UBIFS: add more debugging messages for LPT
[GitHub/LineageOS/android_kernel_samsung_universal7580.git] / fs / ubifs / lpt.c
CommitLineData
1e51764a
AB
1/*
2 * This file is part of UBIFS.
3 *
4 * Copyright (C) 2006-2008 Nokia Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 * Authors: Adrian Hunter
20 * Artem Bityutskiy (Битюцкий Артём)
21 */
22
23/*
24 * This file implements the LEB properties tree (LPT) area. The LPT area
25 * contains the LEB properties tree, a table of LPT area eraseblocks (ltab), and
26 * (for the "big" model) a table of saved LEB numbers (lsave). The LPT area sits
27 * between the log and the orphan area.
28 *
29 * The LPT area is like a miniature self-contained file system. It is required
30 * that it never runs out of space, is fast to access and update, and scales
31 * logarithmically. The LEB properties tree is implemented as a wandering tree
32 * much like the TNC, and the LPT area has its own garbage collection.
33 *
34 * The LPT has two slightly different forms called the "small model" and the
35 * "big model". The small model is used when the entire LEB properties table
36 * can be written into a single eraseblock. In that case, garbage collection
37 * consists of just writing the whole table, which therefore makes all other
38 * eraseblocks reusable. In the case of the big model, dirty eraseblocks are
39 * selected for garbage collection, which consists are marking the nodes in
40 * that LEB as dirty, and then only the dirty nodes are written out. Also, in
41 * the case of the big model, a table of LEB numbers is saved so that the entire
42 * LPT does not to be scanned looking for empty eraseblocks when UBIFS is first
43 * mounted.
44 */
45
46#include <linux/crc16.h>
47#include "ubifs.h"
48
49/**
50 * do_calc_lpt_geom - calculate sizes for the LPT area.
51 * @c: the UBIFS file-system description object
52 *
53 * Calculate the sizes of LPT bit fields, nodes, and tree, based on the
54 * properties of the flash and whether LPT is "big" (c->big_lpt).
55 */
56static void do_calc_lpt_geom(struct ubifs_info *c)
57{
58 int i, n, bits, per_leb_wastage, max_pnode_cnt;
59 long long sz, tot_wastage;
60
61 n = c->main_lebs + c->max_leb_cnt - c->leb_cnt;
62 max_pnode_cnt = DIV_ROUND_UP(n, UBIFS_LPT_FANOUT);
63
64 c->lpt_hght = 1;
65 n = UBIFS_LPT_FANOUT;
66 while (n < max_pnode_cnt) {
67 c->lpt_hght += 1;
68 n <<= UBIFS_LPT_FANOUT_SHIFT;
69 }
70
71 c->pnode_cnt = DIV_ROUND_UP(c->main_lebs, UBIFS_LPT_FANOUT);
72
73 n = DIV_ROUND_UP(c->pnode_cnt, UBIFS_LPT_FANOUT);
74 c->nnode_cnt = n;
75 for (i = 1; i < c->lpt_hght; i++) {
76 n = DIV_ROUND_UP(n, UBIFS_LPT_FANOUT);
77 c->nnode_cnt += n;
78 }
79
80 c->space_bits = fls(c->leb_size) - 3;
81 c->lpt_lnum_bits = fls(c->lpt_lebs);
82 c->lpt_offs_bits = fls(c->leb_size - 1);
83 c->lpt_spc_bits = fls(c->leb_size);
84
85 n = DIV_ROUND_UP(c->max_leb_cnt, UBIFS_LPT_FANOUT);
86 c->pcnt_bits = fls(n - 1);
87
88 c->lnum_bits = fls(c->max_leb_cnt - 1);
89
90 bits = UBIFS_LPT_CRC_BITS + UBIFS_LPT_TYPE_BITS +
91 (c->big_lpt ? c->pcnt_bits : 0) +
92 (c->space_bits * 2 + 1) * UBIFS_LPT_FANOUT;
93 c->pnode_sz = (bits + 7) / 8;
94
95 bits = UBIFS_LPT_CRC_BITS + UBIFS_LPT_TYPE_BITS +
96 (c->big_lpt ? c->pcnt_bits : 0) +
97 (c->lpt_lnum_bits + c->lpt_offs_bits) * UBIFS_LPT_FANOUT;
98 c->nnode_sz = (bits + 7) / 8;
99
100 bits = UBIFS_LPT_CRC_BITS + UBIFS_LPT_TYPE_BITS +
101 c->lpt_lebs * c->lpt_spc_bits * 2;
102 c->ltab_sz = (bits + 7) / 8;
103
104 bits = UBIFS_LPT_CRC_BITS + UBIFS_LPT_TYPE_BITS +
105 c->lnum_bits * c->lsave_cnt;
106 c->lsave_sz = (bits + 7) / 8;
107
108 /* Calculate the minimum LPT size */
109 c->lpt_sz = (long long)c->pnode_cnt * c->pnode_sz;
110 c->lpt_sz += (long long)c->nnode_cnt * c->nnode_sz;
111 c->lpt_sz += c->ltab_sz;
73944a6d
AH
112 if (c->big_lpt)
113 c->lpt_sz += c->lsave_sz;
1e51764a
AB
114
115 /* Add wastage */
116 sz = c->lpt_sz;
117 per_leb_wastage = max_t(int, c->pnode_sz, c->nnode_sz);
118 sz += per_leb_wastage;
119 tot_wastage = per_leb_wastage;
120 while (sz > c->leb_size) {
121 sz += per_leb_wastage;
122 sz -= c->leb_size;
123 tot_wastage += per_leb_wastage;
124 }
125 tot_wastage += ALIGN(sz, c->min_io_size) - sz;
126 c->lpt_sz += tot_wastage;
127}
128
129/**
130 * ubifs_calc_lpt_geom - calculate and check sizes for the LPT area.
131 * @c: the UBIFS file-system description object
132 *
133 * This function returns %0 on success and a negative error code on failure.
134 */
135int ubifs_calc_lpt_geom(struct ubifs_info *c)
136{
137 int lebs_needed;
138 uint64_t sz;
139
140 do_calc_lpt_geom(c);
141
142 /* Verify that lpt_lebs is big enough */
143 sz = c->lpt_sz * 2; /* Must have at least 2 times the size */
144 sz += c->leb_size - 1;
145 do_div(sz, c->leb_size);
146 lebs_needed = sz;
147 if (lebs_needed > c->lpt_lebs) {
148 ubifs_err("too few LPT LEBs");
149 return -EINVAL;
150 }
151
152 /* Verify that ltab fits in a single LEB (since ltab is a single node */
153 if (c->ltab_sz > c->leb_size) {
154 ubifs_err("LPT ltab too big");
155 return -EINVAL;
156 }
157
158 c->check_lpt_free = c->big_lpt;
159
160 return 0;
161}
162
163/**
164 * calc_dflt_lpt_geom - calculate default LPT geometry.
165 * @c: the UBIFS file-system description object
166 * @main_lebs: number of main area LEBs is passed and returned here
167 * @big_lpt: whether the LPT area is "big" is returned here
168 *
169 * The size of the LPT area depends on parameters that themselves are dependent
170 * on the size of the LPT area. This function, successively recalculates the LPT
171 * area geometry until the parameters and resultant geometry are consistent.
172 *
173 * This function returns %0 on success and a negative error code on failure.
174 */
175static int calc_dflt_lpt_geom(struct ubifs_info *c, int *main_lebs,
176 int *big_lpt)
177{
178 int i, lebs_needed;
179 uint64_t sz;
180
181 /* Start by assuming the minimum number of LPT LEBs */
182 c->lpt_lebs = UBIFS_MIN_LPT_LEBS;
183 c->main_lebs = *main_lebs - c->lpt_lebs;
184 if (c->main_lebs <= 0)
185 return -EINVAL;
186
187 /* And assume we will use the small LPT model */
188 c->big_lpt = 0;
189
190 /*
191 * Calculate the geometry based on assumptions above and then see if it
192 * makes sense
193 */
194 do_calc_lpt_geom(c);
195
196 /* Small LPT model must have lpt_sz < leb_size */
197 if (c->lpt_sz > c->leb_size) {
198 /* Nope, so try again using big LPT model */
199 c->big_lpt = 1;
200 do_calc_lpt_geom(c);
201 }
202
203 /* Now check there are enough LPT LEBs */
204 for (i = 0; i < 64 ; i++) {
205 sz = c->lpt_sz * 4; /* Allow 4 times the size */
206 sz += c->leb_size - 1;
207 do_div(sz, c->leb_size);
208 lebs_needed = sz;
209 if (lebs_needed > c->lpt_lebs) {
210 /* Not enough LPT LEBs so try again with more */
211 c->lpt_lebs = lebs_needed;
212 c->main_lebs = *main_lebs - c->lpt_lebs;
213 if (c->main_lebs <= 0)
214 return -EINVAL;
215 do_calc_lpt_geom(c);
216 continue;
217 }
218 if (c->ltab_sz > c->leb_size) {
219 ubifs_err("LPT ltab too big");
220 return -EINVAL;
221 }
222 *main_lebs = c->main_lebs;
223 *big_lpt = c->big_lpt;
224 return 0;
225 }
226 return -EINVAL;
227}
228
229/**
230 * pack_bits - pack bit fields end-to-end.
231 * @addr: address at which to pack (passed and next address returned)
232 * @pos: bit position at which to pack (passed and next position returned)
233 * @val: value to pack
234 * @nrbits: number of bits of value to pack (1-32)
235 */
236static void pack_bits(uint8_t **addr, int *pos, uint32_t val, int nrbits)
237{
238 uint8_t *p = *addr;
239 int b = *pos;
240
241 ubifs_assert(nrbits > 0);
242 ubifs_assert(nrbits <= 32);
243 ubifs_assert(*pos >= 0);
244 ubifs_assert(*pos < 8);
245 ubifs_assert((val >> nrbits) == 0 || nrbits == 32);
246 if (b) {
247 *p |= ((uint8_t)val) << b;
248 nrbits += b;
249 if (nrbits > 8) {
250 *++p = (uint8_t)(val >>= (8 - b));
251 if (nrbits > 16) {
252 *++p = (uint8_t)(val >>= 8);
253 if (nrbits > 24) {
254 *++p = (uint8_t)(val >>= 8);
255 if (nrbits > 32)
256 *++p = (uint8_t)(val >>= 8);
257 }
258 }
259 }
260 } else {
261 *p = (uint8_t)val;
262 if (nrbits > 8) {
263 *++p = (uint8_t)(val >>= 8);
264 if (nrbits > 16) {
265 *++p = (uint8_t)(val >>= 8);
266 if (nrbits > 24)
267 *++p = (uint8_t)(val >>= 8);
268 }
269 }
270 }
271 b = nrbits & 7;
272 if (b == 0)
273 p++;
274 *addr = p;
275 *pos = b;
276}
277
278/**
279 * ubifs_unpack_bits - unpack bit fields.
