726ef 914/* fault_pending_wqh.lock must be hold by the caller */
6dcc27fd
PE
915static inline struct userfaultfd_wait_queue *find_userfault_in(
916 wait_queue_head_t *wqh)
86039bd3 917{
ac6424b9 918 wait_queue_entry_t *wq;
15b726ef 919 struct userfaultfd_wait_queue *uwq;
86039bd3 920
6dcc27fd 921 VM_BUG_ON(!spin_is_locked(&wqh->lock));
86039bd3 922
15b726ef 923 uwq = NULL;
6dcc27fd 924 if (!waitqueue_active(wqh))
15b726ef
AA
925 goto out;
926 /* walk in reverse to provide FIFO behavior to read userfaults */
2055da97 927 wq = list_last_entry(&wqh->head, typeof(*wq), entry);
15b726ef
AA
928 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
929out:
930 return uwq;
86039bd3 931}
6dcc27fd
PE
932
933static inline struct userfaultfd_wait_queue *find_userfault(
934 struct userfaultfd_ctx *ctx)
935{
936 return find_userfault_in(&ctx->fault_pending_wqh);
937}
86039bd3 938
9cd75c3c
PE
939static inline struct userfaultfd_wait_queue *find_userfault_evt(
940 struct userfaultfd_ctx *ctx)
941{
942 return find_userfault_in(&ctx->event_wqh);
943}
944
86039bd3
AA
945static unsigned int userfaultfd_poll(struct file *file, poll_table *wait)
946{
947 struct userfaultfd_ctx *ctx = file->private_data;
948 unsigned int ret;
949
950 poll_wait(file, &ctx->fd_wqh, wait);
951
952 switch (ctx->state) {
953 case UFFD_STATE_WAIT_API:
954 return POLLERR;
955 case UFFD_STATE_RUNNING:
ba85c702
AA
956 /*
957 * poll() never guarantees that read won't block.
958 * userfaults can be waken before they're read().
959 */
960 if (unlikely(!(file->f_flags & O_NONBLOCK)))
961 return POLLERR;
15b726ef
AA
962 /*
963 * lockless access to see if there are pending faults
964 * __pollwait last action is the add_wait_queue but
965 * the spin_unlock would allow the waitqueue_active to
966 * pass above the actual list_add inside
967 * add_wait_queue critical section. So use a full
968 * memory barrier to serialize the list_add write of
969 * add_wait_queue() with the waitqueue_active read
970 * below.
971 */
972 ret = 0;
973 smp_mb();
974 if (waitqueue_active(&ctx->fault_pending_wqh))
975 ret = POLLIN;
9cd75c3c
PE
976 else if (waitqueue_active(&ctx->event_wqh))
977 ret = POLLIN;
978
86039bd3
AA
979 return ret;
980 default:
8474901a
AA
981 WARN_ON_ONCE(1);
982 return POLLERR;
86039bd3
AA
983 }
984}
985
893e26e6
PE
986static const struct file_operations userfaultfd_fops;
987
988static int resolve_userfault_fork(struct userfaultfd_ctx *ctx,
989 struct userfaultfd_ctx *new,
990 struct uffd_msg *msg)
991{
992 int fd;
993 struct file *file;
994 unsigned int flags = new->flags & UFFD_SHARED_FCNTL_FLAGS;
995
996 fd = get_unused_fd_flags(flags);
997 if (fd < 0)
998 return fd;
999
1000 file = anon_inode_getfile("[userfaultfd]", &userfaultfd_fops, new,
1001 O_RDWR | flags);
1002 if (IS_ERR(file)) {
1003 put_unused_fd(fd);
1004 return PTR_ERR(file);
1005 }
1006
1007 fd_install(fd, file);
1008 msg->arg.reserved.reserved1 = 0;
1009 msg->arg.fork.ufd = fd;
1010
1011 return 0;
1012}
1013
86039bd3 1014static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
a9b85f94 1015 struct uffd_msg *msg)
86039bd3
AA
1016{
1017 ssize_t ret;
1018 DECLARE_WAITQUEUE(wait, current);
15b726ef 1019 struct userfaultfd_wait_queue *uwq;
893e26e6
PE
1020 /*
1021 * Handling fork event requires sleeping operations, so
1022 * we drop the event_wqh lock, then do these ops, then
1023 * lock it back and wake up the waiter. While the lock is
1024 * dropped the ewq may go away so we keep track of it
1025 * carefully.
1026 */
1027 LIST_HEAD(fork_event);
1028 struct userfaultfd_ctx *fork_nctx = NULL;
86039bd3 1029
15b726ef 1030 /* always take the fd_wqh lock before the fault_pending_wqh lock */
86039bd3
AA
1031 spin_lock(&ctx->fd_wqh.lock);
1032 __add_wait_queue(&ctx->fd_wqh, &wait);
1033 for (;;) {
1034 set_current_state(TASK_INTERRUPTIBLE);
15b726ef
AA
1035 spin_lock(&ctx->fault_pending_wqh.lock);
1036 uwq = find_userfault(ctx);
1037 if (uwq) {
2c5b7e1b
AA
1038 /*
1039 * Use a seqcount to repeat the lockless check
1040 * in wake_userfault() to avoid missing
1041 * wakeups because during the refile both
1042 * waitqueue could become empty if this is the
1043 * only userfault.
