battery: sec_battery: export {CURRENT/VOLTAGE}_MAX to sysfs
[GitHub/LineageOS/android_kernel_samsung_universal7580.git] / fs / inode.c
CommitLineData
1da177e4 1/*
1da177e4 2 * (C) 1997 Linus Torvalds
4b4563dc 3 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
1da177e4 4 */
e59cc473 5#include <linux/export.h>
1da177e4
LT
6#include <linux/fs.h>
7#include <linux/mm.h>
1da177e4 8#include <linux/backing-dev.h>
1da177e4
LT
9#include <linux/hash.h>
10#include <linux/swap.h>
11#include <linux/security.h>
1da177e4
LT
12#include <linux/cdev.h>
13#include <linux/bootmem.h>
3be25f49 14#include <linux/fsnotify.h>
fc33a7bb 15#include <linux/mount.h>
f19d4a8f 16#include <linux/posix_acl.h>
9ce6e0be 17#include <linux/prefetch.h>
4b4563dc 18#include <linux/buffer_head.h> /* for inode_has_buffers */
7ada4db8 19#include <linux/ratelimit.h>
a66979ab 20#include "internal.h"
1da177e4 21
250df6ed 22/*
4b4563dc 23 * Inode locking rules:
250df6ed
DC
24 *
25 * inode->i_lock protects:
26 * inode->i_state, inode->i_hash, __iget()
09cc9fc7 27 * inode->i_sb->s_inode_lru_lock protects:
98b745c6 28 * inode->i_sb->s_inode_lru, inode->i_lru
55fa6091
DC
29 * inode_sb_list_lock protects:
30 * sb->s_inodes, inode->i_sb_list
f758eeab 31 * bdi->wb.list_lock protects:
a66979ab 32 * bdi->wb.b_{dirty,io,more_io}, inode->i_wb_list
67a23c49
DC
33 * inode_hash_lock protects:
34 * inode_hashtable, inode->i_hash
250df6ed
DC
35 *
36 * Lock ordering:
55fa6091
DC
37 *
38 * inode_sb_list_lock
39 * inode->i_lock
09cc9fc7 40 * inode->i_sb->s_inode_lru_lock
a66979ab 41 *
f758eeab 42 * bdi->wb.list_lock
a66979ab 43 * inode->i_lock
67a23c49
DC
44 *
45 * inode_hash_lock
46 * inode_sb_list_lock
47 * inode->i_lock
48 *
49 * iunique_lock
50 * inode_hash_lock
250df6ed
DC
51 */
52
fa3536cc
ED
53static unsigned int i_hash_mask __read_mostly;
54static unsigned int i_hash_shift __read_mostly;
67a23c49
DC
55static struct hlist_head *inode_hashtable __read_mostly;
56static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
1da177e4 57
55fa6091
DC
58__cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_sb_list_lock);
59
7dcda1c9
JA
60/*
61 * Empty aops. Can be used for the cases where the user does not
62 * define any of the address_space operations.
63 */
64const struct address_space_operations empty_aops = {
65};
66EXPORT_SYMBOL(empty_aops);
67
1da177e4
LT
68/*
69 * Statistics gathering..
70 */
71struct inodes_stat_t inodes_stat;
72
3e880fb5 73static DEFINE_PER_CPU(unsigned int, nr_inodes);
fcb94f72 74static DEFINE_PER_CPU(unsigned int, nr_unused);
cffbc8aa 75
6b3304b5 76static struct kmem_cache *inode_cachep __read_mostly;
1da177e4 77
3e880fb5 78static int get_nr_inodes(void)
cffbc8aa 79{
3e880fb5
NP
80 int i;
81 int sum = 0;
82 for_each_possible_cpu(i)
83 sum += per_cpu(nr_inodes, i);
84 return sum < 0 ? 0 : sum;
cffbc8aa
DC
85}
86
87static inline int get_nr_inodes_unused(void)
88{
fcb94f72
DC
89 int i;
90 int sum = 0;
91 for_each_possible_cpu(i)
92 sum += per_cpu(nr_unused, i);
93 return sum < 0 ? 0 : sum;
cffbc8aa
DC
94}
95
96int get_nr_dirty_inodes(void)
97{
3e880fb5 98 /* not actually dirty inodes, but a wild approximation */
cffbc8aa
DC
99 int nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
100 return nr_dirty > 0 ? nr_dirty : 0;
cffbc8aa
DC
101}
102
103/*
104 * Handle nr_inode sysctl
105 */
106#ifdef CONFIG_SYSCTL
107int proc_nr_inodes(ctl_table *table, int write,
108 void __user *buffer, size_t *lenp, loff_t *ppos)
109{
110 inodes_stat.nr_inodes = get_nr_inodes();
fcb94f72 111 inodes_stat.nr_unused = get_nr_inodes_unused();
cffbc8aa
DC
112 return proc_dointvec(table, write, buffer, lenp, ppos);
113}
114#endif
115
2cb1599f
DC
116/**
117 * inode_init_always - perform inode structure intialisation
0bc02f3f
RD
118 * @sb: superblock inode belongs to
119 * @inode: inode to initialise
2cb1599f
DC
120 *
121 * These are initializations that need to be done on every inode
122 * allocation as the fields are not initialised by slab allocation.
123 */
54e34621 124int inode_init_always(struct super_block *sb, struct inode *inode)
1da177e4 125{
6e1d5dcc 126 static const struct inode_operations empty_iops;
99ac48f5 127 static const struct file_operations empty_fops;
6b3304b5 128 struct address_space *const mapping = &inode->i_data;
2cb1599f
DC
129
130 inode->i_sb = sb;
131 inode->i_blkbits = sb->s_blocksize_bits;
132 inode->i_flags = 0;
133 atomic_set(&inode->i_count, 1);
134 inode->i_op = &empty_iops;
135 inode->i_fop = &empty_fops;
a78ef704 136 inode->__i_nlink = 1;
3ddcd056 137 inode->i_opflags = 0;
92361636
EB
138 i_uid_write(inode, 0);
139 i_gid_write(inode, 0);
2cb1599f
DC
140 atomic_set(&inode->i_writecount, 0);
141 inode->i_size = 0;
142 inode->i_blocks = 0;
143 inode->i_bytes = 0;
144 inode->i_generation = 0;
1da177e4 145#ifdef CONFIG_QUOTA
2cb1599f 146 memset(&inode->i_dquot, 0, sizeof(inode->i_dquot));
1da177e4 147#endif
2cb1599f
DC
148 inode->i_pipe = NULL;
149 inode->i_bdev = NULL;
150 inode->i_cdev = NULL;
151 inode->i_rdev = 0;
152 inode->dirtied_when = 0;
6146f0d5
MZ
153
154 if (security_inode_alloc(inode))
54e34621 155 goto out;
2cb1599f
DC
156 spin_lock_init(&inode->i_lock);
157 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
158
159 mutex_init(&inode->i_mutex);
160 lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key);
161
bd5fe6c5 162 atomic_set(&inode->i_dio_count, 0);
2cb1599f
DC
163
164 mapping->a_ops = &empty_aops;
165 mapping->host = inode;
166 mapping->flags = 0;
91b94594 167 atomic_set(&mapping->i_mmap_writable, 0);
3c1d4378 168 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
252aa6f5 169 mapping->private_data = NULL;
2cb1599f
DC
170 mapping->backing_dev_info = &default_backing_dev_info;
171 mapping->writeback_index = 0;
3c2a0909
S
172#if defined(CONFIG_MMC_DW_FMP_ECRYPT_FS) || defined(CONFIG_UFS_FMP_ECRYPT_FS)
173 mapping->iv = NULL;
174 mapping->key = NULL;
175 mapping->key_length = 0;
176 mapping->alg = NULL;
177 mapping->sensitive_data_index = 0;
178 mapping->hash_tfm = NULL;
179#ifdef CONFIG_CRYPTO_FIPS
180 mapping->cc_enable = 0;
181#endif
182#endif
183#ifdef CONFIG_SDP
184 mapping->userid = 0;
185#endif
2cb1599f
DC
186
187 /*
188 * If the block_device provides a backing_dev_info for client
189 * inodes then use that. Otherwise the inode share the bdev's
190 * backing_dev_info.
