[MTD] Remove silly MTD_WRITE/READ macros
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / jffs2 / wbuf.c
CommitLineData
1da177e4
LT
1/*
2 * JFFS2 -- Journalling Flash File System, Version 2.
3 *
4 * Copyright (C) 2001-2003 Red Hat, Inc.
5 * Copyright (C) 2004 Thomas Gleixner <tglx@linutronix.de>
6 *
7 * Created by David Woodhouse <dwmw2@infradead.org>
8 * Modified debugged and enhanced by Thomas Gleixner <tglx@linutronix.de>
9 *
10 * For licensing information, see the file 'LICENCE' in this directory.
11 *
daba5cc4 12 * $Id: wbuf.c,v 1.100 2005/09/30 13:59:13 dedekind Exp $
1da177e4
LT
13 *
14 */
15
16#include <linux/kernel.h>
17#include <linux/slab.h>
18#include <linux/mtd/mtd.h>
19#include <linux/crc32.h>
20#include <linux/mtd/nand.h>
4e57b681
TS
21#include <linux/jiffies.h>
22
1da177e4
LT
23#include "nodelist.h"
24
25/* For testing write failures */
26#undef BREAKME
27#undef BREAKMEHEADER
28
29#ifdef BREAKME
30static unsigned char *brokenbuf;
31#endif
32
daba5cc4
AB
33#define PAGE_DIV(x) ( ((unsigned long)(x) / (unsigned long)(c->wbuf_pagesize)) * (unsigned long)(c->wbuf_pagesize) )
34#define PAGE_MOD(x) ( (unsigned long)(x) % (unsigned long)(c->wbuf_pagesize) )
35
1da177e4
LT
36/* max. erase failures before we mark a block bad */
37#define MAX_ERASE_FAILURES 2
38
1da177e4
LT
39struct jffs2_inodirty {
40 uint32_t ino;
41 struct jffs2_inodirty *next;
42};
43
44static struct jffs2_inodirty inodirty_nomem;
45
46static int jffs2_wbuf_pending_for_ino(struct jffs2_sb_info *c, uint32_t ino)
47{
48 struct jffs2_inodirty *this = c->wbuf_inodes;
49
50 /* If a malloc failed, consider _everything_ dirty */
51 if (this == &inodirty_nomem)
52 return 1;
53
54 /* If ino == 0, _any_ non-GC writes mean 'yes' */
55 if (this && !ino)
56 return 1;
57
58 /* Look to see if the inode in question is pending in the wbuf */
59 while (this) {
60 if (this->ino == ino)
61 return 1;
62 this = this->next;
63 }
64 return 0;
65}
66
67static void jffs2_clear_wbuf_ino_list(struct jffs2_sb_info *c)
68{
69 struct jffs2_inodirty *this;
70
71 this = c->wbuf_inodes;
72
73 if (this != &inodirty_nomem) {
74 while (this) {
75 struct jffs2_inodirty *next = this->next;
76 kfree(this);
77 this = next;
78 }
79 }
80 c->wbuf_inodes = NULL;
81}
82
83static void jffs2_wbuf_dirties_inode(struct jffs2_sb_info *c, uint32_t ino)
84{
85 struct jffs2_inodirty *new;
86
87 /* Mark the superblock dirty so that kupdated will flush... */
4d952709 88 jffs2_erase_pending_trigger(c);
1da177e4
LT
89
90 if (jffs2_wbuf_pending_for_ino(c, ino))
91 return;
92
93 new = kmalloc(sizeof(*new), GFP_KERNEL);
94 if (!new) {
95 D1(printk(KERN_DEBUG "No memory to allocate inodirty. Fallback to all considered dirty\n"));
96 jffs2_clear_wbuf_ino_list(c);
97 c->wbuf_inodes = &inodirty_nomem;
98 return;
99 }
100 new->ino = ino;
101 new->next = c->wbuf_inodes;
102 c->wbuf_inodes = new;
103 return;
104}
105
106static inline void jffs2_refile_wbuf_blocks(struct jffs2_sb_info *c)
107{
108 struct list_head *this, *next;
109 static int n;
110
111 if (list_empty(&c->erasable_pending_wbuf_list))
112 return;
113
114 list_for_each_safe(this, next, &c->erasable_pending_wbuf_list) {
115 struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list);
116
117 D1(printk(KERN_DEBUG "Removing eraseblock at 0x%08x from erasable_pending_wbuf_list...\n", jeb->offset));
118 list_del(this);
119 if ((jiffies + (n++)) & 127) {
120 /* Most of the time, we just erase it immediately. Otherwise we
121 spend ages scanning it on mount, etc. */
122 D1(printk(KERN_DEBUG "...and adding to erase_pending_list\n"));
123 list_add_tail(&jeb->list, &c->erase_pending_list);
124 c->nr_erasing_blocks++;
125 jffs2_erase_pending_trigger(c);
126 } else {
127 /* Sometimes, however, we leave it elsewhere so it doesn't get
128 immediately reused, and we spread the load a bit. */
129 D1(printk(KERN_DEBUG "...and adding to erasable_list\n"));
130 list_add_tail(&jeb->list, &c->erasable_list);
131 }
132 }
133}
134
7f716cf3
EH
135#define REFILE_NOTEMPTY 0
136#define REFILE_ANYWAY 1
137
138static void jffs2_block_refile(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, int allow_empty)
1da177e4
LT
139{
140 D1(printk("About to refile bad block at %08x\n", jeb->offset));
141
1da177e4
LT
142 /* File the existing block on the bad_used_list.... */
143 if (c->nextblock == jeb)
144 c->nextblock = NULL;
145 else /* Not sure this should ever happen... need more coffee */
146 list_del(&jeb->list);
147 if (jeb->first_node) {
148 D1(printk("Refiling block at %08x to bad_used_list\n", jeb->offset));
149 list_add(&jeb->list, &c->bad_used_list);
150 } else {
9b88f473 151 BUG_ON(allow_empty == REFILE_NOTEMPTY);
1da177e4
LT
152 /* It has to have had some nodes or we couldn't be here */
153 D1(printk("Refiling block at %08x to erase_pending_list\n", jeb->offset));
154 list_add(&jeb->list, &c->erase_pending_list);
155 c->nr_erasing_blocks++;
156 jffs2_erase_pending_trigger(c);
157 }
1da177e4 158
9bfeb691
DW
159 if (!jffs2_prealloc_raw_node_refs(c, jeb, 1)) {
160 uint32_t oldfree = jeb->free_size;
161
162 jffs2_link_node_ref(c, jeb,
163 (jeb->offset+c->sector_size-oldfree) | REF_OBSOLETE,
164 oldfree, NULL);
165 /* convert to wasted */
166 c->wasted_size += oldfree;
167 jeb->wasted_size += oldfree;
168 c->dirty_size -= oldfree;
169 jeb->dirty_size -= oldfree;
170 }
1da177e4 171
e0c8e42f
AB
172 jffs2_dbg_dump_block_lists_nolock(c);
173 jffs2_dbg_acct_sanity_check_nolock(c,jeb);