280 * @addr: address at which to unpack (passed and next address returned)
281 * @pos: bit position at which to unpack (passed and next position returned)
282 * @nrbits: number of bits of value to unpack (1-32)
283 *
284 * This functions returns the value unpacked.
285 */
286uint32_t ubifs_unpack_bits(uint8_t **addr, int *pos, int nrbits)
287{
288 const int k = 32 - nrbits;
289 uint8_t *p = *addr;
290 int b = *pos;
291 uint32_t val;
292
293 ubifs_assert(nrbits > 0);
294 ubifs_assert(nrbits <= 32);
295 ubifs_assert(*pos >= 0);
296 ubifs_assert(*pos < 8);
297 if (b) {
298 val = p[1] | ((uint32_t)p[2] << 8) | ((uint32_t)p[3] << 16) |
299 ((uint32_t)p[4] << 24);
300 val <<= (8 - b);
301 val |= *p >> b;
302 nrbits += b;
303 } else
304 val = p[0] | ((uint32_t)p[1] << 8) | ((uint32_t)p[2] << 16) |
305 ((uint32_t)p[3] << 24);
306 val <<= k;
307 val >>= k;
308 b = nrbits & 7;
309 p += nrbits / 8;
310 *addr = p;
311 *pos = b;
312 ubifs_assert((val >> nrbits) == 0 || nrbits - b == 32);
313 return val;
314}
315
316/**
317 * ubifs_pack_pnode - pack all the bit fields of a pnode.
318 * @c: UBIFS file-system description object
319 * @buf: buffer into which to pack
320 * @pnode: pnode to pack
321 */
322void ubifs_pack_pnode(struct ubifs_info *c, void *buf,
323 struct ubifs_pnode *pnode)
324{
325 uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
326 int i, pos = 0;
327 uint16_t crc;
328
329 pack_bits(&addr, &pos, UBIFS_LPT_PNODE, UBIFS_LPT_TYPE_BITS);
330 if (c->big_lpt)
331 pack_bits(&addr, &pos, pnode->num, c->pcnt_bits);
332 for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
333 pack_bits(&addr, &pos, pnode->lprops[i].free >> 3,
334 c->space_bits);
335 pack_bits(&addr, &pos, pnode->lprops[i].dirty >> 3,
336 c->space_bits);
337 if (pnode->lprops[i].flags & LPROPS_INDEX)
338 pack_bits(&addr, &pos, 1, 1);
339 else
340 pack_bits(&addr, &pos, 0, 1);
341 }
342 crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
343 c->pnode_sz - UBIFS_LPT_CRC_BYTES);
344 addr = buf;
345 pos = 0;
346 pack_bits(&addr, &pos, crc, UBIFS_LPT_CRC_BITS);
347}
348
349/**
350 * ubifs_pack_nnode - pack all the bit fields of a nnode.
351 * @c: UBIFS file-system description object
352 * @buf: buffer into which to pack
353 * @nnode: nnode to pack
354 */
355void ubifs_pack_nnode(struct ubifs_info *c, void *buf,
356 struct ubifs_nnode *nnode)
357{
358 uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
359 int i, pos = 0;
360 uint16_t crc;
361
362 pack_bits(&addr, &pos, UBIFS_LPT_NNODE, UBIFS_LPT_TYPE_BITS);
363 if (c->big_lpt)
364 pack_bits(&addr, &pos, nnode->num, c->pcnt_bits);
365 for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
366 int lnum = nnode->nbranch[i].lnum;
367
368 if (lnum == 0)
369 lnum = c->lpt_last + 1;
370 pack_bits(&addr, &pos, lnum - c->lpt_first, c->lpt_lnum_bits);
371 pack_bits(&addr, &pos, nnode->nbranch[i].offs,
372 c->lpt_offs_bits);
373 }
374 crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
375 c->nnode_sz - UBIFS_LPT_CRC_BYTES);
376 addr = buf;
377 pos = 0;
378 pack_bits(&addr, &pos, crc, UBIFS_LPT_CRC_BITS);
379}
380
381/**
382 * ubifs_pack_ltab - pack the LPT's own lprops table.
383 * @c: UBIFS file-system description object
384 * @buf: buffer into which to pack
385 * @ltab: LPT's own lprops table to pack
386 */
387void ubifs_pack_ltab(struct ubifs_info *c, void *buf,
388 struct ubifs_lpt_lprops *ltab)
389{
390 uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
391 int i, pos = 0;
392 uint16_t crc;
393
394 pack_bits(&addr, &pos, UBIFS_LPT_LTAB, UBIFS_LPT_TYPE_BITS);
395 for (i = 0; i < c->lpt_lebs; i++) {
396 pack_bits(&addr, &pos, ltab[i].free, c->lpt_spc_bits);
397 pack_bits(&addr, &pos, ltab[i].dirty, c->lpt_spc_bits);
398 }
399 crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
400 c->ltab_sz - UBIFS_LPT_CRC_BYTES);
401 addr = buf;
402 pos = 0;
403 pack_bits(&addr, &pos, crc, UBIFS_LPT_CRC_BITS);
404}
405
406/**
407 * ubifs_pack_lsave - pack the LPT's save table.
408 * @c: UBIFS file-system description object
409 * @buf: buffer into which to pack
410 * @lsave: LPT's save table to pack
411 */
412void ubifs_pack_lsave(struct ubifs_info *c, void *buf, int *lsave)
413{
414 uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
415 int i, pos = 0;
416 uint16_t crc;
417
418 pack_bits(&addr, &pos, UBIFS_LPT_LSAVE, UBIFS_LPT_TYPE_BITS);
419 for (i = 0; i < c->lsave_cnt; i++)
420 pack_bits(&addr, &pos, lsave[i], c->lnum_bits);
421 crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
422 c->lsave_sz - UBIFS_LPT_CRC_BYTES);
423 addr = buf;
424 pos = 0;
425 pack_bits(&addr, &pos, crc, UBIFS_LPT_CRC_BITS);
426}
427
428/**
429 * ubifs_add_lpt_dirt - add dirty space to LPT LEB properties.
430 * @c: UBIFS file-system description object
431 * @lnum: LEB number to which to add dirty space
432 * @dirty: amount of dirty space to add
433 */
434void ubifs_add_lpt_dirt(struct ubifs_info *c, int lnum, int dirty)
435{
436 if (!dirty || !lnum)
437 return;
438 dbg_lp("LEB %d add %d to %d",
439 lnum, dirty, c->ltab[lnum - c->lpt_first].dirty);
440 ubifs_assert(lnum >= c->lpt_first && lnum <= c->lpt_last);
441 c->ltab[lnum - c->lpt_first].dirty += dirty;
442}
443
444/**
445 * set_ltab - set LPT LEB properties.
446 * @c: UBIFS file-system description object
447 * @lnum: LEB number
448 * @free: amount of free space
449 * @dirty: amount of dirty space
450 */
451static void set_ltab(struct ubifs_info *c, int lnum, int free, int dirty)
452{
453 dbg_lp("LEB %d free %d dirty %d to %d %d",
454 lnum, c->ltab[lnum - c->lpt_first].free,
455 c->ltab[lnum - c->lpt_first].dirty, free, dirty);
456 ubifs_assert(lnum >= c->lpt_first && lnum <= c->lpt_last);
457 c->ltab[lnum - c->lpt_first].free = free;
458 c->ltab[lnum - c->lpt_first].dirty = dirty;
459}
460
461/**
462 * ubifs_add_nnode_dirt - add dirty space to LPT LEB properties.
463 * @c: UBIFS file-system description object
464 * @nnode: nnode for which to add dirt
465 */
466void ubifs_add_nnode_dirt(struct ubifs_info *c, struct ubifs_nnode *nnode)
467{
468 struct ubifs_nnode *np = nnode->parent;
469
470 if (np)
471 ubifs_add_lpt_dirt(c, np->nbranch[nnode->iip].lnum,
472 c->nnode_sz);
473 else {
474 ubifs_add_lpt_dirt(c, c->lpt_lnum, c->nnode_sz);
475 if (!(c->lpt_drty_flgs & LTAB_DIRTY)) {
476 c->lpt_drty_flgs |= LTAB_DIRTY;
477 ubifs_add_lpt_dirt(c, c->ltab_lnum, c->ltab_sz);
478 }
479 }
480}
481
482/**
483 * add_pnode_dirt - add dirty space to LPT LEB properties.
484 * @c: UBIFS file-system description object
485 * @pnode: pnode for which to add dirt
486 */
487static void add_pnode_dirt(struct ubifs_info *c, struct ubifs_pnode *pnode)
488{
489 ubifs_add_lpt_dirt(c, pnode->parent->nbranch[pnode->iip].lnum,
490 c->pnode_sz);
491}
492
493/**
494 * calc_nnode_num - calculate nnode number.
495 * @row: the row in the tree (root is zero)
496 * @col: the column in the row (leftmost is zero)
497 *
498 * The nnode number is a number that uniquely identifies a nnode and can be used
499 * easily to traverse the tree from the root to that nnode.
500 *
501 * This function calculates and returns the nnode number for the nnode at @row
502 * and @col.
503 */
504static int calc_nnode_num(int row, int col)
505{
506 int num, bits;
507
508 num = 1;
509 while (row--) {
510 bits = (col & (UBIFS_LPT_FANOUT - 1));
511 col >>= UBIFS_LPT_FANOUT_SHIFT;
512 num <<= UBIFS_LPT_FANOUT_SHIFT;
513 num |= bits;
514 }
515 return num;
516}
517
518/**
519 * calc_nnode_num_from_parent - calculate nnode number.
520 * @c: UBIFS file-system description object
521 * @parent: parent nnode
522 * @iip: index in parent
523 *
524 * The nnode number is a number that uniquely identifies a nnode and can be used
525 * easily to traverse the tree from the root to that nnode.
526 *
527 * This function calculates and returns the nnode number based on the parent's
528 * nnode number and the index in parent.
529 */
530static int calc_nnode_num_from_parent(struct ubifs_info *c,
531 struct ubifs_nnode *parent, int iip)
532{
533 int num, shft;
534
535 if (!parent)
536 return 1;
537 shft = (c->lpt_hght - parent->level) * UBIFS_LPT_FANOUT_SHIFT;
538 num = parent->num ^ (1 << shft);
539 num |= (UBIFS_LPT_FANOUT + iip) << shft;
540 return num;
541}
542
543/**
544 * calc_pnode_num_from_parent - calculate pnode number.
