UBIFS: remove mst_mutex
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / namespace.c
CommitLineData
1da177e4
LT
1/*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
1da177e4 11#include <linux/syscalls.h>
d10577a8 12#include <linux/export.h>
16f7e0fe 13#include <linux/capability.h>
6b3286ed 14#include <linux/mnt_namespace.h>
771b1371 15#include <linux/user_namespace.h>
1da177e4
LT
16#include <linux/namei.h>
17#include <linux/security.h>
73cd49ec 18#include <linux/idr.h>
d10577a8
AV
19#include <linux/acct.h> /* acct_auto_close_mnt */
20#include <linux/ramfs.h> /* init_rootfs */
21#include <linux/fs_struct.h> /* get_fs_root et.al. */
22#include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
23#include <linux/uaccess.h>
0bb80f24 24#include <linux/proc_ns.h>
20b4fb48 25#include <linux/magic.h>
07b20889 26#include "pnode.h"
948730b0 27#include "internal.h"
1da177e4 28
13f14b4d
ED
29#define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
30#define HASH_SIZE (1UL << HASH_SHIFT)
31
5addc5dd 32static int event;
73cd49ec 33static DEFINE_IDA(mnt_id_ida);
719f5d7f 34static DEFINE_IDA(mnt_group_ida);
99b7db7b 35static DEFINE_SPINLOCK(mnt_id_lock);
f21f6220
AV
36static int mnt_id_start = 0;
37static int mnt_group_start = 1;
1da177e4 38
fa3536cc 39static struct list_head *mount_hashtable __read_mostly;
84d17192 40static struct list_head *mountpoint_hashtable __read_mostly;
e18b890b 41static struct kmem_cache *mnt_cache __read_mostly;
390c6843 42static struct rw_semaphore namespace_sem;
1da177e4 43
f87fd4c2 44/* /sys/fs */
00d26666
GKH
45struct kobject *fs_kobj;
46EXPORT_SYMBOL_GPL(fs_kobj);
f87fd4c2 47
99b7db7b
NP
48/*
49 * vfsmount lock may be taken for read to prevent changes to the
50 * vfsmount hash, ie. during mountpoint lookups or walking back
51 * up the tree.
52 *
53 * It should be taken for write in all cases where the vfsmount
54 * tree or hash is modified or when a vfsmount structure is modified.
55 */
56DEFINE_BRLOCK(vfsmount_lock);
57
1da177e4
LT
58static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
59{
b58fed8b
RP
60 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
61 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
13f14b4d
ED
62 tmp = tmp + (tmp >> HASH_SHIFT);
63 return tmp & (HASH_SIZE - 1);
1da177e4
LT
64}
65
3d733633
DH
66#define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
67
99b7db7b
NP
68/*
69 * allocation is serialized by namespace_sem, but we need the spinlock to
70 * serialize with freeing.
71 */
b105e270 72static int mnt_alloc_id(struct mount *mnt)
73cd49ec
MS
73{
74 int res;
75
76retry:
77 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
99b7db7b 78 spin_lock(&mnt_id_lock);
15169fe7 79 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
f21f6220 80 if (!res)
15169fe7 81 mnt_id_start = mnt->mnt_id + 1;
99b7db7b 82 spin_unlock(&mnt_id_lock);
73cd49ec
MS
83 if (res == -EAGAIN)
84 goto retry;
85
86 return res;
87}
88
b105e270 89static void mnt_free_id(struct mount *mnt)
73cd49ec 90{
15169fe7 91 int id = mnt->mnt_id;
99b7db7b 92 spin_lock(&mnt_id_lock);
f21f6220
AV
93 ida_remove(&mnt_id_ida, id);
94 if (mnt_id_start > id)
95 mnt_id_start = id;
99b7db7b 96 spin_unlock(&mnt_id_lock);
73cd49ec
MS
97}
98
719f5d7f
MS
99/*
100 * Allocate a new peer group ID
101 *
102 * mnt_group_ida is protected by namespace_sem
103 */
4b8b21f4 104static int mnt_alloc_group_id(struct mount *mnt)
719f5d7f 105{
f21f6220
AV
106 int res;
107
719f5d7f
MS
108 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
109 return -ENOMEM;
110
f21f6220
AV
111 res = ida_get_new_above(&mnt_group_ida,
112 mnt_group_start,
15169fe7 113 &mnt->mnt_group_id);
f21f6220 114 if (!res)
15169fe7 115 mnt_group_start = mnt->mnt_group_id + 1;
f21f6220
AV
116
117 return res;
719f5d7f
MS
118}
119
120/*
121 * Release a peer group ID
122 */
4b8b21f4 123void mnt_release_group_id(struct mount *mnt)
719f5d7f 124{
15169fe7 125 int id = mnt->mnt_group_id;
f21f6220
AV
126 ida_remove(&mnt_group_ida, id);
127 if (mnt_group_start > id)
128 mnt_group_start = id;
15169fe7 129 mnt->mnt_group_id = 0;
719f5d7f
MS
130}
131
b3e19d92
NP
132/*
133 * vfsmount lock must be held for read
134 */
83adc753 135static inline void mnt_add_count(struct mount *mnt, int n)
b3e19d92
NP
136{
137#ifdef CONFIG_SMP
68e8a9fe 138 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
b3e19d92
NP
139#else
140 preempt_disable();
68e8a9fe 141 mnt->mnt_count += n;
b3e19d92
NP
142 preempt_enable();
143#endif
144}
145
b3e19d92
NP
146/*
147 * vfsmount lock must be held for write
148 */
83adc753 149unsigned int mnt_get_count(struct mount *mnt)
b3e19d92
NP
150{
151#ifdef CONFIG_SMP
f03c6599 152 unsigned int count = 0;
b3e19d92
NP
153 int cpu;
154
155 for_each_possible_cpu(cpu) {
68e8a9fe 156 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
b3e19d92
NP
157 }
158
159 return count;
160#else
68e8a9fe 161 return mnt->mnt_count;
b3e19d92
NP
162#endif
163}
164
b105e270 165static struct mount *alloc_vfsmnt(const char *name)
1da177e4 166{
c63181e6
AV
167 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
168 if (mnt) {
73cd49ec
MS
169 int err;
170
c63181e6 171 err = mnt_alloc_id(mnt);
88b38782
LZ
172 if (err)
173 goto out_free_cache;
174
175 if (name) {
c63181e6
AV
176 mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
177 if (!mnt->mnt_devname)
88b38782 178 goto out_free_id;
73cd49ec
MS
179 }
180
b3e19d92 181#ifdef CONFIG_SMP
c63181e6
AV
182 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
183 if (!mnt->mnt_pcp)
b3e19d92
NP
184 goto out_free_devname;
185
c63181e6 186 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
b3e19d92 187#else
c63181e6
AV
188 mnt->mnt_count = 1;
189 mnt->mnt_writers = 0;
b3e19d92
NP
190#endif
191
c63181e6
AV
192 INIT_LIST_HEAD(&mnt->mnt_hash);
193 INIT_LIST_HEAD(&mnt->mnt_child);
194 INIT_LIST_HEAD(&mnt->mnt_mounts);
195 INIT_LIST_HEAD(&mnt->mnt_list);
196 INIT_LIST_HEAD(&mnt->mnt_expire);
197 INIT_LIST_HEAD(&mnt->mnt_share);
198 INIT_LIST_HEAD(&mnt->mnt_slave_list);
199 INIT_LIST_HEAD(&mnt->mnt_slave);
2504c5d6
AG
200#ifdef CONFIG_FSNOTIFY
201 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
d3ef3d73 202#endif
1da177e4 203 }
c63181e6 204 return mnt;
88b38782 205
d3ef3d73 206#ifdef CONFIG_SMP
207out_free_devname:
c63181e6 208 kfree(mnt->mnt_devname);
d3ef3d73 209#endif
88b38782 210out_free_id:
c63181e6 211 mnt_free_id(mnt);
88b38782 212out_free_cache:
c63181e6 213 kmem_cache_free(mnt_cache, mnt);
88b38782 214 return NULL;
1da177e4
LT
215}
216
3d733633
DH
217/*
218 * Most r/o checks on a fs are for operations that take
219 * discrete amounts of time, like a write() or unlink().
220 * We must keep track of when those operations start
221 * (for permission checks) and when they end, so that
222 * we can determine when writes are able to occur to
223 * a filesystem.
224 */
225/*
226 * __mnt_is_readonly: check whether a mount is read-only
227 * @mnt: the mount to check for its write status
228 *
229 * This shouldn't be used directly ouside of the VFS.
230 * It does not guarantee that the filesystem will stay
231 * r/w, just that it is right *now*. This can not and
232 * should not be used in place of IS_RDONLY(inode).
233 * mnt_want/drop_write() will _keep_ the filesystem
234 * r/w.
235 */
236int __mnt_is_readonly(struct vfsmount *mnt)
237{
2e4b7fcd
DH
238 if (mnt->mnt_flags & MNT_READONLY)
239 return 1;
240 if (mnt->mnt_sb->s_flags & MS_RDONLY)
241 return 1;
242 return 0;
3d733633
DH
243}
244EXPORT_SYMBOL_GPL(__mnt_is_readonly);
245
83adc753 246static inline void mnt_inc_writers(struct mount *mnt)
d3ef3d73 247{
248#ifdef CONFIG_SMP
68e8a9fe 249 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
d3ef3d73 250#else
68e8a9fe 251 mnt->mnt_writers++;
d3ef3d73 252#endif
253}
3d733633 254
83adc753 255static inline void mnt_dec_writers(struct mount *mnt)
3d733633 256{
d3ef3d73 257#ifdef CONFIG_SMP
68e8a9fe 258 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
d3ef3d73 259#else
68e8a9fe 260 mnt->mnt_writers--;
d3ef3d73 261#endif
3d733633 262}
3d733633 263
83adc753 264static unsigned int mnt_get_writers(struct mount *mnt)
3d733633 265{
d3ef3d73 266#ifdef CONFIG_SMP
267 unsigned int count = 0;
3d733633 268 int cpu;
3d733633
DH
269
270 for_each_possible_cpu(cpu) {
68e8a9fe 271 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
3d733633 272 }
3d733633 273
d3ef3d73 274 return count;
275#else
276 return mnt->mnt_writers;
277#endif
3d733633
DH
278}
279
4ed5e82f
MS
280static int mnt_is_readonly(struct vfsmount *mnt)
281{
282 if (mnt->mnt_sb->s_readonly_remount)
283 return 1;
284 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
285 smp_rmb();
286 return __mnt_is_readonly(mnt);
287}
288
8366025e 289/*
eb04c282
JK
290 * Most r/o & frozen checks on a fs are for operations that take discrete
291 * amounts of time, like a write() or unlink(). We must keep track of when
292 * those operations start (for permission checks) and when they end, so that we
293 * can determine when writes are able to occur to a filesystem.
8366025e
DH
294 */
295/**
eb04c282 296 * __mnt_want_write - get write access to a mount without freeze protection
83adc753 297 * @m: the mount on which to take a write
8366025e 298 *
eb04c282
JK
299 * This tells the low-level filesystem that a write is about to be performed to
300 * it, and makes sure that writes are allowed (mnt it read-write) before
301 * returning success. This operation does not protect against filesystem being
302 * frozen. When the write operation is finished, __mnt_drop_write() must be
303 * called. This is effectively a refcount.
8366025e 304 */
eb04c282 305int __mnt_want_write(struct vfsmount *m)
8366025e 306{
83adc753 307 struct mount *mnt = real_mount(m);
3d733633 308 int ret = 0;
3d733633 309
d3ef3d73 310 preempt_disable();
c6653a83 311 mnt_inc_writers(mnt);
d3ef3d73 312 /*
c6653a83 313 * The store to mnt_inc_writers must be visible before we pass
d3ef3d73 314 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
315 * incremented count after it has set MNT_WRITE_HOLD.
316 */
317 smp_mb();
1e75529e 318 while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
d3ef3d73 319 cpu_relax();
320 /*
321 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
322 * be set to match its requirements. So we must not load that until
323 * MNT_WRITE_HOLD is cleared.
324 */
325 smp_rmb();
4ed5e82f 326 if (mnt_is_readonly(m)) {
c6653a83 327 mnt_dec_writers(mnt);
3d733633 328 ret = -EROFS;
3d733633 329 }
d3ef3d73 330 preempt_enable();
eb04c282
JK
331
332 return ret;
333}
334
335/**
336 * mnt_want_write - get write access to a mount
337 * @m: the mount on which to take a write
338 *
339 * This tells the low-level filesystem that a write is about to be performed to
340 * it, and makes sure that writes are allowed (mount is read-write, filesystem
341 * is not frozen) before returning success. When the write operation is
342 * finished, mnt_drop_write() must be called. This is effectively a refcount.
343 */
344int mnt_want_write(struct vfsmount *m)
345{
346 int ret;
347
348 sb_start_write(m->mnt_sb);
349 ret = __mnt_want_write(m);
350 if (ret)
351 sb_end_write(m->mnt_sb);
3d733633 352 return ret;
8366025e
DH
353}
354EXPORT_SYMBOL_GPL(mnt_want_write);
355
96029c4e 356/**
357 * mnt_clone_write - get write access to a mount
358 * @mnt: the mount on which to take a write
359 *
360 * This is effectively like mnt_want_write, except
361 * it must only be used to take an extra write reference
362 * on a mountpoint that we already know has a write reference
363 * on it. This allows some optimisation.
364 *
365 * After finished, mnt_drop_write must be called as usual to
366 * drop the reference.