174 jffs2_dbg_acct_paranoia_check_nolock(c, jeb);
1da177e4
LT
175}
176
9bfeb691
DW
177static struct jffs2_raw_node_ref **jffs2_incore_replace_raw(struct jffs2_sb_info *c,
178 struct jffs2_inode_info *f,
179 struct jffs2_raw_node_ref *raw,
180 union jffs2_node_union *node)
181{
182 struct jffs2_node_frag *frag;
183 struct jffs2_full_dirent *fd;
184
185 dbg_noderef("incore_replace_raw: node at %p is {%04x,%04x}\n",
186 node, je16_to_cpu(node->u.magic), je16_to_cpu(node->u.nodetype));
187
188 BUG_ON(je16_to_cpu(node->u.magic) != 0x1985 &&
189 je16_to_cpu(node->u.magic) != 0);
190
191 switch (je16_to_cpu(node->u.nodetype)) {
192 case JFFS2_NODETYPE_INODE:
ddc58bd6
DW
193 if (f->metadata && f->metadata->raw == raw) {
194 dbg_noderef("Will replace ->raw in f->metadata at %p\n", f->metadata);
195 return &f->metadata->raw;
196 }
9bfeb691
DW
197 frag = jffs2_lookup_node_frag(&f->fragtree, je32_to_cpu(node->i.offset));
198 BUG_ON(!frag);
199 /* Find a frag which refers to the full_dnode we want to modify */
200 while (!frag->node || frag->node->raw != raw) {
201 frag = frag_next(frag);
202 BUG_ON(!frag);
203 }
204 dbg_noderef("Will replace ->raw in full_dnode at %p\n", frag->node);
205 return &frag->node->raw;
9bfeb691
DW
206
207 case JFFS2_NODETYPE_DIRENT:
208 for (fd = f->dents; fd; fd = fd->next) {
209 if (fd->raw == raw) {
210 dbg_noderef("Will replace ->raw in full_dirent at %p\n", fd);
211 return &fd->raw;
212 }
213 }
214 BUG();
ddc58bd6 215
9bfeb691
DW
216 default:
217 dbg_noderef("Don't care about replacing raw for nodetype %x\n",
218 je16_to_cpu(node->u.nodetype));
219 break;
220 }
221 return NULL;
222}
223
1da177e4
LT
224/* Recover from failure to write wbuf. Recover the nodes up to the
225 * wbuf, not the one which we were starting to try to write. */
226
227static void jffs2_wbuf_recover(struct jffs2_sb_info *c)
228{
229 struct jffs2_eraseblock *jeb, *new_jeb;
9bfeb691 230 struct jffs2_raw_node_ref *raw, *next, *first_raw = NULL;
1da177e4
LT
231 size_t retlen;
232 int ret;
9bfeb691 233 int nr_refile = 0;
1da177e4
LT
234 unsigned char *buf;
235 uint32_t start, end, ofs, len;
236
046b8b98
DW
237 jeb = &c->blocks[c->wbuf_ofs / c->sector_size];
238
1da177e4 239 spin_lock(&c->erase_completion_lock);
7f716cf3 240 jffs2_block_refile(c, jeb, REFILE_NOTEMPTY);
9bfeb691
DW
241 spin_unlock(&c->erase_completion_lock);
242
243 BUG_ON(!ref_obsolete(jeb->last_node));
1da177e4
LT
244
245 /* Find the first node to be recovered, by skipping over every
246 node which ends before the wbuf starts, or which is obsolete. */
9bfeb691
DW
247 for (next = raw = jeb->first_node; next; raw = next) {
248 next = ref_next(raw);
249
250 if (ref_obsolete(raw) ||
251 (next && ref_offset(next) <= c->wbuf_ofs)) {
252 dbg_noderef("Skipping node at 0x%08x(%d)-0x%08x which is either before 0x%08x or obsolete\n",
253 ref_offset(raw), ref_flags(raw),
254 (ref_offset(raw) + ref_totlen(c, jeb, raw)),
255 c->wbuf_ofs);
256 continue;
257 }
258 dbg_noderef("First node to be recovered is at 0x%08x(%d)-0x%08x\n",
259 ref_offset(raw), ref_flags(raw),
260 (ref_offset(raw) + ref_totlen(c, jeb, raw)));
261
262 first_raw = raw;
263 break;
264 }
265
266 if (!first_raw) {
1da177e4
LT
267 /* All nodes were obsolete. Nothing to recover. */
268 D1(printk(KERN_DEBUG "No non-obsolete nodes to be recovered. Just filing block bad\n"));
9bfeb691 269 c->wbuf_len = 0;
1da177e4
LT
270 return;
271 }
272
9bfeb691
DW
273 start = ref_offset(first_raw);
274 end = ref_offset(jeb->last_node);
275 nr_refile = 1;
1da177e4 276
9bfeb691
DW
277 /* Count the number of refs which need to be copied */
278 while ((raw = ref_next(raw)) != jeb->last_node)
279 nr_refile++;
1da177e4 280
9bfeb691
DW
281 dbg_noderef("wbuf recover %08x-%08x (%d bytes in %d nodes)\n",
282 start, end, end - start, nr_refile);
1da177e4
LT
283
284 buf = NULL;
285 if (start < c->wbuf_ofs) {
286 /* First affected node was already partially written.
287 * Attempt to reread the old data into our buffer. */
288
289 buf = kmalloc(end - start, GFP_KERNEL);
290 if (!buf) {
291 printk(KERN_CRIT "Malloc failure in wbuf recovery. Data loss ensues.\n");
292
293 goto read_failed;
294 }
295
296 /* Do the read... */
9223a456 297 ret = c->mtd->read(c->mtd, start, c->wbuf_ofs - start, &retlen, buf);
182ec4ee 298
1da177e4
LT
299 if (ret == -EBADMSG && retlen == c->wbuf_ofs - start) {
300 /* ECC recovered */
301 ret = 0;
302 }
303 if (ret || retlen != c->wbuf_ofs - start) {
304 printk(KERN_CRIT "Old data are already lost in wbuf recovery. Data loss ensues.\n");
305
306 kfree(buf);
307 buf = NULL;
308 read_failed:
9bfeb691
DW
309 first_raw = ref_next(first_raw);
310 nr_refile--;
311 while (first_raw && ref_obsolete(first_raw)) {
312 first_raw = ref_next(first_raw);
313 nr_refile--;
314 }
315
1da177e4 316 /* If this was the only node to be recovered, give up */
9bfeb691
DW
317 if (!first_raw) {
318 c->wbuf_len = 0;
1da177e4 319 return;
9bfeb691 320 }
1da177e4
LT
321
322 /* It wasn't. Go on and try to recover nodes complete in the wbuf */
9bfeb691
DW
323 start = ref_offset(first_raw);
324 dbg_noderef("wbuf now recover %08x-%08x (%d bytes in %d nodes)\n",
325 start, end, end - start, nr_refile);
326
1da177e4
LT
327 } else {
328 /* Read succeeded. Copy the remaining data from the wbuf */
329 memcpy(buf + (c->wbuf_ofs - start), c->wbuf, end - c->wbuf_ofs);
330 }
331 }
332 /* OK... we're to rewrite (end-start) bytes of data from first_raw onwards.