191 */
192 if (sb->s_bdev) {
193 struct backing_dev_info *bdi;
194
2c96ce9f 195 bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info;
2cb1599f
DC
196 mapping->backing_dev_info = bdi;
197 }
198 inode->i_private = NULL;
199 inode->i_mapping = mapping;
b3d9b7a3 200 INIT_HLIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */
f19d4a8f
AV
201#ifdef CONFIG_FS_POSIX_ACL
202 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
203#endif
2cb1599f 204
3be25f49
EP
205#ifdef CONFIG_FSNOTIFY
206 inode->i_fsnotify_mask = 0;
207#endif
208
3e880fb5 209 this_cpu_inc(nr_inodes);
cffbc8aa 210
54e34621 211 return 0;
54e34621
CH
212out:
213 return -ENOMEM;
1da177e4 214}
2cb1599f
DC
215EXPORT_SYMBOL(inode_init_always);
216
217static struct inode *alloc_inode(struct super_block *sb)
218{
219 struct inode *inode;
220
221 if (sb->s_op->alloc_inode)
222 inode = sb->s_op->alloc_inode(sb);
223 else
224 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
225
54e34621
CH
226 if (!inode)
227 return NULL;
228
229 if (unlikely(inode_init_always(sb, inode))) {
230 if (inode->i_sb->s_op->destroy_inode)
231 inode->i_sb->s_op->destroy_inode(inode);
232 else
233 kmem_cache_free(inode_cachep, inode);
234 return NULL;
235 }
236
237 return inode;
2cb1599f 238}
1da177e4 239
ff0c7d15
NP
240void free_inode_nonrcu(struct inode *inode)
241{
242 kmem_cache_free(inode_cachep, inode);
243}
244EXPORT_SYMBOL(free_inode_nonrcu);
245
2e00c97e 246void __destroy_inode(struct inode *inode)
1da177e4 247{
b7542f8c 248 BUG_ON(inode_has_buffers(inode));
1da177e4 249 security_inode_free(inode);
3be25f49 250 fsnotify_inode_delete(inode);
7ada4db8
MS
251 if (!inode->i_nlink) {
252 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
253 atomic_long_dec(&inode->i_sb->s_remove_count);
254 }
255
f19d4a8f
AV
256#ifdef CONFIG_FS_POSIX_ACL
257 if (inode->i_acl && inode->i_acl != ACL_NOT_CACHED)
258 posix_acl_release(inode->i_acl);
259 if (inode->i_default_acl && inode->i_default_acl != ACL_NOT_CACHED)
260 posix_acl_release(inode->i_default_acl);
261#endif
3e880fb5 262 this_cpu_dec(nr_inodes);
2e00c97e
CH
263}
264EXPORT_SYMBOL(__destroy_inode);
265
fa0d7e3d
NP
266static void i_callback(struct rcu_head *head)
267{
268 struct inode *inode = container_of(head, struct inode, i_rcu);
fa0d7e3d
NP
269 kmem_cache_free(inode_cachep, inode);
270}
271
56b0dacf 272static void destroy_inode(struct inode *inode)
2e00c97e 273{
7ccf19a8 274 BUG_ON(!list_empty(&inode->i_lru));
2e00c97e 275 __destroy_inode(inode);
1da177e4
LT
276 if (inode->i_sb->s_op->destroy_inode)
277 inode->i_sb->s_op->destroy_inode(inode);
278 else
fa0d7e3d 279 call_rcu(&inode->i_rcu, i_callback);
1da177e4 280}
1da177e4 281
7ada4db8
MS
282/**
283 * drop_nlink - directly drop an inode's link count
284 * @inode: inode
285 *
286 * This is a low-level filesystem helper to replace any
287 * direct filesystem manipulation of i_nlink. In cases
288 * where we are attempting to track writes to the
289 * filesystem, a decrement to zero means an imminent
290 * write when the file is truncated and actually unlinked
291 * on the filesystem.
292 */
293void drop_nlink(struct inode *inode)
294{
295 WARN_ON(inode->i_nlink == 0);
296 inode->__i_nlink--;
297 if (!inode->i_nlink)
298 atomic_long_inc(&inode->i_sb->s_remove_count);
299}
300EXPORT_SYMBOL(drop_nlink);
301
302/**
303 * clear_nlink - directly zero an inode's link count
304 * @inode: inode
305 *
306 * This is a low-level filesystem helper to replace any
307 * direct filesystem manipulation of i_nlink. See
308 * drop_nlink() for why we care about i_nlink hitting zero.
309 */
310void clear_nlink(struct inode *inode)
311{
312 if (inode->i_nlink) {
313 inode->__i_nlink = 0;
314 atomic_long_inc(&inode->i_sb->s_remove_count);
315 }
316}
317EXPORT_SYMBOL(clear_nlink);
318
319/**
320 * set_nlink - directly set an inode's link count
321 * @inode: inode
322 * @nlink: new nlink (should be non-zero)
323 *
324 * This is a low-level filesystem helper to replace any
325 * direct filesystem manipulation of i_nlink.
326 */
327void set_nlink(struct inode *inode, unsigned int nlink)
328{
329 if (!nlink) {
7ada4db8
MS
330 clear_nlink(inode);
331 } else {
332 /* Yes, some filesystems do change nlink from zero to one */
333 if (inode->i_nlink == 0)
334 atomic_long_dec(&inode->i_sb->s_remove_count);
335
336 inode->__i_nlink = nlink;
337 }
338}
339EXPORT_SYMBOL(set_nlink);
340
341/**
342 * inc_nlink - directly increment an inode's link count
343 * @inode: inode
344 *
345 * This is a low-level filesystem helper to replace any
346 * direct filesystem manipulation of i_nlink. Currently,
347 * it is only here for parity with dec_nlink().
348 */
349void inc_nlink(struct inode *inode)
350{
351 if (WARN_ON(inode->i_nlink == 0))
352 atomic_long_dec(&inode->i_sb->s_remove_count);
353
354 inode->__i_nlink++;
355}
356EXPORT_SYMBOL(inc_nlink);
357
2aa15890
MS
358void address_space_init_once(struct address_space *mapping)
359{
360 memset(mapping, 0, sizeof(*mapping));
361 INIT_RADIX_TREE(&mapping->page_tree, GFP_ATOMIC);
362 spin_lock_init(&mapping->tree_lock);
3d48ae45 363 mutex_init(&mapping->i_mmap_mutex);
2aa15890
MS
364 INIT_LIST_HEAD(&mapping->private_list);
365 spin_lock_init(&mapping->private_lock);
6b2dbba8 366 mapping->i_mmap = RB_ROOT;
2aa15890 367 INIT_LIST_HEAD(&mapping->i_mmap_nonlinear);
2aa15890
MS
368}
369EXPORT_SYMBOL(address_space_init_once);
370
1da177e4
LT
371/*
372 * These are initializations that only need to be done
373 * once, because the fields are idempotent across use
374 * of the inode, so let the slab aware of that.
375 */
376void inode_init_once(struct inode *inode)
377{
378 memset(inode, 0, sizeof(*inode));
379 INIT_HLIST_NODE(&inode->i_hash);
1da177e4 380 INIT_LIST_HEAD(&inode->i_devices);
7ccf19a8
NP
381 INIT_LIST_HEAD(&inode->i_wb_list);
382 INIT_LIST_HEAD(&inode->i_lru);
2aa15890 383 address_space_init_once(&inode->i_data);
1da177e4 384 i_size_ordered_init(inode);
3be25f49 385#ifdef CONFIG_FSNOTIFY
e61ce867 386 INIT_HLIST_HEAD(&inode->i_fsnotify_marks);
3be25f49 387#endif
1da177e4 388}
1da177e4
LT
389EXPORT_SYMBOL(inode_init_once);
390
51cc5068 391static void init_once(void *foo)
1da177e4 392{
6b3304b5 393 struct inode *inode = (struct inode *) foo;
1da177e4 394
a35afb83 395 inode_init_once(inode);
1da177e4
LT
396}
397
398/*
250df6ed 399 * inode->i_lock must be held
1da177e4 400 */
6b3304b5 401void __iget(struct inode *inode)
1da177e4 402{
9e38d86f
NP
403 atomic_inc(&inode->i_count);
404}
2e147f1e 405
7de9c6ee
AV
406/*
407 * get additional reference to inode; caller must already hold one.
408 */
409void ihold(struct inode *inode)
410{
411 WARN_ON(atomic_inc_return(&inode->i_count) < 2);
412}
413EXPORT_SYMBOL(ihold);
414
9e38d86f
NP
415static void inode_lru_list_add(struct inode *inode)
416{
09cc9fc7 417 spin_lock(&inode->i_sb->s_inode_lru_lock);
7ccf19a8 418 if (list_empty(&inode->i_lru)) {
98b745c6
DC
419 list_add(&inode->i_lru, &inode->i_sb->s_inode_lru);
420 inode->i_sb->s_nr_inodes_unused++;
fcb94f72 421 this_cpu_inc(nr_unused);
9e38d86f 422 }
09cc9fc7 423 spin_unlock(&inode->i_sb->s_inode_lru_lock);
9e38d86f 424}
2e147f1e 425
4eff96dd
JK
426/*
427 * Add inode to LRU if needed (inode is unused and clean).
428 *
429 * Needs inode->i_lock held.
430 */
431void inode_add_lru(struct inode *inode)
432{
433 if (!(inode->i_state & (I_DIRTY | I_SYNC | I_FREEING | I_WILL_FREE)) &&
434 !atomic_read(&inode->i_count) && inode->i_sb->s_flags & MS_ACTIVE)
435 inode_lru_list_add(inode);
436}
437
438
9e38d86f
NP
439static void inode_lru_list_del(struct inode *inode)
440{
09cc9fc7 441 spin_lock(&inode->i_sb->s_inode_lru_lock);
7ccf19a8
NP
442 if (!list_empty(&inode->i_lru)) {
443 list_del_init(&inode->i_lru);
98b745c6 444 inode->i_sb->s_nr_inodes_unused--;
fcb94f72 445 this_cpu_dec(nr_unused);
9e38d86f 446 }
09cc9fc7 447 spin_unlock(&inode->i_sb->s_inode_lru_lock);
1da177e4
LT
448}
449
646ec461
CH
450/**
451 * inode_sb_list_add - add inode to the superblock list of inodes
452 * @inode: inode to add
453 */
454void inode_sb_list_add(struct inode *inode)
455{
55fa6091
DC
456 spin_lock(&inode_sb_list_lock);
457 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
458 spin_unlock(&inode_sb_list_lock);
646ec461
CH
459}
460EXPORT_SYMBOL_GPL(inode_sb_list_add);
461
55fa6091 462static inline void inode_sb_list_del(struct inode *inode)
646ec461 463{
a209dfc7
ED
464 if (!list_empty(&inode->i_sb_list)) {
465 spin_lock(&inode_sb_list_lock);
466 list_del_init(&inode->i_sb_list);
467 spin_unlock(&inode_sb_list_lock);
468 }
646ec461
CH
469}
470
4c51acbc
DC
471static unsigned long hash(struct super_block *sb, unsigned long hashval)
472{
473 unsigned long tmp;
474
475 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
476 L1_CACHE_BYTES;
4b4563dc
CH
477 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
478 return tmp & i_hash_mask;
4c51acbc
DC
479}
480
481/**
482 * __insert_inode_hash - hash an inode
483 * @inode: unhashed inode
484 * @hashval: unsigned long value used to locate this object in the
485 * inode_hashtable.