1044 */
1045 write_seqcount_begin(&ctx->refile_seq);
1046
86039bd3 1047 /*
15b726ef
AA
1048 * The fault_pending_wqh.lock prevents the uwq
1049 * to disappear from under us.
1050 *
1051 * Refile this userfault from
1052 * fault_pending_wqh to fault_wqh, it's not
1053 * pending anymore after we read it.
1054 *
1055 * Use list_del() by hand (as
1056 * userfaultfd_wake_function also uses
1057 * list_del_init() by hand) to be sure nobody
1058 * changes __remove_wait_queue() to use
1059 * list_del_init() in turn breaking the
1060 * !list_empty_careful() check in
2055da97 1061 * handle_userfault(). The uwq->wq.head list
15b726ef
AA
1062 * must never be empty at any time during the
1063 * refile, or the waitqueue could disappear
1064 * from under us. The "wait_queue_head_t"
1065 * parameter of __remove_wait_queue() is unused
1066 * anyway.
86039bd3 1067 */
2055da97 1068 list_del(&uwq->wq.entry);
15b726ef
AA
1069 __add_wait_queue(&ctx->fault_wqh, &uwq->wq);
1070
2c5b7e1b
AA
1071 write_seqcount_end(&ctx->refile_seq);
1072
a9b85f94
AA
1073 /* careful to always initialize msg if ret == 0 */
1074 *msg = uwq->msg;
15b726ef 1075 spin_unlock(&ctx->fault_pending_wqh.lock);
86039bd3
AA
1076 ret = 0;
1077 break;
1078 }
15b726ef 1079 spin_unlock(&ctx->fault_pending_wqh.lock);
9cd75c3c
PE
1080
1081 spin_lock(&ctx->event_wqh.lock);
1082 uwq = find_userfault_evt(ctx);
1083 if (uwq) {
1084 *msg = uwq->msg;
1085
893e26e6
PE
1086 if (uwq->msg.event == UFFD_EVENT_FORK) {
1087 fork_nctx = (struct userfaultfd_ctx *)
1088 (unsigned long)
1089 uwq->msg.arg.reserved.reserved1;
2055da97 1090 list_move(&uwq->wq.entry, &fork_event);
384632e6
AA
1091 /*
1092 * fork_nctx can be freed as soon as
1093 * we drop the lock, unless we take a
1094 * reference on it.
1095 */
1096 userfaultfd_ctx_get(fork_nctx);
893e26e6
PE
1097 spin_unlock(&ctx->event_wqh.lock);
1098 ret = 0;
1099 break;
1100 }
1101
9cd75c3c
PE
1102 userfaultfd_event_complete(ctx, uwq);
1103 spin_unlock(&ctx->event_wqh.lock);
1104 ret = 0;
1105 break;
1106 }
1107 spin_unlock(&ctx->event_wqh.lock);
1108
86039bd3
AA
1109 if (signal_pending(current)) {
1110 ret = -ERESTARTSYS;
1111 break;
1112 }
1113 if (no_wait) {
1114 ret = -EAGAIN;
1115 break;
1116 }
1117 spin_unlock(&ctx->fd_wqh.lock);
1118 schedule();
1119 spin_lock(&ctx->fd_wqh.lock);
1120 }
1121 __remove_wait_queue(&ctx->fd_wqh, &wait);
1122 __set_current_state(TASK_RUNNING);
1123 spin_unlock(&ctx->fd_wqh.lock);
1124
893e26e6
PE
1125 if (!ret && msg->event == UFFD_EVENT_FORK) {
1126 ret = resolve_userfault_fork(ctx, fork_nctx, msg);
384632e6
AA
1127 spin_lock(&ctx->event_wqh.lock);
1128 if (!list_empty(&fork_event)) {
1129 /*
1130 * The fork thread didn't abort, so we can
1131 * drop the temporary refcount.
1132 */
1133 userfaultfd_ctx_put(fork_nctx);
1134
1135 uwq = list_first_entry(&fork_event,
1136 typeof(*uwq),
1137 wq.entry);
1138 /*
1139 * If fork_event list wasn't empty and in turn
1140 * the event wasn't already released by fork
1141 * (the event is allocated on fork kernel
1142 * stack), put the event back to its place in
1143 * the event_wq. fork_event head will be freed
1144 * as soon as we return so the event cannot
1145 * stay queued there no matter the current
1146 * "ret" value.
1147 */
1148 list_del(&uwq->wq.entry);
1149 __add_wait_queue(&ctx->event_wqh, &uwq->wq);
893e26e6 1150
384632e6
AA
1151 /*
1152 * Leave the event in the waitqueue and report
1153 * error to userland if we failed to resolve
1154 * the userfault fork.
