GFS2: use kmalloc for lvb bitmap
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / gfs2 / lock_dlm.c
CommitLineData
f057f6cd
SW
1/*
2 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
e0c2a9aa 3 * Copyright 2004-2011 Red Hat, Inc.
f057f6cd
SW
4 *
5 * This copyrighted material is made available to anyone wishing to use,
6 * modify, copy, or redistribute it subject to the terms and conditions
7 * of the GNU General Public License version 2.
8 */
9
10#include <linux/fs.h>
11#include <linux/dlm.h>
5a0e3ad6 12#include <linux/slab.h>
f057f6cd 13#include <linux/types.h>
e0c2a9aa 14#include <linux/delay.h>
f057f6cd
SW
15#include <linux/gfs2_ondisk.h>
16
17#include "incore.h"
18#include "glock.h"
19#include "util.h"
e0c2a9aa 20#include "sys.h"
a245769f 21#include "trace_gfs2.h"
f057f6cd 22
e0c2a9aa 23extern struct workqueue_struct *gfs2_control_wq;
f057f6cd 24
a245769f
SW
25/**
26 * gfs2_update_stats - Update time based stats
27 * @mv: Pointer to mean/variance structure to update
28 * @sample: New data to include
29 *
30 * @delta is the difference between the current rtt sample and the
31 * running average srtt. We add 1/8 of that to the srtt in order to
32 * update the current srtt estimate. The varience estimate is a bit
33 * more complicated. We subtract the abs value of the @delta from
34 * the current variance estimate and add 1/4 of that to the running
35 * total.
36 *
37 * Note that the index points at the array entry containing the smoothed
38 * mean value, and the variance is always in the following entry
39 *
40 * Reference: TCP/IP Illustrated, vol 2, p. 831,832
41 * All times are in units of integer nanoseconds. Unlike the TCP/IP case,
42 * they are not scaled fixed point.
43 */
44
45static inline void gfs2_update_stats(struct gfs2_lkstats *s, unsigned index,
46 s64 sample)
47{
48 s64 delta = sample - s->stats[index];
49 s->stats[index] += (delta >> 3);
50 index++;
51 s->stats[index] += ((abs64(delta) - s->stats[index]) >> 2);
52}
53
54/**
55 * gfs2_update_reply_times - Update locking statistics
56 * @gl: The glock to update
57 *
58 * This assumes that gl->gl_dstamp has been set earlier.
59 *
60 * The rtt (lock round trip time) is an estimate of the time
61 * taken to perform a dlm lock request. We update it on each
62 * reply from the dlm.
63 *
64 * The blocking flag is set on the glock for all dlm requests
65 * which may potentially block due to lock requests from other nodes.
66 * DLM requests where the current lock state is exclusive, the
67 * requested state is null (or unlocked) or where the TRY or
68 * TRY_1CB flags are set are classified as non-blocking. All
69 * other DLM requests are counted as (potentially) blocking.
70 */
71static inline void gfs2_update_reply_times(struct gfs2_glock *gl)
72{
73 struct gfs2_pcpu_lkstats *lks;
74 const unsigned gltype = gl->gl_name.ln_type;
75 unsigned index = test_bit(GLF_BLOCKING, &gl->gl_flags) ?
76 GFS2_LKS_SRTTB : GFS2_LKS_SRTT;
77 s64 rtt;
78
79 preempt_disable();
80 rtt = ktime_to_ns(ktime_sub(ktime_get_real(), gl->gl_dstamp));
81 lks = this_cpu_ptr(gl->gl_sbd->sd_lkstats);
82 gfs2_update_stats(&gl->gl_stats, index, rtt); /* Local */
83 gfs2_update_stats(&lks->lkstats[gltype], index, rtt); /* Global */
84 preempt_enable();
85
86 trace_gfs2_glock_lock_time(gl, rtt);
87}
88
89/**
90 * gfs2_update_request_times - Update locking statistics
91 * @gl: The glock to update
92 *
93 * The irt (lock inter-request times) measures the average time
94 * between requests to the dlm. It is updated immediately before
95 * each dlm call.