333 Either 'buf' contains the data, or we find it in the wbuf */
334
1da177e4 335 /* ... and get an allocation of space from a shiny new block instead */
9fe4854c 336 ret = jffs2_reserve_space_gc(c, end-start, &len, JFFS2_SUMMARY_NOSUM_SIZE);
1da177e4
LT
337 if (ret) {
338 printk(KERN_WARNING "Failed to allocate space for wbuf recovery. Data loss ensues.\n");
9b88f473 339 kfree(buf);
1da177e4
LT
340 return;
341 }
9bfeb691
DW
342
343 ret = jffs2_prealloc_raw_node_refs(c, c->nextblock, nr_refile);
344 if (ret) {
345 printk(KERN_WARNING "Failed to allocate node refs for wbuf recovery. Data loss ensues.\n");
346 kfree(buf);
347 return;
348 }
349
9fe4854c
DW
350 ofs = write_ofs(c);
351
1da177e4 352 if (end-start >= c->wbuf_pagesize) {
7f716cf3 353 /* Need to do another write immediately, but it's possible
9b88f473 354 that this is just because the wbuf itself is completely
182ec4ee
TG
355 full, and there's nothing earlier read back from the
356 flash. Hence 'buf' isn't necessarily what we're writing
9b88f473 357 from. */
7f716cf3 358 unsigned char *rewrite_buf = buf?:c->wbuf;
1da177e4
LT
359 uint32_t towrite = (end-start) - ((end-start)%c->wbuf_pagesize);
360
361 D1(printk(KERN_DEBUG "Write 0x%x bytes at 0x%08x in wbuf recover\n",
362 towrite, ofs));
182ec4ee 363
1da177e4
LT
364#ifdef BREAKMEHEADER
365 static int breakme;
366 if (breakme++ == 20) {
367 printk(KERN_NOTICE "Faking write error at 0x%08x\n", ofs);
368 breakme = 0;
9223a456
TG
369 c->mtd->write(c->mtd, ofs, towrite, &retlen,
370 brokenbuf);
1da177e4
LT
371 ret = -EIO;
372 } else
373#endif
9223a456
TG
374 ret = c->mtd->write(c->mtd, ofs, towrite, &retlen,
375 rewrite_buf);
1da177e4
LT
376
377 if (ret || retlen != towrite) {
378 /* Argh. We tried. Really we did. */
379 printk(KERN_CRIT "Recovery of wbuf failed due to a second write error\n");
9b88f473 380 kfree(buf);
1da177e4 381
2f785402 382 if (retlen)
9bfeb691 383 jffs2_add_physical_node_ref(c, ofs | REF_OBSOLETE, ref_totlen(c, jeb, first_raw), NULL);
1da177e4 384
1da177e4
LT
385 return;
386 }
387 printk(KERN_NOTICE "Recovery of wbuf succeeded to %08x\n", ofs);
388
389 c->wbuf_len = (end - start) - towrite;
390 c->wbuf_ofs = ofs + towrite;
7f716cf3 391 memmove(c->wbuf, rewrite_buf + towrite, c->wbuf_len);
1da177e4 392 /* Don't muck about with c->wbuf_inodes. False positives are harmless. */
1da177e4
LT
393 } else {
394 /* OK, now we're left with the dregs in whichever buffer we're using */
395 if (buf) {
396 memcpy(c->wbuf, buf, end-start);
1da177e4
LT
397 } else {
398 memmove(c->wbuf, c->wbuf + (start - c->wbuf_ofs), end - start);
399 }
400 c->wbuf_ofs = ofs;
401 c->wbuf_len = end - start;
402 }
403
404 /* Now sort out the jffs2_raw_node_refs, moving them from the old to the next block */
405 new_jeb = &c->blocks[ofs / c->sector_size];
406
407 spin_lock(&c->erase_completion_lock);
9bfeb691
DW
408 for (raw = first_raw; raw != jeb->last_node; raw = ref_next(raw)) {
409 uint32_t rawlen = ref_totlen(c, jeb, raw);
410 struct jffs2_inode_cache *ic;
411 struct jffs2_raw_node_ref *new_ref;
412 struct jffs2_raw_node_ref **adjust_ref = NULL;
413 struct jffs2_inode_info *f = NULL;
1da177e4
LT
414
415 D1(printk(KERN_DEBUG "Refiling block of %08x at %08x(%d) to %08x\n",
9bfeb691
DW
416 rawlen, ref_offset(raw), ref_flags(raw), ofs));
417
418 ic = jffs2_raw_ref_to_ic(raw);
419
420 /* Ick. This XATTR mess should be fixed shortly... */
421 if (ic && ic->class == RAWNODE_CLASS_XATTR_DATUM) {
422 struct jffs2_xattr_datum *xd = (void *)ic;
423 BUG_ON(xd->node != raw);
424 adjust_ref = &xd->node;
425 raw->next_in_ino = NULL;
426 ic = NULL;
427 } else if (ic && ic->class == RAWNODE_CLASS_XATTR_REF) {
428 struct jffs2_xattr_datum *xr = (void *)ic;
429 BUG_ON(xr->node != raw);
430 adjust_ref = &xr->node;
431 raw->next_in_ino = NULL;
432 ic = NULL;
433 } else if (ic && ic->class == RAWNODE_CLASS_INODE_CACHE) {
434 struct jffs2_raw_node_ref **p = &ic->nodes;
435
436 /* Remove the old node from the per-inode list */
437 while (*p && *p != (void *)ic) {
438 if (*p == raw) {
439 (*p) = (raw->next_in_ino);
440 raw->next_in_ino = NULL;
441 break;
442 }
443 p = &((*p)->next_in_ino);
444 }
1da177e4 445
9bfeb691
DW
446 if (ic->state == INO_STATE_PRESENT && !ref_obsolete(raw)) {
447 /* If it's an in-core inode, then we have to adjust any
448 full_dirent or full_dnode structure to point to the
449 new version instead of the old */
450 f = jffs2_gc_fetch_inode(c, ic->ino, ic->nlink);
451 if (IS_ERR(f)) {
452 /* Should never happen; it _must_ be present */
453 JFFS2_ERROR("Failed to iget() ino #%u, err %ld\n",
454 ic->ino, PTR_ERR(f));
455 BUG();
456 }
457 /* We don't lock f->sem. There's a number of ways we could
458 end up in here with it already being locked, and nobody's
459 going to modify it on us anyway because we hold the
460 alloc_sem. We're only changing one ->raw pointer too,
461 which we can get away with without upsetting readers. */
462 adjust_ref = jffs2_incore_replace_raw(c, f, raw,
463 (void *)(buf?:c->wbuf) + (ref_offset(raw) - start));
464 } else if (unlikely(ic->state != INO_STATE_PRESENT &&
465 ic->state != INO_STATE_CHECKEDABSENT &&
466 ic->state != INO_STATE_GC)) {
467 JFFS2_ERROR("Inode #%u is in strange state %d!\n", ic->ino, ic->state);
468 BUG();
469 }
470 }
471
472 new_ref = jffs2_link_node_ref(c, new_jeb, ofs | ref_flags(raw), rawlen, ic);
473
474 if (adjust_ref) {
475 BUG_ON(*adjust_ref != raw);
476 *adjust_ref = new_ref;
477 }
478 if (f)
479 jffs2_gc_release_inode(c, f);
480
481 if (!ref_obsolete(raw)) {
1da177e4
LT
482 jeb->dirty_size += rawlen;
483 jeb->used_size -= rawlen;
484 c->dirty_size += rawlen;
9bfeb691
DW
485 c->used_size -= rawlen;
486 raw->flash_offset = ref_offset(raw) | REF_OBSOLETE;
487 BUG_ON(raw->next_in_ino);
1da177e4 488 }
1da177e4 489 ofs += rawlen;
1da177e4
LT
490 }
491
9bfeb691
DW
492 kfree(buf);
493
1da177e4 494 /* Fix up the original jeb now it's on the bad_list */
9bfeb691 495 if (first_raw == jeb->first_node) {
1da177e4
LT
496 D1(printk(KERN_DEBUG "Failing block at %08x is now empty. Moving to erase_pending_list\n", jeb->offset));
497 list_del(&jeb->list);
498 list_add(&jeb->list, &c->erase_pending_list);
499 c->nr_erasing_blocks++;
500 jffs2_erase_pending_trigger(c);
501 }
1da177e4 502
e0c8e42f 503 jffs2_dbg_acct_sanity_check_nolock(c, jeb);
9bfeb691 504 jffs2_dbg_acct_paranoia_check_nolock(c, jeb);
1da177e4 505
e0c8e42f 506 jffs2_dbg_acct_sanity_check_nolock(c, new_jeb);
9bfeb691 507 jffs2_dbg_acct_paranoia_check_nolock(c, new_jeb);
1da177e4
LT
508
509 spin_unlock(&c->erase_completion_lock);
510
9bfeb691
DW
511 D1(printk(KERN_DEBUG "wbuf recovery completed OK. wbuf_ofs 0x%08x, len 0x%x\n", c->wbuf_ofs, c->wbuf_len));
512
1da177e4
LT
513}
514
515/* Meaning of pad argument:
516 0: Do not pad. Probably pointless - we only ever use this when we can't pad anyway.
