JFS: use DIV_ROUND_UP where appropriate
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / jfs / jfs_logmgr.c
CommitLineData
1da177e4
LT
1/*
2 * Copyright (C) International Business Machines Corp., 2000-2004
3 * Portions Copyright (C) Christoph Hellwig, 2001-2002
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
63f83c9f 7 * the Free Software Foundation; either version 2 of the License, or
1da177e4 8 * (at your option) any later version.
63f83c9f 9 *
1da177e4
LT
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
13 * the GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
63f83c9f 16 * along with this program; if not, write to the Free Software
1da177e4
LT
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19
20/*
21 * jfs_logmgr.c: log manager
22 *
23 * for related information, see transaction manager (jfs_txnmgr.c), and
24 * recovery manager (jfs_logredo.c).
25 *
26 * note: for detail, RTFS.
27 *
28 * log buffer manager:
29 * special purpose buffer manager supporting log i/o requirements.
30 * per log serial pageout of logpage
31 * queuing i/o requests and redrive i/o at iodone
32 * maintain current logpage buffer
33 * no caching since append only
34 * appropriate jfs buffer cache buffers as needed
35 *
36 * group commit:
37 * transactions which wrote COMMIT records in the same in-memory
38 * log page during the pageout of previous/current log page(s) are
39 * committed together by the pageout of the page.
40 *
41 * TBD lazy commit:
42 * transactions are committed asynchronously when the log page
43 * containing it COMMIT is paged out when it becomes full;
44 *
45 * serialization:
46 * . a per log lock serialize log write.
47 * . a per log lock serialize group commit.
48 * . a per log lock serialize log open/close;
49 *
50 * TBD log integrity:
51 * careful-write (ping-pong) of last logpage to recover from crash
52 * in overwrite.
53 * detection of split (out-of-order) write of physical sectors
54 * of last logpage via timestamp at end of each sector
55 * with its mirror data array at trailer).
56 *
57 * alternatives:
58 * lsn - 64-bit monotonically increasing integer vs
59 * 32-bit lspn and page eor.
60 */
61
62#include <linux/fs.h>
63#include <linux/blkdev.h>
64#include <linux/interrupt.h>
1da177e4 65#include <linux/completion.h>
91dbb4de 66#include <linux/kthread.h>
1da177e4
LT
67#include <linux/buffer_head.h> /* for sync_blockdev() */
68#include <linux/bio.h>
7dfb7103 69#include <linux/freezer.h>
1da177e4 70#include <linux/delay.h>
353ab6e9 71#include <linux/mutex.h>
1da177e4
LT
72#include "jfs_incore.h"
73#include "jfs_filsys.h"
74#include "jfs_metapage.h"
1868f4aa 75#include "jfs_superblock.h"
1da177e4
LT
76#include "jfs_txnmgr.h"
77#include "jfs_debug.h"
78
79
80/*
81 * lbuf's ready to be redriven. Protected by log_redrive_lock (jfsIO thread)
82 */
83static struct lbuf *log_redrive_list;
84static DEFINE_SPINLOCK(log_redrive_lock);
1da177e4
LT
85
86
87/*
88 * log read/write serialization (per log)
89 */
1de87444
IM
90#define LOG_LOCK_INIT(log) mutex_init(&(log)->loglock)
91#define LOG_LOCK(log) mutex_lock(&((log)->loglock))
92#define LOG_UNLOCK(log) mutex_unlock(&((log)->loglock))
1da177e4
LT
93
94
95/*
96 * log group commit serialization (per log)
97 */
98
99#define LOGGC_LOCK_INIT(log) spin_lock_init(&(log)->gclock)
100#define LOGGC_LOCK(log) spin_lock_irq(&(log)->gclock)
101#define LOGGC_UNLOCK(log) spin_unlock_irq(&(log)->gclock)
102#define LOGGC_WAKEUP(tblk) wake_up_all(&(tblk)->gcwait)
103
104/*
105 * log sync serialization (per log)
106 */
107#define LOGSYNC_DELTA(logsize) min((logsize)/8, 128*LOGPSIZE)
108#define LOGSYNC_BARRIER(logsize) ((logsize)/4)
109/*
110#define LOGSYNC_DELTA(logsize) min((logsize)/4, 256*LOGPSIZE)
111#define LOGSYNC_BARRIER(logsize) ((logsize)/2)
112*/
113
114
115/*
116 * log buffer cache synchronization
117 */
118static DEFINE_SPINLOCK(jfsLCacheLock);
119
120#define LCACHE_LOCK(flags) spin_lock_irqsave(&jfsLCacheLock, flags)
121#define LCACHE_UNLOCK(flags) spin_unlock_irqrestore(&jfsLCacheLock, flags)
122
123/*
124 * See __SLEEP_COND in jfs_locks.h
125 */
126#define LCACHE_SLEEP_COND(wq, cond, flags) \
127do { \
128 if (cond) \
129 break; \
130 __SLEEP_COND(wq, cond, LCACHE_LOCK(flags), LCACHE_UNLOCK(flags)); \
131} while (0)
132
133#define LCACHE_WAKEUP(event) wake_up(event)
134
135
136/*
137 * lbuf buffer cache (lCache) control
138 */
139/* log buffer manager pageout control (cumulative, inclusive) */
140#define lbmREAD 0x0001
141#define lbmWRITE 0x0002 /* enqueue at tail of write queue;
142 * init pageout if at head of queue;
143 */
144#define lbmRELEASE 0x0004 /* remove from write queue
145 * at completion of pageout;
146 * do not free/recycle it yet:
147 * caller will free it;
148 */
149#define lbmSYNC 0x0008 /* do not return to freelist
150 * when removed from write queue;
151 */
152#define lbmFREE 0x0010 /* return to freelist
153 * at completion of pageout;
154 * the buffer may be recycled;
155 */
156#define lbmDONE 0x0020
157#define lbmERROR 0x0040
158#define lbmGC 0x0080 /* lbmIODone to perform post-GC processing
159 * of log page
160 */
161#define lbmDIRECT 0x0100
162
163/*
164 * Global list of active external journals
165 */
166static LIST_HEAD(jfs_external_logs);
167static struct jfs_log *dummy_log = NULL;
353ab6e9 168static DEFINE_MUTEX(jfs_log_mutex);
1da177e4 169
1da177e4
LT
170/*
171 * forward references
172 */
173static int lmWriteRecord(struct jfs_log * log, struct tblock * tblk,
174 struct lrd * lrd, struct tlock * tlck);
175
176static int lmNextPage(struct jfs_log * log);
177static int lmLogFileSystem(struct jfs_log * log, struct jfs_sb_info *sbi,
178 int activate);
179
180static int open_inline_log(struct super_block *sb);
181static int open_dummy_log(struct super_block *sb);
182static int lbmLogInit(struct jfs_log * log);
183static void lbmLogShutdown(struct jfs_log * log);
184static struct lbuf *lbmAllocate(struct jfs_log * log, int);
185static void lbmFree(struct lbuf * bp);
186static void lbmfree(struct lbuf * bp);
187static int lbmRead(struct jfs_log * log, int pn, struct lbuf ** bpp);
188static void lbmWrite(struct jfs_log * log, struct lbuf * bp, int flag, int cant_block);
189static void lbmDirectWrite(struct jfs_log * log, struct lbuf * bp, int flag);
190static int lbmIOWait(struct lbuf * bp, int flag);
191static bio_end_io_t lbmIODone;
192static void lbmStartIO(struct lbuf * bp);
193static void lmGCwrite(struct jfs_log * log, int cant_block);
cbc3d65e 194static int lmLogSync(struct jfs_log * log, int hard_sync);
1da177e4
LT
195
196
197
198/*
199 * statistics
200 */
201#ifdef CONFIG_JFS_STATISTICS
202static struct lmStat {
203 uint commit; /* # of commit */
204 uint pagedone; /* # of page written */
205 uint submitted; /* # of pages submitted */
206 uint full_page; /* # of full pages submitted */
207 uint partial_page; /* # of partial pages submitted */
208} lmStat;
209#endif
210
67e6682f
DK
211static void write_special_inodes(struct jfs_log *log,
212 int (*writer)(struct address_space *))
213{
214 struct jfs_sb_info *sbi;
215
216 list_for_each_entry(sbi, &log->sb_list, log_list) {
217 writer(sbi->ipbmap->i_mapping);
218 writer(sbi->ipimap->i_mapping);
219 writer(sbi->direct_inode->i_mapping);
220 }
221}
1da177e4
LT
222
223/*
224 * NAME: lmLog()
225 *
226 * FUNCTION: write a log record;
227 *
228 * PARAMETER:
229 *
230 * RETURN: lsn - offset to the next log record to write (end-of-log);
231 * -1 - error;
232 *
233 * note: todo: log error handler
234 */
235int lmLog(struct jfs_log * log, struct tblock * tblk, struct lrd * lrd,
236 struct tlock * tlck)
237{
238 int lsn;
239 int diffp, difft;
240 struct metapage *mp = NULL;
7fab479b 241 unsigned long flags;
1da177e4
LT
242
243 jfs_info("lmLog: log:0x%p tblk:0x%p, lrd:0x%p tlck:0x%p",
244 log, tblk, lrd, tlck);
245
246 LOG_LOCK(log);
247
248 /* log by (out-of-transaction) JFS ? */
249 if (tblk == NULL)
250 goto writeRecord;
251
252 /* log from page ? */
253 if (tlck == NULL ||
254 tlck->type & tlckBTROOT || (mp = tlck->mp) == NULL)
255 goto writeRecord;
256
257 /*
f720e3ba 258 * initialize/update page/transaction recovery lsn
1da177e4
LT
259 */
260 lsn = log->lsn;
261
7fab479b 262 LOGSYNC_LOCK(log, flags);
1da177e4
LT
263
264 /*
265 * initialize page lsn if first log write of the page
266 */
267 if (mp->lsn == 0) {
268 mp->log = log;
269 mp->lsn = lsn;
270 log->count++;
271
272 /* insert page at tail of logsynclist */
273 list_add_tail(&mp->synclist, &log->synclist);
274 }
275
276 /*
f720e3ba 277 * initialize/update lsn of tblock of the page
1da177e4
LT
278 *
279 * transaction inherits oldest lsn of pages associated
280 * with allocation/deallocation of resources (their
281 * log records are used to reconstruct allocation map
282 * at recovery time: inode for inode allocation map,
283 * B+-tree index of extent descriptors for block
284 * allocation map);
285 * allocation map pages inherit transaction lsn at
286 * commit time to allow forwarding log syncpt past log
287 * records associated with allocation/deallocation of
288 * resources only after persistent map of these map pages
289 * have been updated and propagated to home.