545 * @c: UBIFS file-system description object
546 * @parent: parent nnode
547 * @iip: index in parent
548 *
549 * The pnode number is a number that uniquely identifies a pnode and can be used
550 * easily to traverse the tree from the root to that pnode.
551 *
552 * This function calculates and returns the pnode number based on the parent's
553 * nnode number and the index in parent.
554 */
555static int calc_pnode_num_from_parent(struct ubifs_info *c,
556 struct ubifs_nnode *parent, int iip)
557{
558 int i, n = c->lpt_hght - 1, pnum = parent->num, num = 0;
559
560 for (i = 0; i < n; i++) {
561 num <<= UBIFS_LPT_FANOUT_SHIFT;
562 num |= pnum & (UBIFS_LPT_FANOUT - 1);
563 pnum >>= UBIFS_LPT_FANOUT_SHIFT;
564 }
565 num <<= UBIFS_LPT_FANOUT_SHIFT;
566 num |= iip;
567 return num;
568}
569
570/**
571 * ubifs_create_dflt_lpt - create default LPT.
572 * @c: UBIFS file-system description object
573 * @main_lebs: number of main area LEBs is passed and returned here
574 * @lpt_first: LEB number of first LPT LEB
575 * @lpt_lebs: number of LEBs for LPT is passed and returned here
576 * @big_lpt: use big LPT model is passed and returned here
577 *
578 * This function returns %0 on success and a negative error code on failure.
579 */
580int ubifs_create_dflt_lpt(struct ubifs_info *c, int *main_lebs, int lpt_first,
581 int *lpt_lebs, int *big_lpt)
582{
583 int lnum, err = 0, node_sz, iopos, i, j, cnt, len, alen, row;
584 int blnum, boffs, bsz, bcnt;
585 struct ubifs_pnode *pnode = NULL;
586 struct ubifs_nnode *nnode = NULL;
587 void *buf = NULL, *p;
588 struct ubifs_lpt_lprops *ltab = NULL;
589 int *lsave = NULL;
590
591 err = calc_dflt_lpt_geom(c, main_lebs, big_lpt);
592 if (err)
593 return err;
594 *lpt_lebs = c->lpt_lebs;
595
596 /* Needed by 'ubifs_pack_nnode()' and 'set_ltab()' */
597 c->lpt_first = lpt_first;
598 /* Needed by 'set_ltab()' */
599 c->lpt_last = lpt_first + c->lpt_lebs - 1;
600 /* Needed by 'ubifs_pack_lsave()' */
601 c->main_first = c->leb_cnt - *main_lebs;
602
603 lsave = kmalloc(sizeof(int) * c->lsave_cnt, GFP_KERNEL);
604 pnode = kzalloc(sizeof(struct ubifs_pnode), GFP_KERNEL);
605 nnode = kzalloc(sizeof(struct ubifs_nnode), GFP_KERNEL);
606 buf = vmalloc(c->leb_size);
607 ltab = vmalloc(sizeof(struct ubifs_lpt_lprops) * c->lpt_lebs);
608 if (!pnode || !nnode || !buf || !ltab || !lsave) {
609 err = -ENOMEM;
610 goto out;
611 }
612
613 ubifs_assert(!c->ltab);
614 c->ltab = ltab; /* Needed by set_ltab */
615
616 /* Initialize LPT's own lprops */
617 for (i = 0; i < c->lpt_lebs; i++) {
618 ltab[i].free = c->leb_size;
619 ltab[i].dirty = 0;
620 ltab[i].tgc = 0;
621 ltab[i].cmt = 0;
622 }
623
624 lnum = lpt_first;
625 p = buf;
626 /* Number of leaf nodes (pnodes) */
627 cnt = c->pnode_cnt;
628
629 /*
630 * The first pnode contains the LEB properties for the LEBs that contain
631 * the root inode node and the root index node of the index tree.
632 */
633 node_sz = ALIGN(ubifs_idx_node_sz(c, 1), 8);
634 iopos = ALIGN(node_sz, c->min_io_size);
635 pnode->lprops[0].free = c->leb_size - iopos;
636 pnode->lprops[0].dirty = iopos - node_sz;
637 pnode->lprops[0].flags = LPROPS_INDEX;
638
639 node_sz = UBIFS_INO_NODE_SZ;
640 iopos = ALIGN(node_sz, c->min_io_size);
641 pnode->lprops[1].free = c->leb_size - iopos;
642 pnode->lprops[1].dirty = iopos - node_sz;
643
644 for (i = 2; i < UBIFS_LPT_FANOUT; i++)
645 pnode->lprops[i].free = c->leb_size;
646
647 /* Add first pnode */
648 ubifs_pack_pnode(c, p, pnode);
649 p += c->pnode_sz;
650 len = c->pnode_sz;
651 pnode->num += 1;
652
653 /* Reset pnode values for remaining pnodes */
654 pnode->lprops[0].free = c->leb_size;
655 pnode->lprops[0].dirty = 0;
656 pnode->lprops[0].flags = 0;
657
658 pnode->lprops[1].free = c->leb_size;
659 pnode->lprops[1].dirty = 0;
660
661 /*
662 * To calculate the internal node branches, we keep information about
663 * the level below.
664 */
665 blnum = lnum; /* LEB number of level below */
666 boffs = 0; /* Offset of level below */
667 bcnt = cnt; /* Number of nodes in level below */
668 bsz = c->pnode_sz; /* Size of nodes in level below */
669
670 /* Add all remaining pnodes */
671 for (i = 1; i < cnt; i++) {
672 if (len + c->pnode_sz > c->leb_size) {
673 alen = ALIGN(len, c->min_io_size);
674 set_ltab(c, lnum, c->leb_size - alen, alen - len);
675 memset(p, 0xff, alen - len);
676 err = ubi_leb_change(c->ubi, lnum++, buf, alen,
677 UBI_SHORTTERM);
678 if (err)
679 goto out;
680 p = buf;
681 len = 0;
682 }
683 ubifs_pack_pnode(c, p, pnode);
684 p += c->pnode_sz;
685 len += c->pnode_sz;
686 /*
687 * pnodes are simply numbered left to right starting at zero,
688 * which means the pnode number can be used easily to traverse
689 * down the tree to the corresponding pnode.
690 */
691 pnode->num += 1;
692 }
693
694 row = 0;
695 for (i = UBIFS_LPT_FANOUT; cnt > i; i <<= UBIFS_LPT_FANOUT_SHIFT)
696 row += 1;
697 /* Add all nnodes, one level at a time */
698 while (1) {
699 /* Number of internal nodes (nnodes) at next level */
700 cnt = DIV_ROUND_UP(cnt, UBIFS_LPT_FANOUT);
701 for (i = 0; i < cnt; i++) {
702 if (len + c->nnode_sz > c->leb_size) {
703 alen = ALIGN(len, c->min_io_size);
704 set_ltab(c, lnum, c->leb_size - alen,
705 alen - len);
706 memset(p, 0xff, alen - len);
707 err = ubi_leb_change(c->ubi, lnum++, buf, alen,
708 UBI_SHORTTERM);
709 if (err)
710 goto out;
711 p = buf;
712 len = 0;
713 }
714 /* Only 1 nnode at this level, so it is the root */
715 if (cnt == 1) {
716 c->lpt_lnum = lnum;
717 c->lpt_offs = len;
718 }
719 /* Set branches to the level below */
720 for (j = 0; j < UBIFS_LPT_FANOUT; j++) {
721 if (bcnt) {
722 if (boffs + bsz > c->leb_size) {
723 blnum += 1;
724 boffs = 0;
725 }
726 nnode->nbranch[j].lnum = blnum;
727 nnode->nbranch[j].offs = boffs;
728 boffs += bsz;
729 bcnt--;
730 } else {
731 nnode->nbranch[j].lnum = 0;
732 nnode->nbranch[j].offs = 0;
733 }
734 }
735 nnode->num = calc_nnode_num(row, i);
736 ubifs_pack_nnode(c, p, nnode);
737 p += c->nnode_sz;
738 len += c->nnode_sz;
739 }
740 /* Only 1 nnode at this level, so it is the root */
741 if (cnt == 1)
742 break;
743 /* Update the information about the level below */
744 bcnt = cnt;
745 bsz = c->nnode_sz;
746 row -= 1;
747 }
748
749 if (*big_lpt) {
750 /* Need to add LPT's save table */
751 if (len + c->lsave_sz > c->leb_size) {
752 alen = ALIGN(len, c->min_io_size);
753 set_ltab(c, lnum, c->leb_size - alen, alen - len);
754 memset(p, 0xff, alen - len);
755 err = ubi_leb_change(c->ubi, lnum++, buf, alen,
756 UBI_SHORTTERM);
757 if (err)
758 goto out;
759 p = buf;
760 len = 0;
761 }
762
763 c->lsave_lnum = lnum;
764 c->lsave_offs = len;
765
766 for (i = 0; i < c->lsave_cnt && i < *main_lebs; i++)
767 lsave[i] = c->main_first + i;
768 for (; i < c->lsave_cnt; i++)
769 lsave[i] = c->main_first;
770
771 ubifs_pack_lsave(c, p, lsave);
772 p += c->lsave_sz;
773 len += c->lsave_sz;
774 }
775
776 /* Need to add LPT's own LEB properties table */
777 if (len + c->ltab_sz > c->leb_size) {
778 alen = ALIGN(len, c->min_io_size);
779 set_ltab(c, lnum, c->leb_size - alen, alen - len);
780 memset(p, 0xff, alen - len);
781 err = ubi_leb_change(c->ubi, lnum++, buf, alen, UBI_SHORTTERM);
782 if (err)
783 goto out;
784 p = buf;
785 len = 0;
786 }
787
788 c->ltab_lnum = lnum;
789 c->ltab_offs = len;
790
791 /* Update ltab before packing it */
792 len += c->ltab_sz;
793 alen = ALIGN(len, c->min_io_size);
794 set_ltab(c, lnum, c->leb_size - alen, alen - len);
795
796 ubifs_pack_ltab(c, p, ltab);
797 p += c->ltab_sz;
798
799 /* Write remaining buffer */
800 memset(p, 0xff, alen - len);
801 err = ubi_leb_change(c->ubi, lnum, buf, alen, UBI_SHORTTERM);
802 if (err)
803 goto out;
804
805 c->nhead_lnum = lnum;
806 c->nhead_offs = ALIGN(len, c->min_io_size);
807
808 dbg_lp("space_bits %d", c->space_bits);
809 dbg_lp("lpt_lnum_bits %d", c->lpt_lnum_bits);
810 dbg_lp("lpt_offs_bits %d", c->lpt_offs_bits);
811 dbg_lp("lpt_spc_bits %d", c->lpt_spc_bits);
812 dbg_lp("pcnt_bits %d", c->pcnt_bits);
813 dbg_lp("lnum_bits %d", c->lnum_bits);
814 dbg_lp("pnode_sz %d", c->pnode_sz);
815 dbg_lp("nnode_sz %d", c->nnode_sz);
816 dbg_lp("ltab_sz %d", c->ltab_sz);
817 dbg_lp("lsave_sz %d", c->lsave_sz);
818 dbg_lp("lsave_cnt %d", c->lsave_cnt);
819 dbg_lp("lpt_hght %d", c->lpt_hght);
820 dbg_lp("big_lpt %d", c->big_lpt);
821 dbg_lp("LPT root is at %d:%d", c->lpt_lnum, c->lpt_offs);
822 dbg_lp("LPT head is at %d:%d", c->nhead_lnum, c->nhead_offs);
823 dbg_lp("LPT ltab is at %d:%d", c->ltab_lnum, c->ltab_offs);
824 if (c->big_lpt)
825 dbg_lp("LPT lsave is at %d:%d", c->lsave_lnum, c->lsave_offs);
826out:
827 c->ltab = NULL;
828 kfree(lsave);
829 vfree(ltab);
830 vfree(buf);
831 kfree(nnode);
832 kfree(pnode);
833 return err;
834}
835
836/**
837 * update_cats - add LEB properties of a pnode to LEB category lists and heaps.