367 */
368int mnt_clone_write(struct vfsmount *mnt)
369{
370 /* superblock may be r/o */
371 if (__mnt_is_readonly(mnt))
372 return -EROFS;
373 preempt_disable();
83adc753 374 mnt_inc_writers(real_mount(mnt));
96029c4e 375 preempt_enable();
376 return 0;
377}
378EXPORT_SYMBOL_GPL(mnt_clone_write);
379
380/**
eb04c282 381 * __mnt_want_write_file - get write access to a file's mount
96029c4e 382 * @file: the file who's mount on which to take a write
383 *
eb04c282 384 * This is like __mnt_want_write, but it takes a file and can
96029c4e 385 * do some optimisations if the file is open for write already
386 */
eb04c282 387int __mnt_want_write_file(struct file *file)
96029c4e 388{
496ad9aa 389 struct inode *inode = file_inode(file);
eb04c282 390
2d8dd38a 391 if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode))
eb04c282 392 return __mnt_want_write(file->f_path.mnt);
96029c4e 393 else
394 return mnt_clone_write(file->f_path.mnt);
395}
eb04c282
JK
396
397/**
398 * mnt_want_write_file - get write access to a file's mount
399 * @file: the file who's mount on which to take a write
400 *
401 * This is like mnt_want_write, but it takes a file and can
402 * do some optimisations if the file is open for write already
403 */
404int mnt_want_write_file(struct file *file)
405{
406 int ret;
407
408 sb_start_write(file->f_path.mnt->mnt_sb);
409 ret = __mnt_want_write_file(file);
410 if (ret)
411 sb_end_write(file->f_path.mnt->mnt_sb);
412 return ret;
413}
96029c4e 414EXPORT_SYMBOL_GPL(mnt_want_write_file);
415
8366025e 416/**
eb04c282 417 * __mnt_drop_write - give up write access to a mount
8366025e
DH
418 * @mnt: the mount on which to give up write access
419 *
420 * Tells the low-level filesystem that we are done
421 * performing writes to it. Must be matched with
eb04c282 422 * __mnt_want_write() call above.
8366025e 423 */
eb04c282 424void __mnt_drop_write(struct vfsmount *mnt)
8366025e 425{
d3ef3d73 426 preempt_disable();
83adc753 427 mnt_dec_writers(real_mount(mnt));
d3ef3d73 428 preempt_enable();
8366025e 429}
eb04c282
JK
430
431/**
432 * mnt_drop_write - give up write access to a mount
433 * @mnt: the mount on which to give up write access
434 *
435 * Tells the low-level filesystem that we are done performing writes to it and
436 * also allows filesystem to be frozen again. Must be matched with
437 * mnt_want_write() call above.
438 */
439void mnt_drop_write(struct vfsmount *mnt)
440{
441 __mnt_drop_write(mnt);
442 sb_end_write(mnt->mnt_sb);
443}
8366025e
DH
444EXPORT_SYMBOL_GPL(mnt_drop_write);
445
eb04c282
JK
446void __mnt_drop_write_file(struct file *file)
447{
448 __mnt_drop_write(file->f_path.mnt);
449}
450
2a79f17e
AV
451void mnt_drop_write_file(struct file *file)
452{
453 mnt_drop_write(file->f_path.mnt);
454}
455EXPORT_SYMBOL(mnt_drop_write_file);
456
83adc753 457static int mnt_make_readonly(struct mount *mnt)
8366025e 458{
3d733633
DH
459 int ret = 0;
460
962830df 461 br_write_lock(&vfsmount_lock);
83adc753 462 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
3d733633 463 /*
d3ef3d73 464 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
465 * should be visible before we do.
3d733633 466 */
d3ef3d73 467 smp_mb();
468
3d733633 469 /*
d3ef3d73 470 * With writers on hold, if this value is zero, then there are
471 * definitely no active writers (although held writers may subsequently
472 * increment the count, they'll have to wait, and decrement it after
473 * seeing MNT_READONLY).
474 *
475 * It is OK to have counter incremented on one CPU and decremented on
476 * another: the sum will add up correctly. The danger would be when we
477 * sum up each counter, if we read a counter before it is incremented,
478 * but then read another CPU's count which it has been subsequently
479 * decremented from -- we would see more decrements than we should.
480 * MNT_WRITE_HOLD protects against this scenario, because
481 * mnt_want_write first increments count, then smp_mb, then spins on
482 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
483 * we're counting up here.
3d733633 484 */
c6653a83 485 if (mnt_get_writers(mnt) > 0)
d3ef3d73 486 ret = -EBUSY;
487 else
83adc753 488 mnt->mnt.mnt_flags |= MNT_READONLY;
d3ef3d73 489 /*
490 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
491 * that become unheld will see MNT_READONLY.
492 */
493 smp_wmb();
83adc753 494 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
962830df 495 br_write_unlock(&vfsmount_lock);
3d733633 496 return ret;
8366025e 497}
8366025e 498
83adc753 499static void __mnt_unmake_readonly(struct mount *mnt)
2e4b7fcd 500{
962830df 501 br_write_lock(&vfsmount_lock);
83adc753 502 mnt->mnt.mnt_flags &= ~MNT_READONLY;
962830df 503 br_write_unlock(&vfsmount_lock);
2e4b7fcd
DH
504}
505
4ed5e82f
MS
506int sb_prepare_remount_readonly(struct super_block *sb)
507{
508 struct mount *mnt;
509 int err = 0;
510
8e8b8796
MS
511 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
512 if (atomic_long_read(&sb->s_remove_count))
513 return -EBUSY;
514
962830df 515 br_write_lock(&vfsmount_lock);
4ed5e82f
MS
516 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
517 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
518 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
519 smp_mb();
520 if (mnt_get_writers(mnt) > 0) {
521 err = -EBUSY;
522 break;
523 }
524 }
525 }
8e8b8796
MS
526 if (!err && atomic_long_read(&sb->s_remove_count))
527 err = -EBUSY;
528
4ed5e82f
MS
529 if (!err) {
530 sb->s_readonly_remount = 1;
531 smp_wmb();
532 }
533 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
534 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
535 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
536 }
962830df 537 br_write_unlock(&vfsmount_lock);
4ed5e82f
MS
538
539 return err;
540}
541
b105e270 542static void free_vfsmnt(struct mount *mnt)
1da177e4 543{
52ba1621 544 kfree(mnt->mnt_devname);
73cd49ec 545 mnt_free_id(mnt);
d3ef3d73 546#ifdef CONFIG_SMP
68e8a9fe 547 free_percpu(mnt->mnt_pcp);
d3ef3d73 548#endif
b105e270 549 kmem_cache_free(mnt_cache, mnt);
1da177e4
LT
550}
551
552/*
a05964f3
RP
553 * find the first or last mount at @dentry on vfsmount @mnt depending on
554 * @dir. If @dir is set return the first mount else return the last mount.
99b7db7b 555 * vfsmount_lock must be held for read or write.
1da177e4 556 */
c7105365 557struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
a05964f3 558 int dir)
1da177e4 559{
b58fed8b
RP
560 struct list_head *head = mount_hashtable + hash(mnt, dentry);
561 struct list_head *tmp = head;
c7105365 562 struct mount *p, *found = NULL;
1da177e4 563
1da177e4 564 for (;;) {
a05964f3 565 tmp = dir ? tmp->next : tmp->prev;
1da177e4
LT
566 p = NULL;
567 if (tmp == head)
568 break;
1b8e5564 569 p = list_entry(tmp, struct mount, mnt_hash);
a73324da 570 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) {
a05964f3 571 found = p;
1da177e4
LT
572 break;
573 }
574 }
1da177e4
LT
575 return found;
576}
577
a05964f3 578/*
f015f126
DH
579 * lookup_mnt - Return the first child mount mounted at path
580 *
581 * "First" means first mounted chronologically. If you create the
582 * following mounts:
583 *
584 * mount /dev/sda1 /mnt
585 * mount /dev/sda2 /mnt
586 * mount /dev/sda3 /mnt
587 *
588 * Then lookup_mnt() on the base /mnt dentry in the root mount will
589 * return successively the root dentry and vfsmount of /dev/sda1, then
590 * /dev/sda2, then /dev/sda3, then NULL.
591 *
592 * lookup_mnt takes a reference to the found vfsmount.
a05964f3 593 */
1c755af4 594struct vfsmount *lookup_mnt(struct path *path)
a05964f3 595{
c7105365 596 struct mount *child_mnt;
99b7db7b 597
962830df 598 br_read_lock(&vfsmount_lock);
c7105365
AV
599 child_mnt = __lookup_mnt(path->mnt, path->dentry, 1);
600 if (child_mnt) {
601 mnt_add_count(child_mnt, 1);
962830df 602 br_read_unlock(&vfsmount_lock);
c7105365
AV
603 return &child_mnt->mnt;
604 } else {
962830df 605 br_read_unlock(&vfsmount_lock);
c7105365
AV
606 return NULL;
607 }
a05964f3
RP
608}
609
84d17192
AV
610static struct mountpoint *new_mountpoint(struct dentry *dentry)
611{
612 struct list_head *chain = mountpoint_hashtable + hash(NULL, dentry);
613 struct mountpoint *mp;
614
615 list_for_each_entry(mp, chain, m_hash) {
616 if (mp->m_dentry == dentry) {
617 /* might be worth a WARN_ON() */
618 if (d_unlinked(dentry))
619 return ERR_PTR(-ENOENT);
620 mp->m_count++;
621 return mp;
622 }
623 }
624
625 mp = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
626 if (!mp)
627 return ERR_PTR(-ENOMEM);
628
629 spin_lock(&dentry->d_lock);
630 if (d_unlinked(dentry)) {
631 spin_unlock(&dentry->d_lock);
632 kfree(mp);
633 return ERR_PTR(-ENOENT);
634 }
635 dentry->d_flags |= DCACHE_MOUNTED;
636 spin_unlock(&dentry->d_lock);
637 mp->m_dentry = dentry;
638 mp->m_count = 1;
639 list_add(&mp->m_hash, chain);
640 return mp;
641}
642
643static void put_mountpoint(struct mountpoint *mp)
644{
645 if (!--mp->m_count) {
646 struct dentry *dentry = mp->m_dentry;
647 spin_lock(&dentry->d_lock);
648 dentry->d_flags &= ~DCACHE_MOUNTED;
649 spin_unlock(&dentry->d_lock);
650 list_del(&mp->m_hash);
651 kfree(mp);
652 }
653}
654
143c8c91 655static inline int check_mnt(struct mount *mnt)
1da177e4 656{
6b3286ed 657 return mnt->mnt_ns == current->nsproxy->mnt_ns;
1da177e4
LT
658}
659
99b7db7b
NP
660/*
661 * vfsmount lock must be held for write
662 */
6b3286ed 663static void touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
664{
665 if (ns) {
666 ns->event = ++event;
667 wake_up_interruptible(&ns->poll);
668 }
669}
670
99b7db7b
NP
671/*
672 * vfsmount lock must be held for write
673 */
6b3286ed 674static void __touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
675{
676 if (ns && ns->event != event) {
677 ns->event = event;
678 wake_up_interruptible(&ns->poll);
679 }
680}
681
99b7db7b
NP
682/*
683 * vfsmount lock must be held for write
684 */
419148da
AV
685static void detach_mnt(struct mount *mnt, struct path *old_path)
686{
a73324da 687 old_path->dentry = mnt->mnt_mountpoint;
0714a533
AV
688 old_path->mnt = &mnt->mnt_parent->mnt;
689 mnt->mnt_parent = mnt;
a73324da 690 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
6b41d536 691 list_del_init(&mnt->mnt_child);
1b8e5564 692 list_del_init(&mnt->mnt_hash);
84d17192
AV
693 put_mountpoint(mnt->mnt_mp);
694 mnt->mnt_mp = NULL;
1da177e4
LT
695}
696
99b7db7b
NP
697/*
698 * vfsmount lock must be held for write
699 */
84d17192
AV
700void mnt_set_mountpoint(struct mount *mnt,
701 struct mountpoint *mp,
44d964d6 702 struct mount *child_mnt)
b90fa9ae 703{
84d17192 704 mp->m_count++;
3a2393d7 705 mnt_add_count(mnt, 1); /* essentially, that's mntget */
84d17192 706 child_mnt->mnt_mountpoint = dget(mp->m_dentry);
3a2393d7 707 child_mnt->mnt_parent = mnt;
84d17192 708 child_mnt->mnt_mp = mp;
b90fa9ae
RP
709}
710
99b7db7b
NP
711/*
712 * vfsmount lock must be held for write
713 */
84d17192
AV
714static void attach_mnt(struct mount *mnt,
715 struct mount *parent,
716 struct mountpoint *mp)
1da177e4 717{
84d17192 718 mnt_set_mountpoint(parent, mp, mnt);
1b8e5564 719 list_add_tail(&mnt->mnt_hash, mount_hashtable +
84d17192
AV
720 hash(&parent->mnt, mp->m_dentry));
721 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
b90fa9ae
RP
722}
723
724/*
99b7db7b 725 * vfsmount lock must be held for write
b90fa9ae 726 */
4b2619a5 727static void commit_tree(struct mount *mnt)
b90fa9ae 728{
0714a533 729 struct mount *parent = mnt->mnt_parent;
83adc753 730 struct mount *m;
b90fa9ae 731 LIST_HEAD(head);
143c8c91 732 struct mnt_namespace *n = parent->mnt_ns;
b90fa9ae 733
0714a533 734 BUG_ON(parent == mnt);
b90fa9ae 735
1a4eeaf2 736 list_add_tail(&head, &mnt->mnt_list);
f7a99c5b 737 list_for_each_entry(m, &head, mnt_list)
143c8c91 738 m->mnt_ns = n;
f03c6599 739
b90fa9ae
RP
740 list_splice(&head, n->list.prev);
741
1b8e5564 742 list_add_tail(&mnt->mnt_hash, mount_hashtable +
a73324da 743 hash(&parent->mnt, mnt->mnt_mountpoint));
6b41d536 744 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
6b3286ed 745 touch_mnt_namespace(n);
1da177e4
LT
746}
747