290 */
291 /*
292 * initialize transaction lsn:
293 */
294 if (tblk->lsn == 0) {
295 /* inherit lsn of its first page logged */
296 tblk->lsn = mp->lsn;
297 log->count++;
298
299 /* insert tblock after the page on logsynclist */
300 list_add(&tblk->synclist, &mp->synclist);
301 }
302 /*
303 * update transaction lsn:
304 */
305 else {
306 /* inherit oldest/smallest lsn of page */
307 logdiff(diffp, mp->lsn, log);
308 logdiff(difft, tblk->lsn, log);
309 if (diffp < difft) {
310 /* update tblock lsn with page lsn */
311 tblk->lsn = mp->lsn;
312
313 /* move tblock after page on logsynclist */
314 list_move(&tblk->synclist, &mp->synclist);
315 }
316 }
317
7fab479b 318 LOGSYNC_UNLOCK(log, flags);
1da177e4
LT
319
320 /*
f720e3ba 321 * write the log record
1da177e4
LT
322 */
323 writeRecord:
324 lsn = lmWriteRecord(log, tblk, lrd, tlck);
325
326 /*
327 * forward log syncpt if log reached next syncpt trigger
328 */
329 logdiff(diffp, lsn, log);
330 if (diffp >= log->nextsync)
331 lsn = lmLogSync(log, 0);
332
333 /* update end-of-log lsn */
334 log->lsn = lsn;
335
336 LOG_UNLOCK(log);
337
338 /* return end-of-log address */
339 return lsn;
340}
341
1da177e4
LT
342/*
343 * NAME: lmWriteRecord()
344 *
345 * FUNCTION: move the log record to current log page
346 *
347 * PARAMETER: cd - commit descriptor
348 *
349 * RETURN: end-of-log address
63f83c9f 350 *
1da177e4
LT
351 * serialization: LOG_LOCK() held on entry/exit
352 */
353static int
354lmWriteRecord(struct jfs_log * log, struct tblock * tblk, struct lrd * lrd,
355 struct tlock * tlck)
356{
357 int lsn = 0; /* end-of-log address */
358 struct lbuf *bp; /* dst log page buffer */
359 struct logpage *lp; /* dst log page */
360 caddr_t dst; /* destination address in log page */
361 int dstoffset; /* end-of-log offset in log page */
362 int freespace; /* free space in log page */
363 caddr_t p; /* src meta-data page */
364 caddr_t src;
365 int srclen;
366 int nbytes; /* number of bytes to move */
367 int i;
368 int len;
369 struct linelock *linelock;
370 struct lv *lv;
371 struct lvd *lvd;
372 int l2linesize;
373
374 len = 0;
375
376 /* retrieve destination log page to write */
377 bp = (struct lbuf *) log->bp;
378 lp = (struct logpage *) bp->l_ldata;
379 dstoffset = log->eor;
380
381 /* any log data to write ? */
382 if (tlck == NULL)
383 goto moveLrd;
384
385 /*
f720e3ba 386 * move log record data
1da177e4
LT
387 */
388 /* retrieve source meta-data page to log */
389 if (tlck->flag & tlckPAGELOCK) {
390 p = (caddr_t) (tlck->mp->data);
391 linelock = (struct linelock *) & tlck->lock;
392 }
393 /* retrieve source in-memory inode to log */
394 else if (tlck->flag & tlckINODELOCK) {
395 if (tlck->type & tlckDTREE)
396 p = (caddr_t) &JFS_IP(tlck->ip)->i_dtroot;
397 else
398 p = (caddr_t) &JFS_IP(tlck->ip)->i_xtroot;
399 linelock = (struct linelock *) & tlck->lock;
400 }
401#ifdef _JFS_WIP
402 else if (tlck->flag & tlckINLINELOCK) {
403
404 inlinelock = (struct inlinelock *) & tlck;
405 p = (caddr_t) & inlinelock->pxd;
406 linelock = (struct linelock *) & tlck;
407 }
408#endif /* _JFS_WIP */
409 else {
410 jfs_err("lmWriteRecord: UFO tlck:0x%p", tlck);
411 return 0; /* Probably should trap */
412 }
413 l2linesize = linelock->l2linesize;
414
415 moveData:
416 ASSERT(linelock->index <= linelock->maxcnt);
417
418 lv = linelock->lv;
419 for (i = 0; i < linelock->index; i++, lv++) {
420 if (lv->length == 0)
421 continue;
422
423 /* is page full ? */
424 if (dstoffset >= LOGPSIZE - LOGPTLRSIZE) {
425 /* page become full: move on to next page */
426 lmNextPage(log);
427
428 bp = log->bp;
429 lp = (struct logpage *) bp->l_ldata;
430 dstoffset = LOGPHDRSIZE;
431 }
432
433 /*
434 * move log vector data
435 */
436 src = (u8 *) p + (lv->offset << l2linesize);
437 srclen = lv->length << l2linesize;
438 len += srclen;
439 while (srclen > 0) {
440 freespace = (LOGPSIZE - LOGPTLRSIZE) - dstoffset;
441 nbytes = min(freespace, srclen);
442 dst = (caddr_t) lp + dstoffset;
443 memcpy(dst, src, nbytes);
444 dstoffset += nbytes;
445
446 /* is page not full ? */
447 if (dstoffset < LOGPSIZE - LOGPTLRSIZE)
448 break;
449
450 /* page become full: move on to next page */
451 lmNextPage(log);
452
453 bp = (struct lbuf *) log->bp;
454 lp = (struct logpage *) bp->l_ldata;
455 dstoffset = LOGPHDRSIZE;
456
457 srclen -= nbytes;
458 src += nbytes;
459 }
460
461 /*
462 * move log vector descriptor
463 */
464 len += 4;
465 lvd = (struct lvd *) ((caddr_t) lp + dstoffset);
466 lvd->offset = cpu_to_le16(lv->offset);
467 lvd->length = cpu_to_le16(lv->length);
468 dstoffset += 4;
469 jfs_info("lmWriteRecord: lv offset:%d length:%d",
470 lv->offset, lv->length);
471 }
472
473 if ((i = linelock->next)) {
474 linelock = (struct linelock *) lid_to_tlock(i);
475 goto moveData;
476 }
477
478 /*
f720e3ba 479 * move log record descriptor
1da177e4
LT
480 */
481 moveLrd:
482 lrd->length = cpu_to_le16(len);
483
484 src = (caddr_t) lrd;
485 srclen = LOGRDSIZE;
486
487 while (srclen > 0) {
488 freespace = (LOGPSIZE - LOGPTLRSIZE) - dstoffset;
489 nbytes = min(freespace, srclen);
490 dst = (caddr_t) lp + dstoffset;
491 memcpy(dst, src, nbytes);
492
493 dstoffset += nbytes;
494 srclen -= nbytes;
495
496 /* are there more to move than freespace of page ? */
497 if (srclen)
498 goto pageFull;
499
500 /*
501 * end of log record descriptor
502 */
503
504 /* update last log record eor */
505 log->eor = dstoffset;
506 bp->l_eor = dstoffset;
507 lsn = (log->page << L2LOGPSIZE) + dstoffset;
508
509 if (lrd->type & cpu_to_le16(LOG_COMMIT)) {
510 tblk->clsn = lsn;
511 jfs_info("wr: tclsn:0x%x, beor:0x%x", tblk->clsn,
512 bp->l_eor);
513
514 INCREMENT(lmStat.commit); /* # of commit */
515
516 /*
517 * enqueue tblock for group commit:
518 *
519 * enqueue tblock of non-trivial/synchronous COMMIT
520 * at tail of group commit queue
521 * (trivial/asynchronous COMMITs are ignored by
522 * group commit.)
523 */
524 LOGGC_LOCK(log);
525
526 /* init tblock gc state */
527 tblk->flag = tblkGC_QUEUE;
528 tblk->bp = log->bp;
529 tblk->pn = log->page;
530 tblk->eor = log->eor;
531
532 /* enqueue transaction to commit queue */
533 list_add_tail(&tblk->cqueue, &log->cqueue);
534
535 LOGGC_UNLOCK(log);
536 }
537
538 jfs_info("lmWriteRecord: lrd:0x%04x bp:0x%p pn:%d eor:0x%x",
539 le16_to_cpu(lrd->type), log->bp, log->page, dstoffset);
540
541 /* page not full ? */
542 if (dstoffset < LOGPSIZE - LOGPTLRSIZE)
543 return lsn;
544
545 pageFull:
546 /* page become full: move on to next page */
547 lmNextPage(log);
548
549 bp = (struct lbuf *) log->bp;
550 lp = (struct logpage *) bp->l_ldata;
551 dstoffset = LOGPHDRSIZE;
552 src += nbytes;
553 }
554
555 return lsn;
556}
557
558
559/*
560 * NAME: lmNextPage()
561 *
562 * FUNCTION: write current page and allocate next page.
563 *
564 * PARAMETER: log
565 *
566 * RETURN: 0
63f83c9f 567 *
1da177e4
LT
568 * serialization: LOG_LOCK() held on entry/exit
569 */
570static int lmNextPage(struct jfs_log * log)
571{
572 struct logpage *lp;
573 int lspn; /* log sequence page number */
574 int pn; /* current page number */
575 struct lbuf *bp;
576 struct lbuf *nextbp;
577 struct tblock *tblk;
578
579 /* get current log page number and log sequence page number */
580 pn = log->page;
581 bp = log->bp;
582 lp = (struct logpage *) bp->l_ldata;
583 lspn = le32_to_cpu(lp->h.page);
584
585 LOGGC_LOCK(log);
586
587 /*
f720e3ba 588 * write or queue the full page at the tail of write queue
1da177e4
LT
589 */
590 /* get the tail tblk on commit queue */
591 if (list_empty(&log->cqueue))
592 tblk = NULL;
593 else
594 tblk = list_entry(log->cqueue.prev, struct tblock, cqueue);
595
596 /* every tblk who has COMMIT record on the current page,
597 * and has not been committed, must be on commit queue
598 * since tblk is queued at commit queueu at the time
599 * of writing its COMMIT record on the page before
600 * page becomes full (even though the tblk thread
601 * who wrote COMMIT record may have been suspended
602 * currently);
603 */
604
605 /* is page bound with outstanding tail tblk ? */
606 if (tblk && tblk->pn == pn) {
607 /* mark tblk for end-of-page */
608 tblk->flag |= tblkGC_EOP;
609
610 if (log->cflag & logGC_PAGEOUT) {
611 /* if page is not already on write queue,
612 * just enqueue (no lbmWRITE to prevent redrive)
613 * buffer to wqueue to ensure correct serial order
614 * of the pages since log pages will be added
615 * continuously
616 */
617 if (bp->l_wqnext == NULL)
618 lbmWrite(log, bp, 0, 0);
619 } else {
620 /*
621 * No current GC leader, initiate group commit
622 */
623 log->cflag |= logGC_PAGEOUT;
624 lmGCwrite(log, 0);
625 }
626 }
627 /* page is not bound with outstanding tblk:
628 * init write or mark it to be redriven (lbmWRITE)
629 */
630 else {
631 /* finalize the page */
632 bp->l_ceor = bp->l_eor;
633 lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_ceor);
634 lbmWrite(log, bp, lbmWRITE | lbmRELEASE | lbmFREE, 0);
635 }
636 LOGGC_UNLOCK(log);
637
638 /*
f720e3ba 639 * allocate/initialize next page
1da177e4
LT
640 */
641 /* if log wraps, the first data page of log is 2
642 * (0 never used, 1 is superblock).
643 */
644 log->page = (pn == log->size - 1) ? 2 : pn + 1;
645 log->eor = LOGPHDRSIZE; /* ? valid page empty/full at logRedo() */
646
647 /* allocate/initialize next log page buffer */
648 nextbp = lbmAllocate(log, log->page);
649 nextbp->l_eor = log->eor;
650 log->bp = nextbp;
651
652 /* initialize next log page */
653 lp = (struct logpage *) nextbp->l_ldata;
654 lp->h.page = lp->t.page = cpu_to_le32(lspn + 1);
655 lp->h.eor = lp->t.eor = cpu_to_le16(LOGPHDRSIZE);
656
657 return 0;
658}
659
660
661/*
662 * NAME: lmGroupCommit()
663 *
664 * FUNCTION: group commit
665 * initiate pageout of the pages with COMMIT in the order of
666 * page number - redrive pageout of the page at the head of
667 * pageout queue until full page has been written.