517 1: Pad, do not adjust nextblock free_size
518 2: Pad, adjust nextblock free_size
519*/
520#define NOPAD 0
521#define PAD_NOACCOUNT 1
522#define PAD_ACCOUNTING 2
523
524static int __jffs2_flush_wbuf(struct jffs2_sb_info *c, int pad)
525{
9bfeb691 526 struct jffs2_eraseblock *wbuf_jeb;
1da177e4
LT
527 int ret;
528 size_t retlen;
529
3be36675 530 /* Nothing to do if not write-buffering the flash. In particular, we shouldn't
1da177e4 531 del_timer() the timer we never initialised. */
3be36675 532 if (!jffs2_is_writebuffered(c))
1da177e4
LT
533 return 0;
534
535 if (!down_trylock(&c->alloc_sem)) {
536 up(&c->alloc_sem);
537 printk(KERN_CRIT "jffs2_flush_wbuf() called with alloc_sem not locked!\n");
538 BUG();
539 }
540
3be36675 541 if (!c->wbuf_len) /* already checked c->wbuf above */
1da177e4
LT
542 return 0;
543
9bfeb691
DW
544 wbuf_jeb = &c->blocks[c->wbuf_ofs / c->sector_size];
545 if (jffs2_prealloc_raw_node_refs(c, wbuf_jeb, c->nextblock->allocated_refs + 1))
2f785402
DW
546 return -ENOMEM;
547
1da177e4
LT
548 /* claim remaining space on the page
549 this happens, if we have a change to a new block,
550 or if fsync forces us to flush the writebuffer.
551 if we have a switch to next page, we will not have
182ec4ee 552 enough remaining space for this.
1da177e4 553 */
daba5cc4 554 if (pad ) {
1da177e4
LT
555 c->wbuf_len = PAD(c->wbuf_len);
556
557 /* Pad with JFFS2_DIRTY_BITMASK initially. this helps out ECC'd NOR
558 with 8 byte page size */
559 memset(c->wbuf + c->wbuf_len, 0, c->wbuf_pagesize - c->wbuf_len);
182ec4ee 560
1da177e4
LT
561 if ( c->wbuf_len + sizeof(struct jffs2_unknown_node) < c->wbuf_pagesize) {
562 struct jffs2_unknown_node *padnode = (void *)(c->wbuf + c->wbuf_len);
563 padnode->magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
564 padnode->nodetype = cpu_to_je16(JFFS2_NODETYPE_PADDING);
565 padnode->totlen = cpu_to_je32(c->wbuf_pagesize - c->wbuf_len);
566 padnode->hdr_crc = cpu_to_je32(crc32(0, padnode, sizeof(*padnode)-4));
567 }
568 }
569 /* else jffs2_flash_writev has actually filled in the rest of the
570 buffer for us, and will deal with the node refs etc. later. */
182ec4ee 571
1da177e4
LT
572#ifdef BREAKME
573 static int breakme;
574 if (breakme++ == 20) {
575 printk(KERN_NOTICE "Faking write error at 0x%08x\n", c->wbuf_ofs);
576 breakme = 0;
9223a456
TG
577 c->mtd->write(c->mtd, c->wbuf_ofs, c->wbuf_pagesize, &retlen,
578 brokenbuf);
1da177e4 579 ret = -EIO;
182ec4ee 580 } else
1da177e4 581#endif
182ec4ee 582
1da177e4
LT
583 ret = c->mtd->write(c->mtd, c->wbuf_ofs, c->wbuf_pagesize, &retlen, c->wbuf);
584
585 if (ret || retlen != c->wbuf_pagesize) {
586 if (ret)
587 printk(KERN_WARNING "jffs2_flush_wbuf(): Write failed with %d\n",ret);
588 else {
589 printk(KERN_WARNING "jffs2_flush_wbuf(): Write was short: %zd instead of %d\n",
590 retlen, c->wbuf_pagesize);
591 ret = -EIO;
592 }
593
594 jffs2_wbuf_recover(c);
595
596 return ret;
597 }
598
1da177e4 599 /* Adjust free size of the block if we padded. */
daba5cc4 600 if (pad) {
0bcc099d 601 uint32_t waste = c->wbuf_pagesize - c->wbuf_len;
1da177e4 602
1da177e4 603 D1(printk(KERN_DEBUG "jffs2_flush_wbuf() adjusting free_size of %sblock at %08x\n",
9bfeb691 604 (wbuf_jeb==c->nextblock)?"next":"", wbuf_jeb->offset));
1da177e4 605
182ec4ee 606 /* wbuf_pagesize - wbuf_len is the amount of space that's to be
1da177e4
LT
607 padded. If there is less free space in the block than that,
608 something screwed up */
9bfeb691 609 if (wbuf_jeb->free_size < waste) {
1da177e4 610 printk(KERN_CRIT "jffs2_flush_wbuf(): Accounting error. wbuf at 0x%08x has 0x%03x bytes, 0x%03x left.\n",
0bcc099d 611 c->wbuf_ofs, c->wbuf_len, waste);
1da177e4 612 printk(KERN_CRIT "jffs2_flush_wbuf(): But free_size for block at 0x%08x is only 0x%08x\n",
9bfeb691 613 wbuf_jeb->offset, wbuf_jeb->free_size);
1da177e4
LT
614 BUG();
615 }
0bcc099d
DW
616
617 spin_lock(&c->erase_completion_lock);
618
9bfeb691 619 jffs2_link_node_ref(c, wbuf_jeb, (c->wbuf_ofs + c->wbuf_len) | REF_OBSOLETE, waste, NULL);
0bcc099d 620 /* FIXME: that made it count as dirty. Convert to wasted */
9bfeb691 621 wbuf_jeb->dirty_size -= waste;
0bcc099d 622 c->dirty_size -= waste;
9bfeb691 623 wbuf_jeb->wasted_size += waste;
0bcc099d
DW
624 c->wasted_size += waste;
625 } else
626 spin_lock(&c->erase_completion_lock);
1da177e4
LT
627
628 /* Stick any now-obsoleted blocks on the erase_pending_list */
629 jffs2_refile_wbuf_blocks(c);
630 jffs2_clear_wbuf_ino_list(c);
631 spin_unlock(&c->erase_completion_lock);
632
633 memset(c->wbuf,0xff,c->wbuf_pagesize);
634 /* adjust write buffer offset, else we get a non contiguous write bug */
635 c->wbuf_ofs += c->wbuf_pagesize;
636 c->wbuf_len = 0;
637 return 0;
638}
639
182ec4ee 640/* Trigger garbage collection to flush the write-buffer.