486 *
487 * Add an inode to the inode hash for this superblock.
488 */
489void __insert_inode_hash(struct inode *inode, unsigned long hashval)
490{
646ec461
CH
491 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
492
67a23c49 493 spin_lock(&inode_hash_lock);
250df6ed 494 spin_lock(&inode->i_lock);
646ec461 495 hlist_add_head(&inode->i_hash, b);
250df6ed 496 spin_unlock(&inode->i_lock);
67a23c49 497 spin_unlock(&inode_hash_lock);
4c51acbc
DC
498}
499EXPORT_SYMBOL(__insert_inode_hash);
500
4c51acbc 501/**
f2ee7abf 502 * __remove_inode_hash - remove an inode from the hash
4c51acbc
DC
503 * @inode: inode to unhash
504 *
505 * Remove an inode from the superblock.
506 */
f2ee7abf 507void __remove_inode_hash(struct inode *inode)
4c51acbc 508{
67a23c49 509 spin_lock(&inode_hash_lock);
250df6ed 510 spin_lock(&inode->i_lock);
4c51acbc 511 hlist_del_init(&inode->i_hash);
250df6ed 512 spin_unlock(&inode->i_lock);
67a23c49 513 spin_unlock(&inode_hash_lock);
4c51acbc 514}
f2ee7abf 515EXPORT_SYMBOL(__remove_inode_hash);
4c51acbc 516
dbd5768f 517void clear_inode(struct inode *inode)
b0683aa6
AV
518{
519 might_sleep();
08142579
JK
520 /*
521 * We have to cycle tree_lock here because reclaim can be still in the
522 * process of removing the last page (in __delete_from_page_cache())
523 * and we must not free mapping under it.
524 */
525 spin_lock_irq(&inode->i_data.tree_lock);
b0683aa6 526 BUG_ON(inode->i_data.nrpages);
b4725f84 527 BUG_ON(inode->i_data.nrshadows);
08142579 528 spin_unlock_irq(&inode->i_data.tree_lock);
b0683aa6
AV
529 BUG_ON(!list_empty(&inode->i_data.private_list));
530 BUG_ON(!(inode->i_state & I_FREEING));
531 BUG_ON(inode->i_state & I_CLEAR);
fa0d7e3d 532 /* don't need i_lock here, no concurrent mods to i_state */
b0683aa6
AV
533 inode->i_state = I_FREEING | I_CLEAR;
534}
dbd5768f 535EXPORT_SYMBOL(clear_inode);
b0683aa6 536
b2b2af8e
DC
537/*
538 * Free the inode passed in, removing it from the lists it is still connected
539 * to. We remove any pages still attached to the inode and wait for any IO that
540 * is still in progress before finally destroying the inode.
541 *
542 * An inode must already be marked I_FREEING so that we avoid the inode being
543 * moved back onto lists if we race with other code that manipulates the lists
544 * (e.g. writeback_single_inode). The caller is responsible for setting this.
545 *
546 * An inode must already be removed from the LRU list before being evicted from
547 * the cache. This should occur atomically with setting the I_FREEING state
548 * flag, so no inodes here should ever be on the LRU when being evicted.
549 */
644da596 550static void evict(struct inode *inode)
b4272d4c
AV
551{
552 const struct super_operations *op = inode->i_sb->s_op;
553
b2b2af8e
DC
554 BUG_ON(!(inode->i_state & I_FREEING));
555 BUG_ON(!list_empty(&inode->i_lru));
556
b12362bd
ED
557 if (!list_empty(&inode->i_wb_list))
558 inode_wb_list_del(inode);
559
55fa6091
DC
560 inode_sb_list_del(inode);
561
169ebd90
JK
562 /*
563 * Wait for flusher thread to be done with the inode so that filesystem
564 * does not start destroying it while writeback is still running. Since
565 * the inode has I_FREEING set, flusher thread won't start new work on
566 * the inode. We just have to wait for running writeback to finish.
567 */
568 inode_wait_for_writeback(inode);
7994e6f7 569
be7ce416
AV
570 if (op->evict_inode) {
571 op->evict_inode(inode);
b4272d4c 572 } else {
b4725f84 573 truncate_inode_pages_final(&inode->i_data);
dbd5768f 574 clear_inode(inode);
b4272d4c 575 }
661074e9
AV
576 if (S_ISBLK(inode->i_mode) && inode->i_bdev)
577 bd_forget(inode);
578 if (S_ISCHR(inode->i_mode) && inode->i_cdev)
579 cd_forget(inode);
b2b2af8e
DC
580
581 remove_inode_hash(inode);
582
583 spin_lock(&inode->i_lock);
584 wake_up_bit(&inode->i_state, __I_NEW);
585 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
586 spin_unlock(&inode->i_lock);
587
588 destroy_inode(inode);
b4272d4c
AV
589}
590
1da177e4
LT
591/*
592 * dispose_list - dispose of the contents of a local list
593 * @head: the head of the list to free
594 *
595 * Dispose-list gets a local list with local inodes in it, so it doesn't
596 * need to worry about list corruption and SMP locks.
597 */
598static void dispose_list(struct list_head *head)
599{
1da177e4
LT
600 while (!list_empty(head)) {
601 struct inode *inode;
602
7ccf19a8
NP
603 inode = list_first_entry(head, struct inode, i_lru);
604 list_del_init(&inode->i_lru);
1da177e4 605
644da596 606 evict(inode);
1da177e4 607 }
1da177e4
LT
608}
609
63997e98
AV
610/**
611 * evict_inodes - evict all evictable inodes for a superblock
612 * @sb: superblock to operate on
613 *
614 * Make sure that no inodes with zero refcount are retained. This is
615 * called by superblock shutdown after having MS_ACTIVE flag removed,
616 * so any inode reaching zero refcount during or after that call will
617 * be immediately evicted.
1da177e4 618 */
63997e98 619void evict_inodes(struct super_block *sb)
1da177e4 620{
63997e98
AV
621 struct inode *inode, *next;
622 LIST_HEAD(dispose);
1da177e4 623
55fa6091 624 spin_lock(&inode_sb_list_lock);
63997e98
AV
625 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
626 if (atomic_read(&inode->i_count))
aabb8fdb 627 continue;
250df6ed
DC
628
629 spin_lock(&inode->i_lock);
630 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
631 spin_unlock(&inode->i_lock);
1da177e4 632 continue;
250df6ed 633 }
63997e98
AV
634
635 inode->i_state |= I_FREEING;
02afc410 636 inode_lru_list_del(inode);
250df6ed 637 spin_unlock(&inode->i_lock);
02afc410 638 list_add(&inode->i_lru, &dispose);
1da177e4 639 }
55fa6091 640 spin_unlock(&inode_sb_list_lock);
63997e98
AV
641
642 dispose_list(&dispose);
1da177e4
LT
643}
644
1da177e4 645/**
a0318786
CH
646 * invalidate_inodes - attempt to free all inodes on a superblock
647 * @sb: superblock to operate on
93b270f7 648 * @kill_dirty: flag to guide handling of dirty inodes
1da177e4 649 *
a0318786
CH
650 * Attempts to free all inodes for a given superblock. If there were any
651 * busy inodes return a non-zero value, else zero.
93b270f7
N
652 * If @kill_dirty is set, discard dirty inodes too, otherwise treat
653 * them as busy.
1da177e4 654 */
93b270f7 655int invalidate_inodes(struct super_block *sb, bool kill_dirty)
1da177e4 656{
cffbc8aa 657 int busy = 0;
a0318786
CH
658 struct inode *inode, *next;
659 LIST_HEAD(dispose);
1da177e4 660
55fa6091 661 spin_lock(&inode_sb_list_lock);
a0318786 662 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
250df6ed
DC
663 spin_lock(&inode->i_lock);
664 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
665 spin_unlock(&inode->i_lock);
aabb8fdb 666 continue;
250df6ed 667 }
93b270f7 668 if (inode->i_state & I_DIRTY && !kill_dirty) {
250df6ed 669 spin_unlock(&inode->i_lock);
93b270f7
N
670 busy = 1;
671 continue;
672 }
99a38919 673 if (atomic_read(&inode->i_count)) {
250df6ed 674 spin_unlock(&inode->i_lock);
99a38919 675 busy = 1;
1da177e4
LT
676 continue;
677 }
99a38919 678
99a38919 679 inode->i_state |= I_FREEING;
02afc410 680 inode_lru_list_del(inode);
250df6ed 681 spin_unlock(&inode->i_lock);
02afc410 682 list_add(&inode->i_lru, &dispose);
1da177e4 683 }
55fa6091 684 spin_unlock(&inode_sb_list_lock);
1da177e4 685
a0318786 686 dispose_list(&dispose);
1da177e4
LT
687
688 return busy;
689}
1da177e4
LT
690
691static int can_unuse(struct inode *inode)
692{
9e38d86f 693 if (inode->i_state & ~I_REFERENCED)
1da177e4
LT
694 return 0;
695 if (inode_has_buffers(inode))
696 return 0;
697 if (atomic_read(&inode->i_count))
698 return 0;
699 if (inode->i_data.nrpages)
700 return 0;
701 return 1;
702}
703
704/*
b0d40c92
DC
705 * Walk the superblock inode LRU for freeable inodes and attempt to free them.