668 *
63f83c9f 669 * RETURN:
1da177e4
LT
670 *
671 * NOTE:
672 * LOGGC_LOCK serializes log group commit queue, and
673 * transaction blocks on the commit queue.
674 * N.B. LOG_LOCK is NOT held during lmGroupCommit().
675 */
676int lmGroupCommit(struct jfs_log * log, struct tblock * tblk)
677{
678 int rc = 0;
679
680 LOGGC_LOCK(log);
681
682 /* group committed already ? */
683 if (tblk->flag & tblkGC_COMMITTED) {
684 if (tblk->flag & tblkGC_ERROR)
685 rc = -EIO;
686
687 LOGGC_UNLOCK(log);
688 return rc;
689 }
690 jfs_info("lmGroup Commit: tblk = 0x%p, gcrtc = %d", tblk, log->gcrtc);
691
692 if (tblk->xflag & COMMIT_LAZY)
693 tblk->flag |= tblkGC_LAZY;
694
695 if ((!(log->cflag & logGC_PAGEOUT)) && (!list_empty(&log->cqueue)) &&
696 (!(tblk->xflag & COMMIT_LAZY) || test_bit(log_FLUSH, &log->flag)
697 || jfs_tlocks_low)) {
698 /*
699 * No pageout in progress
700 *
701 * start group commit as its group leader.
702 */
703 log->cflag |= logGC_PAGEOUT;
704
705 lmGCwrite(log, 0);
706 }
707
708 if (tblk->xflag & COMMIT_LAZY) {
709 /*
710 * Lazy transactions can leave now
711 */
712 LOGGC_UNLOCK(log);
713 return 0;
714 }
715
716 /* lmGCwrite gives up LOGGC_LOCK, check again */
717
718 if (tblk->flag & tblkGC_COMMITTED) {
719 if (tblk->flag & tblkGC_ERROR)
720 rc = -EIO;
721
722 LOGGC_UNLOCK(log);
723 return rc;
724 }
725
726 /* upcount transaction waiting for completion
727 */
728 log->gcrtc++;
729 tblk->flag |= tblkGC_READY;
730
731 __SLEEP_COND(tblk->gcwait, (tblk->flag & tblkGC_COMMITTED),
732 LOGGC_LOCK(log), LOGGC_UNLOCK(log));
733
734 /* removed from commit queue */
735 if (tblk->flag & tblkGC_ERROR)
736 rc = -EIO;
737
738 LOGGC_UNLOCK(log);
739 return rc;
740}
741
742/*
743 * NAME: lmGCwrite()
744 *
745 * FUNCTION: group commit write
746 * initiate write of log page, building a group of all transactions
747 * with commit records on that page.
748 *
749 * RETURN: None
750 *
751 * NOTE:
752 * LOGGC_LOCK must be held by caller.
753 * N.B. LOG_LOCK is NOT held during lmGroupCommit().
754 */
755static void lmGCwrite(struct jfs_log * log, int cant_write)
756{
757 struct lbuf *bp;
758 struct logpage *lp;
759 int gcpn; /* group commit page number */
760 struct tblock *tblk;
761 struct tblock *xtblk = NULL;
762
763 /*
764 * build the commit group of a log page
765 *
766 * scan commit queue and make a commit group of all
767 * transactions with COMMIT records on the same log page.
768 */
769 /* get the head tblk on the commit queue */
770 gcpn = list_entry(log->cqueue.next, struct tblock, cqueue)->pn;
771
772 list_for_each_entry(tblk, &log->cqueue, cqueue) {
773 if (tblk->pn != gcpn)
774 break;
775
776 xtblk = tblk;
777
778 /* state transition: (QUEUE, READY) -> COMMIT */
779 tblk->flag |= tblkGC_COMMIT;
780 }
781 tblk = xtblk; /* last tblk of the page */
782
783 /*
784 * pageout to commit transactions on the log page.
785 */
786 bp = (struct lbuf *) tblk->bp;
787 lp = (struct logpage *) bp->l_ldata;
788 /* is page already full ? */
789 if (tblk->flag & tblkGC_EOP) {
790 /* mark page to free at end of group commit of the page */
791 tblk->flag &= ~tblkGC_EOP;
792 tblk->flag |= tblkGC_FREE;
793 bp->l_ceor = bp->l_eor;
794 lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_ceor);
795 lbmWrite(log, bp, lbmWRITE | lbmRELEASE | lbmGC,
796 cant_write);
797 INCREMENT(lmStat.full_page);
798 }
799 /* page is not yet full */
800 else {
801 bp->l_ceor = tblk->eor; /* ? bp->l_ceor = bp->l_eor; */
802 lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_ceor);
803 lbmWrite(log, bp, lbmWRITE | lbmGC, cant_write);
804 INCREMENT(lmStat.partial_page);
805 }
806}
807
808/*
809 * NAME: lmPostGC()
810 *
811 * FUNCTION: group commit post-processing
812 * Processes transactions after their commit records have been written
813 * to disk, redriving log I/O if necessary.
814 *
815 * RETURN: None
816 *
817 * NOTE:
818 * This routine is called a interrupt time by lbmIODone
819 */
820static void lmPostGC(struct lbuf * bp)
821{
822 unsigned long flags;
823 struct jfs_log *log = bp->l_log;
824 struct logpage *lp;
825 struct tblock *tblk, *temp;
826
827 //LOGGC_LOCK(log);
828 spin_lock_irqsave(&log->gclock, flags);
829 /*
830 * current pageout of group commit completed.
831 *
832 * remove/wakeup transactions from commit queue who were
833 * group committed with the current log page
834 */
835 list_for_each_entry_safe(tblk, temp, &log->cqueue, cqueue) {
836 if (!(tblk->flag & tblkGC_COMMIT))
837 break;
838 /* if transaction was marked GC_COMMIT then
839 * it has been shipped in the current pageout
840 * and made it to disk - it is committed.
841 */
842
843 if (bp->l_flag & lbmERROR)
844 tblk->flag |= tblkGC_ERROR;
845
846 /* remove it from the commit queue */
847 list_del(&tblk->cqueue);
848 tblk->flag &= ~tblkGC_QUEUE;
849
850 if (tblk == log->flush_tblk) {
851 /* we can stop flushing the log now */
852 clear_bit(log_FLUSH, &log->flag);
853 log->flush_tblk = NULL;
854 }
855
856 jfs_info("lmPostGC: tblk = 0x%p, flag = 0x%x", tblk,
857 tblk->flag);
858
859 if (!(tblk->xflag & COMMIT_FORCE))
860 /*
861 * Hand tblk over to lazy commit thread
862 */
863 txLazyUnlock(tblk);
864 else {
865 /* state transition: COMMIT -> COMMITTED */
866 tblk->flag |= tblkGC_COMMITTED;
867
868 if (tblk->flag & tblkGC_READY)
869 log->gcrtc--;
870
871 LOGGC_WAKEUP(tblk);
872 }
873
874 /* was page full before pageout ?
875 * (and this is the last tblk bound with the page)
876 */
877 if (tblk->flag & tblkGC_FREE)
878 lbmFree(bp);
879 /* did page become full after pageout ?
880 * (and this is the last tblk bound with the page)
881 */
882 else if (tblk->flag & tblkGC_EOP) {
883 /* finalize the page */
884 lp = (struct logpage *) bp->l_ldata;
885 bp->l_ceor = bp->l_eor;
886 lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_eor);
887 jfs_info("lmPostGC: calling lbmWrite");
888 lbmWrite(log, bp, lbmWRITE | lbmRELEASE | lbmFREE,
889 1);
890 }
891
892 }
893
894 /* are there any transactions who have entered lnGroupCommit()
895 * (whose COMMITs are after that of the last log page written.
896 * They are waiting for new group commit (above at (SLEEP 1))
897 * or lazy transactions are on a full (queued) log page,
898 * select the latest ready transaction as new group leader and
899 * wake her up to lead her group.
900 */
901 if ((!list_empty(&log->cqueue)) &&
902 ((log->gcrtc > 0) || (tblk->bp->l_wqnext != NULL) ||
903 test_bit(log_FLUSH, &log->flag) || jfs_tlocks_low))
904 /*
905 * Call lmGCwrite with new group leader
906 */
907 lmGCwrite(log, 1);
908
909 /* no transaction are ready yet (transactions are only just
910 * queued (GC_QUEUE) and not entered for group commit yet).
911 * the first transaction entering group commit
912 * will elect herself as new group leader.
913 */
914 else
915 log->cflag &= ~logGC_PAGEOUT;
916
917 //LOGGC_UNLOCK(log);
918 spin_unlock_irqrestore(&log->gclock, flags);
919 return;
920}
921
922/*
923 * NAME: lmLogSync()
924 *
925 * FUNCTION: write log SYNCPT record for specified log
926 * if new sync address is available
927 * (normally the case if sync() is executed by back-ground
928 * process).
1da177e4
LT
929 * calculate new value of i_nextsync which determines when
930 * this code is called again.
931 *
1c627829 932 * PARAMETERS: log - log structure
63f83c9f 933 * hard_sync - 1 to force all metadata to be written
1da177e4
LT
934 *
935 * RETURN: 0
63f83c9f 936 *
1da177e4
LT
937 * serialization: LOG_LOCK() held on entry/exit
938 */
cbc3d65e 939static int lmLogSync(struct jfs_log * log, int hard_sync)
1da177e4
LT
940{
941 int logsize;
942 int written; /* written since last syncpt */
943 int free; /* free space left available */
944 int delta; /* additional delta to write normally */
945 int more; /* additional write granted */
946 struct lrd lrd;
947 int lsn;
948 struct logsyncblk *lp;
7fab479b
DK
949 unsigned long flags;
950
951 /* push dirty metapages out to disk */
cbc3d65e 952 if (hard_sync)
67e6682f 953 write_special_inodes(log, filemap_fdatawrite);
cbc3d65e 954 else
67e6682f 955 write_special_inodes(log, filemap_flush);
1da177e4
LT
956
957 /*
f720e3ba 958 * forward syncpt
1da177e4
LT
959 */
960 /* if last sync is same as last syncpt,
961 * invoke sync point forward processing to update sync.
962 */
963
964 if (log->sync == log->syncpt) {
7fab479b 965 LOGSYNC_LOCK(log, flags);
1da177e4
LT
966 if (list_empty(&log->synclist))
967 log->sync = log->lsn;
968 else {
969 lp = list_entry(log->synclist.next,
970 struct logsyncblk, synclist);
971 log->sync = lp->lsn;
972 }
7fab479b 973 LOGSYNC_UNLOCK(log, flags);
1da177e4
LT
974
975 }
976
977 /* if sync is different from last syncpt,
978 * write a SYNCPT record with syncpt = sync.