1da177e4 641 If ino arg is zero, do it if _any_ real (i.e. not GC) writes are
182ec4ee 642 outstanding. If ino arg non-zero, do it only if a write for the
1da177e4
LT
643 given inode is outstanding. */
644int jffs2_flush_wbuf_gc(struct jffs2_sb_info *c, uint32_t ino)
645{
646 uint32_t old_wbuf_ofs;
647 uint32_t old_wbuf_len;
648 int ret = 0;
649
650 D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() called for ino #%u...\n", ino));
651
8aee6ac1
DW
652 if (!c->wbuf)
653 return 0;
654
1da177e4
LT
655 down(&c->alloc_sem);
656 if (!jffs2_wbuf_pending_for_ino(c, ino)) {
657 D1(printk(KERN_DEBUG "Ino #%d not pending in wbuf. Returning\n", ino));
658 up(&c->alloc_sem);
659 return 0;
660 }
661
662 old_wbuf_ofs = c->wbuf_ofs;
663 old_wbuf_len = c->wbuf_len;
664
665 if (c->unchecked_size) {
666 /* GC won't make any progress for a while */
667 D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() padding. Not finished checking\n"));
668 down_write(&c->wbuf_sem);
669 ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
7f716cf3
EH
670 /* retry flushing wbuf in case jffs2_wbuf_recover
671 left some data in the wbuf */
672 if (ret)
7f716cf3 673 ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
1da177e4
LT
674 up_write(&c->wbuf_sem);
675 } else while (old_wbuf_len &&
676 old_wbuf_ofs == c->wbuf_ofs) {
677
678 up(&c->alloc_sem);
679
680 D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() calls gc pass\n"));
681
682 ret = jffs2_garbage_collect_pass(c);
683 if (ret) {
684 /* GC failed. Flush it with padding instead */
685 down(&c->alloc_sem);
686 down_write(&c->wbuf_sem);
687 ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
7f716cf3
EH
688 /* retry flushing wbuf in case jffs2_wbuf_recover
689 left some data in the wbuf */
690 if (ret)
7f716cf3 691 ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
1da177e4
LT
692 up_write(&c->wbuf_sem);
693 break;
694 }
695 down(&c->alloc_sem);
696 }
697
698 D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() ends...\n"));
699
700 up(&c->alloc_sem);
701 return ret;
702}
703
704/* Pad write-buffer to end and write it, wasting space. */
705int jffs2_flush_wbuf_pad(struct jffs2_sb_info *c)
706{
707 int ret;
708
8aee6ac1
DW
709 if (!c->wbuf)
710 return 0;
711
1da177e4
LT
712 down_write(&c->wbuf_sem);
713 ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT);
7f716cf3
EH
714 /* retry - maybe wbuf recover left some data in wbuf. */
715 if (ret)
716 ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT);
1da177e4
LT
717 up_write(&c->wbuf_sem);
718
719 return ret;
720}
dcb09328
TG
721
722static size_t jffs2_fill_wbuf(struct jffs2_sb_info *c, const uint8_t *buf,
723 size_t len)
1da177e4 724{
dcb09328
TG
725 if (len && !c->wbuf_len && (len >= c->wbuf_pagesize))
726 return 0;
727
728 if (len > (c->wbuf_pagesize - c->wbuf_len))
729 len = c->wbuf_pagesize - c->wbuf_len;
730 memcpy(c->wbuf + c->wbuf_len, buf, len);
731 c->wbuf_len += (uint32_t) len;
732 return len;
733}
734
735int jffs2_flash_writev(struct jffs2_sb_info *c, const struct kvec *invecs,
736 unsigned long count, loff_t to, size_t *retlen,
737 uint32_t ino)
738{
739 struct jffs2_eraseblock *jeb;
740 size_t wbuf_retlen, donelen = 0;
1da177e4 741 uint32_t outvec_to = to;
dcb09328 742 int ret, invec;
1da177e4 743
dcb09328 744 /* If not writebuffered flash, don't bother */
3be36675 745 if (!jffs2_is_writebuffered(c))
1da177e4 746 return jffs2_flash_direct_writev(c, invecs, count, to, retlen);
182ec4ee 747
1da177e4
LT
748 down_write(&c->wbuf_sem);
749
750 /* If wbuf_ofs is not initialized, set it to target address */
751 if (c->wbuf_ofs == 0xFFFFFFFF) {
752 c->wbuf_ofs = PAGE_DIV(to);
182ec4ee 753 c->wbuf_len = PAGE_MOD(to);
1da177e4
LT
754 memset(c->wbuf,0xff,c->wbuf_pagesize);
755 }
756
dcb09328
TG
757 /*
758 * Sanity checks on target address. It's permitted to write
759 * at PAD(c->wbuf_len+c->wbuf_ofs), and it's permitted to
760 * write at the beginning of a new erase block. Anything else,
761 * and you die. New block starts at xxx000c (0-b = block
762 * header)
763 */
3be36675 764 if (SECTOR_ADDR(to) != SECTOR_ADDR(c->wbuf_ofs)) {
1da177e4
LT
765 /* It's a write to a new block */
766 if (c->wbuf_len) {
dcb09328
TG
767 D1(printk(KERN_DEBUG "jffs2_flash_writev() to 0x%lx "
768 "causes flush of wbuf at 0x%08x\n",
769 (unsigned long)to, c->wbuf_ofs));
1da177e4 770 ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT);
dcb09328
TG
771 if (ret)
772 goto outerr;
1da177e4
LT
773 }
774 /* set pointer to new block */
775 c->wbuf_ofs = PAGE_DIV(to);
182ec4ee
TG
776 c->wbuf_len = PAGE_MOD(to);