96 */
97
98static inline void gfs2_update_request_times(struct gfs2_glock *gl)
99{
100 struct gfs2_pcpu_lkstats *lks;
101 const unsigned gltype = gl->gl_name.ln_type;
102 ktime_t dstamp;
103 s64 irt;
104
105 preempt_disable();
106 dstamp = gl->gl_dstamp;
107 gl->gl_dstamp = ktime_get_real();
108 irt = ktime_to_ns(ktime_sub(gl->gl_dstamp, dstamp));
109 lks = this_cpu_ptr(gl->gl_sbd->sd_lkstats);
110 gfs2_update_stats(&gl->gl_stats, GFS2_LKS_SIRT, irt); /* Local */
111 gfs2_update_stats(&lks->lkstats[gltype], GFS2_LKS_SIRT, irt); /* Global */
112 preempt_enable();
113}
114
f057f6cd
SW
115static void gdlm_ast(void *arg)
116{
117 struct gfs2_glock *gl = arg;
118 unsigned ret = gl->gl_state;
119
a245769f 120 gfs2_update_reply_times(gl);
f057f6cd
SW
121 BUG_ON(gl->gl_lksb.sb_flags & DLM_SBF_DEMOTED);
122
4e2f8849
DT
123 if ((gl->gl_lksb.sb_flags & DLM_SBF_VALNOTVALID) && gl->gl_lksb.sb_lvbptr)
124 memset(gl->gl_lksb.sb_lvbptr, 0, GDLM_LVB_SIZE);
f057f6cd
SW
125
126 switch (gl->gl_lksb.sb_status) {
127 case -DLM_EUNLOCK: /* Unlocked, so glock can be freed */
fc0e38da 128 gfs2_glock_free(gl);
f057f6cd
SW
129 return;
130 case -DLM_ECANCEL: /* Cancel while getting lock */
131 ret |= LM_OUT_CANCELED;
132 goto out;
133 case -EAGAIN: /* Try lock fails */
1fea7c25 134 case -EDEADLK: /* Deadlock detected */
f057f6cd 135 goto out;
1fea7c25 136 case -ETIMEDOUT: /* Canceled due to timeout */
f057f6cd
SW
137 ret |= LM_OUT_ERROR;
138 goto out;
139 case 0: /* Success */
140 break;
141 default: /* Something unexpected */
142 BUG();
143 }
144
02ffad08 145 ret = gl->gl_req;
f057f6cd 146 if (gl->gl_lksb.sb_flags & DLM_SBF_ALTMODE) {
02ffad08 147 if (gl->gl_req == LM_ST_SHARED)
f057f6cd 148 ret = LM_ST_DEFERRED;
02ffad08 149 else if (gl->gl_req == LM_ST_DEFERRED)
f057f6cd
SW
150 ret = LM_ST_SHARED;
151 else
152 BUG();
153 }
154
155 set_bit(GLF_INITIAL, &gl->gl_flags);
156 gfs2_glock_complete(gl, ret);
157 return;
158out:
159 if (!test_bit(GLF_INITIAL, &gl->gl_flags))
160 gl->gl_lksb.sb_lkid = 0;
161 gfs2_glock_complete(gl, ret);
162}
163
164static void gdlm_bast(void *arg, int mode)
165{
166 struct gfs2_glock *gl = arg;
167
168 switch (mode) {
169 case DLM_LOCK_EX:
170 gfs2_glock_cb(gl, LM_ST_UNLOCKED);
171 break;
172 case DLM_LOCK_CW:
173 gfs2_glock_cb(gl, LM_ST_DEFERRED);
174 break;
175 case DLM_LOCK_PR:
176 gfs2_glock_cb(gl, LM_ST_SHARED);
177 break;
178 default:
179 printk(KERN_ERR "unknown bast mode %d", mode);
180 BUG();