979 * reset syncpt = sync
980 */
981 if (log->sync != log->syncpt) {
1da177e4
LT
982 lrd.logtid = 0;
983 lrd.backchain = 0;
984 lrd.type = cpu_to_le16(LOG_SYNCPT);
985 lrd.length = 0;
986 lrd.log.syncpt.sync = cpu_to_le32(log->sync);
987 lsn = lmWriteRecord(log, NULL, &lrd, NULL);
988
989 log->syncpt = log->sync;
990 } else
991 lsn = log->lsn;
992
993 /*
f720e3ba 994 * setup next syncpt trigger (SWAG)
1da177e4
LT
995 */
996 logsize = log->logsize;
997
998 logdiff(written, lsn, log);
999 free = logsize - written;
1000 delta = LOGSYNC_DELTA(logsize);
1001 more = min(free / 2, delta);
1002 if (more < 2 * LOGPSIZE) {
1003 jfs_warn("\n ... Log Wrap ... Log Wrap ... Log Wrap ...\n");
1004 /*
f720e3ba 1005 * log wrapping
1da177e4
LT
1006 *
1007 * option 1 - panic ? No.!
1008 * option 2 - shutdown file systems
f720e3ba 1009 * associated with log ?
1da177e4
LT
1010 * option 3 - extend log ?
1011 */
1012 /*
1013 * option 4 - second chance
1014 *
1015 * mark log wrapped, and continue.
1016 * when all active transactions are completed,
1017 * mark log vaild for recovery.
1018 * if crashed during invalid state, log state
1019 * implies invald log, forcing fsck().
1020 */
1021 /* mark log state log wrap in log superblock */
1022 /* log->state = LOGWRAP; */
1023
1024 /* reset sync point computation */
1025 log->syncpt = log->sync = lsn;
1026 log->nextsync = delta;
1027 } else
1028 /* next syncpt trigger = written + more */
1029 log->nextsync = written + more;
1030
1da177e4
LT
1031 /* if number of bytes written from last sync point is more
1032 * than 1/4 of the log size, stop new transactions from
1033 * starting until all current transactions are completed
1034 * by setting syncbarrier flag.
1035 */
c2783f3a
DK
1036 if (!test_bit(log_SYNCBARRIER, &log->flag) &&
1037 (written > LOGSYNC_BARRIER(logsize)) && log->active) {
1da177e4
LT
1038 set_bit(log_SYNCBARRIER, &log->flag);
1039 jfs_info("log barrier on: lsn=0x%x syncpt=0x%x", lsn,
1040 log->syncpt);
1041 /*
1042 * We may have to initiate group commit
1043 */
1044 jfs_flush_journal(log, 0);
1045 }
1046
1047 return lsn;
1048}
1049
1c627829
DK
1050/*
1051 * NAME: jfs_syncpt
1052 *
1053 * FUNCTION: write log SYNCPT record for specified log
1054 *
cbc3d65e 1055 * PARAMETERS: log - log structure
63f83c9f 1056 * hard_sync - set to 1 to force metadata to be written
1c627829 1057 */
cbc3d65e 1058void jfs_syncpt(struct jfs_log *log, int hard_sync)
1c627829 1059{ LOG_LOCK(log);
cbc3d65e 1060 lmLogSync(log, hard_sync);
1c627829
DK
1061 LOG_UNLOCK(log);
1062}
1da177e4
LT
1063
1064/*
1065 * NAME: lmLogOpen()
1066 *
f720e3ba 1067 * FUNCTION: open the log on first open;
1da177e4
LT
1068 * insert filesystem in the active list of the log.
1069 *
1070 * PARAMETER: ipmnt - file system mount inode
63f83c9f 1071 * iplog - log inode (out)
1da177e4
LT
1072 *
1073 * RETURN:
1074 *
1075 * serialization:
1076 */
1077int lmLogOpen(struct super_block *sb)
1078{
1079 int rc;
1080 struct block_device *bdev;
1081 struct jfs_log *log;
1082 struct jfs_sb_info *sbi = JFS_SBI(sb);
1083
1084 if (sbi->flag & JFS_NOINTEGRITY)
1085 return open_dummy_log(sb);
63f83c9f 1086
1da177e4
LT
1087 if (sbi->mntflag & JFS_INLINELOG)
1088 return open_inline_log(sb);
1089
353ab6e9 1090 mutex_lock(&jfs_log_mutex);
1da177e4
LT
1091 list_for_each_entry(log, &jfs_external_logs, journal_list) {
1092 if (log->bdev->bd_dev == sbi->logdev) {
1093 if (memcmp(log->uuid, sbi->loguuid,
1094 sizeof(log->uuid))) {
1095 jfs_warn("wrong uuid on JFS journal\n");
353ab6e9 1096 mutex_unlock(&jfs_log_mutex);
1da177e4
LT
1097 return -EINVAL;
1098 }
1099 /*
1100 * add file system to log active file system list
1101 */
1102 if ((rc = lmLogFileSystem(log, sbi, 1))) {
353ab6e9 1103 mutex_unlock(&jfs_log_mutex);
1da177e4
LT
1104 return rc;
1105 }
1106 goto journal_found;
1107 }
1108 }
1109
5b3030e3 1110 if (!(log = kzalloc(sizeof(struct jfs_log), GFP_KERNEL))) {
353ab6e9 1111 mutex_unlock(&jfs_log_mutex);
1da177e4
LT
1112 return -ENOMEM;
1113 }
1da177e4
LT
1114 INIT_LIST_HEAD(&log->sb_list);
1115 init_waitqueue_head(&log->syncwait);
1116
1117 /*
f720e3ba 1118 * external log as separate logical volume
1da177e4
LT
1119 *
1120 * file systems to log may have n-to-1 relationship;
1121 */
1122
1123 bdev = open_by_devnum(sbi->logdev, FMODE_READ|FMODE_WRITE);
1124 if (IS_ERR(bdev)) {
1125 rc = -PTR_ERR(bdev);
1126 goto free;
1127 }
1128
1129 if ((rc = bd_claim(bdev, log))) {
1130 goto close;
1131 }
1132
1133 log->bdev = bdev;
1134 memcpy(log->uuid, sbi->loguuid, sizeof(log->uuid));
63f83c9f 1135
1da177e4
LT
1136 /*
1137 * initialize log:
1138 */
1139 if ((rc = lmLogInit(log)))
1140 goto unclaim;
1141
1142 list_add(&log->journal_list, &jfs_external_logs);
1143
1144 /*
1145 * add file system to log active file system list
1146 */
1147 if ((rc = lmLogFileSystem(log, sbi, 1)))
1148 goto shutdown;
1149
1150journal_found:
1151 LOG_LOCK(log);
1152 list_add(&sbi->log_list, &log->sb_list);
1153 sbi->log = log;
1154 LOG_UNLOCK(log);
1155
353ab6e9 1156 mutex_unlock(&jfs_log_mutex);
1da177e4
LT
1157 return 0;
1158
1159 /*
f720e3ba 1160 * unwind on error
1da177e4
LT
1161 */
1162 shutdown: /* unwind lbmLogInit() */
1163 list_del(&log->journal_list);
1164 lbmLogShutdown(log);
1165
1166 unclaim:
1167 bd_release(bdev);
1168
1169 close: /* close external log device */
1170 blkdev_put(bdev);
1171
1172 free: /* free log descriptor */
353ab6e9 1173 mutex_unlock(&jfs_log_mutex);
1da177e4
LT
1174 kfree(log);
1175
1176 jfs_warn("lmLogOpen: exit(%d)", rc);
1177 return rc;
1178}
1179
1180static int open_inline_log(struct super_block *sb)
1181{
1182 struct jfs_log *log;
1183 int rc;
1184
5b3030e3 1185 if (!(log = kzalloc(sizeof(struct jfs_log), GFP_KERNEL)))
1da177e4 1186 return -ENOMEM;
1da177e4
LT
1187 INIT_LIST_HEAD(&log->sb_list);
1188 init_waitqueue_head(&log->syncwait);
1189
1190 set_bit(log_INLINELOG, &log->flag);
1191 log->bdev = sb->s_bdev;
1192 log->base = addressPXD(&JFS_SBI(sb)->logpxd);
1193 log->size = lengthPXD(&JFS_SBI(sb)->logpxd) >>
1194 (L2LOGPSIZE - sb->s_blocksize_bits);
1195 log->l2bsize = sb->s_blocksize_bits;
1196 ASSERT(L2LOGPSIZE >= sb->s_blocksize_bits);
1197
1198 /*
1199 * initialize log.
1200 */
1201 if ((rc = lmLogInit(log))) {
1202 kfree(log);
1203 jfs_warn("lmLogOpen: exit(%d)", rc);
1204 return rc;
1205 }
1206
1207 list_add(&JFS_SBI(sb)->log_list, &log->sb_list);
1208 JFS_SBI(sb)->log = log;
1209
1210 return rc;
1211}
1212
1213static int open_dummy_log(struct super_block *sb)
1214{
1215 int rc;
1216
353ab6e9 1217 mutex_lock(&jfs_log_mutex);
1da177e4 1218 if (!dummy_log) {
5b3030e3 1219 dummy_log = kzalloc(sizeof(struct jfs_log), GFP_KERNEL);
1da177e4 1220 if (!dummy_log) {
353ab6e9 1221 mutex_unlock(&jfs_log_mutex);
1da177e4
LT
1222 return -ENOMEM;
1223 }
1da177e4
LT
1224 INIT_LIST_HEAD(&dummy_log->sb_list);
1225 init_waitqueue_head(&dummy_log->syncwait);
1226 dummy_log->no_integrity = 1;
1227 /* Make up some stuff */
1228 dummy_log->base = 0;
1229 dummy_log->size = 1024;
1230 rc = lmLogInit(dummy_log);
1231 if (rc) {
1232 kfree(dummy_log);
1233 dummy_log = NULL;
353ab6e9 1234 mutex_unlock(&jfs_log_mutex);
1da177e4
LT
1235 return rc;
1236 }
1237 }
1238
1239 LOG_LOCK(dummy_log);
1240 list_add(&JFS_SBI(sb)->log_list, &dummy_log->sb_list);
1241 JFS_SBI(sb)->log = dummy_log;
1242 LOG_UNLOCK(dummy_log);
353ab6e9 1243 mutex_unlock(&jfs_log_mutex);
1da177e4
LT
1244
1245 return 0;
1246}
1247
1248/*
1249 * NAME: lmLogInit()
1250 *
1251 * FUNCTION: log initialization at first log open.
1252 *
1253 * logredo() (or logformat()) should have been run previously.
1254 * initialize the log from log superblock.
1255 * set the log state in the superblock to LOGMOUNT and
1256 * write SYNCPT log record.
63f83c9f 1257 *
1da177e4
LT
1258 * PARAMETER: log - log structure
1259 *
1260 * RETURN: 0 - if ok
1261 * -EINVAL - bad log magic number or superblock dirty
1262 * error returned from logwait()
63f83c9f 1263 *
1da177e4
LT
1264 * serialization: single first open thread
1265 */
1266int lmLogInit(struct jfs_log * log)
1267{
1268 int rc = 0;
1269 struct lrd lrd;
1270 struct logsuper *logsuper;
1271 struct lbuf *bpsuper;
1272 struct lbuf *bp;
1273 struct logpage *lp;
1274 int lsn = 0;
1275
1276 jfs_info("lmLogInit: log:0x%p", log);
1277
1278 /* initialize the group commit serialization lock */
1279 LOGGC_LOCK_INIT(log);
1280
1281 /* allocate/initialize the log write serialization lock */
1282 LOG_LOCK_INIT(log);
1283
1284 LOGSYNC_LOCK_INIT(log);
1285
1286 INIT_LIST_HEAD(&log->synclist);
1287
1288 INIT_LIST_HEAD(&log->cqueue);
1289 log->flush_tblk = NULL;
1290
1291 log->count = 0;
1292
1293 /*
1294 * initialize log i/o
1295 */
1296 if ((rc = lbmLogInit(log)))
1297 return rc;
1298
1299 if (!test_bit(log_INLINELOG, &log->flag))
1300 log->l2bsize = L2LOGPSIZE;
63f83c9f 1301
1da177e4
LT
1302 /* check for disabled journaling to disk */
1303 if (log->no_integrity) {
1304 /*
1305 * Journal pages will still be filled. When the time comes
1306 * to actually do the I/O, the write is not done, and the
1307 * endio routine is called directly.