706 * This is called from the superblock shrinker function with a number of inodes
707 * to trim from the LRU. Inodes to be freed are moved to a temporary list and
708 * then are freed outside inode_lock by dispose_list().
1da177e4
LT
709 *
710 * Any inodes which are pinned purely because of attached pagecache have their
9e38d86f
NP
711 * pagecache removed. If the inode has metadata buffers attached to
712 * mapping->private_list then try to remove them.
1da177e4 713 *
9e38d86f
NP
714 * If the inode has the I_REFERENCED flag set, then it means that it has been
715 * used recently - the flag is set in iput_final(). When we encounter such an
716 * inode, clear the flag and move it to the back of the LRU so it gets another
717 * pass through the LRU before it gets reclaimed. This is necessary because of
718 * the fact we are doing lazy LRU updates to minimise lock contention so the
719 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
720 * with this flag set because they are the inodes that are out of order.
1da177e4 721 */
b0d40c92 722void prune_icache_sb(struct super_block *sb, int nr_to_scan)
1da177e4
LT
723{
724 LIST_HEAD(freeable);
1da177e4
LT
725 int nr_scanned;
726 unsigned long reap = 0;
727
09cc9fc7 728 spin_lock(&sb->s_inode_lru_lock);
b0d40c92 729 for (nr_scanned = nr_to_scan; nr_scanned >= 0; nr_scanned--) {
1da177e4
LT
730 struct inode *inode;
731
98b745c6 732 if (list_empty(&sb->s_inode_lru))
1da177e4
LT
733 break;
734
98b745c6 735 inode = list_entry(sb->s_inode_lru.prev, struct inode, i_lru);
1da177e4 736
02afc410 737 /*
09cc9fc7 738 * we are inverting the sb->s_inode_lru_lock/inode->i_lock here,
02afc410
DC
739 * so use a trylock. If we fail to get the lock, just move the
740 * inode to the back of the list so we don't spin on it.
741 */
742 if (!spin_trylock(&inode->i_lock)) {
5b55d708 743 list_move(&inode->i_lru, &sb->s_inode_lru);
02afc410
DC
744 continue;
745 }
746
9e38d86f
NP
747 /*
748 * Referenced or dirty inodes are still in use. Give them
749 * another pass through the LRU as we canot reclaim them now.
750 */
751 if (atomic_read(&inode->i_count) ||
752 (inode->i_state & ~I_REFERENCED)) {
7ccf19a8 753 list_del_init(&inode->i_lru);
f283c86a 754 spin_unlock(&inode->i_lock);
98b745c6 755 sb->s_nr_inodes_unused--;
fcb94f72 756 this_cpu_dec(nr_unused);
9e38d86f
NP
757 continue;
758 }
759
760 /* recently referenced inodes get one more pass */
761 if (inode->i_state & I_REFERENCED) {
9e38d86f 762 inode->i_state &= ~I_REFERENCED;
98b745c6 763 list_move(&inode->i_lru, &sb->s_inode_lru);
f283c86a 764 spin_unlock(&inode->i_lock);
1da177e4
LT
765 continue;
766 }
767 if (inode_has_buffers(inode) || inode->i_data.nrpages) {
768 __iget(inode);
250df6ed 769 spin_unlock(&inode->i_lock);
09cc9fc7 770 spin_unlock(&sb->s_inode_lru_lock);
1da177e4 771 if (remove_inode_buffers(inode))
fc0ecff6
AM
772 reap += invalidate_mapping_pages(&inode->i_data,
773 0, -1);
1da177e4 774 iput(inode);
09cc9fc7 775 spin_lock(&sb->s_inode_lru_lock);
1da177e4 776
98b745c6 777 if (inode != list_entry(sb->s_inode_lru.next,
7ccf19a8 778 struct inode, i_lru))
1da177e4 779 continue; /* wrong inode or list_empty */
02afc410
DC
780 /* avoid lock inversions with trylock */
781 if (!spin_trylock(&inode->i_lock))
782 continue;
250df6ed
DC
783 if (!can_unuse(inode)) {
784 spin_unlock(&inode->i_lock);
1da177e4 785 continue;
250df6ed 786 }
1da177e4 787 }
7ef0d737 788 WARN_ON(inode->i_state & I_NEW);
1da177e4 789 inode->i_state |= I_FREEING;
250df6ed 790 spin_unlock(&inode->i_lock);
7ccf19a8 791
7ccf19a8 792 list_move(&inode->i_lru, &freeable);
98b745c6 793 sb->s_nr_inodes_unused--;
fcb94f72 794 this_cpu_dec(nr_unused);
1da177e4 795 }
f8891e5e
CL
796 if (current_is_kswapd())
797 __count_vm_events(KSWAPD_INODESTEAL, reap);
798 else
799 __count_vm_events(PGINODESTEAL, reap);
09cc9fc7 800 spin_unlock(&sb->s_inode_lru_lock);
5f8aefd4
KK
801 if (current->reclaim_state)
802 current->reclaim_state->reclaimed_slab += reap;
1da177e4
LT
803
804 dispose_list(&freeable);
1da177e4
LT
805}
806
1da177e4
LT
807static void __wait_on_freeing_inode(struct inode *inode);
808/*
809 * Called with the inode lock held.
1da177e4 810 */
6b3304b5
MK
811static struct inode *find_inode(struct super_block *sb,
812 struct hlist_head *head,
813 int (*test)(struct inode *, void *),
814 void *data)
1da177e4 815{
6b3304b5 816 struct inode *inode = NULL;
1da177e4
LT
817
818repeat:
b67bfe0d 819 hlist_for_each_entry(inode, head, i_hash) {
67a23c49
DC
820 spin_lock(&inode->i_lock);
821 if (inode->i_sb != sb) {
822 spin_unlock(&inode->i_lock);
1da177e4 823 continue;
67a23c49
DC
824 }
825 if (!test(inode, data)) {
826 spin_unlock(&inode->i_lock);
1da177e4 827 continue;
67a23c49 828 }
a4ffdde6 829 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
1da177e4
LT
830 __wait_on_freeing_inode(inode);
831 goto repeat;
832 }
f7899bd5 833 __iget(inode);
250df6ed 834 spin_unlock(&inode->i_lock);
f7899bd5 835 return inode;
1da177e4 836 }
f7899bd5 837 return NULL;
1da177e4
LT
838}
839
840/*
841 * find_inode_fast is the fast path version of find_inode, see the comment at
842 * iget_locked for details.
843 */
6b3304b5
MK
844static struct inode *find_inode_fast(struct super_block *sb,
845 struct hlist_head *head, unsigned long ino)
1da177e4 846{
6b3304b5 847 struct inode *inode = NULL;
1da177e4
LT
848
849repeat:
b67bfe0d 850 hlist_for_each_entry(inode, head, i_hash) {
67a23c49
DC
851 spin_lock(&inode->i_lock);
852 if (inode->i_ino != ino) {
853 spin_unlock(&inode->i_lock);
1da177e4 854 continue;
67a23c49
DC
855 }
856 if (inode->i_sb != sb) {
857 spin_unlock(&inode->i_lock);
1da177e4 858 continue;
67a23c49 859 }
a4ffdde6 860 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
1da177e4
LT
861 __wait_on_freeing_inode(inode);
862 goto repeat;
863 }
f7899bd5 864 __iget(inode);
250df6ed 865 spin_unlock(&inode->i_lock);
f7899bd5 866 return inode;
1da177e4 867 }
f7899bd5 868 return NULL;
8290c35f
DC
869}
870
f991bd2e
ED
871/*
872 * Each cpu owns a range of LAST_INO_BATCH numbers.
873 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
874 * to renew the exhausted range.
8290c35f 875 *
f991bd2e
ED
876 * This does not significantly increase overflow rate because every CPU can
877 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
878 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
879 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
880 * overflow rate by 2x, which does not seem too significant.
881 *
882 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
883 * error if st_ino won't fit in target struct field. Use 32bit counter
884 * here to attempt to avoid that.
8290c35f 885 */
f991bd2e
ED
886#define LAST_INO_BATCH 1024
887static DEFINE_PER_CPU(unsigned int, last_ino);
888
85fe4025 889unsigned int get_next_ino(void)
8290c35f 890{
f991bd2e
ED
891 unsigned int *p = &get_cpu_var(last_ino);
892 unsigned int res = *p;
8290c35f 893
f991bd2e
ED
894#ifdef CONFIG_SMP
895 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
896 static atomic_t shared_last_ino;
897 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
898
899 res = next - LAST_INO_BATCH;
900 }
901#endif
902
903 *p = ++res;
904 put_cpu_var(last_ino);
905 return res;
8290c35f 906}
85fe4025 907EXPORT_SYMBOL(get_next_ino);
8290c35f 908
a209dfc7
ED
909/**
910 * new_inode_pseudo - obtain an inode
911 * @sb: superblock
912 *
913 * Allocates a new inode for given superblock.