181 }
182}
183
184/* convert gfs lock-state to dlm lock-mode */
185
186static int make_mode(const unsigned int lmstate)
187{
188 switch (lmstate) {
189 case LM_ST_UNLOCKED:
190 return DLM_LOCK_NL;
191 case LM_ST_EXCLUSIVE:
192 return DLM_LOCK_EX;
193 case LM_ST_DEFERRED:
194 return DLM_LOCK_CW;
195 case LM_ST_SHARED:
196 return DLM_LOCK_PR;
197 }
198 printk(KERN_ERR "unknown LM state %d", lmstate);
199 BUG();
200 return -1;
201}
202
4c569a72 203static u32 make_flags(struct gfs2_glock *gl, const unsigned int gfs_flags,
f057f6cd
SW
204 const int req)
205{
dba2d70c
DT
206 u32 lkf = 0;
207
4e2f8849 208 if (gl->gl_lksb.sb_lvbptr)
dba2d70c 209 lkf |= DLM_LKF_VALBLK;
f057f6cd
SW
210
211 if (gfs_flags & LM_FLAG_TRY)
212 lkf |= DLM_LKF_NOQUEUE;
213
214 if (gfs_flags & LM_FLAG_TRY_1CB) {
215 lkf |= DLM_LKF_NOQUEUE;
216 lkf |= DLM_LKF_NOQUEUEBAST;
217 }
218
219 if (gfs_flags & LM_FLAG_PRIORITY) {
220 lkf |= DLM_LKF_NOORDER;
221 lkf |= DLM_LKF_HEADQUE;
222 }
223
224 if (gfs_flags & LM_FLAG_ANY) {
225 if (req == DLM_LOCK_PR)
226 lkf |= DLM_LKF_ALTCW;
227 else if (req == DLM_LOCK_CW)
228 lkf |= DLM_LKF_ALTPR;
229 else
230 BUG();
231 }
232
dba2d70c 233 if (gl->gl_lksb.sb_lkid != 0) {
f057f6cd 234 lkf |= DLM_LKF_CONVERT;
4c569a72
BP
235 if (test_bit(GLF_BLOCKING, &gl->gl_flags))
236 lkf |= DLM_LKF_QUECVT;
237 }
f057f6cd 238
f057f6cd
SW
239 return lkf;
240}
241
a245769f
SW
242static void gfs2_reverse_hex(char *c, u64 value)
243{
ec148752 244 *c = '0';
a245769f
SW
245 while (value) {
246 *c-- = hex_asc[value & 0x0f];
247 value >>= 4;
248 }
249}
250
921169ca
SW
251static int gdlm_lock(struct gfs2_glock *gl, unsigned int req_state,
252 unsigned int flags)
f057f6cd
SW
253{
254 struct lm_lockstruct *ls = &gl->gl_sbd->sd_lockstruct;
f057f6cd
SW
255 int req;
256 u32 lkf;
a245769f 257 char strname[GDLM_STRNAME_BYTES] = "";
f057f6cd
SW
258
259 req = make_mode(req_state);
4c569a72 260 lkf = make_flags(gl, flags, req);
a245769f
SW
261 gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT);
262 gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT);
263 if (gl->gl_lksb.sb_lkid) {
264 gfs2_update_request_times(gl);
265 } else {
266 memset(strname, ' ', GDLM_STRNAME_BYTES - 1);
267 strname[GDLM_STRNAME_BYTES - 1] = '\0';
268 gfs2_reverse_hex(strname + 7, gl->gl_name.ln_type);
269 gfs2_reverse_hex(strname + 23, gl->gl_name.ln_number);
270 gl->gl_dstamp = ktime_get_real();
271 }
f057f6cd
SW
272 /*
273 * Submit the actual lock request.