1155 */
1156 if (likely(!ret))
893e26e6 1157 userfaultfd_event_complete(ctx, uwq);
384632e6
AA
1158 } else {
1159 /*
1160 * Here the fork thread aborted and the
1161 * refcount from the fork thread on fork_nctx
1162 * has already been released. We still hold
1163 * the reference we took before releasing the
1164 * lock above. If resolve_userfault_fork
1165 * failed we've to drop it because the
1166 * fork_nctx has to be freed in such case. If
1167 * it succeeded we'll hold it because the new
1168 * uffd references it.
1169 */
1170 if (ret)
1171 userfaultfd_ctx_put(fork_nctx);
893e26e6 1172 }
384632e6 1173 spin_unlock(&ctx->event_wqh.lock);
893e26e6
PE
1174 }
1175
86039bd3
AA
1176 return ret;
1177}
1178
1179static ssize_t userfaultfd_read(struct file *file, char __user *buf,
1180 size_t count, loff_t *ppos)
1181{
1182 struct userfaultfd_ctx *ctx = file->private_data;
1183 ssize_t _ret, ret = 0;
a9b85f94 1184 struct uffd_msg msg;
86039bd3
AA
1185 int no_wait = file->f_flags & O_NONBLOCK;
1186
1187 if (ctx->state == UFFD_STATE_WAIT_API)
1188 return -EINVAL;
86039bd3
AA
1189
1190 for (;;) {
a9b85f94 1191 if (count < sizeof(msg))
86039bd3 1192 return ret ? ret : -EINVAL;
a9b85f94 1193 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg);
86039bd3
AA
1194 if (_ret < 0)
1195 return ret ? ret : _ret;
a9b85f94 1196 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
86039bd3 1197 return ret ? ret : -EFAULT;
a9b85f94
AA
1198 ret += sizeof(msg);
1199 buf += sizeof(msg);
1200 count -= sizeof(msg);
86039bd3
AA
1201 /*
1202 * Allow to read more than one fault at time but only
1203 * block if waiting for the very first one.
1204 */
1205 no_wait = O_NONBLOCK;
1206 }
1207}
1208
1209static void __wake_userfault(struct userfaultfd_ctx *ctx,
1210 struct userfaultfd_wake_range *range)
1211{
15b726ef 1212 spin_lock(&ctx->fault_pending_wqh.lock);
86039bd3 1213 /* wake all in the range and autoremove */
15b726ef 1214 if (waitqueue_active(&ctx->fault_pending_wqh))
ac5be6b4 1215 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
15b726ef
AA
1216 range);
1217 if (waitqueue_active(&ctx->fault_wqh))
ac5be6b4 1218 __wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, range);
15b726ef 1219 spin_unlock(&ctx->fault_pending_wqh.lock);
86039bd3
AA
1220}
1221
1222static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
1223 struct userfaultfd_wake_range *range)
1224{
2c5b7e1b
AA
1225 unsigned seq;
1226 bool need_wakeup;
1227
86039bd3
AA
1228 /*
1229 * To be sure waitqueue_active() is not reordered by the CPU
1230 * before the pagetable update, use an explicit SMP memory
1231 * barrier here. PT lock release or up_read(mmap_sem) still
1232 * have release semantics that can allow the
1233 * waitqueue_active() to be reordered before the pte update.
1234 */
1235 smp_mb();
1236
1237 /*
1238 * Use waitqueue_active because it's very frequent to
1239 * change the address space atomically even if there are no
1240 * userfaults yet. So we take the spinlock only when we're
1241 * sure we've userfaults to wake.