914 * Inode wont be chained in superblock s_inodes list
915 * This means :
916 * - fs can't be unmount
917 * - quotas, fsnotify, writeback can't work
918 */
919struct inode *new_inode_pseudo(struct super_block *sb)
920{
921 struct inode *inode = alloc_inode(sb);
922
923 if (inode) {
924 spin_lock(&inode->i_lock);
925 inode->i_state = 0;
926 spin_unlock(&inode->i_lock);
927 INIT_LIST_HEAD(&inode->i_sb_list);
928 }
929 return inode;
930}
931
1da177e4
LT
932/**
933 * new_inode - obtain an inode
934 * @sb: superblock
935 *
769848c0 936 * Allocates a new inode for given superblock. The default gfp_mask
3c1d4378 937 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
769848c0
MG
938 * If HIGHMEM pages are unsuitable or it is known that pages allocated
939 * for the page cache are not reclaimable or migratable,
940 * mapping_set_gfp_mask() must be called with suitable flags on the
941 * newly created inode's mapping
942 *
1da177e4
LT
943 */
944struct inode *new_inode(struct super_block *sb)
945{
6b3304b5 946 struct inode *inode;
1da177e4 947
55fa6091 948 spin_lock_prefetch(&inode_sb_list_lock);
6b3304b5 949
a209dfc7
ED
950 inode = new_inode_pseudo(sb);
951 if (inode)
55fa6091 952 inode_sb_list_add(inode);
1da177e4
LT
953 return inode;
954}
1da177e4
LT
955EXPORT_SYMBOL(new_inode);
956
14358e6d 957#ifdef CONFIG_DEBUG_LOCK_ALLOC
e096d0c7
JB
958void lockdep_annotate_inode_mutex_key(struct inode *inode)
959{
a3314a0e 960 if (S_ISDIR(inode->i_mode)) {
1e89a5e1
PZ
961 struct file_system_type *type = inode->i_sb->s_type;
962
9a7aa12f 963 /* Set new key only if filesystem hasn't already changed it */
978d6d8c 964 if (lockdep_match_class(&inode->i_mutex, &type->i_mutex_key)) {
9a7aa12f
JK
965 /*
966 * ensure nobody is actually holding i_mutex
967 */
968 mutex_destroy(&inode->i_mutex);
969 mutex_init(&inode->i_mutex);
970 lockdep_set_class(&inode->i_mutex,
971 &type->i_mutex_dir_key);
972 }
1e89a5e1 973 }
e096d0c7
JB
974}
975EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
14358e6d 976#endif
e096d0c7
JB
977
978/**
979 * unlock_new_inode - clear the I_NEW state and wake up any waiters
980 * @inode: new inode to unlock
981 *
982 * Called when the inode is fully initialised to clear the new state of the
983 * inode and wake up anyone waiting for the inode to finish initialisation.
984 */
985void unlock_new_inode(struct inode *inode)
986{
987 lockdep_annotate_inode_mutex_key(inode);
250df6ed 988 spin_lock(&inode->i_lock);
eaff8079
CH
989 WARN_ON(!(inode->i_state & I_NEW));
990 inode->i_state &= ~I_NEW;
310fa7a3 991 smp_mb();
250df6ed
DC
992 wake_up_bit(&inode->i_state, __I_NEW);
993 spin_unlock(&inode->i_lock);
1da177e4 994}
1da177e4
LT
995EXPORT_SYMBOL(unlock_new_inode);
996
0b2d0724
CH
997/**
998 * iget5_locked - obtain an inode from a mounted file system
999 * @sb: super block of file system
1000 * @hashval: hash value (usually inode number) to get
1001 * @test: callback used for comparisons between inodes
1002 * @set: callback used to initialize a new struct inode
1003 * @data: opaque data pointer to pass to @test and @set
1004 *
1005 * Search for the inode specified by @hashval and @data in the inode cache,
1006 * and if present it is return it with an increased reference count. This is
1007 * a generalized version of iget_locked() for file systems where the inode
1008 * number is not sufficient for unique identification of an inode.
1009 *
1010 * If the inode is not in cache, allocate a new inode and return it locked,
1011 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1012 * before unlocking it via unlock_new_inode().
1da177e4 1013 *
0b2d0724
CH
1014 * Note both @test and @set are called with the inode_hash_lock held, so can't
1015 * sleep.
1da177e4 1016 */
0b2d0724
CH
1017struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1018 int (*test)(struct inode *, void *),
1019 int (*set)(struct inode *, void *), void *data)
1da177e4 1020{
0b2d0724 1021 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
6b3304b5 1022 struct inode *inode;
1da177e4 1023
0b2d0724
CH
1024 spin_lock(&inode_hash_lock);
1025 inode = find_inode(sb, head, test, data);
1026 spin_unlock(&inode_hash_lock);
1027
1028 if (inode) {
1029 wait_on_inode(inode);
1030 return inode;
1031 }
1032
1da177e4
LT
1033 inode = alloc_inode(sb);
1034 if (inode) {
6b3304b5 1035 struct inode *old;
1da177e4 1036
67a23c49 1037 spin_lock(&inode_hash_lock);
1da177e4
LT
1038 /* We released the lock, so.. */
1039 old = find_inode(sb, head, test, data);
1040 if (!old) {
1041 if (set(inode, data))
1042 goto set_failed;
1043
250df6ed
DC
1044 spin_lock(&inode->i_lock);
1045 inode->i_state = I_NEW;
646ec461 1046 hlist_add_head(&inode->i_hash, head);
250df6ed 1047 spin_unlock(&inode->i_lock);
55fa6091 1048 inode_sb_list_add(inode);
67a23c49 1049 spin_unlock(&inode_hash_lock);
1da177e4
LT
1050
1051 /* Return the locked inode with I_NEW set, the
1052 * caller is responsible for filling in the contents
1053 */
1054 return inode;
1055 }
1056
1057 /*
1058 * Uhhuh, somebody else created the same inode under
1059 * us. Use the old inode instead of the one we just
1060 * allocated.
1061 */
67a23c49 1062 spin_unlock(&inode_hash_lock);
1da177e4
LT
1063 destroy_inode(inode);
1064 inode = old;
1065 wait_on_inode(inode);
1066 }
1067 return inode;
1068
1069set_failed:
67a23c49 1070 spin_unlock(&inode_hash_lock);
1da177e4
LT
1071 destroy_inode(inode);
1072 return NULL;
1073}
0b2d0724 1074EXPORT_SYMBOL(iget5_locked);
1da177e4 1075
0b2d0724
CH
1076/**
1077 * iget_locked - obtain an inode from a mounted file system
1078 * @sb: super block of file system
1079 * @ino: inode number to get
1080 *
1081 * Search for the inode specified by @ino in the inode cache and if present
1082 * return it with an increased reference count. This is for file systems
1083 * where the inode number is sufficient for unique identification of an inode.
1084 *
1085 * If the inode is not in cache, allocate a new inode and return it locked,
1086 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1087 * before unlocking it via unlock_new_inode().
1da177e4 1088 */
0b2d0724 1089struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1da177e4 1090{
0b2d0724 1091 struct hlist_head *head = inode_hashtable + hash(sb, ino);
6b3304b5 1092 struct inode *inode;
1da177e4 1093
0b2d0724
CH
1094 spin_lock(&inode_hash_lock);
1095 inode = find_inode_fast(sb, head, ino);
1096 spin_unlock(&inode_hash_lock);
1097 if (inode) {
1098 wait_on_inode(inode);
1099 return inode;
1100 }
1101
1da177e4
LT
1102 inode = alloc_inode(sb);
1103 if (inode) {
6b3304b5 1104 struct inode *old;
1da177e4 1105
67a23c49 1106 spin_lock(&inode_hash_lock);
1da177e4
LT
1107 /* We released the lock, so.. */
1108 old = find_inode_fast(sb, head, ino);
1109 if (!old) {
1110 inode->i_ino = ino;
250df6ed
DC
1111 spin_lock(&inode->i_lock);
1112 inode->i_state = I_NEW;
646ec461 1113 hlist_add_head(&inode->i_hash, head);
250df6ed 1114 spin_unlock(&inode->i_lock);
55fa6091 1115 inode_sb_list_add(inode);
67a23c49 1116 spin_unlock(&inode_hash_lock);
1da177e4
LT
1117
1118 /* Return the locked inode with I_NEW set, the
1119 * caller is responsible for filling in the contents
1120 */
1121 return inode;
1122 }
1123
1124 /*
1125 * Uhhuh, somebody else created the same inode under
1126 * us. Use the old inode instead of the one we just
1127 * allocated.
1128 */
67a23c49 1129 spin_unlock(&inode_hash_lock);
1da177e4
LT
1130 destroy_inode(inode);
1131 inode = old;
1132 wait_on_inode(inode);
1133 }
1134 return inode;
1135}
0b2d0724 1136EXPORT_SYMBOL(iget_locked);
1da177e4 1137
ad5e195a
CH
1138/*
1139 * search the inode cache for a matching inode number.
1140 * If we find one, then the inode number we are trying to
1141 * allocate is not unique and so we should not use it.
1142 *
1143 * Returns 1 if the inode number is unique, 0 if it is not.
1144 */
1145static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1146{
1147 struct hlist_head *b = inode_hashtable + hash(sb, ino);
ad5e195a
CH
1148 struct inode *inode;
1149
67a23c49 1150 spin_lock(&inode_hash_lock);
b67bfe0d 1151 hlist_for_each_entry(inode, b, i_hash) {
67a23c49
DC
1152 if (inode->i_ino == ino && inode->i_sb == sb) {
1153 spin_unlock(&inode_hash_lock);
ad5e195a 1154 return 0;
67a23c49 1155 }
ad5e195a 1156 }
67a23c49 1157 spin_unlock(&inode_hash_lock);
ad5e195a
CH
1158
1159 return 1;
1160}
1161
1da177e4
LT
1162/**
1163 * iunique - get a unique inode number
1164 * @sb: superblock
1165 * @max_reserved: highest reserved inode number
1166 *
1167 * Obtain an inode number that is unique on the system for a given
1168 * superblock. This is used by file systems that have no natural
1169 * permanent inode numbering system. An inode number is returned that
1170 * is higher than the reserved limit but unique.
1171 *
1172 * BUGS:
1173 * With a large number of inodes live on the file system this function
1174 * currently becomes quite slow.