838 * @c: UBIFS file-system description object
839 * @pnode: pnode
840 *
841 * When a pnode is loaded into memory, the LEB properties it contains are added,
842 * by this function, to the LEB category lists and heaps.
843 */
844static void update_cats(struct ubifs_info *c, struct ubifs_pnode *pnode)
845{
846 int i;
847
848 for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
849 int cat = pnode->lprops[i].flags & LPROPS_CAT_MASK;
850 int lnum = pnode->lprops[i].lnum;
851
852 if (!lnum)
853 return;
854 ubifs_add_to_cat(c, &pnode->lprops[i], cat);
855 }
856}
857
858/**
859 * replace_cats - add LEB properties of a pnode to LEB category lists and heaps.
860 * @c: UBIFS file-system description object
861 * @old_pnode: pnode copied
862 * @new_pnode: pnode copy
863 *
864 * During commit it is sometimes necessary to copy a pnode
865 * (see dirty_cow_pnode). When that happens, references in
866 * category lists and heaps must be replaced. This function does that.
867 */
868static void replace_cats(struct ubifs_info *c, struct ubifs_pnode *old_pnode,
869 struct ubifs_pnode *new_pnode)
870{
871 int i;
872
873 for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
874 if (!new_pnode->lprops[i].lnum)
875 return;
876 ubifs_replace_cat(c, &old_pnode->lprops[i],
877 &new_pnode->lprops[i]);
878 }
879}
880
881/**
882 * check_lpt_crc - check LPT node crc is correct.
883 * @c: UBIFS file-system description object
884 * @buf: buffer containing node
885 * @len: length of node
886 *
887 * This function returns %0 on success and a negative error code on failure.
888 */
889static int check_lpt_crc(void *buf, int len)
890{
891 int pos = 0;
892 uint8_t *addr = buf;
893 uint16_t crc, calc_crc;
894
895 crc = ubifs_unpack_bits(&addr, &pos, UBIFS_LPT_CRC_BITS);
896 calc_crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
897 len - UBIFS_LPT_CRC_BYTES);
898 if (crc != calc_crc) {
899 ubifs_err("invalid crc in LPT node: crc %hx calc %hx", crc,
900 calc_crc);
901 dbg_dump_stack();
902 return -EINVAL;
903 }
904 return 0;
905}
906
907/**
908 * check_lpt_type - check LPT node type is correct.
909 * @c: UBIFS file-system description object
910 * @addr: address of type bit field is passed and returned updated here
911 * @pos: position of type bit field is passed and returned updated here
912 * @type: expected type
913 *
914 * This function returns %0 on success and a negative error code on failure.
915 */
916static int check_lpt_type(uint8_t **addr, int *pos, int type)
917{
918 int node_type;
919
920 node_type = ubifs_unpack_bits(addr, pos, UBIFS_LPT_TYPE_BITS);
921 if (node_type != type) {
922 ubifs_err("invalid type (%d) in LPT node type %d", node_type,
923 type);
924 dbg_dump_stack();
925 return -EINVAL;
926 }
927 return 0;
928}
929
930/**
931 * unpack_pnode - unpack a pnode.
932 * @c: UBIFS file-system description object
933 * @buf: buffer containing packed pnode to unpack
934 * @pnode: pnode structure to fill
935 *
936 * This function returns %0 on success and a negative error code on failure.
937 */
938static int unpack_pnode(struct ubifs_info *c, void *buf,
939 struct ubifs_pnode *pnode)
940{
941 uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
942 int i, pos = 0, err;
943
944 err = check_lpt_type(&addr, &pos, UBIFS_LPT_PNODE);
945 if (err)
946 return err;
947 if (c->big_lpt)
948 pnode->num = ubifs_unpack_bits(&addr, &pos, c->pcnt_bits);
949 for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
950 struct ubifs_lprops * const lprops = &pnode->lprops[i];
951
952 lprops->free = ubifs_unpack_bits(&addr, &pos, c->space_bits);
953 lprops->free <<= 3;
954 lprops->dirty = ubifs_unpack_bits(&addr, &pos, c->space_bits);
955 lprops->dirty <<= 3;
956
957 if (ubifs_unpack_bits(&addr, &pos, 1))
958 lprops->flags = LPROPS_INDEX;
959 else
960 lprops->flags = 0;
961 lprops->flags |= ubifs_categorize_lprops(c, lprops);
962 }
963 err = check_lpt_crc(buf, c->pnode_sz);
964 return err;
965}
966
967/**
968 * unpack_nnode - unpack a nnode.
969 * @c: UBIFS file-system description object
970 * @buf: buffer containing packed nnode to unpack
971 * @nnode: nnode structure to fill
972 *
973 * This function returns %0 on success and a negative error code on failure.
974 */
975static int unpack_nnode(struct ubifs_info *c, void *buf,
976 struct ubifs_nnode *nnode)
977{
978 uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
979 int i, pos = 0, err;
980
981 err = check_lpt_type(&addr, &pos, UBIFS_LPT_NNODE);
982 if (err)
983 return err;
984 if (c->big_lpt)
985 nnode->num = ubifs_unpack_bits(&addr, &pos, c->pcnt_bits);
986 for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
987 int lnum;
988
989 lnum = ubifs_unpack_bits(&addr, &pos, c->lpt_lnum_bits) +
990 c->lpt_first;
991 if (lnum == c->lpt_last + 1)
992 lnum = 0;
993 nnode->nbranch[i].lnum = lnum;
994 nnode->nbranch[i].offs = ubifs_unpack_bits(&addr, &pos,
995 c->lpt_offs_bits);
996 }
997 err = check_lpt_crc(buf, c->nnode_sz);
998 return err;
999}
1000
1001/**
1002 * unpack_ltab - unpack the LPT's own lprops table.
1003 * @c: UBIFS file-system description object
1004 * @buf: buffer from which to unpack
1005 *
1006 * This function returns %0 on success and a negative error code on failure.
1007 */
1008static int unpack_ltab(struct ubifs_info *c, void *buf)
1009{
1010 uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
1011 int i, pos = 0, err;
1012
1013 err = check_lpt_type(&addr, &pos, UBIFS_LPT_LTAB);
1014 if (err)
1015 return err;
1016 for (i = 0; i < c->lpt_lebs; i++) {
1017 int free = ubifs_unpack_bits(&addr, &pos, c->lpt_spc_bits);
1018 int dirty = ubifs_unpack_bits(&addr, &pos, c->lpt_spc_bits);
1019
1020 if (free < 0 || free > c->leb_size || dirty < 0 ||
1021 dirty > c->leb_size || free + dirty > c->leb_size)
1022 return -EINVAL;
1023
1024 c->ltab[i].free = free;
1025 c->ltab[i].dirty = dirty;
1026 c->ltab[i].tgc = 0;
1027 c->ltab[i].cmt = 0;
1028 }
1029 err = check_lpt_crc(buf, c->ltab_sz);
1030 return err;
1031}
1032
1033/**
1034 * unpack_lsave - unpack the LPT's save table.
1035 * @c: UBIFS file-system description object
1036 * @buf: buffer from which to unpack
1037 *
1038 * This function returns %0 on success and a negative error code on failure.
1039 */
1040static int unpack_lsave(struct ubifs_info *c, void *buf)
1041{
1042 uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
1043 int i, pos = 0, err;
1044
1045 err = check_lpt_type(&addr, &pos, UBIFS_LPT_LSAVE);
1046 if (err)
1047 return err;
1048 for (i = 0; i < c->lsave_cnt; i++) {
1049 int lnum = ubifs_unpack_bits(&addr, &pos, c->lnum_bits);
1050
1051 if (lnum < c->main_first || lnum >= c->leb_cnt)
1052 return -EINVAL;
1053 c->lsave[i] = lnum;
1054 }
1055 err = check_lpt_crc(buf, c->lsave_sz);
1056 return err;
1057}
1058
1059/**
1060 * validate_nnode - validate a nnode.
1061 * @c: UBIFS file-system description object
1062 * @nnode: nnode to validate
1063 * @parent: parent nnode (or NULL for the root nnode)
1064 * @iip: index in parent
1065 *
1066 * This function returns %0 on success and a negative error code on failure.
1067 */
1068static int validate_nnode(struct ubifs_info *c, struct ubifs_nnode *nnode,
1069 struct ubifs_nnode *parent, int iip)
1070{
1071 int i, lvl, max_offs;
1072
1073 if (c->big_lpt) {
1074 int num = calc_nnode_num_from_parent(c, parent, iip);
1075
1076 if (nnode->num != num)
1077 return -EINVAL;
1078 }
1079 lvl = parent ? parent->level - 1 : c->lpt_hght;
1080 if (lvl < 1)
1081 return -EINVAL;
1082 if (lvl == 1)
1083 max_offs = c->leb_size - c->pnode_sz;
1084 else
1085 max_offs = c->leb_size - c->nnode_sz;
1086 for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1087 int lnum = nnode->nbranch[i].lnum;
1088 int offs = nnode->nbranch[i].offs;
1089
1090 if (lnum == 0) {
1091 if (offs != 0)
1092 return -EINVAL;
1093 continue;
1094 }
1095 if (lnum < c->lpt_first || lnum > c->lpt_last)
1096 return -EINVAL;
1097 if (offs < 0 || offs > max_offs)
1098 return -EINVAL;
1099 }
1100 return 0;
1101}
1102
1103/**
1104 * validate_pnode - validate a pnode.