1308 */
1309 bp = lbmAllocate(log , 0);
1310 log->bp = bp;
1311 bp->l_pn = bp->l_eor = 0;
1312 } else {
1313 /*
1314 * validate log superblock
1315 */
1316 if ((rc = lbmRead(log, 1, &bpsuper)))
1317 goto errout10;
1318
1319 logsuper = (struct logsuper *) bpsuper->l_ldata;
1320
1321 if (logsuper->magic != cpu_to_le32(LOGMAGIC)) {
1322 jfs_warn("*** Log Format Error ! ***");
1323 rc = -EINVAL;
1324 goto errout20;
1325 }
1326
1327 /* logredo() should have been run successfully. */
1328 if (logsuper->state != cpu_to_le32(LOGREDONE)) {
1329 jfs_warn("*** Log Is Dirty ! ***");
1330 rc = -EINVAL;
1331 goto errout20;
1332 }
1333
1334 /* initialize log from log superblock */
1335 if (test_bit(log_INLINELOG,&log->flag)) {
1336 if (log->size != le32_to_cpu(logsuper->size)) {
1337 rc = -EINVAL;
1338 goto errout20;
1339 }
1340 jfs_info("lmLogInit: inline log:0x%p base:0x%Lx "
1341 "size:0x%x", log,
1342 (unsigned long long) log->base, log->size);
1343 } else {
1344 if (memcmp(logsuper->uuid, log->uuid, 16)) {
1345 jfs_warn("wrong uuid on JFS log device");
1346 goto errout20;
1347 }
1348 log->size = le32_to_cpu(logsuper->size);
1349 log->l2bsize = le32_to_cpu(logsuper->l2bsize);
1350 jfs_info("lmLogInit: external log:0x%p base:0x%Lx "
1351 "size:0x%x", log,
1352 (unsigned long long) log->base, log->size);
1353 }
1354
1355 log->page = le32_to_cpu(logsuper->end) / LOGPSIZE;
1356 log->eor = le32_to_cpu(logsuper->end) - (LOGPSIZE * log->page);
1357
1358 /*
1359 * initialize for log append write mode
1360 */
1361 /* establish current/end-of-log page/buffer */
1362 if ((rc = lbmRead(log, log->page, &bp)))
1363 goto errout20;
1364
1365 lp = (struct logpage *) bp->l_ldata;
1366
1367 jfs_info("lmLogInit: lsn:0x%x page:%d eor:%d:%d",
1368 le32_to_cpu(logsuper->end), log->page, log->eor,
1369 le16_to_cpu(lp->h.eor));
1370
1371 log->bp = bp;
1372 bp->l_pn = log->page;
1373 bp->l_eor = log->eor;
1374
1375 /* if current page is full, move on to next page */
1376 if (log->eor >= LOGPSIZE - LOGPTLRSIZE)
1377 lmNextPage(log);
1378
1379 /*
1380 * initialize log syncpoint
1381 */
1382 /*
1383 * write the first SYNCPT record with syncpoint = 0
1384 * (i.e., log redo up to HERE !);
1385 * remove current page from lbm write queue at end of pageout
1386 * (to write log superblock update), but do not release to
1387 * freelist;
1388 */
1389 lrd.logtid = 0;
1390 lrd.backchain = 0;
1391 lrd.type = cpu_to_le16(LOG_SYNCPT);
1392 lrd.length = 0;
1393 lrd.log.syncpt.sync = 0;
1394 lsn = lmWriteRecord(log, NULL, &lrd, NULL);
1395 bp = log->bp;
1396 bp->l_ceor = bp->l_eor;
1397 lp = (struct logpage *) bp->l_ldata;
1398 lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_eor);
1399 lbmWrite(log, bp, lbmWRITE | lbmSYNC, 0);
1400 if ((rc = lbmIOWait(bp, 0)))
1401 goto errout30;
1402
1403 /*
1404 * update/write superblock
1405 */
1406 logsuper->state = cpu_to_le32(LOGMOUNT);
1407 log->serial = le32_to_cpu(logsuper->serial) + 1;
1408 logsuper->serial = cpu_to_le32(log->serial);
1409 lbmDirectWrite(log, bpsuper, lbmWRITE | lbmRELEASE | lbmSYNC);
1410 if ((rc = lbmIOWait(bpsuper, lbmFREE)))
1411 goto errout30;
1412 }
1413
1414 /* initialize logsync parameters */
1415 log->logsize = (log->size - 2) << L2LOGPSIZE;
1416 log->lsn = lsn;
1417 log->syncpt = lsn;
1418 log->sync = log->syncpt;
1419 log->nextsync = LOGSYNC_DELTA(log->logsize);
1420
1421 jfs_info("lmLogInit: lsn:0x%x syncpt:0x%x sync:0x%x",
1422 log->lsn, log->syncpt, log->sync);
1423
1424 /*
1425 * initialize for lazy/group commit
1426 */
1427 log->clsn = lsn;
1428
1429 return 0;
1430
1431 /*
f720e3ba 1432 * unwind on error
1da177e4
LT
1433 */
1434 errout30: /* release log page */
1435 log->wqueue = NULL;
1436 bp->l_wqnext = NULL;
1437 lbmFree(bp);
1438
1439 errout20: /* release log superblock */
1440 lbmFree(bpsuper);
1441
1442 errout10: /* unwind lbmLogInit() */
1443 lbmLogShutdown(log);
1444
1445 jfs_warn("lmLogInit: exit(%d)", rc);
1446 return rc;
1447}
1448
1449
1450/*
1451 * NAME: lmLogClose()
1452 *
1453 * FUNCTION: remove file system <ipmnt> from active list of log <iplog>
1454 * and close it on last close.
1455 *
1456 * PARAMETER: sb - superblock
1457 *
1458 * RETURN: errors from subroutines
1459 *
1460 * serialization:
1461 */
1462int lmLogClose(struct super_block *sb)
1463{
1464 struct jfs_sb_info *sbi = JFS_SBI(sb);
1465 struct jfs_log *log = sbi->log;
1466 struct block_device *bdev;
1467 int rc = 0;
1468
1469 jfs_info("lmLogClose: log:0x%p", log);
1470
353ab6e9 1471 mutex_lock(&jfs_log_mutex);
1da177e4
LT
1472 LOG_LOCK(log);
1473 list_del(&sbi->log_list);
1474 LOG_UNLOCK(log);
1475 sbi->log = NULL;
1476
1477 /*
1478 * We need to make sure all of the "written" metapages
1479 * actually make it to disk
1480 */
1481 sync_blockdev(sb->s_bdev);
1482
1483 if (test_bit(log_INLINELOG, &log->flag)) {
1484 /*
f720e3ba 1485 * in-line log in host file system
1da177e4
LT
1486 */
1487 rc = lmLogShutdown(log);
1488 kfree(log);
1489 goto out;
1490 }
1491
1492 if (!log->no_integrity)
1493 lmLogFileSystem(log, sbi, 0);
1494
1495 if (!list_empty(&log->sb_list))
1496 goto out;
1497
1498 /*
1499 * TODO: ensure that the dummy_log is in a state to allow
1500 * lbmLogShutdown to deallocate all the buffers and call
1501 * kfree against dummy_log. For now, leave dummy_log & its
1502 * buffers in memory, and resuse if another no-integrity mount
1503 * is requested.
1504 */
1505 if (log->no_integrity)
1506 goto out;
1507
1508 /*
f720e3ba 1509 * external log as separate logical volume
1da177e4
LT
1510 */
1511 list_del(&log->journal_list);
1512 bdev = log->bdev;
1513 rc = lmLogShutdown(log);
1514
1515 bd_release(bdev);
1516 blkdev_put(bdev);
1517
1518 kfree(log);
1519
1520 out:
353ab6e9 1521 mutex_unlock(&jfs_log_mutex);
1da177e4
LT
1522 jfs_info("lmLogClose: exit(%d)", rc);
1523 return rc;
1524}
1525
1526
1527/*
1528 * NAME: jfs_flush_journal()
1529 *
1530 * FUNCTION: initiate write of any outstanding transactions to the journal
1531 * and optionally wait until they are all written to disk
1532 *
1533 * wait == 0 flush until latest txn is committed, don't wait
1534 * wait == 1 flush until latest txn is committed, wait
1535 * wait > 1 flush until all txn's are complete, wait
1536 */
1537void jfs_flush_journal(struct jfs_log *log, int wait)
1538{
1539 int i;
1540 struct tblock *target = NULL;
1541
1542 /* jfs_write_inode may call us during read-only mount */
1543 if (!log)
1544 return;
1545
1546 jfs_info("jfs_flush_journal: log:0x%p wait=%d", log, wait);
1547
1548 LOGGC_LOCK(log);
1549
1550 if (!list_empty(&log->cqueue)) {
1551 /*
1552 * This ensures that we will keep writing to the journal as long
1553 * as there are unwritten commit records
1554 */
1555 target = list_entry(log->cqueue.prev, struct tblock, cqueue);
1556
1557 if (test_bit(log_FLUSH, &log->flag)) {
1558 /*
1559 * We're already flushing.
1560 * if flush_tblk is NULL, we are flushing everything,
1561 * so leave it that way. Otherwise, update it to the
1562 * latest transaction
1563 */
1564 if (log->flush_tblk)
1565 log->flush_tblk = target;
1566 } else {
1567 /* Only flush until latest transaction is committed */
1568 log->flush_tblk = target;
1569 set_bit(log_FLUSH, &log->flag);
1570
1571 /*
1572 * Initiate I/O on outstanding transactions
1573 */
1574 if (!(log->cflag & logGC_PAGEOUT)) {
1575 log->cflag |= logGC_PAGEOUT;
1576 lmGCwrite(log, 0);
1577 }
1578 }
1579 }
1580 if ((wait > 1) || test_bit(log_SYNCBARRIER, &log->flag)) {
1581 /* Flush until all activity complete */
1582 set_bit(log_FLUSH, &log->flag);
1583 log->flush_tblk = NULL;
1584 }
1585
1586 if (wait && target && !(target->flag & tblkGC_COMMITTED)) {
1587 DECLARE_WAITQUEUE(__wait, current);
1588
1589 add_wait_queue(&target->gcwait, &__wait);
1590 set_current_state(TASK_UNINTERRUPTIBLE);
1591 LOGGC_UNLOCK(log);
1592 schedule();
3cbb1c8e 1593 __set_current_state(TASK_RUNNING);
1da177e4
LT
1594 LOGGC_LOCK(log);
1595 remove_wait_queue(&target->gcwait, &__wait);
1596 }
1597 LOGGC_UNLOCK(log);
1598
1599 if (wait < 2)
1600 return;
1601
67e6682f 1602 write_special_inodes(log, filemap_fdatawrite);
7fab479b 1603
1da177e4
LT
1604 /*
1605 * If there was recent activity, we may need to wait
1606 * for the lazycommit thread to catch up
1607 */
1608 if ((!list_empty(&log->cqueue)) || !list_empty(&log->synclist)) {
7fab479b 1609 for (i = 0; i < 200; i++) { /* Too much? */
1da177e4 1610 msleep(250);
67e6682f 1611 write_special_inodes(log, filemap_fdatawrite);
1da177e4
LT
1612 if (list_empty(&log->cqueue) &&
1613 list_empty(&log->synclist))
1614 break;
1615 }
1616 }
1617 assert(list_empty(&log->cqueue));
72e3148a
DK
1618
1619#ifdef CONFIG_JFS_DEBUG
7fab479b
DK
1620 if (!list_empty(&log->synclist)) {
1621 struct logsyncblk *lp;
1622
209e101b 1623 printk(KERN_ERR "jfs_flush_journal: synclist not empty\n");
7fab479b
DK
1624 list_for_each_entry(lp, &log->synclist, synclist) {
1625 if (lp->xflag & COMMIT_PAGE) {
1626 struct metapage *mp = (struct metapage *)lp;
288e4d83
DK
1627 print_hex_dump(KERN_ERR, "metapage: ",
1628 DUMP_PREFIX_ADDRESS, 16, 4,
1629 mp, sizeof(struct metapage), 0);
1630 print_hex_dump(KERN_ERR, "page: ",
1631 DUMP_PREFIX_ADDRESS, 16,
1632 sizeof(long), mp->page,
1633 sizeof(struct page), 0);
1634 } else
1635 print_hex_dump(KERN_ERR, "tblock:",
1636 DUMP_PREFIX_ADDRESS, 16, 4,
1637 lp, sizeof(struct tblock), 0);
7fab479b 1638 }
7fab479b 1639 }
288e4d83
DK
1640#else
1641 WARN_ON(!list_empty(&log->synclist));
72e3148a 1642#endif
1da177e4
LT
1643 clear_bit(log_FLUSH, &log->flag);
1644}
1645
1646/*
1647 * NAME: lmLogShutdown()
1648 *
1649 * FUNCTION: log shutdown at last LogClose().