1175 */
1176ino_t iunique(struct super_block *sb, ino_t max_reserved)
1177{
866b04fc
JL
1178 /*
1179 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1180 * error if st_ino won't fit in target struct field. Use 32bit counter
1181 * here to attempt to avoid that.
1182 */
ad5e195a 1183 static DEFINE_SPINLOCK(iunique_lock);
866b04fc 1184 static unsigned int counter;
1da177e4 1185 ino_t res;
3361c7be 1186
ad5e195a 1187 spin_lock(&iunique_lock);
3361c7be
JL
1188 do {
1189 if (counter <= max_reserved)
1190 counter = max_reserved + 1;
1da177e4 1191 res = counter++;
ad5e195a
CH
1192 } while (!test_inode_iunique(sb, res));
1193 spin_unlock(&iunique_lock);
1da177e4 1194
3361c7be
JL
1195 return res;
1196}
1da177e4
LT
1197EXPORT_SYMBOL(iunique);
1198
1199struct inode *igrab(struct inode *inode)
1200{
250df6ed
DC
1201 spin_lock(&inode->i_lock);
1202 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1da177e4 1203 __iget(inode);
250df6ed
DC
1204 spin_unlock(&inode->i_lock);
1205 } else {
1206 spin_unlock(&inode->i_lock);
1da177e4
LT
1207 /*
1208 * Handle the case where s_op->clear_inode is not been
1209 * called yet, and somebody is calling igrab
1210 * while the inode is getting freed.
1211 */
1212 inode = NULL;
250df6ed 1213 }
1da177e4
LT
1214 return inode;
1215}
1da177e4
LT
1216EXPORT_SYMBOL(igrab);
1217
1218/**
0b2d0724 1219 * ilookup5_nowait - search for an inode in the inode cache
1da177e4 1220 * @sb: super block of file system to search
0b2d0724 1221 * @hashval: hash value (usually inode number) to search for
1da177e4
LT
1222 * @test: callback used for comparisons between inodes
1223 * @data: opaque data pointer to pass to @test
1da177e4 1224 *
0b2d0724 1225 * Search for the inode specified by @hashval and @data in the inode cache.
1da177e4
LT
1226 * If the inode is in the cache, the inode is returned with an incremented
1227 * reference count.
1228 *
0b2d0724
CH
1229 * Note: I_NEW is not waited upon so you have to be very careful what you do
1230 * with the returned inode. You probably should be using ilookup5() instead.
1da177e4 1231 *
b6d0ad68 1232 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1da177e4 1233 */
0b2d0724
CH
1234struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1235 int (*test)(struct inode *, void *), void *data)
1da177e4 1236{
0b2d0724 1237 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1da177e4
LT
1238 struct inode *inode;
1239
67a23c49 1240 spin_lock(&inode_hash_lock);
1da177e4 1241 inode = find_inode(sb, head, test, data);
67a23c49 1242 spin_unlock(&inode_hash_lock);
88bd5121 1243
0b2d0724 1244 return inode;
88bd5121 1245}
88bd5121
AA
1246EXPORT_SYMBOL(ilookup5_nowait);
1247
1248/**
1249 * ilookup5 - search for an inode in the inode cache
1250 * @sb: super block of file system to search
1251 * @hashval: hash value (usually inode number) to search for
1252 * @test: callback used for comparisons between inodes
1253 * @data: opaque data pointer to pass to @test
1254 *
0b2d0724
CH
1255 * Search for the inode specified by @hashval and @data in the inode cache,
1256 * and if the inode is in the cache, return the inode with an incremented
1257 * reference count. Waits on I_NEW before returning the inode.
88bd5121 1258 * returned with an incremented reference count.
1da177e4 1259 *
0b2d0724
CH
1260 * This is a generalized version of ilookup() for file systems where the
1261 * inode number is not sufficient for unique identification of an inode.
1da177e4 1262 *
0b2d0724 1263 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1da177e4
LT
1264 */
1265struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1266 int (*test)(struct inode *, void *), void *data)
1267{
0b2d0724 1268 struct inode *inode = ilookup5_nowait(sb, hashval, test, data);
1da177e4 1269
0b2d0724
CH
1270 if (inode)
1271 wait_on_inode(inode);
1272 return inode;
1da177e4 1273}
1da177e4
LT
1274EXPORT_SYMBOL(ilookup5);
1275
1276/**
1277 * ilookup - search for an inode in the inode cache
1278 * @sb: super block of file system to search
1279 * @ino: inode number to search for
1280 *
0b2d0724
CH
1281 * Search for the inode @ino in the inode cache, and if the inode is in the
1282 * cache, the inode is returned with an incremented reference count.
1da177e4
LT
1283 */
1284struct inode *ilookup(struct super_block *sb, unsigned long ino)
1285{
1286 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1da177e4
LT
1287 struct inode *inode;
1288
0b2d0724
CH
1289 spin_lock(&inode_hash_lock);
1290 inode = find_inode_fast(sb, head, ino);
1291 spin_unlock(&inode_hash_lock);
1da177e4 1292
1da177e4 1293 if (inode)
0b2d0724
CH
1294 wait_on_inode(inode);
1295 return inode;
1da177e4 1296}
0b2d0724 1297EXPORT_SYMBOL(ilookup);
1da177e4 1298
261bca86
AV
1299int insert_inode_locked(struct inode *inode)
1300{
1301 struct super_block *sb = inode->i_sb;
1302 ino_t ino = inode->i_ino;
1303 struct hlist_head *head = inode_hashtable + hash(sb, ino);
261bca86 1304
261bca86 1305 while (1) {
72a43d63 1306 struct inode *old = NULL;
67a23c49 1307 spin_lock(&inode_hash_lock);
b67bfe0d 1308 hlist_for_each_entry(old, head, i_hash) {
72a43d63
AV
1309 if (old->i_ino != ino)
1310 continue;
1311 if (old->i_sb != sb)
1312 continue;
250df6ed
DC
1313 spin_lock(&old->i_lock);
1314 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1315 spin_unlock(&old->i_lock);
72a43d63 1316 continue;
250df6ed 1317 }
72a43d63
AV
1318 break;
1319 }
b67bfe0d 1320 if (likely(!old)) {
250df6ed
DC
1321 spin_lock(&inode->i_lock);
1322 inode->i_state |= I_NEW;
261bca86 1323 hlist_add_head(&inode->i_hash, head);
250df6ed 1324 spin_unlock(&inode->i_lock);
67a23c49 1325 spin_unlock(&inode_hash_lock);
261bca86
AV
1326 return 0;
1327 }
1328 __iget(old);
250df6ed 1329 spin_unlock(&old->i_lock);
67a23c49 1330 spin_unlock(&inode_hash_lock);
261bca86 1331 wait_on_inode(old);
1d3382cb 1332 if (unlikely(!inode_unhashed(old))) {
261bca86
AV
1333 iput(old);
1334 return -EBUSY;
1335 }
1336 iput(old);
1337 }
1338}
261bca86
AV
1339EXPORT_SYMBOL(insert_inode_locked);
1340
1341int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1342 int (*test)(struct inode *, void *), void *data)
1343{
1344 struct super_block *sb = inode->i_sb;
1345 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
261bca86 1346
261bca86 1347 while (1) {
72a43d63
AV
1348 struct inode *old = NULL;
1349
67a23c49 1350 spin_lock(&inode_hash_lock);
b67bfe0d 1351 hlist_for_each_entry(old, head, i_hash) {
72a43d63
AV
1352 if (old->i_sb != sb)
1353 continue;
1354 if (!test(old, data))
1355 continue;
250df6ed
DC
1356 spin_lock(&old->i_lock);
1357 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1358 spin_unlock(&old->i_lock);
72a43d63 1359 continue;
250df6ed 1360 }
72a43d63
AV
1361 break;
1362 }
b67bfe0d 1363 if (likely(!old)) {
250df6ed
DC
1364 spin_lock(&inode->i_lock);
1365 inode->i_state |= I_NEW;
261bca86 1366 hlist_add_head(&inode->i_hash, head);
250df6ed 1367 spin_unlock(&inode->i_lock);
67a23c49 1368 spin_unlock(&inode_hash_lock);
261bca86
AV
1369 return 0;
1370 }
1371 __iget(old);
250df6ed 1372 spin_unlock(&old->i_lock);
67a23c49 1373 spin_unlock(&inode_hash_lock);
261bca86 1374 wait_on_inode(old);
1d3382cb 1375 if (unlikely(!inode_unhashed(old))) {
261bca86
AV
1376 iput(old);
1377 return -EBUSY;
1378 }
1379 iput(old);
1380 }
1381}
261bca86
AV
1382EXPORT_SYMBOL(insert_inode_locked4);
1383
1da177e4 1384
45321ac5
AV
1385int generic_delete_inode(struct inode *inode)
1386{
1387 return 1;
1388}
1389EXPORT_SYMBOL(generic_delete_inode);
1390
45321ac5
AV
1391/*
1392 * Called when we're dropping the last reference
1393 * to an inode.
22fe4042 1394 *
45321ac5
AV
1395 * Call the FS "drop_inode()" function, defaulting to
1396 * the legacy UNIX filesystem behaviour. If it tells
1397 * us to evict inode, do so. Otherwise, retain inode
1398 * in cache if fs is alive, sync and evict if fs is
1399 * shutting down.