1105 * @c: UBIFS file-system description object
1106 * @pnode: pnode to validate
1107 * @parent: parent nnode
1108 * @iip: index in parent
1109 *
1110 * This function returns %0 on success and a negative error code on failure.
1111 */
1112static int validate_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
1113 struct ubifs_nnode *parent, int iip)
1114{
1115 int i;
1116
1117 if (c->big_lpt) {
1118 int num = calc_pnode_num_from_parent(c, parent, iip);
1119
1120 if (pnode->num != num)
1121 return -EINVAL;
1122 }
1123 for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1124 int free = pnode->lprops[i].free;
1125 int dirty = pnode->lprops[i].dirty;
1126
1127 if (free < 0 || free > c->leb_size || free % c->min_io_size ||
1128 (free & 7))
1129 return -EINVAL;
1130 if (dirty < 0 || dirty > c->leb_size || (dirty & 7))
1131 return -EINVAL;
1132 if (dirty + free > c->leb_size)
1133 return -EINVAL;
1134 }
1135 return 0;
1136}
1137
1138/**
1139 * set_pnode_lnum - set LEB numbers on a pnode.
1140 * @c: UBIFS file-system description object
1141 * @pnode: pnode to update
1142 *
1143 * This function calculates the LEB numbers for the LEB properties it contains
1144 * based on the pnode number.
1145 */
1146static void set_pnode_lnum(struct ubifs_info *c, struct ubifs_pnode *pnode)
1147{
1148 int i, lnum;
1149
1150 lnum = (pnode->num << UBIFS_LPT_FANOUT_SHIFT) + c->main_first;
1151 for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1152 if (lnum >= c->leb_cnt)
1153 return;
1154 pnode->lprops[i].lnum = lnum++;
1155 }
1156}
1157
1158/**
1159 * ubifs_read_nnode - read a nnode from flash and link it to the tree in memory.
1160 * @c: UBIFS file-system description object
1161 * @parent: parent nnode (or NULL for the root)
1162 * @iip: index in parent
1163 *
1164 * This function returns %0 on success and a negative error code on failure.
1165 */
1166int ubifs_read_nnode(struct ubifs_info *c, struct ubifs_nnode *parent, int iip)
1167{
1168 struct ubifs_nbranch *branch = NULL;
1169 struct ubifs_nnode *nnode = NULL;
1170 void *buf = c->lpt_nod_buf;
1171 int err, lnum, offs;
1172
1173 if (parent) {
1174 branch = &parent->nbranch[iip];
1175 lnum = branch->lnum;
1176 offs = branch->offs;
1177 } else {
1178 lnum = c->lpt_lnum;
1179 offs = c->lpt_offs;
1180 }
1181 nnode = kzalloc(sizeof(struct ubifs_nnode), GFP_NOFS);
1182 if (!nnode) {
1183 err = -ENOMEM;
1184 goto out;
1185 }
1186 if (lnum == 0) {
1187 /*
1188 * This nnode was not written which just means that the LEB
1189 * properties in the subtree below it describe empty LEBs. We
1190 * make the nnode as though we had read it, which in fact means
1191 * doing almost nothing.
1192 */
1193 if (c->big_lpt)
1194 nnode->num = calc_nnode_num_from_parent(c, parent, iip);
1195 } else {
1196 err = ubi_read(c->ubi, lnum, buf, offs, c->nnode_sz);
1197 if (err)
1198 goto out;
1199 err = unpack_nnode(c, buf, nnode);
1200 if (err)
1201 goto out;
1202 }
1203 err = validate_nnode(c, nnode, parent, iip);
1204 if (err)
1205 goto out;
1206 if (!c->big_lpt)
1207 nnode->num = calc_nnode_num_from_parent(c, parent, iip);
1208 if (parent) {
1209 branch->nnode = nnode;
1210 nnode->level = parent->level - 1;
1211 } else {
1212 c->nroot = nnode;
1213 nnode->level = c->lpt_hght;
1214 }
1215 nnode->parent = parent;
1216 nnode->iip = iip;
1217 return 0;
1218
1219out:
1220 ubifs_err("error %d reading nnode at %d:%d", err, lnum, offs);
1221 kfree(nnode);
1222 return err;
1223}
1224
1225/**
1226 * read_pnode - read a pnode from flash and link it to the tree in memory.
1227 * @c: UBIFS file-system description object
1228 * @parent: parent nnode
1229 * @iip: index in parent
1230 *
1231 * This function returns %0 on success and a negative error code on failure.
1232 */
1233static int read_pnode(struct ubifs_info *c, struct ubifs_nnode *parent, int iip)
1234{
1235 struct ubifs_nbranch *branch;
1236 struct ubifs_pnode *pnode = NULL;
1237 void *buf = c->lpt_nod_buf;
1238 int err, lnum, offs;
1239
1240 branch = &parent->nbranch[iip];
1241 lnum = branch->lnum;
1242 offs = branch->offs;
1243 pnode = kzalloc(sizeof(struct ubifs_pnode), GFP_NOFS);
1244 if (!pnode) {
1245 err = -ENOMEM;
1246 goto out;
1247 }
1248 if (lnum == 0) {
1249 /*
1250 * This pnode was not written which just means that the LEB
1251 * properties in it describe empty LEBs. We make the pnode as
1252 * though we had read it.
1253 */
1254 int i;
1255
1256 if (c->big_lpt)
1257 pnode->num = calc_pnode_num_from_parent(c, parent, iip);
1258 for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1259 struct ubifs_lprops * const lprops = &pnode->lprops[i];
1260
1261 lprops->free = c->leb_size;
1262 lprops->flags = ubifs_categorize_lprops(c, lprops);
1263 }
1264 } else {
1265 err = ubi_read(c->ubi, lnum, buf, offs, c->pnode_sz);
1266 if (err)
1267 goto out;
1268 err = unpack_pnode(c, buf, pnode);
1269 if (err)
1270 goto out;
1271 }
1272 err = validate_pnode(c, pnode, parent, iip);
1273 if (err)
1274 goto out;
1275 if (!c->big_lpt)
1276 pnode->num = calc_pnode_num_from_parent(c, parent, iip);
1277 branch->pnode = pnode;
1278 pnode->parent = parent;
1279 pnode->iip = iip;
1280 set_pnode_lnum(c, pnode);
1281 c->pnodes_have += 1;
1282 return 0;
1283
1284out:
1285 ubifs_err("error %d reading pnode at %d:%d", err, lnum, offs);
1286 dbg_dump_pnode(c, pnode, parent, iip);
1287 dbg_msg("calc num: %d", calc_pnode_num_from_parent(c, parent, iip));
1288 kfree(pnode);
1289 return err;
1290}
1291
1292/**
1293 * read_ltab - read LPT's own lprops table.
1294 * @c: UBIFS file-system description object
1295 *
1296 * This function returns %0 on success and a negative error code on failure.
1297 */
1298static int read_ltab(struct ubifs_info *c)
1299{
1300 int err;
1301 void *buf;
1302
1303 buf = vmalloc(c->ltab_sz);
1304 if (!buf)
1305 return -ENOMEM;
1306 err = ubi_read(c->ubi, c->ltab_lnum, buf, c->ltab_offs, c->ltab_sz);
1307 if (err)
1308 goto out;
1309 err = unpack_ltab(c, buf);
1310out:
1311 vfree(buf);
1312 return err;
1313}
1314
1315/**
1316 * read_lsave - read LPT's save table.
1317 * @c: UBIFS file-system description object
1318 *
1319 * This function returns %0 on success and a negative error code on failure.
1320 */
1321static int read_lsave(struct ubifs_info *c)
1322{
1323 int err, i;
1324 void *buf;
1325
1326 buf = vmalloc(c->lsave_sz);
1327 if (!buf)
1328 return -ENOMEM;
1329 err = ubi_read(c->ubi, c->lsave_lnum, buf, c->lsave_offs, c->lsave_sz);
1330 if (err)
1331 goto out;
1332 err = unpack_lsave(c, buf);
1333 if (err)
1334 goto out;
1335 for (i = 0; i < c->lsave_cnt; i++) {
1336 int lnum = c->lsave[i];
1337
1338 /*
1339 * Due to automatic resizing, the values in the lsave table
1340 * could be beyond the volume size - just ignore them.
1341 */
1342 if (lnum >= c->leb_cnt)
1343 continue;
1344 ubifs_lpt_lookup(c, lnum);
1345 }
1346out:
1347 vfree(buf);
1348 return err;
1349}
1350
1351/**
1352 * ubifs_get_nnode - get a nnode.
1353 * @c: UBIFS file-system description object
1354 * @parent: parent nnode (or NULL for the root)
1355 * @iip: index in parent
1356 *
1357 * This function returns a pointer to the nnode on success or a negative error
1358 * code on failure.
1359 */
1360struct ubifs_nnode *ubifs_get_nnode(struct ubifs_info *c,
1361 struct ubifs_nnode *parent, int iip)
1362{
1363 struct ubifs_nbranch *branch;
1364 struct ubifs_nnode *nnode;
1365 int err;
1366
1367 branch = &parent->nbranch[iip];
1368 nnode = branch->nnode;
1369 if (nnode)
1370 return nnode;
1371 err = ubifs_read_nnode(c, parent, iip);
1372 if (err)
1373 return ERR_PTR(err);
1374 return branch->nnode;
1375}
1376
1377/**
1378 * ubifs_get_pnode - get a pnode.
1379 * @c: UBIFS file-system description object
1380 * @parent: parent nnode
1381 * @iip: index in parent
1382 *
1383 * This function returns a pointer to the pnode on success or a negative error
1384 * code on failure.
1385 */
1386struct ubifs_pnode *ubifs_get_pnode(struct ubifs_info *c,
1387 struct ubifs_nnode *parent, int iip)
1388{
1389 struct ubifs_nbranch *branch;
1390 struct ubifs_pnode *pnode;
1391 int err;
1392
1393 branch = &parent->nbranch[iip];
1394 pnode = branch->pnode;
1395 if (pnode)
1396 return pnode;
1397 err = read_pnode(c, parent, iip);
1398 if (err)
1399 return ERR_PTR(err);
1400 update_cats(c, branch->pnode);
1401 return branch->pnode;
1402}
1403
1404/**
1405 * ubifs_lpt_lookup - lookup LEB properties in the LPT.
1406 * @c: UBIFS file-system description object
1407 * @lnum: LEB number to lookup
1408 *
1409 * This function returns a pointer to the LEB properties on success or a
1410 * negative error code on failure.