909b0a88 748static struct mount *next_mnt(struct mount *p, struct mount *root)
1da177e4 749{
6b41d536
AV
750 struct list_head *next = p->mnt_mounts.next;
751 if (next == &p->mnt_mounts) {
1da177e4 752 while (1) {
909b0a88 753 if (p == root)
1da177e4 754 return NULL;
6b41d536
AV
755 next = p->mnt_child.next;
756 if (next != &p->mnt_parent->mnt_mounts)
1da177e4 757 break;
0714a533 758 p = p->mnt_parent;
1da177e4
LT
759 }
760 }
6b41d536 761 return list_entry(next, struct mount, mnt_child);
1da177e4
LT
762}
763
315fc83e 764static struct mount *skip_mnt_tree(struct mount *p)
9676f0c6 765{
6b41d536
AV
766 struct list_head *prev = p->mnt_mounts.prev;
767 while (prev != &p->mnt_mounts) {
768 p = list_entry(prev, struct mount, mnt_child);
769 prev = p->mnt_mounts.prev;
9676f0c6
RP
770 }
771 return p;
772}
773
9d412a43
AV
774struct vfsmount *
775vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
776{
b105e270 777 struct mount *mnt;
9d412a43
AV
778 struct dentry *root;
779
780 if (!type)
781 return ERR_PTR(-ENODEV);
782
783 mnt = alloc_vfsmnt(name);
784 if (!mnt)
785 return ERR_PTR(-ENOMEM);
786
787 if (flags & MS_KERNMOUNT)
b105e270 788 mnt->mnt.mnt_flags = MNT_INTERNAL;
9d412a43
AV
789
790 root = mount_fs(type, flags, name, data);
791 if (IS_ERR(root)) {
792 free_vfsmnt(mnt);
793 return ERR_CAST(root);
794 }
795
b105e270
AV
796 mnt->mnt.mnt_root = root;
797 mnt->mnt.mnt_sb = root->d_sb;
a73324da 798 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
0714a533 799 mnt->mnt_parent = mnt;
962830df 800 br_write_lock(&vfsmount_lock);
39f7c4db 801 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
962830df 802 br_write_unlock(&vfsmount_lock);
b105e270 803 return &mnt->mnt;
9d412a43
AV
804}
805EXPORT_SYMBOL_GPL(vfs_kern_mount);
806
87129cc0 807static struct mount *clone_mnt(struct mount *old, struct dentry *root,
36341f64 808 int flag)
1da177e4 809{
87129cc0 810 struct super_block *sb = old->mnt.mnt_sb;
be34d1a3
DH
811 struct mount *mnt;
812 int err;
1da177e4 813
be34d1a3
DH
814 mnt = alloc_vfsmnt(old->mnt_devname);
815 if (!mnt)
816 return ERR_PTR(-ENOMEM);
719f5d7f 817
7a472ef4 818 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
be34d1a3
DH
819 mnt->mnt_group_id = 0; /* not a peer of original */
820 else
821 mnt->mnt_group_id = old->mnt_group_id;
b90fa9ae 822
be34d1a3
DH
823 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
824 err = mnt_alloc_group_id(mnt);
825 if (err)
826 goto out_free;
1da177e4 827 }
be34d1a3
DH
828
829 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~MNT_WRITE_HOLD;
132c94e3 830 /* Don't allow unprivileged users to change mount flags */
187985d9
EB
831 if (flag & CL_UNPRIVILEGED) {
832 mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
833
834 if (mnt->mnt.mnt_flags & MNT_READONLY)
835 mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
836
837 if (mnt->mnt.mnt_flags & MNT_NODEV)
838 mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
839
840 if (mnt->mnt.mnt_flags & MNT_NOSUID)
841 mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
842
843 if (mnt->mnt.mnt_flags & MNT_NOEXEC)
844 mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
845 }
132c94e3 846
be34d1a3
DH
847 atomic_inc(&sb->s_active);
848 mnt->mnt.mnt_sb = sb;
849 mnt->mnt.mnt_root = dget(root);
850 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
851 mnt->mnt_parent = mnt;
852 br_write_lock(&vfsmount_lock);
853 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
854 br_write_unlock(&vfsmount_lock);
855
7a472ef4
EB
856 if ((flag & CL_SLAVE) ||
857 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
be34d1a3
DH
858 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
859 mnt->mnt_master = old;
860 CLEAR_MNT_SHARED(mnt);
861 } else if (!(flag & CL_PRIVATE)) {
862 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
863 list_add(&mnt->mnt_share, &old->mnt_share);
864 if (IS_MNT_SLAVE(old))
865 list_add(&mnt->mnt_slave, &old->mnt_slave);
866 mnt->mnt_master = old->mnt_master;
867 }
868 if (flag & CL_MAKE_SHARED)
869 set_mnt_shared(mnt);
870
871 /* stick the duplicate mount on the same expiry list
872 * as the original if that was on one */
873 if (flag & CL_EXPIRE) {
874 if (!list_empty(&old->mnt_expire))
875 list_add(&mnt->mnt_expire, &old->mnt_expire);
876 }
877
cb338d06 878 return mnt;
719f5d7f
MS
879
880 out_free:
881 free_vfsmnt(mnt);
be34d1a3 882 return ERR_PTR(err);
1da177e4
LT
883}
884
83adc753 885static inline void mntfree(struct mount *mnt)
1da177e4 886{
83adc753
AV
887 struct vfsmount *m = &mnt->mnt;
888 struct super_block *sb = m->mnt_sb;
b3e19d92 889
3d733633
DH
890 /*
891 * This probably indicates that somebody messed
892 * up a mnt_want/drop_write() pair. If this
893 * happens, the filesystem was probably unable
894 * to make r/w->r/o transitions.
895 */
d3ef3d73 896 /*
b3e19d92
NP
897 * The locking used to deal with mnt_count decrement provides barriers,
898 * so mnt_get_writers() below is safe.
d3ef3d73 899 */
c6653a83 900 WARN_ON(mnt_get_writers(mnt));
83adc753
AV
901 fsnotify_vfsmount_delete(m);
902 dput(m->mnt_root);
903 free_vfsmnt(mnt);
1da177e4
LT
904 deactivate_super(sb);
905}
906
900148dc 907static void mntput_no_expire(struct mount *mnt)
b3e19d92 908{
b3e19d92 909put_again:
f03c6599 910#ifdef CONFIG_SMP
962830df 911 br_read_lock(&vfsmount_lock);
f7a99c5b
AV
912 if (likely(mnt->mnt_ns)) {
913 /* shouldn't be the last one */
aa9c0e07 914 mnt_add_count(mnt, -1);
962830df 915 br_read_unlock(&vfsmount_lock);
f03c6599 916 return;
b3e19d92 917 }
962830df 918 br_read_unlock(&vfsmount_lock);
b3e19d92 919
962830df 920 br_write_lock(&vfsmount_lock);
aa9c0e07 921 mnt_add_count(mnt, -1);
b3e19d92 922 if (mnt_get_count(mnt)) {
962830df 923 br_write_unlock(&vfsmount_lock);
99b7db7b
NP
924 return;
925 }
b3e19d92 926#else
aa9c0e07 927 mnt_add_count(mnt, -1);
b3e19d92 928 if (likely(mnt_get_count(mnt)))
99b7db7b 929 return;
962830df 930 br_write_lock(&vfsmount_lock);
f03c6599 931#endif
863d684f
AV
932 if (unlikely(mnt->mnt_pinned)) {
933 mnt_add_count(mnt, mnt->mnt_pinned + 1);
934 mnt->mnt_pinned = 0;
962830df 935 br_write_unlock(&vfsmount_lock);
900148dc 936 acct_auto_close_mnt(&mnt->mnt);
b3e19d92 937 goto put_again;
7b7b1ace 938 }
962830df 939
39f7c4db 940 list_del(&mnt->mnt_instance);
962830df 941 br_write_unlock(&vfsmount_lock);
b3e19d92
NP
942 mntfree(mnt);
943}
b3e19d92
NP
944
945void mntput(struct vfsmount *mnt)
946{
947 if (mnt) {
863d684f 948 struct mount *m = real_mount(mnt);
b3e19d92 949 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
863d684f
AV
950 if (unlikely(m->mnt_expiry_mark))
951 m->mnt_expiry_mark = 0;
952 mntput_no_expire(m);
b3e19d92
NP
953 }
954}
955EXPORT_SYMBOL(mntput);
956
957struct vfsmount *mntget(struct vfsmount *mnt)
958{
959 if (mnt)
83adc753 960 mnt_add_count(real_mount(mnt), 1);
b3e19d92
NP
961 return mnt;
962}
963EXPORT_SYMBOL(mntget);
964
7b7b1ace
AV
965void mnt_pin(struct vfsmount *mnt)
966{
962830df 967 br_write_lock(&vfsmount_lock);
863d684f 968 real_mount(mnt)->mnt_pinned++;
962830df 969 br_write_unlock(&vfsmount_lock);
7b7b1ace 970}
7b7b1ace
AV
971EXPORT_SYMBOL(mnt_pin);
972
863d684f 973void mnt_unpin(struct vfsmount *m)
7b7b1ace 974{
863d684f 975 struct mount *mnt = real_mount(m);
962830df 976 br_write_lock(&vfsmount_lock);
7b7b1ace 977 if (mnt->mnt_pinned) {
863d684f 978 mnt_add_count(mnt, 1);
7b7b1ace
AV
979 mnt->mnt_pinned--;
980 }
962830df 981 br_write_unlock(&vfsmount_lock);
7b7b1ace 982}
7b7b1ace 983EXPORT_SYMBOL(mnt_unpin);
1da177e4 984
b3b304a2
MS
985static inline void mangle(struct seq_file *m, const char *s)
986{
987 seq_escape(m, s, " \t\n\\");
988}
989
990/*
991 * Simple .show_options callback for filesystems which don't want to
992 * implement more complex mount option showing.
993 *
994 * See also save_mount_options().
995 */
34c80b1d 996int generic_show_options(struct seq_file *m, struct dentry *root)
b3b304a2 997{
2a32cebd
AV
998 const char *options;
999
1000 rcu_read_lock();
34c80b1d 1001 options = rcu_dereference(root->d_sb->s_options);
b3b304a2
MS
1002
1003 if (options != NULL && options[0]) {
1004 seq_putc(m, ',');
1005 mangle(m, options);
1006 }
2a32cebd 1007 rcu_read_unlock();
b3b304a2
MS
1008
1009 return 0;
1010}
1011EXPORT_SYMBOL(generic_show_options);
1012
1013/*
1014 * If filesystem uses generic_show_options(), this function should be
1015 * called from the fill_super() callback.
1016 *
1017 * The .remount_fs callback usually needs to be handled in a special
1018 * way, to make sure, that previous options are not overwritten if the
1019 * remount fails.
1020 *
1021 * Also note, that if the filesystem's .remount_fs function doesn't
1022 * reset all options to their default value, but changes only newly
1023 * given options, then the displayed options will not reflect reality
1024 * any more.
1025 */
1026void save_mount_options(struct super_block *sb, char *options)
1027{
2a32cebd
AV
1028 BUG_ON(sb->s_options);
1029 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
b3b304a2
MS
1030}
1031EXPORT_SYMBOL(save_mount_options);
1032
2a32cebd
AV
1033void replace_mount_options(struct super_block *sb, char *options)
1034{
1035 char *old = sb->s_options;
1036 rcu_assign_pointer(sb->s_options, options);
1037 if (old) {
1038 synchronize_rcu();
1039 kfree(old);
1040 }
1041}
1042EXPORT_SYMBOL(replace_mount_options);
1043
a1a2c409 1044#ifdef CONFIG_PROC_FS
0226f492 1045/* iterator; we want it to have access to namespace_sem, thus here... */
1da177e4
LT
1046static void *m_start(struct seq_file *m, loff_t *pos)
1047{
6ce6e24e 1048 struct proc_mounts *p = proc_mounts(m);
1da177e4 1049
390c6843 1050 down_read(&namespace_sem);
a1a2c409 1051 return seq_list_start(&p->ns->list, *pos);
1da177e4
LT
1052}
1053
1054static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1055{
6ce6e24e 1056 struct proc_mounts *p = proc_mounts(m);
b0765fb8 1057
a1a2c409 1058 return seq_list_next(v, &p->ns->list, pos);
1da177e4
LT
1059}
1060
1061static void m_stop(struct seq_file *m, void *v)
1062{
390c6843 1063 up_read(&namespace_sem);
1da177e4
LT
1064}
1065
0226f492 1066static int m_show(struct seq_file *m, void *v)
2d4d4864 1067{
6ce6e24e 1068 struct proc_mounts *p = proc_mounts(m);
1a4eeaf2 1069 struct mount *r = list_entry(v, struct mount, mnt_list);
0226f492 1070 return p->show(m, &r->mnt);
1da177e4
LT
1071}
1072
a1a2c409 1073const struct seq_operations mounts_op = {
1da177e4
LT
1074 .start = m_start,
1075 .next = m_next,
1076 .stop = m_stop,
0226f492 1077 .show = m_show,
b4629fe2 1078};
a1a2c409 1079#endif /* CONFIG_PROC_FS */
b4629fe2 1080
1da177e4
LT
1081/**
1082 * may_umount_tree - check if a mount tree is busy
1083 * @mnt: root of mount tree
1084 *
1085 * This is called to check if a tree of mounts has any
1086 * open files, pwds, chroots or sub mounts that are
1087 * busy.
1088 */
909b0a88 1089int may_umount_tree(struct vfsmount *m)
1da177e4 1090{
909b0a88 1091 struct mount *mnt = real_mount(m);
36341f64
RP
1092 int actual_refs = 0;
1093 int minimum_refs = 0;
315fc83e 1094 struct mount *p;
909b0a88 1095 BUG_ON(!m);
1da177e4 1096
b3e19d92 1097 /* write lock needed for mnt_get_count */
962830df 1098 br_write_lock(&vfsmount_lock);
909b0a88 1099 for (p = mnt; p; p = next_mnt(p, mnt)) {
83adc753 1100 actual_refs += mnt_get_count(p);
1da177e4 1101 minimum_refs += 2;
1da177e4 1102 }
962830df 1103 br_write_unlock(&vfsmount_lock);
1da177e4
LT
1104
1105 if (actual_refs > minimum_refs)
e3474a8e 1106 return 0;
1da177e4 1107
e3474a8e 1108 return 1;
1da177e4
LT
1109}
1110
1111EXPORT_SYMBOL(may_umount_tree);
1112
1113/**
1114 * may_umount - check if a mount point is busy
1115 * @mnt: root of mount
1116 *
1117 * This is called to check if a mount point has any
1118 * open files, pwds, chroots or sub mounts. If the
1119 * mount has sub mounts this will return busy
1120 * regardless of whether the sub mounts are busy.
1121 *
1122 * Doesn't take quota and stuff into account. IOW, in some cases it will
1123 * give false negatives. The main reason why it's here is that we need
1124 * a non-destructive way to look for easily umountable filesystems.