777 }
1da177e4
LT
778
779 if (to != PAD(c->wbuf_ofs + c->wbuf_len)) {
780 /* We're not writing immediately after the writebuffer. Bad. */
dcb09328
TG
781 printk(KERN_CRIT "jffs2_flash_writev(): Non-contiguous write "
782 "to %08lx\n", (unsigned long)to);
1da177e4
LT
783 if (c->wbuf_len)
784 printk(KERN_CRIT "wbuf was previously %08x-%08x\n",
dcb09328 785 c->wbuf_ofs, c->wbuf_ofs+c->wbuf_len);
1da177e4
LT
786 BUG();
787 }
788
dcb09328
TG
789 /* adjust alignment offset */
790 if (c->wbuf_len != PAGE_MOD(to)) {
791 c->wbuf_len = PAGE_MOD(to);
792 /* take care of alignment to next page */
793 if (!c->wbuf_len) {
794 c->wbuf_len = c->wbuf_pagesize;
795 ret = __jffs2_flush_wbuf(c, NOPAD);
796 if (ret)
797 goto outerr;
1da177e4
LT
798 }
799 }
800
dcb09328
TG
801 for (invec = 0; invec < count; invec++) {
802 int vlen = invecs[invec].iov_len;
803 uint8_t *v = invecs[invec].iov_base;
7f716cf3 804
dcb09328 805 wbuf_retlen = jffs2_fill_wbuf(c, v, vlen);
7f716cf3 806
dcb09328
TG
807 if (c->wbuf_len == c->wbuf_pagesize) {
808 ret = __jffs2_flush_wbuf(c, NOPAD);
809 if (ret)
810 goto outerr;
1da177e4 811 }
dcb09328
TG
812 vlen -= wbuf_retlen;
813 outvec_to += wbuf_retlen;
1da177e4 814 donelen += wbuf_retlen;
dcb09328
TG
815 v += wbuf_retlen;
816
817 if (vlen >= c->wbuf_pagesize) {
818 ret = c->mtd->write(c->mtd, outvec_to, PAGE_DIV(vlen),
819 &wbuf_retlen, v);
820 if (ret < 0 || wbuf_retlen != PAGE_DIV(vlen))
821 goto outfile;
822
823 vlen -= wbuf_retlen;
824 outvec_to += wbuf_retlen;
825 c->wbuf_ofs = outvec_to;
826 donelen += wbuf_retlen;
827 v += wbuf_retlen;
1da177e4
LT
828 }
829
dcb09328
TG
830 wbuf_retlen = jffs2_fill_wbuf(c, v, vlen);
831 if (c->wbuf_len == c->wbuf_pagesize) {
832 ret = __jffs2_flush_wbuf(c, NOPAD);
833 if (ret)
834 goto outerr;
835 }
1da177e4 836
dcb09328
TG
837 outvec_to += wbuf_retlen;
838 donelen += wbuf_retlen;
1da177e4 839 }
1da177e4 840
dcb09328
TG
841 /*
842 * If there's a remainder in the wbuf and it's a non-GC write,
843 * remember that the wbuf affects this ino
844 */
1da177e4
LT
845 *retlen = donelen;
846
e631ddba
FH
847 if (jffs2_sum_active()) {
848 int res = jffs2_sum_add_kvec(c, invecs, count, (uint32_t) to);
849 if (res)
850 return res;
851 }
852
1da177e4
LT
853 if (c->wbuf_len && ino)
854 jffs2_wbuf_dirties_inode(c, ino);
855
856 ret = 0;
dcb09328
TG
857 up_write(&c->wbuf_sem);
858 return ret;
859
860outfile:
861 /*
862 * At this point we have no problem, c->wbuf is empty. However
863 * refile nextblock to avoid writing again to same address.
864 */
865
866 spin_lock(&c->erase_completion_lock);
867
868 jeb = &c->blocks[outvec_to / c->sector_size];
869 jffs2_block_refile(c, jeb, REFILE_ANYWAY);
870
871 spin_unlock(&c->erase_completion_lock);
182ec4ee 872
dcb09328
TG
873outerr:
874 *retlen = 0;
1da177e4
LT
875 up_write(&c->wbuf_sem);
876 return ret;
877}
878
879/*
880 * This is the entry for flash write.
881 * Check, if we work on NAND FLASH, if so build an kvec and write it via vritev
882*/
9bfeb691
DW
883int jffs2_flash_write(struct jffs2_sb_info *c, loff_t ofs, size_t len,
884 size_t *retlen, const u_char *buf)
1da177e4
LT
885{
886 struct kvec vecs[1];
887
3be36675 888 if (!jffs2_is_writebuffered(c))
e631ddba 889 return jffs2_flash_direct_write(c, ofs, len, retlen, buf);
1da177e4
LT
890
891 vecs[0].iov_base = (unsigned char *) buf;
892 vecs[0].iov_len = len;
893 return jffs2_flash_writev(c, vecs, 1, ofs, retlen, 0);
894}
895
896/*
897 Handle readback from writebuffer and ECC failure return
898*/
899int jffs2_flash_read(struct jffs2_sb_info *c, loff_t ofs, size_t len, size_t *retlen, u_char *buf)
900{
901 loff_t orbf = 0, owbf = 0, lwbf = 0;
902 int ret;
903
3be36675 904 if (!jffs2_is_writebuffered(c))
1da177e4
LT
905 return c->mtd->read(c->mtd, ofs, len, retlen, buf);
906
3be36675 907 /* Read flash */
894214d1 908 down_read(&c->wbuf_sem);
9223a456 909 ret = c->mtd->read(c->mtd, ofs, len, retlen, buf);
3be36675
AV
910
911 if ( (ret == -EBADMSG) && (*retlen == len) ) {
912 printk(KERN_WARNING "mtd->read(0x%zx bytes from 0x%llx) returned ECC error\n",
913 len, ofs);
182ec4ee
TG
914 /*
915 * We have the raw data without ECC correction in the buffer, maybe
3be36675
AV
916 * we are lucky and all data or parts are correct. We check the node.
917 * If data are corrupted node check will sort it out.
918 * We keep this block, it will fail on write or erase and the we
919 * mark it bad. Or should we do that now? But we should give him a chance.
182ec4ee 920 * Maybe we had a system crash or power loss before the ecc write or
3be36675
AV
921 * a erase was completed.