1411 */
1412struct ubifs_lprops *ubifs_lpt_lookup(struct ubifs_info *c, int lnum)
1413{
1414 int err, i, h, iip, shft;
1415 struct ubifs_nnode *nnode;
1416 struct ubifs_pnode *pnode;
1417
1418 if (!c->nroot) {
1419 err = ubifs_read_nnode(c, NULL, 0);
1420 if (err)
1421 return ERR_PTR(err);
1422 }
1423 nnode = c->nroot;
1424 i = lnum - c->main_first;
1425 shft = c->lpt_hght * UBIFS_LPT_FANOUT_SHIFT;
1426 for (h = 1; h < c->lpt_hght; h++) {
1427 iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
1428 shft -= UBIFS_LPT_FANOUT_SHIFT;
1429 nnode = ubifs_get_nnode(c, nnode, iip);
1430 if (IS_ERR(nnode))
1431 return ERR_PTR(PTR_ERR(nnode));
1432 }
1433 iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
1434 shft -= UBIFS_LPT_FANOUT_SHIFT;
1435 pnode = ubifs_get_pnode(c, nnode, iip);
1436 if (IS_ERR(pnode))
1437 return ERR_PTR(PTR_ERR(pnode));
1438 iip = (i & (UBIFS_LPT_FANOUT - 1));
1439 dbg_lp("LEB %d, free %d, dirty %d, flags %d", lnum,
1440 pnode->lprops[iip].free, pnode->lprops[iip].dirty,
1441 pnode->lprops[iip].flags);
1442 return &pnode->lprops[iip];
1443}
1444
1445/**
1446 * dirty_cow_nnode - ensure a nnode is not being committed.
1447 * @c: UBIFS file-system description object
1448 * @nnode: nnode to check
1449 *
1450 * Returns dirtied nnode on success or negative error code on failure.
1451 */
1452static struct ubifs_nnode *dirty_cow_nnode(struct ubifs_info *c,
1453 struct ubifs_nnode *nnode)
1454{
1455 struct ubifs_nnode *n;
1456 int i;
1457
1458 if (!test_bit(COW_CNODE, &nnode->flags)) {
1459 /* nnode is not being committed */
1460 if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) {
1461 c->dirty_nn_cnt += 1;
1462 ubifs_add_nnode_dirt(c, nnode);
1463 }
1464 return nnode;
1465 }
1466
1467 /* nnode is being committed, so copy it */
1468 n = kmalloc(sizeof(struct ubifs_nnode), GFP_NOFS);
1469 if (unlikely(!n))
1470 return ERR_PTR(-ENOMEM);
1471
1472 memcpy(n, nnode, sizeof(struct ubifs_nnode));
1473 n->cnext = NULL;
1474 __set_bit(DIRTY_CNODE, &n->flags);
1475 __clear_bit(COW_CNODE, &n->flags);
1476
1477 /* The children now have new parent */
1478 for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1479 struct ubifs_nbranch *branch = &n->nbranch[i];
1480
1481 if (branch->cnode)
1482 branch->cnode->parent = n;
1483 }
1484
1485 ubifs_assert(!test_bit(OBSOLETE_CNODE, &nnode->flags));
1486 __set_bit(OBSOLETE_CNODE, &nnode->flags);
1487
1488 c->dirty_nn_cnt += 1;
1489 ubifs_add_nnode_dirt(c, nnode);
1490 if (nnode->parent)
1491 nnode->parent->nbranch[n->iip].nnode = n;
1492 else
1493 c->nroot = n;
1494 return n;
1495}
1496
1497/**
1498 * dirty_cow_pnode - ensure a pnode is not being committed.
1499 * @c: UBIFS file-system description object
1500 * @pnode: pnode to check
1501 *
1502 * Returns dirtied pnode on success or negative error code on failure.
1503 */
1504static struct ubifs_pnode *dirty_cow_pnode(struct ubifs_info *c,
1505 struct ubifs_pnode *pnode)
1506{
1507 struct ubifs_pnode *p;
1508
1509 if (!test_bit(COW_CNODE, &pnode->flags)) {
1510 /* pnode is not being committed */
1511 if (!test_and_set_bit(DIRTY_CNODE, &pnode->flags)) {
1512 c->dirty_pn_cnt += 1;
1513 add_pnode_dirt(c, pnode);
1514 }
1515 return pnode;
1516 }
1517
1518 /* pnode is being committed, so copy it */
1519 p = kmalloc(sizeof(struct ubifs_pnode), GFP_NOFS);
1520 if (unlikely(!p))
1521 return ERR_PTR(-ENOMEM);
1522
1523 memcpy(p, pnode, sizeof(struct ubifs_pnode));
1524 p->cnext = NULL;
1525 __set_bit(DIRTY_CNODE, &p->flags);
1526 __clear_bit(COW_CNODE, &p->flags);
1527 replace_cats(c, pnode, p);
1528
1529 ubifs_assert(!test_bit(OBSOLETE_CNODE, &pnode->flags));
1530 __set_bit(OBSOLETE_CNODE, &pnode->flags);
1531
1532 c->dirty_pn_cnt += 1;
1533 add_pnode_dirt(c, pnode);
1534 pnode->parent->nbranch[p->iip].pnode = p;
1535 return p;
1536}
1537
1538/**
1539 * ubifs_lpt_lookup_dirty - lookup LEB properties in the LPT.
1540 * @c: UBIFS file-system description object
1541 * @lnum: LEB number to lookup
1542 *
1543 * This function returns a pointer to the LEB properties on success or a
1544 * negative error code on failure.
1545 */
1546struct ubifs_lprops *ubifs_lpt_lookup_dirty(struct ubifs_info *c, int lnum)
1547{
1548 int err, i, h, iip, shft;
1549 struct ubifs_nnode *nnode;
1550 struct ubifs_pnode *pnode;
1551
1552 if (!c->nroot) {
1553 err = ubifs_read_nnode(c, NULL, 0);
1554 if (err)
1555 return ERR_PTR(err);
1556 }
1557 nnode = c->nroot;
1558 nnode = dirty_cow_nnode(c, nnode);
1559 if (IS_ERR(nnode))
1560 return ERR_PTR(PTR_ERR(nnode));
1561 i = lnum - c->main_first;
1562 shft = c->lpt_hght * UBIFS_LPT_FANOUT_SHIFT;
1563 for (h = 1; h < c->lpt_hght; h++) {
1564 iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
1565 shft -= UBIFS_LPT_FANOUT_SHIFT;
1566 nnode = ubifs_get_nnode(c, nnode, iip);
1567 if (IS_ERR(nnode))
1568 return ERR_PTR(PTR_ERR(nnode));
1569 nnode = dirty_cow_nnode(c, nnode);
1570 if (IS_ERR(nnode))
1571 return ERR_PTR(PTR_ERR(nnode));
1572 }
1573 iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
1574 shft -= UBIFS_LPT_FANOUT_SHIFT;
1575 pnode = ubifs_get_pnode(c, nnode, iip);
1576 if (IS_ERR(pnode))
1577 return ERR_PTR(PTR_ERR(pnode));
1578 pnode = dirty_cow_pnode(c, pnode);
1579 if (IS_ERR(pnode))
1580 return ERR_PTR(PTR_ERR(pnode));
1581 iip = (i & (UBIFS_LPT_FANOUT - 1));
1582 dbg_lp("LEB %d, free %d, dirty %d, flags %d", lnum,
1583 pnode->lprops[iip].free, pnode->lprops[iip].dirty,
1584 pnode->lprops[iip].flags);
1585 ubifs_assert(test_bit(DIRTY_CNODE, &pnode->flags));
1586 return &pnode->lprops[iip];
1587}
1588
1589/**
1590 * lpt_init_rd - initialize the LPT for reading.
1591 * @c: UBIFS file-system description object
1592 *
1593 * This function returns %0 on success and a negative error code on failure.
1594 */
1595static int lpt_init_rd(struct ubifs_info *c)
1596{
1597 int err, i;
1598
1599 c->ltab = vmalloc(sizeof(struct ubifs_lpt_lprops) * c->lpt_lebs);
1600 if (!c->ltab)
1601 return -ENOMEM;
1602
1603 i = max_t(int, c->nnode_sz, c->pnode_sz);
1604 c->lpt_nod_buf = kmalloc(i, GFP_KERNEL);
1605 if (!c->lpt_nod_buf)
1606 return -ENOMEM;
1607
1608 for (i = 0; i < LPROPS_HEAP_CNT; i++) {
1609 c->lpt_heap[i].arr = kmalloc(sizeof(void *) * LPT_HEAP_SZ,
1610 GFP_KERNEL);
1611 if (!c->lpt_heap[i].arr)
1612 return -ENOMEM;
1613 c->lpt_heap[i].cnt = 0;
1614 c->lpt_heap[i].max_cnt = LPT_HEAP_SZ;
1615 }
1616
1617 c->dirty_idx.arr = kmalloc(sizeof(void *) * LPT_HEAP_SZ, GFP_KERNEL);
1618 if (!c->dirty_idx.arr)
1619 return -ENOMEM;
1620 c->dirty_idx.cnt = 0;
1621 c->dirty_idx.max_cnt = LPT_HEAP_SZ;
1622
1623 err = read_ltab(c);
1624 if (err)
1625 return err;
1626
1627 dbg_lp("space_bits %d", c->space_bits);
1628 dbg_lp("lpt_lnum_bits %d", c->lpt_lnum_bits);
1629 dbg_lp("lpt_offs_bits %d", c->lpt_offs_bits);
1630 dbg_lp("lpt_spc_bits %d", c->lpt_spc_bits);
1631 dbg_lp("pcnt_bits %d", c->pcnt_bits);
1632 dbg_lp("lnum_bits %d", c->lnum_bits);
1633 dbg_lp("pnode_sz %d", c->pnode_sz);
1634 dbg_lp("nnode_sz %d", c->nnode_sz);
1635 dbg_lp("ltab_sz %d", c->ltab_sz);
1636 dbg_lp("lsave_sz %d", c->lsave_sz);
1637 dbg_lp("lsave_cnt %d", c->lsave_cnt);
1638 dbg_lp("lpt_hght %d", c->lpt_hght);
1639 dbg_lp("big_lpt %d", c->big_lpt);
1640 dbg_lp("LPT root is at %d:%d", c->lpt_lnum, c->lpt_offs);
1641 dbg_lp("LPT head is at %d:%d", c->nhead_lnum, c->nhead_offs);
1642 dbg_lp("LPT ltab is at %d:%d", c->ltab_lnum, c->ltab_offs);
1643 if (c->big_lpt)
1644 dbg_lp("LPT lsave is at %d:%d", c->lsave_lnum, c->lsave_offs);
1645
1646 return 0;
1647}
1648
1649/**
1650 * lpt_init_wr - initialize the LPT for writing.