1242 */
2c5b7e1b
AA
1243 do {
1244 seq = read_seqcount_begin(&ctx->refile_seq);
1245 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
1246 waitqueue_active(&ctx->fault_wqh);
1247 cond_resched();
1248 } while (read_seqcount_retry(&ctx->refile_seq, seq));
1249 if (need_wakeup)
86039bd3
AA
1250 __wake_userfault(ctx, range);
1251}
1252
1253static __always_inline int validate_range(struct mm_struct *mm,
1254 __u64 start, __u64 len)
1255{
1256 __u64 task_size = mm->task_size;
1257
1258 if (start & ~PAGE_MASK)
1259 return -EINVAL;
1260 if (len & ~PAGE_MASK)
1261 return -EINVAL;
1262 if (!len)
1263 return -EINVAL;
1264 if (start < mmap_min_addr)
1265 return -EINVAL;
1266 if (start >= task_size)
1267 return -EINVAL;
1268 if (len > task_size - start)
1269 return -EINVAL;
1270 return 0;
1271}
1272
ba6907db
MR
1273static inline bool vma_can_userfault(struct vm_area_struct *vma)
1274{
cac67329
MR
1275 return vma_is_anonymous(vma) || is_vm_hugetlb_page(vma) ||
1276 vma_is_shmem(vma);
ba6907db
MR
1277}
1278
86039bd3
AA
1279static int userfaultfd_register(struct userfaultfd_ctx *ctx,
1280 unsigned long arg)
1281{
1282 struct mm_struct *mm = ctx->mm;
1283 struct vm_area_struct *vma, *prev, *cur;
1284 int ret;
1285 struct uffdio_register uffdio_register;
1286 struct uffdio_register __user *user_uffdio_register;
1287 unsigned long vm_flags, new_flags;
1288 bool found;
ce53e8e6 1289 bool basic_ioctls;
86039bd3
AA
1290 unsigned long start, end, vma_end;
1291
1292 user_uffdio_register = (struct uffdio_register __user *) arg;
1293
1294 ret = -EFAULT;
1295 if (copy_from_user(&uffdio_register, user_uffdio_register,
1296 sizeof(uffdio_register)-sizeof(__u64)))
1297 goto out;
1298
1299 ret = -EINVAL;
1300 if (!uffdio_register.mode)
1301 goto out;
1302 if (uffdio_register.mode & ~(UFFDIO_REGISTER_MODE_MISSING|
1303 UFFDIO_REGISTER_MODE_WP))
1304 goto out;
1305 vm_flags = 0;
1306 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
1307 vm_flags |= VM_UFFD_MISSING;
1308 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
1309 vm_flags |= VM_UFFD_WP;
1310 /*
1311 * FIXME: remove the below error constraint by
1312 * implementing the wprotect tracking mode.
1313 */
1314 ret = -EINVAL;
1315 goto out;
1316 }
1317
1318 ret = validate_range(mm, uffdio_register.range.start,
1319 uffdio_register.range.len);
1320 if (ret)
1321 goto out;
1322
1323 start = uffdio_register.range.start;
1324 end = start + uffdio_register.range.len;
1325
d2005e3f
ON
1326 ret = -ENOMEM;
1327 if (!mmget_not_zero(mm))
1328 goto out;
1329
86039bd3
AA
1330 down_write(&mm->mmap_sem);
1331 vma = find_vma_prev(mm, start, &prev);
86039bd3
AA
1332 if (!vma)
1333 goto out_unlock;
1334
1335 /* check that there's at least one vma in the range */
1336 ret = -EINVAL;
1337 if (vma->vm_start >= end)
1338 goto out_unlock;
1339
cab350af
MK
1340 /*
1341 * If the first vma contains huge pages, make sure start address
1342 * is aligned to huge page size.
1343 */
1344 if (is_vm_hugetlb_page(vma)) {
1345 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1346
1347 if (start & (vma_hpagesize - 1))
1348 goto out_unlock;
1349 }
1350
86039bd3
AA
1351 /*
1352 * Search for not compatible vmas.
86039bd3
AA
1353 */
1354 found = false;
ce53e8e6 1355 basic_ioctls = false;
86039bd3
AA
1356 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1357 cond_resched();
1358
1359 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1360 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1361
1362 /* check not compatible vmas */
1363 ret = -EINVAL;
ba6907db 1364 if (!vma_can_userfault(cur))
86039bd3 1365 goto out_unlock;
705a2810
AA
1366
1367 /*
1368 * UFFDIO_COPY will fill file holes even without
1369 * PROT_WRITE. This check enforces that if this is a
1370 * MAP_SHARED, the process has write permission to the backing
1371 * file. If VM_MAYWRITE is set it also enforces that on a
1372 * MAP_SHARED vma: there is no F_WRITE_SEAL and no further
1373 * F_WRITE_SEAL can be taken until the vma is destroyed.
1374 */
1375 ret = -EPERM;
1376 if (unlikely(!(cur->vm_flags & VM_MAYWRITE)))
1377 goto out_unlock;
1378
cab350af
MK
1379 /*
1380 * If this vma contains ending address, and huge pages
1381 * check alignment.
1382 */
1383 if (is_vm_hugetlb_page(cur) && end <= cur->vm_end &&
1384 end > cur->vm_start) {
1385 unsigned long vma_hpagesize = vma_kernel_pagesize(cur);
1386
1387 ret = -EINVAL;
1388
1389 if (end & (vma_hpagesize - 1))
1390 goto out_unlock;
1391 }
86039bd3
AA
1392
1393 /*
1394 * Check that this vma isn't already owned by a
1395 * different userfaultfd. We can't allow more than one
1396 * userfaultfd to own a single vma simultaneously or we
1397 * wouldn't know which one to deliver the userfaults to.