922 * So we return success. :)
923 */
924 ret = 0;
182ec4ee 925 }
3be36675 926
1da177e4
LT
927 /* if no writebuffer available or write buffer empty, return */
928 if (!c->wbuf_pagesize || !c->wbuf_len)
894214d1 929 goto exit;
1da177e4
LT
930
931 /* if we read in a different block, return */
3be36675 932 if (SECTOR_ADDR(ofs) != SECTOR_ADDR(c->wbuf_ofs))
894214d1 933 goto exit;
1da177e4
LT
934
935 if (ofs >= c->wbuf_ofs) {
936 owbf = (ofs - c->wbuf_ofs); /* offset in write buffer */
937 if (owbf > c->wbuf_len) /* is read beyond write buffer ? */
938 goto exit;
939 lwbf = c->wbuf_len - owbf; /* number of bytes to copy */
182ec4ee 940 if (lwbf > len)
1da177e4 941 lwbf = len;
182ec4ee 942 } else {
1da177e4
LT
943 orbf = (c->wbuf_ofs - ofs); /* offset in read buffer */
944 if (orbf > len) /* is write beyond write buffer ? */
945 goto exit;
946 lwbf = len - orbf; /* number of bytes to copy */
182ec4ee 947 if (lwbf > c->wbuf_len)
1da177e4 948 lwbf = c->wbuf_len;
182ec4ee 949 }
1da177e4
LT
950 if (lwbf > 0)
951 memcpy(buf+orbf,c->wbuf+owbf,lwbf);
952
953exit:
954 up_read(&c->wbuf_sem);
955 return ret;
956}
957
958/*
959 * Check, if the out of band area is empty
960 */
961int jffs2_check_oob_empty( struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, int mode)
962{
963 unsigned char *buf;
964 int ret = 0;
965 int i,len,page;
966 size_t retlen;
967 int oob_size;
968
969 /* allocate a buffer for all oob data in this sector */
970 oob_size = c->mtd->oobsize;
971 len = 4 * oob_size;
972 buf = kmalloc(len, GFP_KERNEL);
973 if (!buf) {
974 printk(KERN_NOTICE "jffs2_check_oob_empty(): allocation of temporary data buffer for oob check failed\n");
975 return -ENOMEM;
976 }
182ec4ee 977 /*
1da177e4
LT
978 * if mode = 0, we scan for a total empty oob area, else we have
979 * to take care of the cleanmarker in the first page of the block
980 */
981 ret = jffs2_flash_read_oob(c, jeb->offset, len , &retlen, buf);
982 if (ret) {
983 D1(printk(KERN_WARNING "jffs2_check_oob_empty(): Read OOB failed %d for block at %08x\n", ret, jeb->offset));
984 goto out;
985 }
182ec4ee 986
1da177e4
LT
987 if (retlen < len) {
988 D1(printk(KERN_WARNING "jffs2_check_oob_empty(): Read OOB return short read "
989 "(%zd bytes not %d) for block at %08x\n", retlen, len, jeb->offset));
990 ret = -EIO;
991 goto out;
992 }
182ec4ee 993
1da177e4
LT
994 /* Special check for first page */
995 for(i = 0; i < oob_size ; i++) {
996 /* Yeah, we know about the cleanmarker. */
182ec4ee 997 if (mode && i >= c->fsdata_pos &&
1da177e4
LT
998 i < c->fsdata_pos + c->fsdata_len)
999 continue;
1000
1001 if (buf[i] != 0xFF) {
1002 D2(printk(KERN_DEBUG "Found %02x at %x in OOB for %08x\n",
730554d9 1003 buf[i], i, jeb->offset));
182ec4ee 1004 ret = 1;
1da177e4
LT
1005 goto out;
1006 }
1007 }
1008
182ec4ee 1009 /* we know, we are aligned :) */
1da177e4
LT
1010 for (page = oob_size; page < len; page += sizeof(long)) {
1011 unsigned long dat = *(unsigned long *)(&buf[page]);
1012 if(dat != -1) {
182ec4ee 1013 ret = 1;
1da177e4
LT
1014 goto out;
1015 }
1016 }
1017
1018out:
182ec4ee
TG
1019 kfree(buf);
1020
1da177e4
LT
1021 return ret;
1022}
1023
1024/*
1025* Scan for a valid cleanmarker and for bad blocks
1026* For virtual blocks (concatenated physical blocks) check the cleanmarker
1027* only in the first page of the first physical block, but scan for bad blocks in all
1028* physical blocks
1029*/
1030int jffs2_check_nand_cleanmarker (struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb)
1031{
1032 struct jffs2_unknown_node n;
1033 unsigned char buf[2 * NAND_MAX_OOBSIZE];
1034 unsigned char *p;
1035 int ret, i, cnt, retval = 0;
1036 size_t retlen, offset;
1037 int oob_size;
1038
1039 offset = jeb->offset;
1040 oob_size = c->mtd->oobsize;
1041
1042 /* Loop through the physical blocks */
1043 for (cnt = 0; cnt < (c->sector_size / c->mtd->erasesize); cnt++) {
1044 /* Check first if the block is bad. */
1045 if (c->mtd->block_isbad (c->mtd, offset)) {
1046 D1 (printk (KERN_WARNING "jffs2_check_nand_cleanmarker(): Bad block at %08x\n", jeb->offset));
1047 return 2;
1048 }
1049 /*
1050 * We read oob data from page 0 and 1 of the block.
1051 * page 0 contains cleanmarker and badblock info
1052 * page 1 contains failure count of this block
1053 */
1054 ret = c->mtd->read_oob (c->mtd, offset, oob_size << 1, &retlen, buf);
1055
1056 if (ret) {
1057 D1 (printk (KERN_WARNING "jffs2_check_nand_cleanmarker(): Read OOB failed %d for block at %08x\n", ret, jeb->offset));
1058 return ret;
1059 }
1060 if (retlen < (oob_size << 1)) {
1061 D1 (printk (KERN_WARNING "jffs2_check_nand_cleanmarker(): Read OOB return short read (%zd bytes not %d) for block at %08x\n", retlen, oob_size << 1, jeb->offset));
1062 return -EIO;
1063 }
1064
1065 /* Check cleanmarker only on the first physical block */
1066 if (!cnt) {
1067 n.magic = cpu_to_je16 (JFFS2_MAGIC_BITMASK);
1068 n.nodetype = cpu_to_je16 (JFFS2_NODETYPE_CLEANMARKER);
1069 n.totlen = cpu_to_je32 (8);
1070 p = (unsigned char *) &n;
1071
1072 for (i = 0; i < c->fsdata_len; i++) {
1073 if (buf[c->fsdata_pos + i] != p[i]) {
1074 retval = 1;
1075 }
1076 }
1077 D1(if (retval == 1) {
1078 printk(KERN_WARNING "jffs2_check_nand_cleanmarker(): Cleanmarker node not detected in block at %08x\n", jeb->offset);
9bfeb691 1079 printk(KERN_WARNING "OOB at %08zx was ", offset);
1da177e4
LT
1080 for (i=0; i < oob_size; i++) {
1081 printk("%02x ", buf[i]);
1082 }
1083 printk("\n");
1084 })
1085 }
1086 offset += c->mtd->erasesize;
1087 }
1088 return retval;
1089}
1090
1091int jffs2_write_nand_cleanmarker(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb)
1092{
1093 struct jffs2_unknown_node n;
1094 int ret;
1095 size_t retlen;
1096
1097 n.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
1098 n.nodetype = cpu_to_je16(JFFS2_NODETYPE_CLEANMARKER);
1099 n.totlen = cpu_to_je32(8);
1100
1101 ret = jffs2_flash_write_oob(c, jeb->offset + c->fsdata_pos, c->fsdata_len, &retlen, (unsigned char *)&n);
182ec4ee 1102
1da177e4
LT
1103 if (ret) {
1104 D1(printk(KERN_WARNING "jffs2_write_nand_cleanmarker(): Write failed for block at %08x: error %d\n", jeb->offset, ret));
1105 return ret;
1106 }
1107 if (retlen != c->fsdata_len) {
1108 D1(printk(KERN_WARNING "jffs2_write_nand_cleanmarker(): Short write for block at %08x: %zd not %d\n", jeb->offset, retlen, c->fsdata_len));
1109 return ret;
1110 }
1111 return 0;
1112}
1113
182ec4ee 1114/*
1da177e4
LT
1115 * On NAND we try to mark this block bad. If the block was erased more
1116 * than MAX_ERASE_FAILURES we mark it finaly bad.