1650 *
1651 * write log syncpt record.
1652 * update super block to set redone flag to 0.
1653 *
1654 * PARAMETER: log - log inode
1655 *
1656 * RETURN: 0 - success
63f83c9f 1657 *
1da177e4
LT
1658 * serialization: single last close thread
1659 */
1660int lmLogShutdown(struct jfs_log * log)
1661{
1662 int rc;
1663 struct lrd lrd;
1664 int lsn;
1665 struct logsuper *logsuper;
1666 struct lbuf *bpsuper;
1667 struct lbuf *bp;
1668 struct logpage *lp;
1669
1670 jfs_info("lmLogShutdown: log:0x%p", log);
1671
1672 jfs_flush_journal(log, 2);
1673
1674 /*
1675 * write the last SYNCPT record with syncpoint = 0
1676 * (i.e., log redo up to HERE !)
1677 */
1678 lrd.logtid = 0;
1679 lrd.backchain = 0;
1680 lrd.type = cpu_to_le16(LOG_SYNCPT);
1681 lrd.length = 0;
1682 lrd.log.syncpt.sync = 0;
63f83c9f 1683
1da177e4
LT
1684 lsn = lmWriteRecord(log, NULL, &lrd, NULL);
1685 bp = log->bp;
1686 lp = (struct logpage *) bp->l_ldata;
1687 lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_eor);
1688 lbmWrite(log, log->bp, lbmWRITE | lbmRELEASE | lbmSYNC, 0);
1689 lbmIOWait(log->bp, lbmFREE);
dc5798d9 1690 log->bp = NULL;
1da177e4
LT
1691
1692 /*
1693 * synchronous update log superblock
1694 * mark log state as shutdown cleanly
1695 * (i.e., Log does not need to be replayed).
1696 */
1697 if ((rc = lbmRead(log, 1, &bpsuper)))
1698 goto out;
1699
1700 logsuper = (struct logsuper *) bpsuper->l_ldata;
1701 logsuper->state = cpu_to_le32(LOGREDONE);
1702 logsuper->end = cpu_to_le32(lsn);
1703 lbmDirectWrite(log, bpsuper, lbmWRITE | lbmRELEASE | lbmSYNC);
1704 rc = lbmIOWait(bpsuper, lbmFREE);
1705
1706 jfs_info("lmLogShutdown: lsn:0x%x page:%d eor:%d",
1707 lsn, log->page, log->eor);
1708
63f83c9f 1709 out:
1da177e4
LT
1710 /*
1711 * shutdown per log i/o
1712 */
1713 lbmLogShutdown(log);
1714
1715 if (rc) {
1716 jfs_warn("lmLogShutdown: exit(%d)", rc);
1717 }
1718 return rc;
1719}
1720
1721
1722/*
1723 * NAME: lmLogFileSystem()
1724 *
1725 * FUNCTION: insert (<activate> = true)/remove (<activate> = false)
1726 * file system into/from log active file system list.
1727 *
1728 * PARAMETE: log - pointer to logs inode.
1729 * fsdev - kdev_t of filesystem.
f720e3ba 1730 * serial - pointer to returned log serial number
1da177e4
LT
1731 * activate - insert/remove device from active list.
1732 *
1733 * RETURN: 0 - success
1734 * errors returned by vms_iowait().
1735 */
1736static int lmLogFileSystem(struct jfs_log * log, struct jfs_sb_info *sbi,
1737 int activate)
1738{
1739 int rc = 0;
1740 int i;
1741 struct logsuper *logsuper;
1742 struct lbuf *bpsuper;
1743 char *uuid = sbi->uuid;
1744
1745 /*
1746 * insert/remove file system device to log active file system list.
1747 */
1748 if ((rc = lbmRead(log, 1, &bpsuper)))
1749 return rc;
1750
1751 logsuper = (struct logsuper *) bpsuper->l_ldata;
1752 if (activate) {
1753 for (i = 0; i < MAX_ACTIVE; i++)
1754 if (!memcmp(logsuper->active[i].uuid, NULL_UUID, 16)) {
1755 memcpy(logsuper->active[i].uuid, uuid, 16);
1756 sbi->aggregate = i;
1757 break;
1758 }
1759 if (i == MAX_ACTIVE) {
1760 jfs_warn("Too many file systems sharing journal!");
1761 lbmFree(bpsuper);
1762 return -EMFILE; /* Is there a better rc? */
1763 }
1764 } else {
1765 for (i = 0; i < MAX_ACTIVE; i++)
1766 if (!memcmp(logsuper->active[i].uuid, uuid, 16)) {
1767 memcpy(logsuper->active[i].uuid, NULL_UUID, 16);
1768 break;
1769 }
1770 if (i == MAX_ACTIVE) {
1771 jfs_warn("Somebody stomped on the journal!");
1772 lbmFree(bpsuper);
1773 return -EIO;
1774 }
63f83c9f 1775
1da177e4
LT
1776 }
1777
1778 /*
1779 * synchronous write log superblock:
1780 *
1781 * write sidestream bypassing write queue:
1782 * at file system mount, log super block is updated for
1783 * activation of the file system before any log record
1784 * (MOUNT record) of the file system, and at file system
1785 * unmount, all meta data for the file system has been
1786 * flushed before log super block is updated for deactivation
1787 * of the file system.
1788 */
1789 lbmDirectWrite(log, bpsuper, lbmWRITE | lbmRELEASE | lbmSYNC);
1790 rc = lbmIOWait(bpsuper, lbmFREE);
1791
1792 return rc;
1793}
1794
1795/*
1796 * log buffer manager (lbm)
1797 * ------------------------
1798 *
1799 * special purpose buffer manager supporting log i/o requirements.
1800 *
1801 * per log write queue:
1802 * log pageout occurs in serial order by fifo write queue and
1803 * restricting to a single i/o in pregress at any one time.
1804 * a circular singly-linked list
1805 * (log->wrqueue points to the tail, and buffers are linked via
1806 * bp->wrqueue field), and
1807 * maintains log page in pageout ot waiting for pageout in serial pageout.
1808 */
1809
1810/*
1811 * lbmLogInit()
1812 *
1813 * initialize per log I/O setup at lmLogInit()
1814 */
1815static int lbmLogInit(struct jfs_log * log)
1816{ /* log inode */
1817 int i;
1818 struct lbuf *lbuf;
1819
1820 jfs_info("lbmLogInit: log:0x%p", log);
1821
1822 /* initialize current buffer cursor */
1823 log->bp = NULL;
1824
1825 /* initialize log device write queue */
1826 log->wqueue = NULL;
1827
1828 /*
1829 * Each log has its own buffer pages allocated to it. These are
1830 * not managed by the page cache. This ensures that a transaction
1831 * writing to the log does not block trying to allocate a page from
1832 * the page cache (for the log). This would be bad, since page
1833 * allocation waits on the kswapd thread that may be committing inodes
1834 * which would cause log activity. Was that clear? I'm trying to
1835 * avoid deadlock here.
1836 */
1837 init_waitqueue_head(&log->free_wait);
1838
1839 log->lbuf_free = NULL;
1840
dc5798d9
DK
1841 for (i = 0; i < LOGPAGES;) {
1842 char *buffer;
1843 uint offset;
1844 struct page *page;
1845
1846 buffer = (char *) get_zeroed_page(GFP_KERNEL);
1847 if (buffer == NULL)
1da177e4 1848 goto error;
dc5798d9
DK
1849 page = virt_to_page(buffer);
1850 for (offset = 0; offset < PAGE_SIZE; offset += LOGPSIZE) {
1851 lbuf = kmalloc(sizeof(struct lbuf), GFP_KERNEL);
1852 if (lbuf == NULL) {
1853 if (offset == 0)
1854 free_page((unsigned long) buffer);
1855 goto error;
1856 }
1857 if (offset) /* we already have one reference */
1858 get_page(page);
1859 lbuf->l_offset = offset;
1860 lbuf->l_ldata = buffer + offset;
1861 lbuf->l_page = page;
1862 lbuf->l_log = log;
1863 init_waitqueue_head(&lbuf->l_ioevent);
1864
1865 lbuf->l_freelist = log->lbuf_free;
1866 log->lbuf_free = lbuf;
1867 i++;
1da177e4 1868 }
1da177e4
LT
1869 }
1870
1871 return (0);
1872
1873 error:
1874 lbmLogShutdown(log);
1875 return -ENOMEM;
1876}
1877
1878
1879/*
1880 * lbmLogShutdown()
1881 *
1882 * finalize per log I/O setup at lmLogShutdown()
1883 */
1884static void lbmLogShutdown(struct jfs_log * log)
1885{
1886 struct lbuf *lbuf;
1887
1888 jfs_info("lbmLogShutdown: log:0x%p", log);
1889
1890 lbuf = log->lbuf_free;
1891 while (lbuf) {
1892 struct lbuf *next = lbuf->l_freelist;
dc5798d9 1893 __free_page(lbuf->l_page);
1da177e4
LT
1894 kfree(lbuf);
1895 lbuf = next;
1896 }
1da177e4
LT
1897}
1898
1899
1900/*
1901 * lbmAllocate()
1902 *
1903 * allocate an empty log buffer
1904 */
1905static struct lbuf *lbmAllocate(struct jfs_log * log, int pn)
1906{
1907 struct lbuf *bp;
1908 unsigned long flags;
1909
1910 /*
1911 * recycle from log buffer freelist if any
1912 */
1913 LCACHE_LOCK(flags);
1914 LCACHE_SLEEP_COND(log->free_wait, (bp = log->lbuf_free), flags);
1915 log->lbuf_free = bp->l_freelist;
1916 LCACHE_UNLOCK(flags);
1917
1918 bp->l_flag = 0;
1919
1920 bp->l_wqnext = NULL;
1921 bp->l_freelist = NULL;
1922
1923 bp->l_pn = pn;
1924 bp->l_blkno = log->base + (pn << (L2LOGPSIZE - log->l2bsize));
1925 bp->l_ceor = 0;
1926
1927 return bp;
1928}
1929
1930
1931/*
1932 * lbmFree()
1933 *
1934 * release a log buffer to freelist
1935 */
1936static void lbmFree(struct lbuf * bp)
1937{
1938 unsigned long flags;
1939
1940 LCACHE_LOCK(flags);
1941
1942 lbmfree(bp);
1943
1944 LCACHE_UNLOCK(flags);
1945}
1946
1947static void lbmfree(struct lbuf * bp)
1948{
1949 struct jfs_log *log = bp->l_log;
1950
1951 assert(bp->l_wqnext == NULL);
1952
1953 /*
1954 * return the buffer to head of freelist
1955 */
1956 bp->l_freelist = log->lbuf_free;
1957 log->lbuf_free = bp;
1958
1959 wake_up(&log->free_wait);
1960 return;
1961}
1962
1963
1964/*
1965 * NAME: lbmRedrive
1966 *
59c51591 1967 * FUNCTION: add a log buffer to the log redrive list
1da177e4
LT
1968 *
1969 * PARAMETER:
f720e3ba 1970 * bp - log buffer
1da177e4
LT
1971 *
1972 * NOTES:
1973 * Takes log_redrive_lock.