1398 */
1399 ret = -EBUSY;
1400 if (cur->vm_userfaultfd_ctx.ctx &&
1401 cur->vm_userfaultfd_ctx.ctx != ctx)
1402 goto out_unlock;
1403
cab350af
MK
1404 /*
1405 * Note vmas containing huge pages
1406 */
ce53e8e6
MR
1407 if (is_vm_hugetlb_page(cur))
1408 basic_ioctls = true;
cab350af 1409
86039bd3
AA
1410 found = true;
1411 }
1412 BUG_ON(!found);
1413
1414 if (vma->vm_start < start)
1415 prev = vma;
1416
1417 ret = 0;
1418 do {
1419 cond_resched();
1420
ba6907db 1421 BUG_ON(!vma_can_userfault(vma));
86039bd3
AA
1422 BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
1423 vma->vm_userfaultfd_ctx.ctx != ctx);
705a2810 1424 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
86039bd3
AA
1425
1426 /*
1427 * Nothing to do: this vma is already registered into this
1428 * userfaultfd and with the right tracking mode too.
1429 */
1430 if (vma->vm_userfaultfd_ctx.ctx == ctx &&
1431 (vma->vm_flags & vm_flags) == vm_flags)
1432 goto skip;
1433
1434 if (vma->vm_start > start)
1435 start = vma->vm_start;
1436 vma_end = min(end, vma->vm_end);
1437
1438 new_flags = (vma->vm_flags & ~vm_flags) | vm_flags;
1439 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1440 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1441 vma_policy(vma),
8392add7
CC
1442 ((struct vm_userfaultfd_ctx){ ctx }),
1443 vma_get_anon_name(vma));
86039bd3
AA
1444 if (prev) {
1445 vma = prev;
1446 goto next;
1447 }
1448 if (vma->vm_start < start) {
1449 ret = split_vma(mm, vma, start, 1);
1450 if (ret)
1451 break;
1452 }
1453 if (vma->vm_end > end) {
1454 ret = split_vma(mm, vma, end, 0);
1455 if (ret)
1456 break;
1457 }
1458 next:
1459 /*
1460 * In the vma_merge() successful mprotect-like case 8:
1461 * the next vma was merged into the current one and
1462 * the current one has not been updated yet.
1463 */
1464 vma->vm_flags = new_flags;
1465 vma->vm_userfaultfd_ctx.ctx = ctx;
1466
1467 skip:
1468 prev = vma;
1469 start = vma->vm_end;
1470 vma = vma->vm_next;
1471 } while (vma && vma->vm_start < end);
1472out_unlock:
1473 up_write(&mm->mmap_sem);
d2005e3f 1474 mmput(mm);
86039bd3
AA
1475 if (!ret) {
1476 /*
1477 * Now that we scanned all vmas we can already tell
1478 * userland which ioctls methods are guaranteed to
1479 * succeed on this range.
1480 */
ce53e8e6 1481 if (put_user(basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC :
cab350af 1482 UFFD_API_RANGE_IOCTLS,
86039bd3
AA
1483 &user_uffdio_register->ioctls))
1484 ret = -EFAULT;
1485 }
1486out:
1487 return ret;
1488}
1489
1490static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
1491 unsigned long arg)
1492{
1493 struct mm_struct *mm = ctx->mm;
1494 struct vm_area_struct *vma, *prev, *cur;
1495 int ret;
1496 struct uffdio_range uffdio_unregister;
1497 unsigned long new_flags;
1498 bool found;
1499 unsigned long start, end, vma_end;
1500 const void __user *buf = (void __user *)arg;
1501
1502 ret = -EFAULT;
1503 if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
1504 goto out;
1505
1506 ret = validate_range(mm, uffdio_unregister.start,
1507 uffdio_unregister.len);
1508 if (ret)
1509 goto out;
1510
1511 start = uffdio_unregister.start;
1512 end = start + uffdio_unregister.len;
1513
d2005e3f
ON
1514 ret = -ENOMEM;
1515 if (!mmget_not_zero(mm))
1516 goto out;
1517
86039bd3
AA
1518 down_write(&mm->mmap_sem);
1519 vma = find_vma_prev(mm, start, &prev);
86039bd3
AA
1520 if (!vma)
1521 goto out_unlock;
1522
1523 /* check that there's at least one vma in the range */
1524 ret = -EINVAL;
1525 if (vma->vm_start >= end)
1526 goto out_unlock;
1527
cab350af
MK
1528 /*
1529 * If the first vma contains huge pages, make sure start address
1530 * is aligned to huge page size.
1531 */
1532 if (is_vm_hugetlb_page(vma)) {
1533 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1534
1535 if (start & (vma_hpagesize - 1))
1536 goto out_unlock;
1537 }
1538
86039bd3
AA
1539 /*
1540 * Search for not compatible vmas.
86039bd3
AA
1541 */
1542 found = false;
1543 ret = -EINVAL;
1544 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1545 cond_resched();
1546
1547 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1548 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1549
1550 /*
1551 * Check not compatible vmas, not strictly required
1552 * here as not compatible vmas cannot have an
1553 * userfaultfd_ctx registered on them, but this
1554 * provides for more strict behavior to notice
1555 * unregistration errors.