1125 */
1126int may_umount(struct vfsmount *mnt)
1127{
e3474a8e 1128 int ret = 1;
8ad08d8a 1129 down_read(&namespace_sem);
962830df 1130 br_write_lock(&vfsmount_lock);
1ab59738 1131 if (propagate_mount_busy(real_mount(mnt), 2))
e3474a8e 1132 ret = 0;
962830df 1133 br_write_unlock(&vfsmount_lock);
8ad08d8a 1134 up_read(&namespace_sem);
a05964f3 1135 return ret;
1da177e4
LT
1136}
1137
1138EXPORT_SYMBOL(may_umount);
1139
e3197d83
AV
1140static LIST_HEAD(unmounted); /* protected by namespace_sem */
1141
97216be0 1142static void namespace_unlock(void)
70fbcdf4 1143{
d5e50f74 1144 struct mount *mnt;
97216be0
AV
1145 LIST_HEAD(head);
1146
1147 if (likely(list_empty(&unmounted))) {
1148 up_write(&namespace_sem);
1149 return;
1150 }
1151
1152 list_splice_init(&unmounted, &head);
1153 up_write(&namespace_sem);
1154
1155 while (!list_empty(&head)) {
1156 mnt = list_first_entry(&head, struct mount, mnt_hash);
1b8e5564 1157 list_del_init(&mnt->mnt_hash);
676da58d 1158 if (mnt_has_parent(mnt)) {
70fbcdf4 1159 struct dentry *dentry;
863d684f 1160 struct mount *m;
99b7db7b 1161
962830df 1162 br_write_lock(&vfsmount_lock);
a73324da 1163 dentry = mnt->mnt_mountpoint;
863d684f 1164 m = mnt->mnt_parent;
a73324da 1165 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
0714a533 1166 mnt->mnt_parent = mnt;
7c4b93d8 1167 m->mnt_ghosts--;
962830df 1168 br_write_unlock(&vfsmount_lock);
70fbcdf4 1169 dput(dentry);
863d684f 1170 mntput(&m->mnt);
70fbcdf4 1171 }
d5e50f74 1172 mntput(&mnt->mnt);
70fbcdf4
RP
1173 }
1174}
1175
97216be0 1176static inline void namespace_lock(void)
e3197d83 1177{
97216be0 1178 down_write(&namespace_sem);
e3197d83
AV
1179}
1180
99b7db7b
NP
1181/*
1182 * vfsmount lock must be held for write
1183 * namespace_sem must be held for write
1184 */
328e6d90 1185void umount_tree(struct mount *mnt, int propagate)
1da177e4 1186{
7b8a53fd 1187 LIST_HEAD(tmp_list);
315fc83e 1188 struct mount *p;
1da177e4 1189
909b0a88 1190 for (p = mnt; p; p = next_mnt(p, mnt))
1b8e5564 1191 list_move(&p->mnt_hash, &tmp_list);
1da177e4 1192
a05964f3 1193 if (propagate)
7b8a53fd 1194 propagate_umount(&tmp_list);
a05964f3 1195
1b8e5564 1196 list_for_each_entry(p, &tmp_list, mnt_hash) {
6776db3d 1197 list_del_init(&p->mnt_expire);
1a4eeaf2 1198 list_del_init(&p->mnt_list);
143c8c91
AV
1199 __touch_mnt_namespace(p->mnt_ns);
1200 p->mnt_ns = NULL;
6b41d536 1201 list_del_init(&p->mnt_child);
676da58d 1202 if (mnt_has_parent(p)) {
863d684f 1203 p->mnt_parent->mnt_ghosts++;
84d17192
AV
1204 put_mountpoint(p->mnt_mp);
1205 p->mnt_mp = NULL;
7c4b93d8 1206 }
0f0afb1d 1207 change_mnt_propagation(p, MS_PRIVATE);
1da177e4 1208 }
328e6d90 1209 list_splice(&tmp_list, &unmounted);
1da177e4
LT
1210}
1211
b54b9be7 1212static void shrink_submounts(struct mount *mnt);
c35038be 1213
1ab59738 1214static int do_umount(struct mount *mnt, int flags)
1da177e4 1215{
1ab59738 1216 struct super_block *sb = mnt->mnt.mnt_sb;
1da177e4
LT
1217 int retval;
1218
1ab59738 1219 retval = security_sb_umount(&mnt->mnt, flags);
1da177e4
LT
1220 if (retval)
1221 return retval;
1222
1223 /*
1224 * Allow userspace to request a mountpoint be expired rather than
1225 * unmounting unconditionally. Unmount only happens if:
1226 * (1) the mark is already set (the mark is cleared by mntput())
1227 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1228 */
1229 if (flags & MNT_EXPIRE) {
1ab59738 1230 if (&mnt->mnt == current->fs->root.mnt ||
1da177e4
LT
1231 flags & (MNT_FORCE | MNT_DETACH))
1232 return -EINVAL;
1233
b3e19d92
NP
1234 /*
1235 * probably don't strictly need the lock here if we examined
1236 * all race cases, but it's a slowpath.
1237 */
962830df 1238 br_write_lock(&vfsmount_lock);
83adc753 1239 if (mnt_get_count(mnt) != 2) {
962830df 1240 br_write_unlock(&vfsmount_lock);
1da177e4 1241 return -EBUSY;
b3e19d92 1242 }
962830df 1243 br_write_unlock(&vfsmount_lock);
1da177e4 1244
863d684f 1245 if (!xchg(&mnt->mnt_expiry_mark, 1))
1da177e4
LT
1246 return -EAGAIN;
1247 }
1248
1249 /*
1250 * If we may have to abort operations to get out of this
1251 * mount, and they will themselves hold resources we must
1252 * allow the fs to do things. In the Unix tradition of
1253 * 'Gee thats tricky lets do it in userspace' the umount_begin
1254 * might fail to complete on the first run through as other tasks
1255 * must return, and the like. Thats for the mount program to worry
1256 * about for the moment.
1257 */
1258
42faad99 1259 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
42faad99 1260 sb->s_op->umount_begin(sb);
42faad99 1261 }
1da177e4
LT
1262
1263 /*
1264 * No sense to grab the lock for this test, but test itself looks
1265 * somewhat bogus. Suggestions for better replacement?
1266 * Ho-hum... In principle, we might treat that as umount + switch
1267 * to rootfs. GC would eventually take care of the old vfsmount.
1268 * Actually it makes sense, especially if rootfs would contain a
1269 * /reboot - static binary that would close all descriptors and
1270 * call reboot(9). Then init(8) could umount root and exec /reboot.
1271 */
1ab59738 1272 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1da177e4
LT
1273 /*
1274 * Special case for "unmounting" root ...
1275 * we just try to remount it readonly.
1276 */
a7dbb3e3
AL
1277 if (!capable(CAP_SYS_ADMIN))
1278 return -EPERM;
1da177e4 1279 down_write(&sb->s_umount);
4aa98cf7 1280 if (!(sb->s_flags & MS_RDONLY))
1da177e4 1281 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1da177e4
LT
1282 up_write(&sb->s_umount);
1283 return retval;
1284 }
1285
97216be0 1286 namespace_lock();
962830df 1287 br_write_lock(&vfsmount_lock);
5addc5dd 1288 event++;
1da177e4 1289
c35038be 1290 if (!(flags & MNT_DETACH))
b54b9be7 1291 shrink_submounts(mnt);
c35038be 1292
1da177e4 1293 retval = -EBUSY;
a05964f3 1294 if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
1a4eeaf2 1295 if (!list_empty(&mnt->mnt_list))
328e6d90 1296 umount_tree(mnt, 1);
1da177e4
LT
1297 retval = 0;
1298 }
962830df 1299 br_write_unlock(&vfsmount_lock);
e3197d83 1300 namespace_unlock();
1da177e4
LT
1301 return retval;
1302}
1303
9b40bc90
AV
1304/*
1305 * Is the caller allowed to modify his namespace?
1306 */
1307static inline bool may_mount(void)
1308{
1309 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1310}
1311
1da177e4
LT
1312/*
1313 * Now umount can handle mount points as well as block devices.
1314 * This is important for filesystems which use unnamed block devices.
1315 *
1316 * We now support a flag for forced unmount like the other 'big iron'
1317 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1318 */
1319
bdc480e3 1320SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1da177e4 1321{
2d8f3038 1322 struct path path;
900148dc 1323 struct mount *mnt;
1da177e4 1324 int retval;
db1f05bb 1325 int lookup_flags = 0;
1da177e4 1326
db1f05bb
MS
1327 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1328 return -EINVAL;
1329
9b40bc90
AV
1330 if (!may_mount())
1331 return -EPERM;
1332
db1f05bb
MS
1333 if (!(flags & UMOUNT_NOFOLLOW))
1334 lookup_flags |= LOOKUP_FOLLOW;
1335
1336 retval = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1da177e4
LT
1337 if (retval)
1338 goto out;
900148dc 1339 mnt = real_mount(path.mnt);
1da177e4 1340 retval = -EINVAL;
2d8f3038 1341 if (path.dentry != path.mnt->mnt_root)
1da177e4 1342 goto dput_and_out;
143c8c91 1343 if (!check_mnt(mnt))
1da177e4
LT
1344 goto dput_and_out;
1345
900148dc 1346 retval = do_umount(mnt, flags);
1da177e4 1347dput_and_out:
429731b1 1348 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
2d8f3038 1349 dput(path.dentry);
900148dc 1350 mntput_no_expire(mnt);
1da177e4
LT
1351out:
1352 return retval;
1353}
1354
1355#ifdef __ARCH_WANT_SYS_OLDUMOUNT
1356
1357/*
b58fed8b 1358 * The 2.0 compatible umount. No flags.
1da177e4 1359 */
bdc480e3 1360SYSCALL_DEFINE1(oldumount, char __user *, name)
1da177e4 1361{
b58fed8b 1362 return sys_umount(name, 0);
1da177e4
LT
1363}
1364
1365#endif
1366
8823c079
EB
1367static bool mnt_ns_loop(struct path *path)
1368{
1369 /* Could bind mounting the mount namespace inode cause a
1370 * mount namespace loop?
1371 */
1372 struct inode *inode = path->dentry->d_inode;
0bb80f24 1373 struct proc_ns *ei;
8823c079
EB
1374 struct mnt_namespace *mnt_ns;
1375
1376 if (!proc_ns_inode(inode))
1377 return false;
1378
0bb80f24 1379 ei = get_proc_ns(inode);
8823c079
EB
1380 if (ei->ns_ops != &mntns_operations)
1381 return false;
1382
1383 mnt_ns = ei->ns;
1384 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1385}
1386
87129cc0 1387struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
36341f64 1388 int flag)
1da177e4 1389{
84d17192 1390 struct mount *res, *p, *q, *r, *parent;
1da177e4 1391
fc7be130 1392 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
be34d1a3 1393 return ERR_PTR(-EINVAL);
9676f0c6 1394
36341f64 1395 res = q = clone_mnt(mnt, dentry, flag);
be34d1a3
DH
1396 if (IS_ERR(q))
1397 return q;
1398
a73324da 1399 q->mnt_mountpoint = mnt->mnt_mountpoint;
1da177e4
LT
1400
1401 p = mnt;
6b41d536 1402 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
315fc83e 1403 struct mount *s;
7ec02ef1 1404 if (!is_subdir(r->mnt_mountpoint, dentry))
1da177e4
LT
1405 continue;
1406
909b0a88 1407 for (s = r; s; s = next_mnt(s, r)) {
fc7be130 1408 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
9676f0c6
RP
1409 s = skip_mnt_tree(s);
1410 continue;
1411 }
0714a533
AV
1412 while (p != s->mnt_parent) {
1413 p = p->mnt_parent;
1414 q = q->mnt_parent;
1da177e4 1415 }
87129cc0 1416 p = s;
84d17192 1417 parent = q;
87129cc0 1418 q = clone_mnt(p, p->mnt.mnt_root, flag);
be34d1a3
DH
1419 if (IS_ERR(q))
1420 goto out;
962830df 1421 br_write_lock(&vfsmount_lock);
1a4eeaf2 1422 list_add_tail(&q->mnt_list, &res->mnt_list);
84d17192 1423 attach_mnt(q, parent, p->mnt_mp);
962830df 1424 br_write_unlock(&vfsmount_lock);
1da177e4
LT
1425 }
1426 }
1427 return res;
be34d1a3 1428out:
1da177e4 1429 if (res) {
962830df 1430 br_write_lock(&vfsmount_lock);
328e6d90 1431 umount_tree(res, 0);
962830df 1432 br_write_unlock(&vfsmount_lock);
1da177e4 1433 }
be34d1a3 1434 return q;
1da177e4
LT
1435}
1436
be34d1a3
DH
1437/* Caller should check returned pointer for errors */
1438
589ff870 1439struct vfsmount *collect_mounts(struct path *path)
8aec0809 1440{
cb338d06 1441 struct mount *tree;
97216be0 1442 namespace_lock();
87129cc0
AV
1443 tree = copy_tree(real_mount(path->mnt), path->dentry,
1444 CL_COPY_ALL | CL_PRIVATE);
328e6d90 1445 namespace_unlock();
be34d1a3 1446 if (IS_ERR(tree))
2bee1e0f 1447 return ERR_CAST(tree);
be34d1a3 1448 return &tree->mnt;
8aec0809
AV
1449}
1450
1451void drop_collected_mounts(struct vfsmount *mnt)
1452{
97216be0 1453 namespace_lock();
962830df 1454 br_write_lock(&vfsmount_lock);
328e6d90 1455 umount_tree(real_mount(mnt), 0);
962830df 1456 br_write_unlock(&vfsmount_lock);
3ab6abee 1457 namespace_unlock();
8aec0809
AV
1458}
1459
1f707137
AV
1460int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1461 struct vfsmount *root)
1462{
1a4eeaf2 1463 struct mount *mnt;
1f707137
AV
1464 int res = f(root, arg);
1465 if (res)
1466 return res;
1a4eeaf2
AV
1467 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1468 res = f(&mnt->mnt, arg);
1f707137
AV
1469 if (res)
1470 return res;
1471 }
1472 return 0;
1473}
1474
4b8b21f4 1475static void cleanup_group_ids(struct mount *mnt, struct mount *end)
719f5d7f 1476{
315fc83e 1477 struct mount *p;
719f5d7f 1478
909b0a88 1479 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
fc7be130 1480 if (p->mnt_group_id && !IS_MNT_SHARED(p))
4b8b21f4 1481 mnt_release_group_id(p);
719f5d7f
MS
1482 }
1483}
1484
4b8b21f4 1485static int invent_group_ids(struct mount *mnt, bool recurse)
719f5d7f 1486{
315fc83e 1487 struct mount *p;
719f5d7f 1488
909b0a88 1489 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
fc7be130 1490 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
4b8b21f4 1491 int err = mnt_alloc_group_id(p);
719f5d7f 1492 if (err) {
4b8b21f4 1493 cleanup_group_ids(mnt, p);
719f5d7f
MS
1494 return err;
1495 }
1496 }
1497 }
1498
1499 return 0;
1500}
1501
b90fa9ae
RP
1502/*
1503 * @source_mnt : mount tree to be attached
21444403
RP
1504 * @nd : place the mount tree @source_mnt is attached
1505 * @parent_nd : if non-null, detach the source_mnt from its parent and
1506 * store the parent mount and mountpoint dentry.