22fe4042 1400 */
45321ac5 1401static void iput_final(struct inode *inode)
1da177e4
LT
1402{
1403 struct super_block *sb = inode->i_sb;
45321ac5
AV
1404 const struct super_operations *op = inode->i_sb->s_op;
1405 int drop;
1406
250df6ed
DC
1407 WARN_ON(inode->i_state & I_NEW);
1408
e7f59097 1409 if (op->drop_inode)
45321ac5
AV
1410 drop = op->drop_inode(inode);
1411 else
1412 drop = generic_drop_inode(inode);
1da177e4 1413
b2b2af8e
DC
1414 if (!drop && (sb->s_flags & MS_ACTIVE)) {
1415 inode->i_state |= I_REFERENCED;
4eff96dd 1416 inode_add_lru(inode);
b2b2af8e 1417 spin_unlock(&inode->i_lock);
b2b2af8e
DC
1418 return;
1419 }
1420
45321ac5 1421 if (!drop) {
991114c6 1422 inode->i_state |= I_WILL_FREE;
250df6ed 1423 spin_unlock(&inode->i_lock);
1da177e4 1424 write_inode_now(inode, 1);
250df6ed 1425 spin_lock(&inode->i_lock);
7ef0d737 1426 WARN_ON(inode->i_state & I_NEW);
991114c6 1427 inode->i_state &= ~I_WILL_FREE;
1da177e4 1428 }
7ccf19a8 1429
991114c6 1430 inode->i_state |= I_FREEING;
c4ae0c65
ED
1431 if (!list_empty(&inode->i_lru))
1432 inode_lru_list_del(inode);
b2b2af8e 1433 spin_unlock(&inode->i_lock);
b2b2af8e 1434
644da596 1435 evict(inode);
1da177e4
LT
1436}
1437
1da177e4 1438/**
6b3304b5 1439 * iput - put an inode
1da177e4
LT
1440 * @inode: inode to put
1441 *
1442 * Puts an inode, dropping its usage count. If the inode use count hits
1443 * zero, the inode is then freed and may also be destroyed.
1444 *
1445 * Consequently, iput() can sleep.
1446 */
1447void iput(struct inode *inode)
1448{
1449 if (inode) {
a4ffdde6 1450 BUG_ON(inode->i_state & I_CLEAR);
1da177e4 1451
f283c86a 1452 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock))
1da177e4
LT
1453 iput_final(inode);
1454 }
1455}
1da177e4
LT
1456EXPORT_SYMBOL(iput);
1457
1458/**
1459 * bmap - find a block number in a file
1460 * @inode: inode of file
1461 * @block: block to find
1462 *
1463 * Returns the block number on the device holding the inode that
1464 * is the disk block number for the block of the file requested.
1465 * That is, asked for block 4 of inode 1 the function will return the
6b3304b5 1466 * disk block relative to the disk start that holds that block of the
1da177e4
LT
1467 * file.
1468 */
6b3304b5 1469sector_t bmap(struct inode *inode, sector_t block)
1da177e4
LT
1470{
1471 sector_t res = 0;
1472 if (inode->i_mapping->a_ops->bmap)
1473 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1474 return res;
1475}
1da177e4
LT
1476EXPORT_SYMBOL(bmap);
1477
11ff6f05
MG
1478/*
1479 * With relative atime, only update atime if the previous atime is
1480 * earlier than either the ctime or mtime or if at least a day has
1481 * passed since the last atime update.
1482 */
1483static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1484 struct timespec now)
1485{
1486
1487 if (!(mnt->mnt_flags & MNT_RELATIME))
1488 return 1;
1489 /*
1490 * Is mtime younger than atime? If yes, update atime:
1491 */
1492 if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1493 return 1;
1494 /*
1495 * Is ctime younger than atime? If yes, update atime:
1496 */
1497 if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1498 return 1;
1499
1500 /*
1501 * Is the previous atime value older than a day? If yes,
1502 * update atime:
1503 */
1504 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1505 return 1;
1506 /*
1507 * Good, we can skip the atime update:
1508 */
1509 return 0;
1510}
1511
c3b2da31
JB
1512/*
1513 * This does the actual work of updating an inodes time or version. Must have
1514 * had called mnt_want_write() before calling this.
1515 */
1516static int update_time(struct inode *inode, struct timespec *time, int flags)
1517{
1518 if (inode->i_op->update_time)
1519 return inode->i_op->update_time(inode, time, flags);
1520
1521 if (flags & S_ATIME)
1522 inode->i_atime = *time;
1523 if (flags & S_VERSION)
1524 inode_inc_iversion(inode);
1525 if (flags & S_CTIME)
1526 inode->i_ctime = *time;
1527 if (flags & S_MTIME)
1528 inode->i_mtime = *time;
1529 mark_inode_dirty_sync(inode);
1530 return 0;
1531}
1532
1da177e4 1533/**
869243a0 1534 * touch_atime - update the access time
185553b2 1535 * @path: the &struct path to update
1da177e4
LT
1536 *
1537 * Update the accessed time on an inode and mark it for writeback.
1538 * This function automatically handles read only file systems and media,
1539 * as well as the "noatime" flag and inode specific "noatime" markers.
1540 */
68ac1234 1541void touch_atime(struct path *path)
1da177e4 1542{
68ac1234
AV
1543 struct vfsmount *mnt = path->mnt;
1544 struct inode *inode = path->dentry->d_inode;
1da177e4
LT
1545 struct timespec now;
1546
cdb70f3f 1547 if (inode->i_flags & S_NOATIME)
b12536c2 1548 return;
37756ced 1549 if (IS_NOATIME(inode))
b12536c2 1550 return;
b2276138 1551 if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))
b12536c2 1552 return;
47ae32d6 1553
cdb70f3f 1554 if (mnt->mnt_flags & MNT_NOATIME)
b12536c2 1555 return;
cdb70f3f 1556 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
b12536c2 1557 return;
1da177e4
LT
1558
1559 now = current_fs_time(inode->i_sb);
11ff6f05
MG
1560
1561 if (!relatime_need_update(mnt, inode, now))
b12536c2 1562 return;
11ff6f05 1563
47ae32d6 1564 if (timespec_equal(&inode->i_atime, &now))
b12536c2
AK
1565 return;
1566
5d37e9e6 1567 if (!sb_start_write_trylock(inode->i_sb))
b12536c2 1568 return;
47ae32d6 1569
5d37e9e6
JK
1570 if (__mnt_want_write(mnt))
1571 goto skip_update;
c3b2da31
JB
1572 /*
1573 * File systems can error out when updating inodes if they need to
1574 * allocate new space to modify an inode (such is the case for
1575 * Btrfs), but since we touch atime while walking down the path we
1576 * really don't care if we failed to update the atime of the file,
1577 * so just ignore the return value.
2bc55652
AB
1578 * We may also fail on filesystems that have the ability to make parts
1579 * of the fs read only, e.g. subvolumes in Btrfs.
c3b2da31
JB
1580 */
1581 update_time(inode, &now, S_ATIME);
5d37e9e6
JK
1582 __mnt_drop_write(mnt);
1583skip_update:
1584 sb_end_write(inode->i_sb);
1da177e4 1585}
869243a0 1586EXPORT_SYMBOL(touch_atime);
1da177e4 1587
3ed37648
CW
1588/*
1589 * The logic we want is
1590 *
1591 * if suid or (sgid and xgrp)
1592 * remove privs
1593 */
1594int should_remove_suid(struct dentry *dentry)
1595{
1596 umode_t mode = dentry->d_inode->i_mode;
1597 int kill = 0;
1598
1599 /* suid always must be killed */
1600 if (unlikely(mode & S_ISUID))
1601 kill = ATTR_KILL_SUID;
1602
1603 /*
1604 * sgid without any exec bits is just a mandatory locking mark; leave
1605 * it alone. If some exec bits are set, it's a real sgid; kill it.
1606 */
1607 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1608 kill |= ATTR_KILL_SGID;
1609
1610 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1611 return kill;
1612
1613 return 0;
1614}
1615EXPORT_SYMBOL(should_remove_suid);
1616
40f588ad 1617static int __remove_suid(struct vfsmount *mnt, struct dentry *dentry, int kill)
3ed37648
CW
1618{
1619 struct iattr newattrs;
1620
1621 newattrs.ia_valid = ATTR_FORCE | kill;
40f588ad 1622 return notify_change2(mnt, dentry, &newattrs);
3ed37648
CW
1623}
1624
1625int file_remove_suid(struct file *file)
1626{
1627 struct dentry *dentry = file->f_path.dentry;
1628 struct inode *inode = dentry->d_inode;
1629 int killsuid;
1630 int killpriv;
1631 int error = 0;
1632
1633 /* Fast path for nothing security related */
1634 if (IS_NOSEC(inode))
1635 return 0;
1636
1637 killsuid = should_remove_suid(dentry);
1638 killpriv = security_inode_need_killpriv(dentry);
1639
1640 if (killpriv < 0)
1641 return killpriv;
1642 if (killpriv)
1643 error = security_inode_killpriv(dentry);
1644 if (!error && killsuid)
40f588ad 1645 error = __remove_suid(file->f_path.mnt, dentry, killsuid);
294c8ee8
JK
1646 if (!error)
1647 inode_has_no_xattr(inode);
3ed37648
CW
1648
1649 return error;
1650}
1651EXPORT_SYMBOL(file_remove_suid);
1652
1da177e4 1653/**
870f4817
CH
1654 * file_update_time - update mtime and ctime time
1655 * @file: file accessed
1da177e4 1656 *
870f4817
CH
1657 * Update the mtime and ctime members of an inode and mark the inode
1658 * for writeback. Note that this function is meant exclusively for
1659 * usage in the file write path of filesystems, and filesystems may
1660 * choose to explicitly ignore update via this function with the
2eadfc0e 1661 * S_NOCMTIME inode flag, e.g. for network filesystem where these
c3b2da31
JB
1662 * timestamps are handled by the server. This can return an error for
1663 * file systems who need to allocate space in order to update an inode.