1556 */
ba6907db 1557 if (!vma_can_userfault(cur))
86039bd3
AA
1558 goto out_unlock;
1559
1560 found = true;
1561 }
1562 BUG_ON(!found);
1563
1564 if (vma->vm_start < start)
1565 prev = vma;
1566
1567 ret = 0;
1568 do {
1569 cond_resched();
1570
ba6907db 1571 BUG_ON(!vma_can_userfault(vma));
86039bd3
AA
1572
1573 /*
1574 * Nothing to do: this vma is already registered into this
1575 * userfaultfd and with the right tracking mode too.
1576 */
1577 if (!vma->vm_userfaultfd_ctx.ctx)
1578 goto skip;
1579
b99eaefb
AA
1580 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1581
86039bd3
AA
1582 if (vma->vm_start > start)
1583 start = vma->vm_start;
1584 vma_end = min(end, vma->vm_end);
1585
09fa5296
AA
1586 if (userfaultfd_missing(vma)) {
1587 /*
1588 * Wake any concurrent pending userfault while
1589 * we unregister, so they will not hang
1590 * permanently and it avoids userland to call
1591 * UFFDIO_WAKE explicitly.
1592 */
1593 struct userfaultfd_wake_range range;
1594 range.start = start;
1595 range.len = vma_end - start;
1596 wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range);
1597 }
1598
86039bd3
AA
1599 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
1600 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1601 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1602 vma_policy(vma),
8392add7
CC
1603 NULL_VM_UFFD_CTX,
1604 vma_get_anon_name(vma));
86039bd3
AA
1605 if (prev) {
1606 vma = prev;
1607 goto next;
1608 }
1609 if (vma->vm_start < start) {
1610 ret = split_vma(mm, vma, start, 1);
1611 if (ret)
1612 break;
1613 }
1614 if (vma->vm_end > end) {
1615 ret = split_vma(mm, vma, end, 0);
1616 if (ret)
1617 break;
1618 }
1619 next:
1620 /*
1621 * In the vma_merge() successful mprotect-like case 8:
1622 * the next vma was merged into the current one and
1623 * the current one has not been updated yet.
1624 */
1625 vma->vm_flags = new_flags;
1626 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1627
1628 skip:
1629 prev = vma;
1630 start = vma->vm_end;
1631 vma = vma->vm_next;
1632 } while (vma && vma->vm_start < end);
1633out_unlock:
1634 up_write(&mm->mmap_sem);
d2005e3f 1635 mmput(mm);
86039bd3
AA
1636out:
1637 return ret;
1638}
1639
1640/*
ba85c702
AA
1641 * userfaultfd_wake may be used in combination with the
1642 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
86039bd3
AA
1643 */
1644static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1645 unsigned long arg)
1646{
1647 int ret;
1648 struct uffdio_range uffdio_wake;
1649 struct userfaultfd_wake_range range;
1650 const void __user *buf = (void __user *)arg;
1651
1652 ret = -EFAULT;
1653 if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1654 goto out;
1655
1656 ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len);
1657 if (ret)
1658 goto out;
1659
1660 range.start = uffdio_wake.start;
1661 range.len = uffdio_wake.len;
1662
1663 /*
1664 * len == 0 means wake all and we don't want to wake all here,
1665 * so check it again to be sure.
1666 */
1667 VM_BUG_ON(!range.len);
1668
1669 wake_userfault(ctx, &range);
1670 ret = 0;
1671
1672out:
1673 return ret;
1674}
1675
ad465cae
AA
1676static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1677 unsigned long arg)
1678{
1679 __s64 ret;
1680 struct uffdio_copy uffdio_copy;
1681 struct uffdio_copy __user *user_uffdio_copy;
1682 struct userfaultfd_wake_range range;
1683
1684 user_uffdio_copy = (struct uffdio_copy __user *) arg;
1685
1686 ret = -EFAULT;
1687 if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1688 /* don't copy "copy" last field */
1689 sizeof(uffdio_copy)-sizeof(__s64)))
1690 goto out;
1691
1692 ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len);
1693 if (ret)
1694 goto out;
1695 /*
1696 * double check for wraparound just in case. copy_from_user()
1697 * will later check uffdio_copy.src + uffdio_copy.len to fit
1698 * in the userland range.