1507 * (done when source_mnt is moved)
b90fa9ae
RP
1508 *
1509 * NOTE: in the table below explains the semantics when a source mount
1510 * of a given type is attached to a destination mount of a given type.
9676f0c6
RP
1511 * ---------------------------------------------------------------------------
1512 * | BIND MOUNT OPERATION |
1513 * |**************************************************************************
1514 * | source-->| shared | private | slave | unbindable |
1515 * | dest | | | | |
1516 * | | | | | | |
1517 * | v | | | | |
1518 * |**************************************************************************
1519 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1520 * | | | | | |
1521 * |non-shared| shared (+) | private | slave (*) | invalid |
1522 * ***************************************************************************
b90fa9ae
RP
1523 * A bind operation clones the source mount and mounts the clone on the
1524 * destination mount.
1525 *
1526 * (++) the cloned mount is propagated to all the mounts in the propagation
1527 * tree of the destination mount and the cloned mount is added to
1528 * the peer group of the source mount.
1529 * (+) the cloned mount is created under the destination mount and is marked
1530 * as shared. The cloned mount is added to the peer group of the source
1531 * mount.
5afe0022
RP
1532 * (+++) the mount is propagated to all the mounts in the propagation tree
1533 * of the destination mount and the cloned mount is made slave
1534 * of the same master as that of the source mount. The cloned mount
1535 * is marked as 'shared and slave'.
1536 * (*) the cloned mount is made a slave of the same master as that of the
1537 * source mount.
1538 *
9676f0c6
RP
1539 * ---------------------------------------------------------------------------
1540 * | MOVE MOUNT OPERATION |
1541 * |**************************************************************************
1542 * | source-->| shared | private | slave | unbindable |
1543 * | dest | | | | |
1544 * | | | | | | |
1545 * | v | | | | |
1546 * |**************************************************************************
1547 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1548 * | | | | | |
1549 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1550 * ***************************************************************************
5afe0022
RP
1551 *
1552 * (+) the mount is moved to the destination. And is then propagated to
1553 * all the mounts in the propagation tree of the destination mount.
21444403 1554 * (+*) the mount is moved to the destination.
5afe0022
RP
1555 * (+++) the mount is moved to the destination and is then propagated to
1556 * all the mounts belonging to the destination mount's propagation tree.
1557 * the mount is marked as 'shared and slave'.
1558 * (*) the mount continues to be a slave at the new location.
b90fa9ae
RP
1559 *
1560 * if the source mount is a tree, the operations explained above is
1561 * applied to each mount in the tree.
1562 * Must be called without spinlocks held, since this function can sleep
1563 * in allocations.
1564 */
0fb54e50 1565static int attach_recursive_mnt(struct mount *source_mnt,
84d17192
AV
1566 struct mount *dest_mnt,
1567 struct mountpoint *dest_mp,
1568 struct path *parent_path)
b90fa9ae
RP
1569{
1570 LIST_HEAD(tree_list);
315fc83e 1571 struct mount *child, *p;
719f5d7f 1572 int err;
b90fa9ae 1573
fc7be130 1574 if (IS_MNT_SHARED(dest_mnt)) {
0fb54e50 1575 err = invent_group_ids(source_mnt, true);
719f5d7f
MS
1576 if (err)
1577 goto out;
1578 }
84d17192 1579 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
719f5d7f
MS
1580 if (err)
1581 goto out_cleanup_ids;
b90fa9ae 1582
962830df 1583 br_write_lock(&vfsmount_lock);
df1a1ad2 1584
fc7be130 1585 if (IS_MNT_SHARED(dest_mnt)) {
909b0a88 1586 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
0f0afb1d 1587 set_mnt_shared(p);
b90fa9ae 1588 }
1a390689 1589 if (parent_path) {
0fb54e50 1590 detach_mnt(source_mnt, parent_path);
84d17192 1591 attach_mnt(source_mnt, dest_mnt, dest_mp);
143c8c91 1592 touch_mnt_namespace(source_mnt->mnt_ns);
21444403 1593 } else {
84d17192 1594 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
0fb54e50 1595 commit_tree(source_mnt);
21444403 1596 }
b90fa9ae 1597
1b8e5564
AV
1598 list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
1599 list_del_init(&child->mnt_hash);
4b2619a5 1600 commit_tree(child);
b90fa9ae 1601 }
962830df 1602 br_write_unlock(&vfsmount_lock);
99b7db7b 1603
b90fa9ae 1604 return 0;
719f5d7f
MS
1605
1606 out_cleanup_ids:
fc7be130 1607 if (IS_MNT_SHARED(dest_mnt))
0fb54e50 1608 cleanup_group_ids(source_mnt, NULL);
719f5d7f
MS
1609 out:
1610 return err;
b90fa9ae
RP
1611}
1612
84d17192 1613static struct mountpoint *lock_mount(struct path *path)
b12cea91
AV
1614{
1615 struct vfsmount *mnt;
84d17192 1616 struct dentry *dentry = path->dentry;
b12cea91 1617retry:
84d17192
AV
1618 mutex_lock(&dentry->d_inode->i_mutex);
1619 if (unlikely(cant_mount(dentry))) {
1620 mutex_unlock(&dentry->d_inode->i_mutex);
1621 return ERR_PTR(-ENOENT);
b12cea91 1622 }
97216be0 1623 namespace_lock();
b12cea91 1624 mnt = lookup_mnt(path);
84d17192
AV
1625 if (likely(!mnt)) {
1626 struct mountpoint *mp = new_mountpoint(dentry);
1627 if (IS_ERR(mp)) {
97216be0 1628 namespace_unlock();
84d17192
AV
1629 mutex_unlock(&dentry->d_inode->i_mutex);
1630 return mp;
1631 }
1632 return mp;
1633 }
97216be0 1634 namespace_unlock();
b12cea91
AV
1635 mutex_unlock(&path->dentry->d_inode->i_mutex);
1636 path_put(path);
1637 path->mnt = mnt;
84d17192 1638 dentry = path->dentry = dget(mnt->mnt_root);
b12cea91
AV
1639 goto retry;
1640}
1641
84d17192 1642static void unlock_mount(struct mountpoint *where)
b12cea91 1643{
84d17192
AV
1644 struct dentry *dentry = where->m_dentry;
1645 put_mountpoint(where);
328e6d90 1646 namespace_unlock();
84d17192 1647 mutex_unlock(&dentry->d_inode->i_mutex);
b12cea91
AV
1648}
1649
84d17192 1650static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
1da177e4 1651{
95bc5f25 1652 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
1da177e4
LT
1653 return -EINVAL;
1654
84d17192 1655 if (S_ISDIR(mp->m_dentry->d_inode->i_mode) !=
95bc5f25 1656 S_ISDIR(mnt->mnt.mnt_root->d_inode->i_mode))
1da177e4
LT
1657 return -ENOTDIR;
1658
84d17192 1659 return attach_recursive_mnt(mnt, p, mp, NULL);
1da177e4
LT
1660}
1661
7a2e8a8f
VA
1662/*
1663 * Sanity check the flags to change_mnt_propagation.
1664 */
1665
1666static int flags_to_propagation_type(int flags)
1667{
7c6e984d 1668 int type = flags & ~(MS_REC | MS_SILENT);
7a2e8a8f
VA
1669
1670 /* Fail if any non-propagation flags are set */
1671 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1672 return 0;
1673 /* Only one propagation flag should be set */
1674 if (!is_power_of_2(type))
1675 return 0;
1676 return type;
1677}
1678
07b20889
RP
1679/*
1680 * recursively change the type of the mountpoint.
1681 */
0a0d8a46 1682static int do_change_type(struct path *path, int flag)
07b20889 1683{
315fc83e 1684 struct mount *m;
4b8b21f4 1685 struct mount *mnt = real_mount(path->mnt);
07b20889 1686 int recurse = flag & MS_REC;
7a2e8a8f 1687 int type;
719f5d7f 1688 int err = 0;
07b20889 1689
2d92ab3c 1690 if (path->dentry != path->mnt->mnt_root)
07b20889
RP
1691 return -EINVAL;
1692
7a2e8a8f
VA
1693 type = flags_to_propagation_type(flag);
1694 if (!type)
1695 return -EINVAL;
1696
97216be0 1697 namespace_lock();
719f5d7f
MS
1698 if (type == MS_SHARED) {
1699 err = invent_group_ids(mnt, recurse);
1700 if (err)
1701 goto out_unlock;
1702 }
1703
962830df 1704 br_write_lock(&vfsmount_lock);
909b0a88 1705 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
0f0afb1d 1706 change_mnt_propagation(m, type);
962830df 1707 br_write_unlock(&vfsmount_lock);
719f5d7f
MS
1708
1709 out_unlock:
97216be0 1710 namespace_unlock();
719f5d7f 1711 return err;
07b20889
RP
1712}
1713
1da177e4
LT
1714/*
1715 * do loopback mount.
1716 */
808d4e3c 1717static int do_loopback(struct path *path, const char *old_name,
2dafe1c4 1718 int recurse)
1da177e4 1719{
2d92ab3c 1720 struct path old_path;
84d17192
AV
1721 struct mount *mnt = NULL, *old, *parent;
1722 struct mountpoint *mp;
57eccb83 1723 int err;
1da177e4
LT
1724 if (!old_name || !*old_name)
1725 return -EINVAL;
815d405c 1726 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1da177e4
LT
1727 if (err)
1728 return err;
1729
8823c079
EB
1730 err = -EINVAL;
1731 if (mnt_ns_loop(&old_path))
1732 goto out;
1733
84d17192
AV
1734 mp = lock_mount(path);
1735 err = PTR_ERR(mp);
1736 if (IS_ERR(mp))
b12cea91
AV
1737 goto out;
1738
87129cc0 1739 old = real_mount(old_path.mnt);
84d17192 1740 parent = real_mount(path->mnt);
87129cc0 1741
1da177e4 1742 err = -EINVAL;
fc7be130 1743 if (IS_MNT_UNBINDABLE(old))
b12cea91 1744 goto out2;
9676f0c6 1745
84d17192 1746 if (!check_mnt(parent) || !check_mnt(old))
b12cea91 1747 goto out2;
1da177e4 1748
ccd48bc7 1749 if (recurse)
87129cc0 1750 mnt = copy_tree(old, old_path.dentry, 0);
ccd48bc7 1751 else
87129cc0 1752 mnt = clone_mnt(old, old_path.dentry, 0);
ccd48bc7 1753
be34d1a3
DH
1754 if (IS_ERR(mnt)) {
1755 err = PTR_ERR(mnt);
e9c5d8a5 1756 goto out2;
be34d1a3 1757 }
ccd48bc7 1758
84d17192 1759 err = graft_tree(mnt, parent, mp);
ccd48bc7 1760 if (err) {
962830df 1761 br_write_lock(&vfsmount_lock);
328e6d90 1762 umount_tree(mnt, 0);
962830df 1763 br_write_unlock(&vfsmount_lock);
5b83d2c5 1764 }
b12cea91 1765out2:
84d17192 1766 unlock_mount(mp);
ccd48bc7 1767out:
2d92ab3c 1768 path_put(&old_path);
1da177e4
LT
1769 return err;
1770}
1771
2e4b7fcd
DH
1772static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1773{
1774 int error = 0;
1775 int readonly_request = 0;
1776
1777 if (ms_flags & MS_RDONLY)
1778 readonly_request = 1;
1779 if (readonly_request == __mnt_is_readonly(mnt))
1780 return 0;
1781
1782 if (readonly_request)
83adc753 1783 error = mnt_make_readonly(real_mount(mnt));
2e4b7fcd 1784 else
83adc753 1785 __mnt_unmake_readonly(real_mount(mnt));
2e4b7fcd
DH
1786 return error;
1787}
1788
1da177e4
LT
1789/*
1790 * change filesystem flags. dir should be a physical root of filesystem.
1791 * If you've mounted a non-root directory somewhere and want to do remount
1792 * on it - tough luck.
1793 */
0a0d8a46 1794static int do_remount(struct path *path, int flags, int mnt_flags,
1da177e4
LT
1795 void *data)
1796{
1797 int err;
2d92ab3c 1798 struct super_block *sb = path->mnt->mnt_sb;
143c8c91 1799 struct mount *mnt = real_mount(path->mnt);
1da177e4 1800
143c8c91 1801 if (!check_mnt(mnt))
1da177e4
LT
1802 return -EINVAL;
1803
2d92ab3c 1804 if (path->dentry != path->mnt->mnt_root)
1da177e4
LT
1805 return -EINVAL;
1806
81d4c13e
EB
1807 /* Don't allow changing of locked mnt flags.
1808 *
1809 * No locks need to be held here while testing the various
1810 * MNT_LOCK flags because those flags can never be cleared
1811 * once they are set.