1651 * @c: UBIFS file-system description object
1652 *
1653 * 'lpt_init_rd()' must have been called already.
1654 *
1655 * This function returns %0 on success and a negative error code on failure.
1656 */
1657static int lpt_init_wr(struct ubifs_info *c)
1658{
1659 int err, i;
1660
1661 c->ltab_cmt = vmalloc(sizeof(struct ubifs_lpt_lprops) * c->lpt_lebs);
1662 if (!c->ltab_cmt)
1663 return -ENOMEM;
1664
1665 c->lpt_buf = vmalloc(c->leb_size);
1666 if (!c->lpt_buf)
1667 return -ENOMEM;
1668
1669 if (c->big_lpt) {
1670 c->lsave = kmalloc(sizeof(int) * c->lsave_cnt, GFP_NOFS);
1671 if (!c->lsave)
1672 return -ENOMEM;
1673 err = read_lsave(c);
1674 if (err)
1675 return err;
1676 }
1677
1678 for (i = 0; i < c->lpt_lebs; i++)
1679 if (c->ltab[i].free == c->leb_size) {
1680 err = ubifs_leb_unmap(c, i + c->lpt_first);
1681 if (err)
1682 return err;
1683 }
1684
1685 return 0;
1686}
1687
1688/**
1689 * ubifs_lpt_init - initialize the LPT.
1690 * @c: UBIFS file-system description object
1691 * @rd: whether to initialize lpt for reading
1692 * @wr: whether to initialize lpt for writing
1693 *
1694 * For mounting 'rw', @rd and @wr are both true. For mounting 'ro', @rd is true
1695 * and @wr is false. For mounting from 'ro' to 'rw', @rd is false and @wr is
1696 * true.
1697 *
1698 * This function returns %0 on success and a negative error code on failure.
1699 */
1700int ubifs_lpt_init(struct ubifs_info *c, int rd, int wr)
1701{
1702 int err;
1703
1704 if (rd) {
1705 err = lpt_init_rd(c);
1706 if (err)
1707 return err;
1708 }
1709
1710 if (wr) {
1711 err = lpt_init_wr(c);
1712 if (err)
1713 return err;
1714 }
1715
1716 return 0;
1717}
1718
1719/**
1720 * struct lpt_scan_node - somewhere to put nodes while we scan LPT.
1721 * @nnode: where to keep a nnode
1722 * @pnode: where to keep a pnode
1723 * @cnode: where to keep a cnode
1724 * @in_tree: is the node in the tree in memory
1725 * @ptr.nnode: pointer to the nnode (if it is an nnode) which may be here or in
1726 * the tree
1727 * @ptr.pnode: ditto for pnode
1728 * @ptr.cnode: ditto for cnode
1729 */
1730struct lpt_scan_node {
1731 union {
1732 struct ubifs_nnode nnode;
1733 struct ubifs_pnode pnode;
1734 struct ubifs_cnode cnode;
1735 };
1736 int in_tree;
1737 union {
1738 struct ubifs_nnode *nnode;
1739 struct ubifs_pnode *pnode;
1740 struct ubifs_cnode *cnode;
1741 } ptr;
1742};
1743
1744/**
1745 * scan_get_nnode - for the scan, get a nnode from either the tree or flash.
1746 * @c: the UBIFS file-system description object
1747 * @path: where to put the nnode
1748 * @parent: parent of the nnode
1749 * @iip: index in parent of the nnode
1750 *
1751 * This function returns a pointer to the nnode on success or a negative error
1752 * code on failure.
1753 */
1754static struct ubifs_nnode *scan_get_nnode(struct ubifs_info *c,
1755 struct lpt_scan_node *path,
1756 struct ubifs_nnode *parent, int iip)
1757{
1758 struct ubifs_nbranch *branch;
1759 struct ubifs_nnode *nnode;
1760 void *buf = c->lpt_nod_buf;
1761 int err;
1762
1763 branch = &parent->nbranch[iip];
1764 nnode = branch->nnode;
1765 if (nnode) {
1766 path->in_tree = 1;
1767 path->ptr.nnode = nnode;
1768 return nnode;
1769 }
1770 nnode = &path->nnode;
1771 path->in_tree = 0;
1772 path->ptr.nnode = nnode;
1773 memset(nnode, 0, sizeof(struct ubifs_nnode));
1774 if (branch->lnum == 0) {
1775 /*
1776 * This nnode was not written which just means that the LEB
1777 * properties in the subtree below it describe empty LEBs. We
1778 * make the nnode as though we had read it, which in fact means
1779 * doing almost nothing.
1780 */
1781 if (c->big_lpt)
1782 nnode->num = calc_nnode_num_from_parent(c, parent, iip);
1783 } else {
1784 err = ubi_read(c->ubi, branch->lnum, buf, branch->offs,
1785 c->nnode_sz);
1786 if (err)
1787 return ERR_PTR(err);
1788 err = unpack_nnode(c, buf, nnode);
1789 if (err)
1790 return ERR_PTR(err);
1791 }
1792 err = validate_nnode(c, nnode, parent, iip);
1793 if (err)
1794 return ERR_PTR(err);
1795 if (!c->big_lpt)
1796 nnode->num = calc_nnode_num_from_parent(c, parent, iip);
1797 nnode->level = parent->level - 1;
1798 nnode->parent = parent;
1799 nnode->iip = iip;
1800 return nnode;
1801}
1802
1803/**
1804 * scan_get_pnode - for the scan, get a pnode from either the tree or flash.
1805 * @c: the UBIFS file-system description object
1806 * @path: where to put the pnode
1807 * @parent: parent of the pnode
1808 * @iip: index in parent of the pnode
1809 *
1810 * This function returns a pointer to the pnode on success or a negative error
1811 * code on failure.
1812 */
1813static struct ubifs_pnode *scan_get_pnode(struct ubifs_info *c,
1814 struct lpt_scan_node *path,
1815 struct ubifs_nnode *parent, int iip)
1816{
1817 struct ubifs_nbranch *branch;
1818 struct ubifs_pnode *pnode;
1819 void *buf = c->lpt_nod_buf;
1820 int err;
1821
1822 branch = &parent->nbranch[iip];
1823 pnode = branch->pnode;
1824 if (pnode) {
1825 path->in_tree = 1;
1826 path->ptr.pnode = pnode;
1827 return pnode;
1828 }
1829 pnode = &path->pnode;
1830 path->in_tree = 0;
1831 path->ptr.pnode = pnode;
1832 memset(pnode, 0, sizeof(struct ubifs_pnode));
1833 if (branch->lnum == 0) {
1834 /*
1835 * This pnode was not written which just means that the LEB
1836 * properties in it describe empty LEBs. We make the pnode as
1837 * though we had read it.
1838 */
1839 int i;
1840
1841 if (c->big_lpt)
1842 pnode->num = calc_pnode_num_from_parent(c, parent, iip);
1843 for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1844 struct ubifs_lprops * const lprops = &pnode->lprops[i];
1845
1846 lprops->free = c->leb_size;
1847 lprops->flags = ubifs_categorize_lprops(c, lprops);
1848 }
1849 } else {
1850 ubifs_assert(branch->lnum >= c->lpt_first &&
1851 branch->lnum <= c->lpt_last);
1852 ubifs_assert(branch->offs >= 0 && branch->offs < c->leb_size);
1853 err = ubi_read(c->ubi, branch->lnum, buf, branch->offs,
1854 c->pnode_sz);
1855 if (err)
1856 return ERR_PTR(err);
1857 err = unpack_pnode(c, buf, pnode);
1858 if (err)
1859 return ERR_PTR(err);
1860 }
1861 err = validate_pnode(c, pnode, parent, iip);
1862 if (err)
1863 return ERR_PTR(err);
1864 if (!c->big_lpt)
1865 pnode->num = calc_pnode_num_from_parent(c, parent, iip);
1866 pnode->parent = parent;
1867 pnode->iip = iip;
1868 set_pnode_lnum(c, pnode);
1869 return pnode;
1870}
1871
1872/**
1873 * ubifs_lpt_scan_nolock - scan the LPT.
1874 * @c: the UBIFS file-system description object
1875 * @start_lnum: LEB number from which to start scanning
1876 * @end_lnum: LEB number at which to stop scanning
1877 * @scan_cb: callback function called for each lprops
1878 * @data: data to be passed to the callback function
1879 *
1880 * This function returns %0 on success and a negative error code on failure.