1699 */
1700 ret = -EINVAL;
1701 if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src)
1702 goto out;
1703 if (uffdio_copy.mode & ~UFFDIO_COPY_MODE_DONTWAKE)
1704 goto out;
d2005e3f
ON
1705 if (mmget_not_zero(ctx->mm)) {
1706 ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src,
1707 uffdio_copy.len);
1708 mmput(ctx->mm);
96333187 1709 } else {
e86b298b 1710 return -ESRCH;
d2005e3f 1711 }
ad465cae
AA
1712 if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1713 return -EFAULT;
1714 if (ret < 0)
1715 goto out;
1716 BUG_ON(!ret);
1717 /* len == 0 would wake all */
1718 range.len = ret;
1719 if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1720 range.start = uffdio_copy.dst;
1721 wake_userfault(ctx, &range);
1722 }
1723 ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1724out:
1725 return ret;
1726}
1727
1728static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1729 unsigned long arg)
1730{
1731 __s64 ret;
1732 struct uffdio_zeropage uffdio_zeropage;
1733 struct uffdio_zeropage __user *user_uffdio_zeropage;
1734 struct userfaultfd_wake_range range;
1735
1736 user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1737
1738 ret = -EFAULT;
1739 if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1740 /* don't copy "zeropage" last field */
1741 sizeof(uffdio_zeropage)-sizeof(__s64)))
1742 goto out;
1743
1744 ret = validate_range(ctx->mm, uffdio_zeropage.range.start,
1745 uffdio_zeropage.range.len);
1746 if (ret)
1747 goto out;
1748 ret = -EINVAL;
1749 if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1750 goto out;
1751
d2005e3f
ON
1752 if (mmget_not_zero(ctx->mm)) {
1753 ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start,
1754 uffdio_zeropage.range.len);
1755 mmput(ctx->mm);
9d95aa4b 1756 } else {
e86b298b 1757 return -ESRCH;
d2005e3f 1758 }
ad465cae
AA
1759 if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1760 return -EFAULT;
1761 if (ret < 0)
1762 goto out;
1763 /* len == 0 would wake all */
1764 BUG_ON(!ret);
1765 range.len = ret;
1766 if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1767 range.start = uffdio_zeropage.range.start;
1768 wake_userfault(ctx, &range);
1769 }
1770 ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1771out:
1772 return ret;
1773}
1774
9cd75c3c
PE
1775static inline unsigned int uffd_ctx_features(__u64 user_features)
1776{
1777 /*
1778 * For the current set of features the bits just coincide
1779 */
1780 return (unsigned int)user_features;
1781}
1782
86039bd3
AA
1783/*
1784 * userland asks for a certain API version and we return which bits
1785 * and ioctl commands are implemented in this kernel for such API
1786 * version or -EINVAL if unknown.
1787 */
1788static int userfaultfd_api(struct userfaultfd_ctx *ctx,
1789 unsigned long arg)
1790{
1791 struct uffdio_api uffdio_api;
1792 void __user *buf = (void __user *)arg;
1793 int ret;
65603144 1794 __u64 features;
86039bd3
AA
1795
1796 ret = -EINVAL;
1797 if (ctx->state != UFFD_STATE_WAIT_API)
1798 goto out;
1799 ret = -EFAULT;
a9b85f94 1800 if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
86039bd3 1801 goto out;
65603144
AA
1802 features = uffdio_api.features;
1803 if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES)) {
86039bd3
AA
1804 memset(&uffdio_api, 0, sizeof(uffdio_api));
1805 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1806 goto out;
1807 ret = -EINVAL;
1808 goto out;
1809 }
65603144
AA
1810 /* report all available features and ioctls to userland */
1811 uffdio_api.features = UFFD_API_FEATURES;
86039bd3
AA
1812 uffdio_api.ioctls = UFFD_API_IOCTLS;
1813 ret = -EFAULT;
1814 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1815 goto out;
1816 ctx->state = UFFD_STATE_RUNNING;
65603144
AA
1817 /* only enable the requested features for this uffd context */
1818 ctx->features = uffd_ctx_features(features);
86039bd3
AA
1819 ret = 0;
1820out:
1821 return ret;
1822}
1823
1824static long userfaultfd_ioctl(struct file *file, unsigned cmd,
1825 unsigned long arg)
1826{
1827 int ret = -EINVAL;
1828 struct userfaultfd_ctx *ctx = file->private_data;
1829
e6485a47
AA
1830 if (cmd != UFFDIO_API && ctx->state == UFFD_STATE_WAIT_API)
1831 return -EINVAL;
1832
86039bd3
AA
1833 switch(cmd) {
1834 case UFFDIO_API:
1835 ret = userfaultfd_api(ctx, arg);
1836 break;
1837 case UFFDIO_REGISTER:
1838 ret = userfaultfd_register(ctx, arg);
1839 break;
1840 case UFFDIO_UNREGISTER:
1841 ret = userfaultfd_unregister(ctx, arg);
1842 break;
1843 case UFFDIO_WAKE:
1844 ret = userfaultfd_wake(ctx, arg);
1845 break;
ad465cae
AA
1846 case UFFDIO_COPY:
1847 ret = userfaultfd_copy(ctx, arg);
1848 break;
1849 case UFFDIO_ZEROPAGE:
1850 ret = userfaultfd_zeropage(ctx, arg);
1851 break;
86039bd3
AA
1852 }
1853 return ret;
1854}
1855
1856#ifdef CONFIG_PROC_FS
1857static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
1858{
1859 struct userfaultfd_ctx *ctx = f->private_data;
ac6424b9 1860 wait_queue_entry_t *wq;
86039bd3
AA
1861 struct userfaultfd_wait_queue *uwq;
1862 unsigned long pending = 0, total = 0;
1863
15b726ef 1864 spin_lock(&ctx->fault_pending_wqh.lock);
2055da97 1865 list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) {
15b726ef
AA
1866 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
1867 pending++;
1868 total++;
1869 }
2055da97 1870 list_for_each_entry(wq, &ctx->fault_wqh.head, entry) {
86039bd3 1871 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
86039bd3
AA
1872 total++;
1873 }
15b726ef 1874 spin_unlock(&ctx->fault_pending_wqh.lock);
86039bd3
AA
1875
1876 /*
1877 * If more protocols will be added, there will be all shown
1878 * separated by a space. Like this:
1879 * protocols: aa:... bb:...