1812 */
1813 if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
1814 !(mnt_flags & MNT_READONLY)) {
1815 return -EPERM;
1816 }
187985d9
EB
1817 if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
1818 !(mnt_flags & MNT_NODEV)) {
1819 return -EPERM;
1820 }
1821 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) &&
1822 !(mnt_flags & MNT_NOSUID)) {
1823 return -EPERM;
1824 }
1825 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) &&
1826 !(mnt_flags & MNT_NOEXEC)) {
1827 return -EPERM;
1828 }
1829 if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
1830 ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) {
1831 return -EPERM;
1832 }
1833
ff36fe2c
EP
1834 err = security_sb_remount(sb, data);
1835 if (err)
1836 return err;
1837
1da177e4 1838 down_write(&sb->s_umount);
2e4b7fcd 1839 if (flags & MS_BIND)
2d92ab3c 1840 err = change_mount_flags(path->mnt, flags);
57eccb83
AV
1841 else if (!capable(CAP_SYS_ADMIN))
1842 err = -EPERM;
4aa98cf7 1843 else
2e4b7fcd 1844 err = do_remount_sb(sb, flags, data, 0);
7b43a79f 1845 if (!err) {
962830df 1846 br_write_lock(&vfsmount_lock);
8c30f227 1847 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
143c8c91 1848 mnt->mnt.mnt_flags = mnt_flags;
962830df 1849 br_write_unlock(&vfsmount_lock);
7b43a79f 1850 }
1da177e4 1851 up_write(&sb->s_umount);
0e55a7cc 1852 if (!err) {
962830df 1853 br_write_lock(&vfsmount_lock);
143c8c91 1854 touch_mnt_namespace(mnt->mnt_ns);
962830df 1855 br_write_unlock(&vfsmount_lock);
0e55a7cc 1856 }
1da177e4
LT
1857 return err;
1858}
1859
cbbe362c 1860static inline int tree_contains_unbindable(struct mount *mnt)
9676f0c6 1861{
315fc83e 1862 struct mount *p;
909b0a88 1863 for (p = mnt; p; p = next_mnt(p, mnt)) {
fc7be130 1864 if (IS_MNT_UNBINDABLE(p))
9676f0c6
RP
1865 return 1;
1866 }
1867 return 0;
1868}
1869
808d4e3c 1870static int do_move_mount(struct path *path, const char *old_name)
1da177e4 1871{
2d92ab3c 1872 struct path old_path, parent_path;
676da58d 1873 struct mount *p;
0fb54e50 1874 struct mount *old;
84d17192 1875 struct mountpoint *mp;
57eccb83 1876 int err;
1da177e4
LT
1877 if (!old_name || !*old_name)
1878 return -EINVAL;
2d92ab3c 1879 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1da177e4
LT
1880 if (err)
1881 return err;
1882
84d17192
AV
1883 mp = lock_mount(path);
1884 err = PTR_ERR(mp);
1885 if (IS_ERR(mp))
cc53ce53
DH
1886 goto out;
1887
143c8c91 1888 old = real_mount(old_path.mnt);
fc7be130 1889 p = real_mount(path->mnt);
143c8c91 1890
1da177e4 1891 err = -EINVAL;
fc7be130 1892 if (!check_mnt(p) || !check_mnt(old))
1da177e4
LT
1893 goto out1;
1894
1da177e4 1895 err = -EINVAL;
2d92ab3c 1896 if (old_path.dentry != old_path.mnt->mnt_root)
21444403 1897 goto out1;
1da177e4 1898
676da58d 1899 if (!mnt_has_parent(old))
21444403 1900 goto out1;
1da177e4 1901
2d92ab3c
AV
1902 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1903 S_ISDIR(old_path.dentry->d_inode->i_mode))
21444403
RP
1904 goto out1;
1905 /*
1906 * Don't move a mount residing in a shared parent.
1907 */
fc7be130 1908 if (IS_MNT_SHARED(old->mnt_parent))
21444403 1909 goto out1;
9676f0c6
RP
1910 /*
1911 * Don't move a mount tree containing unbindable mounts to a destination
1912 * mount which is shared.
1913 */
fc7be130 1914 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
9676f0c6 1915 goto out1;
1da177e4 1916 err = -ELOOP;
fc7be130 1917 for (; mnt_has_parent(p); p = p->mnt_parent)
676da58d 1918 if (p == old)
21444403 1919 goto out1;
1da177e4 1920
84d17192 1921 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
4ac91378 1922 if (err)
21444403 1923 goto out1;
1da177e4
LT
1924
1925 /* if the mount is moved, it should no longer be expire
1926 * automatically */
6776db3d 1927 list_del_init(&old->mnt_expire);
1da177e4 1928out1:
84d17192 1929 unlock_mount(mp);
1da177e4 1930out:
1da177e4 1931 if (!err)
1a390689 1932 path_put(&parent_path);
2d92ab3c 1933 path_put(&old_path);
1da177e4
LT
1934 return err;
1935}
1936
9d412a43
AV
1937static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
1938{
1939 int err;
1940 const char *subtype = strchr(fstype, '.');
1941 if (subtype) {
1942 subtype++;
1943 err = -EINVAL;
1944 if (!subtype[0])
1945 goto err;
1946 } else
1947 subtype = "";
1948
1949 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
1950 err = -ENOMEM;
1951 if (!mnt->mnt_sb->s_subtype)
1952 goto err;
1953 return mnt;
1954
1955 err:
1956 mntput(mnt);
1957 return ERR_PTR(err);
1958}
1959
9d412a43
AV
1960/*
1961 * add a mount into a namespace's mount tree
1962 */
95bc5f25 1963static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
9d412a43 1964{
84d17192
AV
1965 struct mountpoint *mp;
1966 struct mount *parent;
9d412a43
AV
1967 int err;
1968
1969 mnt_flags &= ~(MNT_SHARED | MNT_WRITE_HOLD | MNT_INTERNAL);
1970
84d17192
AV
1971 mp = lock_mount(path);
1972 if (IS_ERR(mp))
1973 return PTR_ERR(mp);
9d412a43 1974
84d17192 1975 parent = real_mount(path->mnt);
9d412a43 1976 err = -EINVAL;
84d17192 1977 if (unlikely(!check_mnt(parent))) {
156cacb1
AV
1978 /* that's acceptable only for automounts done in private ns */
1979 if (!(mnt_flags & MNT_SHRINKABLE))
1980 goto unlock;
1981 /* ... and for those we'd better have mountpoint still alive */
84d17192 1982 if (!parent->mnt_ns)
156cacb1
AV
1983 goto unlock;
1984 }
9d412a43
AV
1985
1986 /* Refuse the same filesystem on the same mount point */
1987 err = -EBUSY;
95bc5f25 1988 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
9d412a43
AV
1989 path->mnt->mnt_root == path->dentry)
1990 goto unlock;
1991
1992 err = -EINVAL;
95bc5f25 1993 if (S_ISLNK(newmnt->mnt.mnt_root->d_inode->i_mode))
9d412a43
AV
1994 goto unlock;
1995
95bc5f25 1996 newmnt->mnt.mnt_flags = mnt_flags;
84d17192 1997 err = graft_tree(newmnt, parent, mp);
9d412a43
AV
1998
1999unlock:
84d17192 2000 unlock_mount(mp);
9d412a43
AV
2001 return err;
2002}
b1e75df4 2003
1da177e4
LT
2004/*
2005 * create a new mount for userspace and request it to be added into the
2006 * namespace's tree
2007 */
0c55cfc4 2008static int do_new_mount(struct path *path, const char *fstype, int flags,
808d4e3c 2009 int mnt_flags, const char *name, void *data)
1da177e4 2010{
0c55cfc4 2011 struct file_system_type *type;
9b40bc90 2012 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
1da177e4 2013 struct vfsmount *mnt;
15f9a3f3 2014 int err;
1da177e4 2015
0c55cfc4 2016 if (!fstype)
1da177e4
LT
2017 return -EINVAL;
2018
0c55cfc4
EB
2019 type = get_fs_type(fstype);
2020 if (!type)
2021 return -ENODEV;
2022
2023 if (user_ns != &init_user_ns) {
2024 if (!(type->fs_flags & FS_USERNS_MOUNT)) {
2025 put_filesystem(type);
2026 return -EPERM;
2027 }
2028 /* Only in special cases allow devices from mounts
2029 * created outside the initial user namespace.
2030 */
2031 if (!(type->fs_flags & FS_USERNS_DEV_MOUNT)) {
2032 flags |= MS_NODEV;
187985d9 2033 mnt_flags |= MNT_NODEV | MNT_LOCK_NODEV;
0c55cfc4
EB
2034 }
2035 }
2036
2037 mnt = vfs_kern_mount(type, flags, name, data);
2038 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2039 !mnt->mnt_sb->s_subtype)
2040 mnt = fs_set_subtype(mnt, fstype);
2041
2042 put_filesystem(type);
1da177e4
LT
2043 if (IS_ERR(mnt))
2044 return PTR_ERR(mnt);
2045
95bc5f25 2046 err = do_add_mount(real_mount(mnt), path, mnt_flags);
15f9a3f3
AV
2047 if (err)
2048 mntput(mnt);
2049 return err;
1da177e4
LT
2050}
2051
19a167af
AV
2052int finish_automount(struct vfsmount *m, struct path *path)
2053{
6776db3d 2054 struct mount *mnt = real_mount(m);
19a167af
AV
2055 int err;
2056 /* The new mount record should have at least 2 refs to prevent it being
2057 * expired before we get a chance to add it
2058 */
6776db3d 2059 BUG_ON(mnt_get_count(mnt) < 2);
19a167af
AV
2060
2061 if (m->mnt_sb == path->mnt->mnt_sb &&
2062 m->mnt_root == path->dentry) {
b1e75df4
AV
2063 err = -ELOOP;
2064 goto fail;
19a167af
AV
2065 }
2066
95bc5f25 2067 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
b1e75df4
AV
2068 if (!err)
2069 return 0;
2070fail:
2071 /* remove m from any expiration list it may be on */
6776db3d 2072 if (!list_empty(&mnt->mnt_expire)) {
97216be0 2073 namespace_lock();
962830df 2074 br_write_lock(&vfsmount_lock);
6776db3d 2075 list_del_init(&mnt->mnt_expire);
962830df 2076 br_write_unlock(&vfsmount_lock);
97216be0 2077 namespace_unlock();
19a167af 2078 }
b1e75df4
AV
2079 mntput(m);
2080 mntput(m);
19a167af
AV
2081 return err;
2082}
2083
ea5b778a
DH
2084/**
2085 * mnt_set_expiry - Put a mount on an expiration list
2086 * @mnt: The mount to list.
2087 * @expiry_list: The list to add the mount to.
2088 */
2089void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2090{
97216be0 2091 namespace_lock();
962830df 2092 br_write_lock(&vfsmount_lock);
ea5b778a 2093
6776db3d 2094 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
ea5b778a 2095
962830df 2096 br_write_unlock(&vfsmount_lock);
97216be0 2097 namespace_unlock();
ea5b778a
DH
2098}
2099EXPORT_SYMBOL(mnt_set_expiry);
2100
1da177e4
LT
2101/*
2102 * process a list of expirable mountpoints with the intent of discarding any
2103 * mountpoints that aren't in use and haven't been touched since last we came
2104 * here
2105 */
2106void mark_mounts_for_expiry(struct list_head *mounts)
2107{
761d5c38 2108 struct mount *mnt, *next;
1da177e4
LT
2109 LIST_HEAD(graveyard);
2110
2111 if (list_empty(mounts))
2112 return;
2113
97216be0 2114 namespace_lock();
962830df 2115 br_write_lock(&vfsmount_lock);
1da177e4
LT
2116
2117 /* extract from the expiration list every vfsmount that matches the
2118 * following criteria:
2119 * - only referenced by its parent vfsmount
2120 * - still marked for expiry (marked on the last call here; marks are
2121 * cleared by mntput())
2122 */
6776db3d 2123 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
863d684f 2124 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
1ab59738 2125 propagate_mount_busy(mnt, 1))
1da177e4 2126 continue;
6776db3d 2127 list_move(&mnt->mnt_expire, &graveyard);
1da177e4 2128 }
bcc5c7d2 2129 while (!list_empty(&graveyard)) {
6776db3d 2130 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
143c8c91 2131 touch_mnt_namespace(mnt->mnt_ns);
328e6d90 2132 umount_tree(mnt, 1);
bcc5c7d2 2133 }
962830df 2134 br_write_unlock(&vfsmount_lock);
3ab6abee 2135 namespace_unlock();
5528f911
TM
2136}
2137
2138EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2139
2140/*
2141 * Ripoff of 'select_parent()'
2142 *
2143 * search the list of submounts for a given mountpoint, and move any
2144 * shrinkable submounts to the 'graveyard' list.
2145 */
692afc31 2146static int select_submounts(struct mount *parent, struct list_head *graveyard)
5528f911 2147{
692afc31 2148 struct mount *this_parent = parent;
5528f911
TM
2149 struct list_head *next;
2150 int found = 0;
2151
2152repeat:
6b41d536 2153 next = this_parent->mnt_mounts.next;
5528f911 2154resume:
6b41d536 2155 while (next != &this_parent->mnt_mounts) {
5528f911 2156 struct list_head *tmp = next;
6b41d536 2157 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
5528f911
TM
2158
2159 next = tmp->next;
692afc31 2160 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
1da177e4 2161 continue;
5528f911
TM
2162 /*
2163 * Descend a level if the d_mounts list is non-empty.
2164 */
6b41d536 2165 if (!list_empty(&mnt->mnt_mounts)) {
5528f911
TM
2166 this_parent = mnt;
2167 goto repeat;
2168 }
1da177e4 2169
1ab59738 2170 if (!propagate_mount_busy(mnt, 1)) {
6776db3d 2171 list_move_tail(&mnt->mnt_expire, graveyard);
5528f911
TM
2172 found++;
2173 }
1da177e4 2174 }
5528f911
TM
2175 /*
2176 * All done at this level ... ascend and resume the search
2177 */
2178 if (this_parent != parent) {
6b41d536 2179 next = this_parent->mnt_child.next;
0714a533 2180 this_parent = this_parent->mnt_parent;
5528f911
TM
2181 goto resume;
2182 }
2183 return found;
2184}
2185
2186/*
2187 * process a list of expirable mountpoints with the intent of discarding any
2188 * submounts of a specific parent mountpoint
99b7db7b
NP
2189 *
2190 * vfsmount_lock must be held for write
5528f911 2191 */
b54b9be7 2192static void shrink_submounts(struct mount *mnt)
5528f911
TM
2193{
2194 LIST_HEAD(graveyard);
761d5c38 2195 struct mount *m;
5528f911 2196
5528f911 2197 /* extract submounts of 'mountpoint' from the expiration list */
c35038be 2198 while (select_submounts(mnt, &graveyard)) {
bcc5c7d2 2199 while (!list_empty(&graveyard)) {
761d5c38 2200 m = list_first_entry(&graveyard, struct mount,
6776db3d 2201 mnt_expire);
143c8c91 2202 touch_mnt_namespace(m->mnt_ns);
328e6d90 2203 umount_tree(m, 1);
bcc5c7d2
AV
2204 }
2205 }
1da177e4
LT
2206}
2207
1da177e4
LT
2208/*
2209 * Some copy_from_user() implementations do not return the exact number of
2210 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2211 * Note that this function differs from copy_from_user() in that it will oops
2212 * on bad values of `to', rather than returning a short copy.