1117 * Don't care about failures. This block remains on the erase-pending
1118 * or badblock list as long as nobody manipulates the flash with
1119 * a bootloader or something like that.
1120 */
1121
1122int jffs2_write_nand_badblock(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, uint32_t bad_offset)
1123{
1124 int ret;
1125
1126 /* if the count is < max, we try to write the counter to the 2nd page oob area */
1127 if( ++jeb->bad_count < MAX_ERASE_FAILURES)
1128 return 0;
1129
1130 if (!c->mtd->block_markbad)
1131 return 1; // What else can we do?
1132
1133 D1(printk(KERN_WARNING "jffs2_write_nand_badblock(): Marking bad block at %08x\n", bad_offset));
1134 ret = c->mtd->block_markbad(c->mtd, bad_offset);
182ec4ee 1135
1da177e4
LT
1136 if (ret) {
1137 D1(printk(KERN_WARNING "jffs2_write_nand_badblock(): Write failed for block at %08x: error %d\n", jeb->offset, ret));
1138 return ret;
1139 }
1140 return 1;
1141}
1142
1da177e4
LT
1143static int jffs2_nand_set_oobinfo(struct jffs2_sb_info *c)
1144{
5bd34c09 1145 struct nand_ecclayout *oinfo = c->mtd->ecclayout;
1da177e4
LT
1146
1147 /* Do this only, if we have an oob buffer */
1148 if (!c->mtd->oobsize)
1149 return 0;
182ec4ee 1150
1da177e4
LT
1151 /* Cleanmarker is out-of-band, so inline size zero */
1152 c->cleanmarker_size = 0;
1153
1154 /* Should we use autoplacement ? */
5bd34c09
TG
1155 if (!oinfo) {
1156 D1(printk(KERN_DEBUG "JFFS2 on NAND. No autoplacment info found\n"));
1157 return -EINVAL;
1158 }
182ec4ee 1159
5bd34c09
TG
1160 D1(printk(KERN_DEBUG "JFFS2 using autoplace on NAND\n"));
1161 /* Get the position of the free bytes */
1162 if (!oinfo->oobfree[0].length) {
1163 printk (KERN_WARNING "jffs2_nand_set_oobinfo(): Eeep."
1164 " Autoplacement selected and no empty space in oob\n");
1165 return -ENOSPC;
1da177e4 1166 }
5bd34c09
TG
1167 c->fsdata_pos = oinfo->oobfree[0].offset;
1168 c->fsdata_len = oinfo->oobfree[0].length;
1169 if (c->fsdata_len > 8)
1170 c->fsdata_len = 8;
1171
1da177e4
LT
1172 return 0;
1173}
1174
1175int jffs2_nand_flash_setup(struct jffs2_sb_info *c)
1176{
1177 int res;
1178
1179 /* Initialise write buffer */
1180 init_rwsem(&c->wbuf_sem);
28318776 1181 c->wbuf_pagesize = c->mtd->writesize;
1da177e4 1182 c->wbuf_ofs = 0xFFFFFFFF;
182ec4ee 1183
1da177e4
LT
1184 c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1185 if (!c->wbuf)
1186 return -ENOMEM;
1187
1188 res = jffs2_nand_set_oobinfo(c);
1189
1190#ifdef BREAKME
1191 if (!brokenbuf)
1192 brokenbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1193 if (!brokenbuf) {
1194 kfree(c->wbuf);
1195 return -ENOMEM;
1196 }
1197 memset(brokenbuf, 0xdb, c->wbuf_pagesize);
1198#endif
1199 return res;
1200}
1201
1202void jffs2_nand_flash_cleanup(struct jffs2_sb_info *c)
1203{
1204 kfree(c->wbuf);
1205}
1206
8f15fd55
AV
1207int jffs2_dataflash_setup(struct jffs2_sb_info *c) {
1208 c->cleanmarker_size = 0; /* No cleanmarkers needed */
182ec4ee 1209
8f15fd55
AV
1210 /* Initialize write buffer */
1211 init_rwsem(&c->wbuf_sem);
8f15fd55 1212
182ec4ee 1213
daba5cc4 1214 c->wbuf_pagesize = c->mtd->erasesize;
182ec4ee 1215
daba5cc4
AB
1216 /* Find a suitable c->sector_size
1217 * - Not too much sectors
1218 * - Sectors have to be at least 4 K + some bytes
1219 * - All known dataflashes have erase sizes of 528 or 1056
1220 * - we take at least 8 eraseblocks and want to have at least 8K size
1221 * - The concatenation should be a power of 2
1222 */
1223
1224 c->sector_size = 8 * c->mtd->erasesize;
182ec4ee 1225
daba5cc4
AB
1226 while (c->sector_size < 8192) {
1227 c->sector_size *= 2;
1228 }
182ec4ee 1229
daba5cc4
AB
1230 /* It may be necessary to adjust the flash size */
1231 c->flash_size = c->mtd->size;
8f15fd55 1232
daba5cc4
AB
1233 if ((c->flash_size % c->sector_size) != 0) {
1234 c->flash_size = (c->flash_size / c->sector_size) * c->sector_size;
1235 printk(KERN_WARNING "JFFS2 flash size adjusted to %dKiB\n", c->flash_size);
1236 };
182ec4ee 1237
daba5cc4 1238 c->wbuf_ofs = 0xFFFFFFFF;
8f15fd55
AV
1239 c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1240 if (!c->wbuf)
1241 return -ENOMEM;
1242
daba5cc4 1243 printk(KERN_INFO "JFFS2 write-buffering enabled buffer (%d) erasesize (%d)\n", c->wbuf_pagesize, c->sector_size);
8f15fd55
AV
1244
1245 return 0;
1246}
1247
1248void jffs2_dataflash_cleanup(struct jffs2_sb_info *c) {
1249 kfree(c->wbuf);
1250}
8f15fd55 1251
59da721a 1252int jffs2_nor_wbuf_flash_setup(struct jffs2_sb_info *c) {
c8b229de
JE
1253 /* Cleanmarker currently occupies whole programming regions,
1254 * either one or 2 for 8Byte STMicro flashes. */
1255 c->cleanmarker_size = max(16u, c->mtd->writesize);
59da721a
NP
1256
1257 /* Initialize write buffer */
1258 init_rwsem(&c->wbuf_sem);
28318776 1259 c->wbuf_pagesize = c->mtd->writesize;
59da721a
NP
1260 c->wbuf_ofs = 0xFFFFFFFF;
1261
1262 c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1263 if (!c->wbuf)
1264 return -ENOMEM;
1265
1266 return 0;
1267}
1268
1269void jffs2_nor_wbuf_flash_cleanup(struct jffs2_sb_info *c) {
1270 kfree(c->wbuf);
1271}