1881 */
1882int ubifs_lpt_scan_nolock(struct ubifs_info *c, int start_lnum, int end_lnum,
1883 ubifs_lpt_scan_callback scan_cb, void *data)
1884{
1885 int err = 0, i, h, iip, shft;
1886 struct ubifs_nnode *nnode;
1887 struct ubifs_pnode *pnode;
1888 struct lpt_scan_node *path;
1889
1890 if (start_lnum == -1) {
1891 start_lnum = end_lnum + 1;
1892 if (start_lnum >= c->leb_cnt)
1893 start_lnum = c->main_first;
1894 }
1895
1896 ubifs_assert(start_lnum >= c->main_first && start_lnum < c->leb_cnt);
1897 ubifs_assert(end_lnum >= c->main_first && end_lnum < c->leb_cnt);
1898
1899 if (!c->nroot) {
1900 err = ubifs_read_nnode(c, NULL, 0);
1901 if (err)
1902 return err;
1903 }
1904
1905 path = kmalloc(sizeof(struct lpt_scan_node) * (c->lpt_hght + 1),
1906 GFP_NOFS);
1907 if (!path)
1908 return -ENOMEM;
1909
1910 path[0].ptr.nnode = c->nroot;
1911 path[0].in_tree = 1;
1912again:
1913 /* Descend to the pnode containing start_lnum */
1914 nnode = c->nroot;
1915 i = start_lnum - c->main_first;
1916 shft = c->lpt_hght * UBIFS_LPT_FANOUT_SHIFT;
1917 for (h = 1; h < c->lpt_hght; h++) {
1918 iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
1919 shft -= UBIFS_LPT_FANOUT_SHIFT;
1920 nnode = scan_get_nnode(c, path + h, nnode, iip);
1921 if (IS_ERR(nnode)) {
1922 err = PTR_ERR(nnode);
1923 goto out;
1924 }
1925 }
1926 iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
1927 shft -= UBIFS_LPT_FANOUT_SHIFT;
1928 pnode = scan_get_pnode(c, path + h, nnode, iip);
1929 if (IS_ERR(pnode)) {
1930 err = PTR_ERR(pnode);
1931 goto out;
1932 }
1933 iip = (i & (UBIFS_LPT_FANOUT - 1));
1934
1935 /* Loop for each lprops */
1936 while (1) {
1937 struct ubifs_lprops *lprops = &pnode->lprops[iip];
1938 int ret, lnum = lprops->lnum;
1939
1940 ret = scan_cb(c, lprops, path[h].in_tree, data);
1941 if (ret < 0) {
1942 err = ret;
1943 goto out;
1944 }
1945 if (ret & LPT_SCAN_ADD) {
1946 /* Add all the nodes in path to the tree in memory */
1947 for (h = 1; h < c->lpt_hght; h++) {
1948 const size_t sz = sizeof(struct ubifs_nnode);
1949 struct ubifs_nnode *parent;
1950
1951 if (path[h].in_tree)
1952 continue;
1953 nnode = kmalloc(sz, GFP_NOFS);
1954 if (!nnode) {
1955 err = -ENOMEM;
1956 goto out;
1957 }
1958 memcpy(nnode, &path[h].nnode, sz);
1959 parent = nnode->parent;
1960 parent->nbranch[nnode->iip].nnode = nnode;
1961 path[h].ptr.nnode = nnode;
1962 path[h].in_tree = 1;
1963 path[h + 1].cnode.parent = nnode;
1964 }
1965 if (path[h].in_tree)
1966 ubifs_ensure_cat(c, lprops);
1967 else {
1968 const size_t sz = sizeof(struct ubifs_pnode);
1969 struct ubifs_nnode *parent;
1970
1971 pnode = kmalloc(sz, GFP_NOFS);
1972 if (!pnode) {
1973 err = -ENOMEM;
1974 goto out;
1975 }
1976 memcpy(pnode, &path[h].pnode, sz);
1977 parent = pnode->parent;
1978 parent->nbranch[pnode->iip].pnode = pnode;
1979 path[h].ptr.pnode = pnode;
1980 path[h].in_tree = 1;
1981 update_cats(c, pnode);
1982 c->pnodes_have += 1;
1983 }
1984 err = dbg_check_lpt_nodes(c, (struct ubifs_cnode *)
1985 c->nroot, 0, 0);
1986 if (err)
1987 goto out;
1988 err = dbg_check_cats(c);
1989 if (err)
1990 goto out;
1991 }
1992 if (ret & LPT_SCAN_STOP) {
1993 err = 0;
1994 break;
1995 }
1996 /* Get the next lprops */
1997 if (lnum == end_lnum) {
1998 /*
1999 * We got to the end without finding what we were
2000 * looking for
2001 */
2002 err = -ENOSPC;
2003 goto out;
2004 }
2005 if (lnum + 1 >= c->leb_cnt) {
2006 /* Wrap-around to the beginning */
2007 start_lnum = c->main_first;
2008 goto again;
2009 }
2010 if (iip + 1 < UBIFS_LPT_FANOUT) {
2011 /* Next lprops is in the same pnode */
2012 iip += 1;
2013 continue;
2014 }
2015 /* We need to get the next pnode. Go up until we can go right */
2016 iip = pnode->iip;
2017 while (1) {
2018 h -= 1;
2019 ubifs_assert(h >= 0);
2020 nnode = path[h].ptr.nnode;
2021 if (iip + 1 < UBIFS_LPT_FANOUT)
2022 break;
2023 iip = nnode->iip;
2024 }
2025 /* Go right */
2026 iip += 1;
2027 /* Descend to the pnode */
2028 h += 1;
2029 for (; h < c->lpt_hght; h++) {
2030 nnode = scan_get_nnode(c, path + h, nnode, iip);
2031 if (IS_ERR(nnode)) {
2032 err = PTR_ERR(nnode);
2033 goto out;
2034 }
2035 iip = 0;
2036 }
2037 pnode = scan_get_pnode(c, path + h, nnode, iip);
2038 if (IS_ERR(pnode)) {
2039 err = PTR_ERR(pnode);
2040 goto out;
2041 }
2042 iip = 0;
2043 }
2044out:
2045 kfree(path);
2046 return err;
2047}
2048
2049#ifdef CONFIG_UBIFS_FS_DEBUG
2050
2051/**
2052 * dbg_chk_pnode - check a pnode.
2053 * @c: the UBIFS file-system description object
2054 * @pnode: pnode to check
2055 * @col: pnode column
2056 *
2057 * This function returns %0 on success and a negative error code on failure.
2058 */
2059static int dbg_chk_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
2060 int col)
2061{
2062 int i;
2063
2064 if (pnode->num != col) {
2065 dbg_err("pnode num %d expected %d parent num %d iip %d",
2066 pnode->num, col, pnode->parent->num, pnode->iip);
2067 return -EINVAL;
2068 }
2069 for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
2070 struct ubifs_lprops *lp, *lprops = &pnode->lprops[i];
2071 int lnum = (pnode->num << UBIFS_LPT_FANOUT_SHIFT) + i +
2072 c->main_first;
2073 int found, cat = lprops->flags & LPROPS_CAT_MASK;
2074 struct ubifs_lpt_heap *heap;
2075 struct list_head *list = NULL;
2076
2077 if (lnum >= c->leb_cnt)
2078 continue;
2079 if (lprops->lnum != lnum) {
2080 dbg_err("bad LEB number %d expected %d",
2081 lprops->lnum, lnum);
2082 return -EINVAL;
2083 }
2084 if (lprops->flags & LPROPS_TAKEN) {
2085 if (cat != LPROPS_UNCAT) {
2086 dbg_err("LEB %d taken but not uncat %d",
2087 lprops->lnum, cat);
2088 return -EINVAL;
2089 }
2090 continue;
2091 }
2092 if (lprops->flags & LPROPS_INDEX) {
2093 switch (cat) {
2094 case LPROPS_UNCAT:
2095 case LPROPS_DIRTY_IDX:
2096 case LPROPS_FRDI_IDX:
2097 break;
2098 default:
2099 dbg_err("LEB %d index but cat %d",
2100 lprops->lnum, cat);
2101 return -EINVAL;
2102 }
2103 } else {
2104 switch (cat) {
2105 case LPROPS_UNCAT:
2106 case LPROPS_DIRTY:
2107 case LPROPS_FREE:
2108 case LPROPS_EMPTY:
2109 case LPROPS_FREEABLE:
2110 break;
2111 default:
2112 dbg_err("LEB %d not index but cat %d",
2113 lprops->lnum, cat);
2114 return -EINVAL;
2115 }
2116 }
2117 switch (cat) {
2118 case LPROPS_UNCAT:
2119 list = &c->uncat_list;
2120 break;
2121 case LPROPS_EMPTY:
2122 list = &c->empty_list;
2123 break;
2124 case LPROPS_FREEABLE:
2125 list = &c->freeable_list;
2126 break;
2127 case LPROPS_FRDI_IDX:
2128 list = &c->frdi_idx_list;
2129 break;
2130 }
2131 found = 0;
2132 switch (cat) {
2133 case LPROPS_DIRTY:
2134 case LPROPS_DIRTY_IDX:
2135 case LPROPS_FREE:
2136 heap = &c->lpt_heap[cat - 1];
2137 if (lprops->hpos < heap->cnt &&
2138 heap->arr[lprops->hpos] == lprops)
2139 found = 1;
2140 break;
2141 case LPROPS_UNCAT:
2142 case LPROPS_EMPTY:
2143 case LPROPS_FREEABLE:
2144 case LPROPS_FRDI_IDX:
2145 list_for_each_entry(lp, list, list)
2146 if (lprops == lp) {
2147 found = 1;
2148 break;
2149 }
2150 break;
2151 }
2152 if (!found) {
2153 dbg_err("LEB %d cat %d not found in cat heap/list",
2154 lprops->lnum, cat);
2155 return -EINVAL;
2156 }
2157 switch (cat) {
2158 case LPROPS_EMPTY:
2159 if (lprops->free != c->leb_size) {
2160 dbg_err("LEB %d cat %d free %d dirty %d",
2161 lprops->lnum, cat, lprops->free,
2162 lprops->dirty);
2163 return -EINVAL;
2164 }
2165 case LPROPS_FREEABLE:
2166 case LPROPS_FRDI_IDX:
2167 if (lprops->free + lprops->dirty != c->leb_size) {
2168 dbg_err("LEB %d cat %d free %d dirty %d",
2169 lprops->lnum, cat, lprops->free,
2170 lprops->dirty);
2171 return -EINVAL;
2172 }
2173 }
2174 }
2175 return 0;
2176}
2177
2178/**
2179 * dbg_check_lpt_nodes - check nnodes and pnodes.
2180 * @c: the UBIFS file-system description object
2181 * @cnode: next cnode (nnode or pnode) to check
2182 * @row: row of cnode (root is zero)
2183 * @col: column of cnode (leftmost is zero)
2184 *
2185 * This function returns %0 on success and a negative error code on failure.
2186 */
2187int dbg_check_lpt_nodes(struct ubifs_info *c, struct ubifs_cnode *cnode,
2188 int row, int col)
2189{
2190 struct ubifs_nnode *nnode, *nn;
2191 struct ubifs_cnode *cn;
2192 int num, iip = 0, err;
2193
2194 if (!(ubifs_chk_flags & UBIFS_CHK_LPROPS))
2195 return 0;
2196
2197 while (cnode) {
2198 ubifs_assert(row >= 0);
2199 nnode = cnode->parent;
2200 if (cnode->level) {
2201 /* cnode is a nnode */
2202 num = calc_nnode_num(row, col);
2203 if (cnode->num != num) {
2204 dbg_err("nnode num %d expected %d "
2205 "parent num %d iip %d", cnode->num, num,
2206 (nnode ? nnode->num : 0), cnode->iip);
2207 return -EINVAL;
2208 }
2209 nn = (struct ubifs_nnode *)cnode;
2210 while (iip < UBIFS_LPT_FANOUT) {
2211 cn = nn->nbranch[iip].cnode;
2212 if (cn) {
2213 /* Go down */
2214 row += 1;
2215 col <<= UBIFS_LPT_FANOUT_SHIFT;
2216 col += iip;
2217 iip = 0;
2218 cnode = cn;
2219 break;
2220 }
2221 /* Go right */
2222 iip += 1;
2223 }
2224 if (iip < UBIFS_LPT_FANOUT)
2225 continue;
2226 } else {
2227 struct ubifs_pnode *pnode;
2228
2229 /* cnode is a pnode */
2230 pnode = (struct ubifs_pnode *)cnode;
2231 err = dbg_chk_pnode(c, pnode, col);
2232 if (err)
2233 return err;
2234 }
2235 /* Go up and to the right */
2236 row -= 1;
2237 col >>= UBIFS_LPT_FANOUT_SHIFT;
2238 iip = cnode->iip + 1;
2239 cnode = (struct ubifs_cnode *)nnode;
2240 }
2241 return 0;
2242}
2243
2244#endif /* CONFIG_UBIFS_FS_DEBUG */