2213 */
b58fed8b
RP
2214static long exact_copy_from_user(void *to, const void __user * from,
2215 unsigned long n)
1da177e4
LT
2216{
2217 char *t = to;
2218 const char __user *f = from;
2219 char c;
2220
2221 if (!access_ok(VERIFY_READ, from, n))
2222 return n;
2223
2224 while (n) {
2225 if (__get_user(c, f)) {
2226 memset(t, 0, n);
2227 break;
2228 }
2229 *t++ = c;
2230 f++;
2231 n--;
2232 }
2233 return n;
2234}
2235
b58fed8b 2236int copy_mount_options(const void __user * data, unsigned long *where)
1da177e4
LT
2237{
2238 int i;
2239 unsigned long page;
2240 unsigned long size;
b58fed8b 2241
1da177e4
LT
2242 *where = 0;
2243 if (!data)
2244 return 0;
2245
2246 if (!(page = __get_free_page(GFP_KERNEL)))
2247 return -ENOMEM;
2248
2249 /* We only care that *some* data at the address the user
2250 * gave us is valid. Just in case, we'll zero
2251 * the remainder of the page.
2252 */
2253 /* copy_from_user cannot cross TASK_SIZE ! */
2254 size = TASK_SIZE - (unsigned long)data;
2255 if (size > PAGE_SIZE)
2256 size = PAGE_SIZE;
2257
2258 i = size - exact_copy_from_user((void *)page, data, size);
2259 if (!i) {
b58fed8b 2260 free_page(page);
1da177e4
LT
2261 return -EFAULT;
2262 }
2263 if (i != PAGE_SIZE)
2264 memset((char *)page + i, 0, PAGE_SIZE - i);
2265 *where = page;
2266 return 0;
2267}
2268
eca6f534
VN
2269int copy_mount_string(const void __user *data, char **where)
2270{
2271 char *tmp;
2272
2273 if (!data) {
2274 *where = NULL;
2275 return 0;
2276 }
2277
2278 tmp = strndup_user(data, PAGE_SIZE);
2279 if (IS_ERR(tmp))
2280 return PTR_ERR(tmp);
2281
2282 *where = tmp;
2283 return 0;
2284}
2285
1da177e4
LT
2286/*
2287 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2288 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2289 *
2290 * data is a (void *) that can point to any structure up to
2291 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2292 * information (or be NULL).
2293 *
2294 * Pre-0.97 versions of mount() didn't have a flags word.
2295 * When the flags word was introduced its top half was required
2296 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2297 * Therefore, if this magic number is present, it carries no information
2298 * and must be discarded.
2299 */
808d4e3c
AV
2300long do_mount(const char *dev_name, const char *dir_name,
2301 const char *type_page, unsigned long flags, void *data_page)
1da177e4 2302{
2d92ab3c 2303 struct path path;
1da177e4
LT
2304 int retval = 0;
2305 int mnt_flags = 0;
2306
2307 /* Discard magic */
2308 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2309 flags &= ~MS_MGC_MSK;
2310
2311 /* Basic sanity checks */
2312
2313 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
2314 return -EINVAL;
1da177e4
LT
2315
2316 if (data_page)
2317 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2318
a27ab9f2
TH
2319 /* ... and get the mountpoint */
2320 retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
2321 if (retval)
2322 return retval;
2323
2324 retval = security_sb_mount(dev_name, &path,
2325 type_page, flags, data_page);
0d5cadb8
AV
2326 if (!retval && !may_mount())
2327 retval = -EPERM;
a27ab9f2
TH
2328 if (retval)
2329 goto dput_out;
2330
613cbe3d
AK
2331 /* Default to relatime unless overriden */
2332 if (!(flags & MS_NOATIME))
2333 mnt_flags |= MNT_RELATIME;
0a1c01c9 2334
1da177e4
LT
2335 /* Separate the per-mountpoint flags */
2336 if (flags & MS_NOSUID)
2337 mnt_flags |= MNT_NOSUID;
2338 if (flags & MS_NODEV)
2339 mnt_flags |= MNT_NODEV;
2340 if (flags & MS_NOEXEC)
2341 mnt_flags |= MNT_NOEXEC;
fc33a7bb
CH
2342 if (flags & MS_NOATIME)
2343 mnt_flags |= MNT_NOATIME;
2344 if (flags & MS_NODIRATIME)
2345 mnt_flags |= MNT_NODIRATIME;
d0adde57
MG
2346 if (flags & MS_STRICTATIME)
2347 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2e4b7fcd
DH
2348 if (flags & MS_RDONLY)
2349 mnt_flags |= MNT_READONLY;
fc33a7bb 2350
99dd97b8
EB
2351 /* The default atime for remount is preservation */
2352 if ((flags & MS_REMOUNT) &&
2353 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
2354 MS_STRICTATIME)) == 0)) {
2355 mnt_flags &= ~MNT_ATIME_MASK;
2356 mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
2357 }
2358
7a4dec53 2359 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
d0adde57
MG
2360 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2361 MS_STRICTATIME);
1da177e4 2362
1da177e4 2363 if (flags & MS_REMOUNT)
2d92ab3c 2364 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
1da177e4
LT
2365 data_page);
2366 else if (flags & MS_BIND)
2d92ab3c 2367 retval = do_loopback(&path, dev_name, flags & MS_REC);
9676f0c6 2368 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2d92ab3c 2369 retval = do_change_type(&path, flags);
1da177e4 2370 else if (flags & MS_MOVE)
2d92ab3c 2371 retval = do_move_mount(&path, dev_name);
1da177e4 2372 else
2d92ab3c 2373 retval = do_new_mount(&path, type_page, flags, mnt_flags,
1da177e4
LT
2374 dev_name, data_page);
2375dput_out:
2d92ab3c 2376 path_put(&path);
1da177e4
LT
2377 return retval;
2378}
2379
771b1371
EB
2380static void free_mnt_ns(struct mnt_namespace *ns)
2381{
98f842e6 2382 proc_free_inum(ns->proc_inum);
771b1371
EB
2383 put_user_ns(ns->user_ns);
2384 kfree(ns);
2385}
2386
8823c079
EB
2387/*
2388 * Assign a sequence number so we can detect when we attempt to bind
2389 * mount a reference to an older mount namespace into the current
2390 * mount namespace, preventing reference counting loops. A 64bit
2391 * number incrementing at 10Ghz will take 12,427 years to wrap which
2392 * is effectively never, so we can ignore the possibility.
2393 */
2394static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2395
771b1371 2396static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
cf8d2c11
TM
2397{
2398 struct mnt_namespace *new_ns;
98f842e6 2399 int ret;
cf8d2c11
TM
2400
2401 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2402 if (!new_ns)
2403 return ERR_PTR(-ENOMEM);
98f842e6
EB
2404 ret = proc_alloc_inum(&new_ns->proc_inum);
2405 if (ret) {
2406 kfree(new_ns);
2407 return ERR_PTR(ret);
2408 }
8823c079 2409 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
cf8d2c11
TM
2410 atomic_set(&new_ns->count, 1);
2411 new_ns->root = NULL;
2412 INIT_LIST_HEAD(&new_ns->list);
2413 init_waitqueue_head(&new_ns->poll);
2414 new_ns->event = 0;
771b1371 2415 new_ns->user_ns = get_user_ns(user_ns);
cf8d2c11
TM
2416 return new_ns;
2417}
2418
741a2951
JD
2419/*
2420 * Allocate a new namespace structure and populate it with contents
2421 * copied from the namespace of the passed in task structure.
2422 */
e3222c4e 2423static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
771b1371 2424 struct user_namespace *user_ns, struct fs_struct *fs)
1da177e4 2425{
6b3286ed 2426 struct mnt_namespace *new_ns;
7f2da1e7 2427 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
315fc83e 2428 struct mount *p, *q;
be08d6d2 2429 struct mount *old = mnt_ns->root;
cb338d06 2430 struct mount *new;
7a472ef4 2431 int copy_flags;
1da177e4 2432
771b1371 2433 new_ns = alloc_mnt_ns(user_ns);
cf8d2c11
TM
2434 if (IS_ERR(new_ns))
2435 return new_ns;
1da177e4 2436
97216be0 2437 namespace_lock();
1da177e4 2438 /* First pass: copy the tree topology */
7a472ef4
EB
2439 copy_flags = CL_COPY_ALL | CL_EXPIRE;
2440 if (user_ns != mnt_ns->user_ns)
132c94e3 2441 copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
7a472ef4 2442 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
be34d1a3 2443 if (IS_ERR(new)) {
328e6d90 2444 namespace_unlock();
771b1371 2445 free_mnt_ns(new_ns);
be34d1a3 2446 return ERR_CAST(new);
1da177e4 2447 }
be08d6d2 2448 new_ns->root = new;
962830df 2449 br_write_lock(&vfsmount_lock);
1a4eeaf2 2450 list_add_tail(&new_ns->list, &new->mnt_list);
962830df 2451 br_write_unlock(&vfsmount_lock);
1da177e4
LT
2452
2453 /*
2454 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2455 * as belonging to new namespace. We have already acquired a private
2456 * fs_struct, so tsk->fs->lock is not needed.
2457 */
909b0a88 2458 p = old;
cb338d06 2459 q = new;
1da177e4 2460 while (p) {
143c8c91 2461 q->mnt_ns = new_ns;
1da177e4 2462 if (fs) {
315fc83e
AV
2463 if (&p->mnt == fs->root.mnt) {
2464 fs->root.mnt = mntget(&q->mnt);
315fc83e 2465 rootmnt = &p->mnt;
1da177e4 2466 }
315fc83e
AV
2467 if (&p->mnt == fs->pwd.mnt) {
2468 fs->pwd.mnt = mntget(&q->mnt);
315fc83e 2469 pwdmnt = &p->mnt;
1da177e4 2470 }
1da177e4 2471 }
909b0a88
AV
2472 p = next_mnt(p, old);
2473 q = next_mnt(q, new);
1da177e4 2474 }
328e6d90 2475 namespace_unlock();
1da177e4 2476
1da177e4 2477 if (rootmnt)
f03c6599 2478 mntput(rootmnt);
1da177e4 2479 if (pwdmnt)
f03c6599 2480 mntput(pwdmnt);
1da177e4 2481
741a2951
JD
2482 return new_ns;
2483}
2484
213dd266 2485struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
771b1371 2486 struct user_namespace *user_ns, struct fs_struct *new_fs)
741a2951 2487{
6b3286ed 2488 struct mnt_namespace *new_ns;
741a2951 2489
e3222c4e 2490 BUG_ON(!ns);
6b3286ed 2491 get_mnt_ns(ns);
741a2951
JD
2492
2493 if (!(flags & CLONE_NEWNS))
e3222c4e 2494 return ns;
741a2951 2495
771b1371 2496 new_ns = dup_mnt_ns(ns, user_ns, new_fs);
741a2951 2497
6b3286ed 2498 put_mnt_ns(ns);
e3222c4e 2499 return new_ns;
1da177e4
LT
2500}
2501
cf8d2c11
TM
2502/**
2503 * create_mnt_ns - creates a private namespace and adds a root filesystem
2504 * @mnt: pointer to the new root filesystem mountpoint
2505 */
1a4eeaf2 2506static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
cf8d2c11 2507{
771b1371 2508 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
cf8d2c11 2509 if (!IS_ERR(new_ns)) {
1a4eeaf2
AV
2510 struct mount *mnt = real_mount(m);
2511 mnt->mnt_ns = new_ns;
be08d6d2 2512 new_ns->root = mnt;
b1983cd8 2513 list_add(&mnt->mnt_list, &new_ns->list);
c1334495 2514 } else {
1a4eeaf2 2515 mntput(m);
cf8d2c11
TM
2516 }
2517 return new_ns;
2518}
cf8d2c11 2519
ea441d11
AV
2520struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2521{
2522 struct mnt_namespace *ns;
d31da0f0 2523 struct super_block *s;
ea441d11
AV
2524 struct path path;
2525 int err;
2526
2527 ns = create_mnt_ns(mnt);
2528 if (IS_ERR(ns))
2529 return ERR_CAST(ns);
2530
2531 err = vfs_path_lookup(mnt->mnt_root, mnt,
2532 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2533
2534 put_mnt_ns(ns);
2535
2536 if (err)
2537 return ERR_PTR(err);
2538
2539 /* trade a vfsmount reference for active sb one */
d31da0f0
AV
2540 s = path.mnt->mnt_sb;
2541 atomic_inc(&s->s_active);
ea441d11
AV
2542 mntput(path.mnt);
2543 /* lock the sucker */
d31da0f0 2544 down_write(&s->s_umount);
ea441d11
AV
2545 /* ... and return the root of (sub)tree on it */
2546 return path.dentry;
2547}
2548EXPORT_SYMBOL(mount_subtree);
2549
bdc480e3
HC
2550SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2551 char __user *, type, unsigned long, flags, void __user *, data)
1da177e4 2552{
eca6f534
VN
2553 int ret;
2554 char *kernel_type;
91a27b2a 2555 struct filename *kernel_dir;
eca6f534 2556 char *kernel_dev;
1da177e4 2557 unsigned long data_page;
1da177e4 2558
eca6f534
VN
2559 ret = copy_mount_string(type, &kernel_type);
2560 if (ret < 0)
2561 goto out_type;
1da177e4 2562
eca6f534
VN
2563 kernel_dir = getname(dir_name);
2564 if (IS_ERR(kernel_dir)) {
2565 ret = PTR_ERR(kernel_dir);
2566 goto out_dir;
2567 }
1da177e4 2568
eca6f534
VN
2569 ret = copy_mount_string(dev_name, &kernel_dev);
2570 if (ret < 0)
2571 goto out_dev;
1da177e4 2572
eca6f534
VN
2573 ret = copy_mount_options(data, &data_page);
2574 if (ret < 0)
2575 goto out_data;
1da177e4 2576
91a27b2a 2577 ret = do_mount(kernel_dev, kernel_dir->name, kernel_type, flags,
eca6f534 2578 (void *) data_page);
1da177e4 2579
eca6f534
VN
2580 free_page(data_page);
2581out_data:
2582 kfree(kernel_dev);
2583out_dev:
2584 putname(kernel_dir);
2585out_dir:
2586 kfree(kernel_type);
2587out_type:
2588 return ret;
1da177e4
LT
2589}
2590
afac7cba
AV
2591/*
2592 * Return true if path is reachable from root
2593 *
2594 * namespace_sem or vfsmount_lock is held
2595 */
643822b4 2596bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
afac7cba
AV
2597 const struct path *root)
2598{
643822b4 2599 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
a73324da 2600 dentry = mnt->mnt_mountpoint;
0714a533 2601 mnt = mnt->mnt_parent;
afac7cba 2602 }
643822b4 2603 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
afac7cba
AV
2604}
2605
2606int path_is_under(struct path *path1, struct path *path2)
2607{
2608 int res;
962830df 2609 br_read_lock(&vfsmount_lock);
643822b4 2610 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
962830df 2611 br_read_unlock(&vfsmount_lock);
afac7cba
AV
2612 return res;
2613}
2614EXPORT_SYMBOL(path_is_under);
2615
1da177e4
LT
2616/*
2617 * pivot_root Semantics:
2618 * Moves the root file system of the current process to the directory put_old,
2619 * makes new_root as the new root file system of the current process, and sets
2620 * root/cwd of all processes which had them on the current root to new_root.