1880 */
1881 seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
045098e9 1882 pending, total, UFFD_API, ctx->features,
86039bd3
AA
1883 UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
1884}
1885#endif
1886
1887static const struct file_operations userfaultfd_fops = {
1888#ifdef CONFIG_PROC_FS
1889 .show_fdinfo = userfaultfd_show_fdinfo,
1890#endif
1891 .release = userfaultfd_release,
1892 .poll = userfaultfd_poll,
1893 .read = userfaultfd_read,
1894 .unlocked_ioctl = userfaultfd_ioctl,
1895 .compat_ioctl = userfaultfd_ioctl,
1896 .llseek = noop_llseek,
1897};
1898
3004ec9c
AA
1899static void init_once_userfaultfd_ctx(void *mem)
1900{
1901 struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
1902
1903 init_waitqueue_head(&ctx->fault_pending_wqh);
1904 init_waitqueue_head(&ctx->fault_wqh);
9cd75c3c 1905 init_waitqueue_head(&ctx->event_wqh);
3004ec9c 1906 init_waitqueue_head(&ctx->fd_wqh);
2c5b7e1b 1907 seqcount_init(&ctx->refile_seq);
3004ec9c
AA
1908}
1909
86039bd3 1910/**
9332ef9d 1911 * userfaultfd_file_create - Creates a userfaultfd file pointer.
86039bd3
AA
1912 * @flags: Flags for the userfaultfd file.
1913 *
9332ef9d 1914 * This function creates a userfaultfd file pointer, w/out installing
86039bd3
AA
1915 * it into the fd table. This is useful when the userfaultfd file is
1916 * used during the initialization of data structures that require
1917 * extra setup after the userfaultfd creation. So the userfaultfd
1918 * creation is split into the file pointer creation phase, and the
1919 * file descriptor installation phase. In this way races with
1920 * userspace closing the newly installed file descriptor can be
9332ef9d 1921 * avoided. Returns a userfaultfd file pointer, or a proper error
86039bd3
AA
1922 * pointer.
1923 */
1924static struct file *userfaultfd_file_create(int flags)
1925{
1926 struct file *file;
1927 struct userfaultfd_ctx *ctx;
1928
1929 BUG_ON(!current->mm);
1930
1931 /* Check the UFFD_* constants for consistency. */
1932 BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
1933 BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
1934
1935 file = ERR_PTR(-EINVAL);
1936 if (flags & ~UFFD_SHARED_FCNTL_FLAGS)
1937 goto out;
1938
1939 file = ERR_PTR(-ENOMEM);
3004ec9c 1940 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
86039bd3
AA
1941 if (!ctx)
1942 goto out;
1943
1944 atomic_set(&ctx->refcount, 1);
86039bd3 1945 ctx->flags = flags;
9cd75c3c 1946 ctx->features = 0;
86039bd3
AA
1947 ctx->state = UFFD_STATE_WAIT_API;
1948 ctx->released = false;
1949 ctx->mm = current->mm;
1950 /* prevent the mm struct to be freed */
f1f10076 1951 mmgrab(ctx->mm);
86039bd3
AA
1952
1953 file = anon_inode_getfile("[userfaultfd]", &userfaultfd_fops, ctx,
1954 O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS));
c03e946f 1955 if (IS_ERR(file)) {
d2005e3f 1956 mmdrop(ctx->mm);
3004ec9c 1957 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
c03e946f 1958 }
86039bd3
AA
1959out:
1960 return file;
1961}
1962
1963SYSCALL_DEFINE1(userfaultfd, int, flags)
1964{
1965 int fd, error;
1966 struct file *file;
1967
1968 error = get_unused_fd_flags(flags & UFFD_SHARED_FCNTL_FLAGS);
1969 if (error < 0)
1970 return error;
1971 fd = error;
1972
1973 file = userfaultfd_file_create(flags);
1974 if (IS_ERR(file)) {
1975 error = PTR_ERR(file);
1976 goto err_put_unused_fd;
1977 }
1978 fd_install(fd, file);
1979
1980 return fd;
1981
1982err_put_unused_fd:
1983 put_unused_fd(fd);
1984
1985 return error;
1986}
3004ec9c
AA
1987
1988static int __init userfaultfd_init(void)
1989{
1990 userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
1991 sizeof(struct userfaultfd_ctx),
1992 0,
1993 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
1994 init_once_userfaultfd_ctx);
1995 return 0;
1996}
1997__initcall(userfaultfd_init);