1974 */
1975static inline void lbmRedrive(struct lbuf *bp)
1976{
1977 unsigned long flags;
1978
1979 spin_lock_irqsave(&log_redrive_lock, flags);
1980 bp->l_redrive_next = log_redrive_list;
1981 log_redrive_list = bp;
1982 spin_unlock_irqrestore(&log_redrive_lock, flags);
1983
91dbb4de 1984 wake_up_process(jfsIOthread);
1da177e4
LT
1985}
1986
1987
1988/*
1989 * lbmRead()
1990 */
1991static int lbmRead(struct jfs_log * log, int pn, struct lbuf ** bpp)
1992{
1993 struct bio *bio;
1994 struct lbuf *bp;
1995
1996 /*
1997 * allocate a log buffer
1998 */
1999 *bpp = bp = lbmAllocate(log, pn);
2000 jfs_info("lbmRead: bp:0x%p pn:0x%x", bp, pn);
2001
2002 bp->l_flag |= lbmREAD;
2003
2004 bio = bio_alloc(GFP_NOFS, 1);
2005
2006 bio->bi_sector = bp->l_blkno << (log->l2bsize - 9);
2007 bio->bi_bdev = log->bdev;
dc5798d9 2008 bio->bi_io_vec[0].bv_page = bp->l_page;
1da177e4 2009 bio->bi_io_vec[0].bv_len = LOGPSIZE;
dc5798d9 2010 bio->bi_io_vec[0].bv_offset = bp->l_offset;
1da177e4
LT
2011
2012 bio->bi_vcnt = 1;
2013 bio->bi_idx = 0;
2014 bio->bi_size = LOGPSIZE;
2015
2016 bio->bi_end_io = lbmIODone;
2017 bio->bi_private = bp;
2018 submit_bio(READ_SYNC, bio);
2019
2020 wait_event(bp->l_ioevent, (bp->l_flag != lbmREAD));
2021
2022 return 0;
2023}
2024
2025
2026/*
2027 * lbmWrite()
2028 *
2029 * buffer at head of pageout queue stays after completion of
2030 * partial-page pageout and redriven by explicit initiation of
2031 * pageout by caller until full-page pageout is completed and
2032 * released.
2033 *
2034 * device driver i/o done redrives pageout of new buffer at
2035 * head of pageout queue when current buffer at head of pageout
2036 * queue is released at the completion of its full-page pageout.
2037 *
2038 * LOGGC_LOCK() serializes lbmWrite() by lmNextPage() and lmGroupCommit().
2039 * LCACHE_LOCK() serializes xflag between lbmWrite() and lbmIODone()
2040 */
2041static void lbmWrite(struct jfs_log * log, struct lbuf * bp, int flag,
2042 int cant_block)
2043{
2044 struct lbuf *tail;
2045 unsigned long flags;
2046
2047 jfs_info("lbmWrite: bp:0x%p flag:0x%x pn:0x%x", bp, flag, bp->l_pn);
2048
2049 /* map the logical block address to physical block address */
2050 bp->l_blkno =
2051 log->base + (bp->l_pn << (L2LOGPSIZE - log->l2bsize));
2052
2053 LCACHE_LOCK(flags); /* disable+lock */
2054
2055 /*
2056 * initialize buffer for device driver
2057 */
2058 bp->l_flag = flag;
2059
2060 /*
f720e3ba 2061 * insert bp at tail of write queue associated with log
1da177e4
LT
2062 *
2063 * (request is either for bp already/currently at head of queue
2064 * or new bp to be inserted at tail)
2065 */
2066 tail = log->wqueue;
2067
2068 /* is buffer not already on write queue ? */
2069 if (bp->l_wqnext == NULL) {
2070 /* insert at tail of wqueue */
2071 if (tail == NULL) {
2072 log->wqueue = bp;
2073 bp->l_wqnext = bp;
2074 } else {
2075 log->wqueue = bp;
2076 bp->l_wqnext = tail->l_wqnext;
2077 tail->l_wqnext = bp;
2078 }
2079
2080 tail = bp;
2081 }
2082
2083 /* is buffer at head of wqueue and for write ? */
2084 if ((bp != tail->l_wqnext) || !(flag & lbmWRITE)) {
2085 LCACHE_UNLOCK(flags); /* unlock+enable */
2086 return;
2087 }
2088
2089 LCACHE_UNLOCK(flags); /* unlock+enable */
2090
2091 if (cant_block)
2092 lbmRedrive(bp);
2093 else if (flag & lbmSYNC)
2094 lbmStartIO(bp);
2095 else {
2096 LOGGC_UNLOCK(log);
2097 lbmStartIO(bp);
2098 LOGGC_LOCK(log);
2099 }
2100}
2101
2102
2103/*
2104 * lbmDirectWrite()
2105 *
2106 * initiate pageout bypassing write queue for sidestream
2107 * (e.g., log superblock) write;
2108 */
2109static void lbmDirectWrite(struct jfs_log * log, struct lbuf * bp, int flag)
2110{
2111 jfs_info("lbmDirectWrite: bp:0x%p flag:0x%x pn:0x%x",
2112 bp, flag, bp->l_pn);
2113
2114 /*
2115 * initialize buffer for device driver
2116 */
2117 bp->l_flag = flag | lbmDIRECT;
2118
2119 /* map the logical block address to physical block address */
2120 bp->l_blkno =
2121 log->base + (bp->l_pn << (L2LOGPSIZE - log->l2bsize));
2122
2123 /*
f720e3ba 2124 * initiate pageout of the page
1da177e4
LT
2125 */
2126 lbmStartIO(bp);
2127}
2128
2129
2130/*
2131 * NAME: lbmStartIO()
2132 *
2133 * FUNCTION: Interface to DD strategy routine
2134 *
f720e3ba 2135 * RETURN: none
1da177e4
LT
2136 *
2137 * serialization: LCACHE_LOCK() is NOT held during log i/o;
2138 */
2139static void lbmStartIO(struct lbuf * bp)
2140{
2141 struct bio *bio;
2142 struct jfs_log *log = bp->l_log;
2143
2144 jfs_info("lbmStartIO\n");
2145
2146 bio = bio_alloc(GFP_NOFS, 1);
2147 bio->bi_sector = bp->l_blkno << (log->l2bsize - 9);
2148 bio->bi_bdev = log->bdev;
dc5798d9 2149 bio->bi_io_vec[0].bv_page = bp->l_page;
1da177e4 2150 bio->bi_io_vec[0].bv_len = LOGPSIZE;
dc5798d9 2151 bio->bi_io_vec[0].bv_offset = bp->l_offset;
1da177e4
LT
2152
2153 bio->bi_vcnt = 1;
2154 bio->bi_idx = 0;
2155 bio->bi_size = LOGPSIZE;
2156
2157 bio->bi_end_io = lbmIODone;
2158 bio->bi_private = bp;
2159
2160 /* check if journaling to disk has been disabled */
dc5798d9
DK
2161 if (log->no_integrity) {
2162 bio->bi_size = 0;
e30408b2 2163 lbmIODone(bio, 0);
dc5798d9 2164 } else {
1da177e4
LT
2165 submit_bio(WRITE_SYNC, bio);
2166 INCREMENT(lmStat.submitted);
2167 }
1da177e4
LT
2168}
2169
2170
2171/*
2172 * lbmIOWait()
2173 */
2174static int lbmIOWait(struct lbuf * bp, int flag)
2175{
2176 unsigned long flags;
2177 int rc = 0;
2178
2179 jfs_info("lbmIOWait1: bp:0x%p flag:0x%x:0x%x", bp, bp->l_flag, flag);
2180
2181 LCACHE_LOCK(flags); /* disable+lock */
2182
2183 LCACHE_SLEEP_COND(bp->l_ioevent, (bp->l_flag & lbmDONE), flags);
2184
2185 rc = (bp->l_flag & lbmERROR) ? -EIO : 0;
2186
2187 if (flag & lbmFREE)
2188 lbmfree(bp);
2189
2190 LCACHE_UNLOCK(flags); /* unlock+enable */
2191
2192 jfs_info("lbmIOWait2: bp:0x%p flag:0x%x:0x%x", bp, bp->l_flag, flag);
2193 return rc;
2194}
2195
2196/*
2197 * lbmIODone()
2198 *
2199 * executed at INTIODONE level
2200 */
6712ecf8 2201static void lbmIODone(struct bio *bio, int error)
1da177e4
LT
2202{
2203 struct lbuf *bp = bio->bi_private;
2204 struct lbuf *nextbp, *tail;
2205 struct jfs_log *log;
2206 unsigned long flags;
2207
1da177e4
LT
2208 /*
2209 * get back jfs buffer bound to the i/o buffer
2210 */
2211 jfs_info("lbmIODone: bp:0x%p flag:0x%x", bp, bp->l_flag);
2212
2213 LCACHE_LOCK(flags); /* disable+lock */
2214
2215 bp->l_flag |= lbmDONE;
2216
2217 if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2218 bp->l_flag |= lbmERROR;
2219
2220 jfs_err("lbmIODone: I/O error in JFS log");
2221 }
2222
2223 bio_put(bio);
2224
2225 /*
f720e3ba 2226 * pagein completion
1da177e4
LT
2227 */
2228 if (bp->l_flag & lbmREAD) {
2229 bp->l_flag &= ~lbmREAD;
2230
2231 LCACHE_UNLOCK(flags); /* unlock+enable */
2232
2233 /* wakeup I/O initiator */
2234 LCACHE_WAKEUP(&bp->l_ioevent);
8d8fe642
DK
2235
2236 return;
1da177e4
LT
2237 }
2238
2239 /*
f720e3ba 2240 * pageout completion
1da177e4
LT
2241 *
2242 * the bp at the head of write queue has completed pageout.