1da177e4
LT
1664 */
1665
c3b2da31 1666int file_update_time(struct file *file)
1da177e4 1667{
496ad9aa 1668 struct inode *inode = file_inode(file);
1da177e4 1669 struct timespec now;
c3b2da31
JB
1670 int sync_it = 0;
1671 int ret;
1da177e4 1672
ce06e0b2 1673 /* First try to exhaust all avenues to not sync */
1da177e4 1674 if (IS_NOCMTIME(inode))
c3b2da31 1675 return 0;
20ddee2c 1676
1da177e4 1677 now = current_fs_time(inode->i_sb);
ce06e0b2
AK
1678 if (!timespec_equal(&inode->i_mtime, &now))
1679 sync_it = S_MTIME;
1da177e4 1680
ce06e0b2
AK
1681 if (!timespec_equal(&inode->i_ctime, &now))
1682 sync_it |= S_CTIME;
870f4817 1683
ce06e0b2
AK
1684 if (IS_I_VERSION(inode))
1685 sync_it |= S_VERSION;
7a224228 1686
ce06e0b2 1687 if (!sync_it)
c3b2da31 1688 return 0;
ce06e0b2
AK
1689
1690 /* Finally allowed to write? Takes lock. */
eb04c282 1691 if (__mnt_want_write_file(file))
c3b2da31 1692 return 0;
ce06e0b2 1693
c3b2da31 1694 ret = update_time(inode, &now, sync_it);
eb04c282 1695 __mnt_drop_write_file(file);
c3b2da31
JB
1696
1697 return ret;
1da177e4 1698}
870f4817 1699EXPORT_SYMBOL(file_update_time);
1da177e4
LT
1700
1701int inode_needs_sync(struct inode *inode)
1702{
1703 if (IS_SYNC(inode))
1704 return 1;
1705 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1706 return 1;
1707 return 0;
1708}
1da177e4
LT
1709EXPORT_SYMBOL(inode_needs_sync);
1710
1da177e4
LT
1711int inode_wait(void *word)
1712{
1713 schedule();
1714 return 0;
1715}
d44dab8d 1716EXPORT_SYMBOL(inode_wait);
1da177e4
LT
1717
1718/*
168a9fd6
MS
1719 * If we try to find an inode in the inode hash while it is being
1720 * deleted, we have to wait until the filesystem completes its
1721 * deletion before reporting that it isn't found. This function waits
1722 * until the deletion _might_ have completed. Callers are responsible
1723 * to recheck inode state.
1724 *
eaff8079 1725 * It doesn't matter if I_NEW is not set initially, a call to
250df6ed
DC
1726 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1727 * will DTRT.
1da177e4
LT
1728 */
1729static void __wait_on_freeing_inode(struct inode *inode)
1730{
1731 wait_queue_head_t *wq;
eaff8079
CH
1732 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
1733 wq = bit_waitqueue(&inode->i_state, __I_NEW);
1da177e4 1734 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
250df6ed 1735 spin_unlock(&inode->i_lock);
67a23c49 1736 spin_unlock(&inode_hash_lock);
1da177e4
LT
1737 schedule();
1738 finish_wait(wq, &wait.wait);
67a23c49 1739 spin_lock(&inode_hash_lock);
1da177e4
LT
1740}
1741
1da177e4
LT
1742static __initdata unsigned long ihash_entries;
1743static int __init set_ihash_entries(char *str)
1744{
1745 if (!str)
1746 return 0;
1747 ihash_entries = simple_strtoul(str, &str, 0);
1748 return 1;
1749}
1750__setup("ihash_entries=", set_ihash_entries);
1751
1752/*
1753 * Initialize the waitqueues and inode hash table.
1754 */
1755void __init inode_init_early(void)
1756{
074b8517 1757 unsigned int loop;
1da177e4
LT
1758
1759 /* If hashes are distributed across NUMA nodes, defer
1760 * hash allocation until vmalloc space is available.
1761 */
1762 if (hashdist)
1763 return;
1764
1765 inode_hashtable =
1766 alloc_large_system_hash("Inode-cache",
1767 sizeof(struct hlist_head),
1768 ihash_entries,
1769 14,
1770 HASH_EARLY,
1771 &i_hash_shift,
1772 &i_hash_mask,
31fe62b9 1773 0,
1da177e4
LT
1774 0);
1775
074b8517 1776 for (loop = 0; loop < (1U << i_hash_shift); loop++)
1da177e4
LT
1777 INIT_HLIST_HEAD(&inode_hashtable[loop]);
1778}
1779
74bf17cf 1780void __init inode_init(void)
1da177e4 1781{
074b8517 1782 unsigned int loop;
1da177e4
LT
1783
1784 /* inode slab cache */
b0196009
PJ
1785 inode_cachep = kmem_cache_create("inode_cache",
1786 sizeof(struct inode),
1787 0,
1788 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1789 SLAB_MEM_SPREAD),
20c2df83 1790 init_once);
1da177e4
LT
1791
1792 /* Hash may have been set up in inode_init_early */
1793 if (!hashdist)
1794 return;
1795
1796 inode_hashtable =
1797 alloc_large_system_hash("Inode-cache",
1798 sizeof(struct hlist_head),
1799 ihash_entries,
1800 14,
1801 0,
1802 &i_hash_shift,
1803 &i_hash_mask,
31fe62b9 1804 0,
1da177e4
LT
1805 0);
1806
074b8517 1807 for (loop = 0; loop < (1U << i_hash_shift); loop++)
1da177e4
LT
1808 INIT_HLIST_HEAD(&inode_hashtable[loop]);
1809}
1810
1811void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1812{
1813 inode->i_mode = mode;
1814 if (S_ISCHR(mode)) {
1815 inode->i_fop = &def_chr_fops;
1816 inode->i_rdev = rdev;
1817 } else if (S_ISBLK(mode)) {
1818 inode->i_fop = &def_blk_fops;
1819 inode->i_rdev = rdev;
1820 } else if (S_ISFIFO(mode))
599a0ac1 1821 inode->i_fop = &pipefifo_fops;
1da177e4
LT
1822 else if (S_ISSOCK(mode))
1823 inode->i_fop = &bad_sock_fops;
1824 else
af0d9ae8
MK
1825 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
1826 " inode %s:%lu\n", mode, inode->i_sb->s_id,
1827 inode->i_ino);
1da177e4
LT
1828}
1829EXPORT_SYMBOL(init_special_inode);
a1bd120d
DM
1830
1831/**
eaae668d 1832 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
a1bd120d
DM
1833 * @inode: New inode
1834 * @dir: Directory inode
1835 * @mode: mode of the new inode
1836 */
1837void inode_init_owner(struct inode *inode, const struct inode *dir,
62bb1091 1838 umode_t mode)
a1bd120d
DM
1839{
1840 inode->i_uid = current_fsuid();
1841 if (dir && dir->i_mode & S_ISGID) {
1842 inode->i_gid = dir->i_gid;
1843 if (S_ISDIR(mode))
1844 mode |= S_ISGID;
1845 } else
1846 inode->i_gid = current_fsgid();
1847 inode->i_mode = mode;
1848}
1849EXPORT_SYMBOL(inode_init_owner);
e795b717 1850
2e149670
SH
1851/**
1852 * inode_owner_or_capable - check current task permissions to inode
1853 * @inode: inode being checked
1854 *
4f80c6c1
AL
1855 * Return true if current either has CAP_FOWNER in a namespace with the
1856 * inode owner uid mapped, or owns the file.
e795b717 1857 */
2e149670 1858bool inode_owner_or_capable(const struct inode *inode)
e795b717 1859{
4f80c6c1
AL
1860 struct user_namespace *ns;
1861
92361636 1862 if (uid_eq(current_fsuid(), inode->i_uid))
e795b717 1863 return true;
4f80c6c1
AL
1864
1865 ns = current_user_ns();
1866 if (ns_capable(ns, CAP_FOWNER) && kuid_has_mapping(ns, inode->i_uid))
e795b717
SH
1867 return true;
1868 return false;
1869}
2e149670 1870EXPORT_SYMBOL(inode_owner_or_capable);
1d59d61f
TM
1871
1872/*
1873 * Direct i/o helper functions
1874 */
1875static void __inode_dio_wait(struct inode *inode)
1876{
1877 wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
1878 DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
1879
1880 do {
1881 prepare_to_wait(wq, &q.wait, TASK_UNINTERRUPTIBLE);
1882 if (atomic_read(&inode->i_dio_count))
1883 schedule();
1884 } while (atomic_read(&inode->i_dio_count));
1885 finish_wait(wq, &q.wait);
1886}
1887
1888/**
1889 * inode_dio_wait - wait for outstanding DIO requests to finish
1890 * @inode: inode to wait for
1891 *
1892 * Waits for all pending direct I/O requests to finish so that we can
1893 * proceed with a truncate or equivalent operation.
1894 *
1895 * Must be called under a lock that serializes taking new references
1896 * to i_dio_count, usually by inode->i_mutex.
1897 */
1898void inode_dio_wait(struct inode *inode)
1899{
1900 if (atomic_read(&inode->i_dio_count))
1901 __inode_dio_wait(inode);
1902}
1903EXPORT_SYMBOL(inode_dio_wait);
1904
1905/*
1906 * inode_dio_done - signal finish of a direct I/O requests
1907 * @inode: inode the direct I/O happens on
1908 *
1909 * This is called once we've finished processing a direct I/O request,
1910 * and is used to wake up callers waiting for direct I/O to be quiesced.
1911 */
1912void inode_dio_done(struct inode *inode)
1913{
1914 if (atomic_dec_and_test(&inode->i_dio_count))
1915 wake_up_bit(&inode->i_state, __I_DIO_WAKEUP);
1916}
1917EXPORT_SYMBOL(inode_dio_done);