2621 *
2622 * Restrictions:
2623 * The new_root and put_old must be directories, and must not be on the
2624 * same file system as the current process root. The put_old must be
2625 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2626 * pointed to by put_old must yield the same directory as new_root. No other
2627 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2628 *
4a0d11fa
NB
2629 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2630 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2631 * in this situation.
2632 *
1da177e4
LT
2633 * Notes:
2634 * - we don't move root/cwd if they are not at the root (reason: if something
2635 * cared enough to change them, it's probably wrong to force them elsewhere)
2636 * - it's okay to pick a root that isn't the root of a file system, e.g.
2637 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2638 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2639 * first.
2640 */
3480b257
HC
2641SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2642 const char __user *, put_old)
1da177e4 2643{
2d8f3038 2644 struct path new, old, parent_path, root_parent, root;
84d17192
AV
2645 struct mount *new_mnt, *root_mnt, *old_mnt;
2646 struct mountpoint *old_mp, *root_mp;
1da177e4
LT
2647 int error;
2648
9b40bc90 2649 if (!may_mount())
1da177e4
LT
2650 return -EPERM;
2651
2d8f3038 2652 error = user_path_dir(new_root, &new);
1da177e4
LT
2653 if (error)
2654 goto out0;
1da177e4 2655
2d8f3038 2656 error = user_path_dir(put_old, &old);
1da177e4
LT
2657 if (error)
2658 goto out1;
2659
2d8f3038 2660 error = security_sb_pivotroot(&old, &new);
b12cea91
AV
2661 if (error)
2662 goto out2;
1da177e4 2663
f7ad3c6b 2664 get_fs_root(current->fs, &root);
84d17192
AV
2665 old_mp = lock_mount(&old);
2666 error = PTR_ERR(old_mp);
2667 if (IS_ERR(old_mp))
b12cea91
AV
2668 goto out3;
2669
1da177e4 2670 error = -EINVAL;
419148da
AV
2671 new_mnt = real_mount(new.mnt);
2672 root_mnt = real_mount(root.mnt);
84d17192
AV
2673 old_mnt = real_mount(old.mnt);
2674 if (IS_MNT_SHARED(old_mnt) ||
fc7be130
AV
2675 IS_MNT_SHARED(new_mnt->mnt_parent) ||
2676 IS_MNT_SHARED(root_mnt->mnt_parent))
b12cea91 2677 goto out4;
143c8c91 2678 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
b12cea91 2679 goto out4;
1da177e4 2680 error = -ENOENT;
f3da392e 2681 if (d_unlinked(new.dentry))
b12cea91 2682 goto out4;
1da177e4 2683 error = -EBUSY;
84d17192 2684 if (new_mnt == root_mnt || old_mnt == root_mnt)
b12cea91 2685 goto out4; /* loop, on the same file system */
1da177e4 2686 error = -EINVAL;
8c3ee42e 2687 if (root.mnt->mnt_root != root.dentry)
b12cea91 2688 goto out4; /* not a mountpoint */
676da58d 2689 if (!mnt_has_parent(root_mnt))
b12cea91 2690 goto out4; /* not attached */
84d17192 2691 root_mp = root_mnt->mnt_mp;
2d8f3038 2692 if (new.mnt->mnt_root != new.dentry)
b12cea91 2693 goto out4; /* not a mountpoint */
676da58d 2694 if (!mnt_has_parent(new_mnt))
b12cea91 2695 goto out4; /* not attached */
4ac91378 2696 /* make sure we can reach put_old from new_root */
84d17192 2697 if (!is_path_reachable(old_mnt, old.dentry, &new))
b12cea91 2698 goto out4;
84d17192 2699 root_mp->m_count++; /* pin it so it won't go away */
962830df 2700 br_write_lock(&vfsmount_lock);
419148da
AV
2701 detach_mnt(new_mnt, &parent_path);
2702 detach_mnt(root_mnt, &root_parent);
4ac91378 2703 /* mount old root on put_old */
84d17192 2704 attach_mnt(root_mnt, old_mnt, old_mp);
4ac91378 2705 /* mount new_root on / */
84d17192 2706 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
6b3286ed 2707 touch_mnt_namespace(current->nsproxy->mnt_ns);
962830df 2708 br_write_unlock(&vfsmount_lock);
2d8f3038 2709 chroot_fs_refs(&root, &new);
84d17192 2710 put_mountpoint(root_mp);
1da177e4 2711 error = 0;
b12cea91 2712out4:
84d17192 2713 unlock_mount(old_mp);
b12cea91
AV
2714 if (!error) {
2715 path_put(&root_parent);
2716 path_put(&parent_path);
2717 }
2718out3:
8c3ee42e 2719 path_put(&root);
b12cea91 2720out2:
2d8f3038 2721 path_put(&old);
1da177e4 2722out1:
2d8f3038 2723 path_put(&new);
1da177e4 2724out0:
1da177e4 2725 return error;
1da177e4
LT
2726}
2727
2728static void __init init_mount_tree(void)
2729{
2730 struct vfsmount *mnt;
6b3286ed 2731 struct mnt_namespace *ns;
ac748a09 2732 struct path root;
0c55cfc4 2733 struct file_system_type *type;
1da177e4 2734
0c55cfc4
EB
2735 type = get_fs_type("rootfs");
2736 if (!type)
2737 panic("Can't find rootfs type");
2738 mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
2739 put_filesystem(type);
1da177e4
LT
2740 if (IS_ERR(mnt))
2741 panic("Can't create rootfs");
b3e19d92 2742
3b22edc5
TM
2743 ns = create_mnt_ns(mnt);
2744 if (IS_ERR(ns))
1da177e4 2745 panic("Can't allocate initial namespace");
6b3286ed
KK
2746
2747 init_task.nsproxy->mnt_ns = ns;
2748 get_mnt_ns(ns);
2749
be08d6d2
AV
2750 root.mnt = mnt;
2751 root.dentry = mnt->mnt_root;
ac748a09
JB
2752
2753 set_fs_pwd(current->fs, &root);
2754 set_fs_root(current->fs, &root);
1da177e4
LT
2755}
2756
74bf17cf 2757void __init mnt_init(void)
1da177e4 2758{
13f14b4d 2759 unsigned u;
15a67dd8 2760 int err;
1da177e4 2761
390c6843
RP
2762 init_rwsem(&namespace_sem);
2763
7d6fec45 2764 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
20c2df83 2765 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1da177e4 2766
b58fed8b 2767 mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
84d17192 2768 mountpoint_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
1da177e4 2769
84d17192 2770 if (!mount_hashtable || !mountpoint_hashtable)
1da177e4
LT
2771 panic("Failed to allocate mount hash table\n");
2772
80cdc6da 2773 printk(KERN_INFO "Mount-cache hash table entries: %lu\n", HASH_SIZE);
13f14b4d
ED
2774
2775 for (u = 0; u < HASH_SIZE; u++)
2776 INIT_LIST_HEAD(&mount_hashtable[u]);
84d17192
AV
2777 for (u = 0; u < HASH_SIZE; u++)
2778 INIT_LIST_HEAD(&mountpoint_hashtable[u]);
1da177e4 2779
962830df 2780 br_lock_init(&vfsmount_lock);
99b7db7b 2781
15a67dd8
RD
2782 err = sysfs_init();
2783 if (err)
2784 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
8e24eea7 2785 __func__, err);
00d26666
GKH
2786 fs_kobj = kobject_create_and_add("fs", NULL);
2787 if (!fs_kobj)
8e24eea7 2788 printk(KERN_WARNING "%s: kobj create error\n", __func__);
1da177e4
LT
2789 init_rootfs();
2790 init_mount_tree();
2791}
2792
616511d0 2793void put_mnt_ns(struct mnt_namespace *ns)
1da177e4 2794{
d498b25a 2795 if (!atomic_dec_and_test(&ns->count))
616511d0 2796 return;
97216be0 2797 namespace_lock();
962830df 2798 br_write_lock(&vfsmount_lock);
328e6d90 2799 umount_tree(ns->root, 0);
962830df 2800 br_write_unlock(&vfsmount_lock);
3ab6abee 2801 namespace_unlock();
771b1371 2802 free_mnt_ns(ns);
1da177e4 2803}
9d412a43
AV
2804
2805struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
2806{
423e0ab0
TC
2807 struct vfsmount *mnt;
2808 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
2809 if (!IS_ERR(mnt)) {
2810 /*
2811 * it is a longterm mount, don't release mnt until
2812 * we unmount before file sys is unregistered
2813 */
f7a99c5b 2814 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
423e0ab0
TC
2815 }
2816 return mnt;
9d412a43
AV
2817}
2818EXPORT_SYMBOL_GPL(kern_mount_data);
423e0ab0
TC
2819
2820void kern_unmount(struct vfsmount *mnt)
2821{
2822 /* release long term mount so mount point can be released */
2823 if (!IS_ERR_OR_NULL(mnt)) {
f7a99c5b
AV
2824 br_write_lock(&vfsmount_lock);
2825 real_mount(mnt)->mnt_ns = NULL;
2826 br_write_unlock(&vfsmount_lock);
423e0ab0
TC
2827 mntput(mnt);
2828 }
2829}
2830EXPORT_SYMBOL(kern_unmount);
02125a82
AV
2831
2832bool our_mnt(struct vfsmount *mnt)
2833{
143c8c91 2834 return check_mnt(real_mount(mnt));
02125a82 2835}
8823c079 2836
3151527e
EB
2837bool current_chrooted(void)
2838{
2839 /* Does the current process have a non-standard root */
2840 struct path ns_root;
2841 struct path fs_root;
2842 bool chrooted;
2843
2844 /* Find the namespace root */
2845 ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
2846 ns_root.dentry = ns_root.mnt->mnt_root;
2847 path_get(&ns_root);
2848 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
2849 ;
2850
2851 get_fs_root(current->fs, &fs_root);
2852
2853 chrooted = !path_equal(&fs_root, &ns_root);
2854
2855 path_put(&fs_root);
2856 path_put(&ns_root);
2857
2858 return chrooted;
2859}
2860
87a8ebd6
EB
2861void update_mnt_policy(struct user_namespace *userns)
2862{
2863 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
2864 struct mount *mnt;
2865
2866 down_read(&namespace_sem);
2867 list_for_each_entry(mnt, &ns->list, mnt_list) {
2868 switch (mnt->mnt.mnt_sb->s_magic) {
2869 case SYSFS_MAGIC:
2870 userns->may_mount_sysfs = true;
2871 break;
2872 case PROC_SUPER_MAGIC:
2873 userns->may_mount_proc = true;
2874 break;
2875 }
2876 if (userns->may_mount_sysfs && userns->may_mount_proc)
2877 break;
2878 }
2879 up_read(&namespace_sem);
2880}
2881
8823c079
EB
2882static void *mntns_get(struct task_struct *task)
2883{
2884 struct mnt_namespace *ns = NULL;
2885 struct nsproxy *nsproxy;
2886
2887 rcu_read_lock();
2888 nsproxy = task_nsproxy(task);
2889 if (nsproxy) {
2890 ns = nsproxy->mnt_ns;
2891 get_mnt_ns(ns);
2892 }
2893 rcu_read_unlock();
2894
2895 return ns;
2896}
2897
2898static void mntns_put(void *ns)
2899{
2900 put_mnt_ns(ns);
2901}
2902
2903static int mntns_install(struct nsproxy *nsproxy, void *ns)
2904{
2905 struct fs_struct *fs = current->fs;
2906 struct mnt_namespace *mnt_ns = ns;
2907 struct path root;
2908
0c55cfc4 2909 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
5e4a0847
EB
2910 !nsown_capable(CAP_SYS_CHROOT) ||
2911 !nsown_capable(CAP_SYS_ADMIN))
ae11e0f1 2912 return -EPERM;
8823c079
EB
2913
2914 if (fs->users != 1)
2915 return -EINVAL;
2916
2917 get_mnt_ns(mnt_ns);
2918 put_mnt_ns(nsproxy->mnt_ns);
2919 nsproxy->mnt_ns = mnt_ns;
2920
2921 /* Find the root */
2922 root.mnt = &mnt_ns->root->mnt;
2923 root.dentry = mnt_ns->root->mnt.mnt_root;
2924 path_get(&root);
2925 while(d_mountpoint(root.dentry) && follow_down_one(&root))
2926 ;
2927
2928 /* Update the pwd and root */
2929 set_fs_pwd(fs, &root);
2930 set_fs_root(fs, &root);
2931
2932 path_put(&root);
2933 return 0;
2934}
2935
98f842e6
EB
2936static unsigned int mntns_inum(void *ns)
2937{
2938 struct mnt_namespace *mnt_ns = ns;
2939 return mnt_ns->proc_inum;
2940}
2941
8823c079
EB
2942const struct proc_ns_operations mntns_operations = {
2943 .name = "mnt",
2944 .type = CLONE_NEWNS,
2945 .get = mntns_get,
2946 .put = mntns_put,
2947 .install = mntns_install,
98f842e6 2948 .inum = mntns_inum,
8823c079 2949};