2243 *
2244 * if single-commit/full-page pageout, remove the current buffer
2245 * from head of pageout queue, and redrive pageout with
2246 * the new buffer at head of pageout queue;
2247 * otherwise, the partial-page pageout buffer stays at
2248 * the head of pageout queue to be redriven for pageout
2249 * by lmGroupCommit() until full-page pageout is completed.
2250 */
2251 bp->l_flag &= ~lbmWRITE;
2252 INCREMENT(lmStat.pagedone);
2253
2254 /* update committed lsn */
2255 log = bp->l_log;
2256 log->clsn = (bp->l_pn << L2LOGPSIZE) + bp->l_ceor;
2257
2258 if (bp->l_flag & lbmDIRECT) {
2259 LCACHE_WAKEUP(&bp->l_ioevent);
2260 LCACHE_UNLOCK(flags);
8d8fe642 2261 return;
1da177e4
LT
2262 }
2263
2264 tail = log->wqueue;
2265
2266 /* single element queue */
2267 if (bp == tail) {
2268 /* remove head buffer of full-page pageout
2269 * from log device write queue
2270 */
2271 if (bp->l_flag & lbmRELEASE) {
2272 log->wqueue = NULL;
2273 bp->l_wqnext = NULL;
2274 }
2275 }
2276 /* multi element queue */
2277 else {
2278 /* remove head buffer of full-page pageout
2279 * from log device write queue
2280 */
2281 if (bp->l_flag & lbmRELEASE) {
2282 nextbp = tail->l_wqnext = bp->l_wqnext;
2283 bp->l_wqnext = NULL;
2284
2285 /*
2286 * redrive pageout of next page at head of write queue:
2287 * redrive next page without any bound tblk
2288 * (i.e., page w/o any COMMIT records), or
2289 * first page of new group commit which has been
2290 * queued after current page (subsequent pageout
2291 * is performed synchronously, except page without
2292 * any COMMITs) by lmGroupCommit() as indicated
2293 * by lbmWRITE flag;
2294 */
2295 if (nextbp->l_flag & lbmWRITE) {
2296 /*
2297 * We can't do the I/O at interrupt time.
2298 * The jfsIO thread can do it
2299 */
2300 lbmRedrive(nextbp);
2301 }
2302 }
2303 }
2304
2305 /*
f720e3ba 2306 * synchronous pageout:
1da177e4
LT
2307 *
2308 * buffer has not necessarily been removed from write queue
2309 * (e.g., synchronous write of partial-page with COMMIT):
2310 * leave buffer for i/o initiator to dispose
2311 */
2312 if (bp->l_flag & lbmSYNC) {
2313 LCACHE_UNLOCK(flags); /* unlock+enable */
2314
2315 /* wakeup I/O initiator */
2316 LCACHE_WAKEUP(&bp->l_ioevent);
2317 }
2318
2319 /*
f720e3ba 2320 * Group Commit pageout:
1da177e4
LT
2321 */
2322 else if (bp->l_flag & lbmGC) {
2323 LCACHE_UNLOCK(flags);
2324 lmPostGC(bp);
2325 }
2326
2327 /*
f720e3ba 2328 * asynchronous pageout:
1da177e4
LT
2329 *
2330 * buffer must have been removed from write queue:
2331 * insert buffer at head of freelist where it can be recycled
2332 */
2333 else {
2334 assert(bp->l_flag & lbmRELEASE);
2335 assert(bp->l_flag & lbmFREE);
2336 lbmfree(bp);
2337
2338 LCACHE_UNLOCK(flags); /* unlock+enable */
2339 }
1da177e4
LT
2340}
2341
2342int jfsIOWait(void *arg)
2343{
2344 struct lbuf *bp;
2345
1da177e4 2346 do {
1da177e4
LT
2347 spin_lock_irq(&log_redrive_lock);
2348 while ((bp = log_redrive_list) != 0) {
2349 log_redrive_list = bp->l_redrive_next;
2350 bp->l_redrive_next = NULL;
2351 spin_unlock_irq(&log_redrive_lock);
2352 lbmStartIO(bp);
2353 spin_lock_irq(&log_redrive_lock);
2354 }
91dbb4de 2355
3e1d1d28 2356 if (freezing(current)) {
05ec9e26 2357 spin_unlock_irq(&log_redrive_lock);
3e1d1d28 2358 refrigerator();
1da177e4 2359 } else {
1da177e4 2360 set_current_state(TASK_INTERRUPTIBLE);
05ec9e26 2361 spin_unlock_irq(&log_redrive_lock);
1da177e4 2362 schedule();
3cbb1c8e 2363 __set_current_state(TASK_RUNNING);
1da177e4 2364 }
91dbb4de 2365 } while (!kthread_should_stop());
1da177e4
LT
2366
2367 jfs_info("jfsIOWait being killed!");
91dbb4de 2368 return 0;
1da177e4
LT
2369}
2370
2371/*
2372 * NAME: lmLogFormat()/jfs_logform()
2373 *
2374 * FUNCTION: format file system log
2375 *
2376 * PARAMETERS:
f720e3ba 2377 * log - volume log
1da177e4
LT
2378 * logAddress - start address of log space in FS block
2379 * logSize - length of log space in FS block;
2380 *
2381 * RETURN: 0 - success
2382 * -EIO - i/o error
2383 *
2384 * XXX: We're synchronously writing one page at a time. This needs to
2385 * be improved by writing multiple pages at once.
2386 */
2387int lmLogFormat(struct jfs_log *log, s64 logAddress, int logSize)
2388{
2389 int rc = -EIO;
2390 struct jfs_sb_info *sbi;
2391 struct logsuper *logsuper;
2392 struct logpage *lp;
2393 int lspn; /* log sequence page number */
2394 struct lrd *lrd_ptr;
2395 int npages = 0;
2396 struct lbuf *bp;
2397
2398 jfs_info("lmLogFormat: logAddress:%Ld logSize:%d",
2399 (long long)logAddress, logSize);
2400
2401 sbi = list_entry(log->sb_list.next, struct jfs_sb_info, log_list);
2402
2403 /* allocate a log buffer */
2404 bp = lbmAllocate(log, 1);
2405
2406 npages = logSize >> sbi->l2nbperpage;
2407
2408 /*
f720e3ba 2409 * log space:
1da177e4
LT
2410 *
2411 * page 0 - reserved;
2412 * page 1 - log superblock;
2413 * page 2 - log data page: A SYNC log record is written
f720e3ba 2414 * into this page at logform time;
1da177e4
LT
2415 * pages 3-N - log data page: set to empty log data pages;
2416 */
2417 /*
f720e3ba 2418 * init log superblock: log page 1
1da177e4
LT
2419 */
2420 logsuper = (struct logsuper *) bp->l_ldata;
2421
2422 logsuper->magic = cpu_to_le32(LOGMAGIC);
2423 logsuper->version = cpu_to_le32(LOGVERSION);
2424 logsuper->state = cpu_to_le32(LOGREDONE);
2425 logsuper->flag = cpu_to_le32(sbi->mntflag); /* ? */
2426 logsuper->size = cpu_to_le32(npages);
2427 logsuper->bsize = cpu_to_le32(sbi->bsize);
2428 logsuper->l2bsize = cpu_to_le32(sbi->l2bsize);
2429 logsuper->end = cpu_to_le32(2 * LOGPSIZE + LOGPHDRSIZE + LOGRDSIZE);
2430
2431 bp->l_flag = lbmWRITE | lbmSYNC | lbmDIRECT;
2432 bp->l_blkno = logAddress + sbi->nbperpage;
2433 lbmStartIO(bp);
2434 if ((rc = lbmIOWait(bp, 0)))
2435 goto exit;
2436
2437 /*
f720e3ba 2438 * init pages 2 to npages-1 as log data pages:
1da177e4
LT
2439 *
2440 * log page sequence number (lpsn) initialization:
2441 *
2442 * pn: 0 1 2 3 n-1
2443 * +-----+-----+=====+=====+===.....===+=====+
2444 * lspn: N-1 0 1 N-2
2445 * <--- N page circular file ---->
2446 *
2447 * the N (= npages-2) data pages of the log is maintained as
2448 * a circular file for the log records;
2449 * lpsn grows by 1 monotonically as each log page is written
2450 * to the circular file of the log;
2451 * and setLogpage() will not reset the page number even if
2452 * the eor is equal to LOGPHDRSIZE. In order for binary search
2453 * still work in find log end process, we have to simulate the
2454 * log wrap situation at the log format time.
2455 * The 1st log page written will have the highest lpsn. Then
2456 * the succeeding log pages will have ascending order of
2457 * the lspn starting from 0, ... (N-2)
2458 */
2459 lp = (struct logpage *) bp->l_ldata;
2460 /*
2461 * initialize 1st log page to be written: lpsn = N - 1,
2462 * write a SYNCPT log record is written to this page
2463 */
2464 lp->h.page = lp->t.page = cpu_to_le32(npages - 3);
2465 lp->h.eor = lp->t.eor = cpu_to_le16(LOGPHDRSIZE + LOGRDSIZE);
2466
2467 lrd_ptr = (struct lrd *) &lp->data;
2468 lrd_ptr->logtid = 0;
2469 lrd_ptr->backchain = 0;
2470 lrd_ptr->type = cpu_to_le16(LOG_SYNCPT);
2471 lrd_ptr->length = 0;
2472 lrd_ptr->log.syncpt.sync = 0;
2473
2474 bp->l_blkno += sbi->nbperpage;
2475 bp->l_flag = lbmWRITE | lbmSYNC | lbmDIRECT;
2476 lbmStartIO(bp);
2477 if ((rc = lbmIOWait(bp, 0)))
2478 goto exit;
2479
2480 /*
f720e3ba 2481 * initialize succeeding log pages: lpsn = 0, 1, ..., (N-2)
1da177e4
LT
2482 */
2483 for (lspn = 0; lspn < npages - 3; lspn++) {
2484 lp->h.page = lp->t.page = cpu_to_le32(lspn);
2485 lp->h.eor = lp->t.eor = cpu_to_le16(LOGPHDRSIZE);
2486
2487 bp->l_blkno += sbi->nbperpage;
2488 bp->l_flag = lbmWRITE | lbmSYNC | lbmDIRECT;
2489 lbmStartIO(bp);
2490 if ((rc = lbmIOWait(bp, 0)))
2491 goto exit;
2492 }
2493
2494 rc = 0;
2495exit:
2496 /*
f720e3ba 2497 * finalize log
1da177e4
LT
2498 */
2499 /* release the buffer */
2500 lbmFree(bp);
2501
2502 return rc;
2503}
2504
2505#ifdef CONFIG_JFS_STATISTICS
2506int jfs_lmstats_read(char *buffer, char **start, off_t offset, int length,
2507 int *eof, void *data)
2508{
2509 int len = 0;
2510 off_t begin;
2511
2512 len += sprintf(buffer,
2513 "JFS Logmgr stats\n"
2514 "================\n"
2515 "commits = %d\n"
2516 "writes submitted = %d\n"
2517 "writes completed = %d\n"
2518 "full pages submitted = %d\n"
2519 "partial pages submitted = %d\n",
2520 lmStat.commit,
2521 lmStat.submitted,
2522 lmStat.pagedone,
2523 lmStat.full_page,
2524 lmStat.partial_page);
2525
2526 begin = offset;
2527 *start = buffer + begin;
2528 len -= begin;
2529
2530 if (len > length)
2531 len = length;
2532 else
2533 *eof = 1;
2534
2535 if (len < 0)
2536 len = 0;
2537
2538 return len;
2539}
2540#endif /* CONFIG_JFS_STATISTICS */