274 */
275
a245769f 276 return dlm_lock(ls->ls_dlm, req, &gl->gl_lksb, lkf, strname,
921169ca 277 GDLM_STRNAME_BYTES - 1, 0, gdlm_ast, gl, gdlm_bast);
f057f6cd
SW
278}
279
bc015cb8 280static void gdlm_put_lock(struct gfs2_glock *gl)
f057f6cd 281{
e402746a
SW
282 struct gfs2_sbd *sdp = gl->gl_sbd;
283 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
d4e0bfec 284 int lvb_needs_unlock = 0;
f057f6cd
SW
285 int error;
286
287 if (gl->gl_lksb.sb_lkid == 0) {
fc0e38da 288 gfs2_glock_free(gl);
f057f6cd
SW
289 return;
290 }
291
a245769f
SW
292 clear_bit(GLF_BLOCKING, &gl->gl_flags);
293 gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT);
294 gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT);
295 gfs2_update_request_times(gl);
fb6791d1
DT
296
297 /* don't want to skip dlm_unlock writing the lvb when lock is ex */
d4e0bfec
DT
298
299 if (gl->gl_lksb.sb_lvbptr && (gl->gl_state == LM_ST_EXCLUSIVE))
300 lvb_needs_unlock = 1;
301
fb6791d1 302 if (test_bit(SDF_SKIP_DLM_UNLOCK, &sdp->sd_flags) &&
d4e0bfec 303 !lvb_needs_unlock) {
fb6791d1
DT
304 gfs2_glock_free(gl);
305 return;
306 }
307
f057f6cd
SW
308 error = dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_VALBLK,
309 NULL, gl);
310 if (error) {
311 printk(KERN_ERR "gdlm_unlock %x,%llx err=%d\n",
312 gl->gl_name.ln_type,
313 (unsigned long long)gl->gl_name.ln_number, error);
314 return;
315 }
316}
317
318static void gdlm_cancel(struct gfs2_glock *gl)
319{
320 struct lm_lockstruct *ls = &gl->gl_sbd->sd_lockstruct;
321 dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_CANCEL, NULL, gl);
322}
323
e0c2a9aa
DT
324/*
325 * dlm/gfs2 recovery coordination using dlm_recover callbacks
326 *
327 * 1. dlm_controld sees lockspace members change
328 * 2. dlm_controld blocks dlm-kernel locking activity
329 * 3. dlm_controld within dlm-kernel notifies gfs2 (recover_prep)
330 * 4. dlm_controld starts and finishes its own user level recovery
331 * 5. dlm_controld starts dlm-kernel dlm_recoverd to do kernel recovery
332 * 6. dlm_recoverd notifies gfs2 of failed nodes (recover_slot)
333 * 7. dlm_recoverd does its own lock recovery
334 * 8. dlm_recoverd unblocks dlm-kernel locking activity
335 * 9. dlm_recoverd notifies gfs2 when done (recover_done with new generation)
336 * 10. gfs2_control updates control_lock lvb with new generation and jid bits
337 * 11. gfs2_control enqueues journals for gfs2_recover to recover (maybe none)
338 * 12. gfs2_recover dequeues and recovers journals of failed nodes
339 * 13. gfs2_recover provides recovery results to gfs2_control (recovery_result)
340 * 14. gfs2_control updates control_lock lvb jid bits for recovered journals
341 * 15. gfs2_control unblocks normal locking when all journals are recovered
342 *
343 * - failures during recovery
344 *
345 * recover_prep() may set BLOCK_LOCKS (step 3) again before gfs2_control
346 * clears BLOCK_LOCKS (step 15), e.g. another node fails while still
347 * recovering for a prior failure. gfs2_control needs a way to detect
348 * this so it can leave BLOCK_LOCKS set in step 15. This is managed using
349 * the recover_block and recover_start values.
350 *
351 * recover_done() provides a new lockspace generation number each time it
352 * is called (step 9). This generation number is saved as recover_start.
353 * When recover_prep() is called, it sets BLOCK_LOCKS and sets
354 * recover_block = recover_start. So, while recover_block is equal to
355 * recover_start, BLOCK_LOCKS should remain set. (recover_spin must
356 * be held around the BLOCK_LOCKS/recover_block/recover_start logic.)
357 *
358 * - more specific gfs2 steps in sequence above
359 *
360 * 3. recover_prep sets BLOCK_LOCKS and sets recover_block = recover_start
361 * 6. recover_slot records any failed jids (maybe none)
362 * 9. recover_done sets recover_start = new generation number
363 * 10. gfs2_control sets control_lock lvb = new gen + bits for failed jids
364 * 12. gfs2_recover does journal recoveries for failed jids identified above
365 * 14. gfs2_control clears control_lock lvb bits for recovered jids
366 * 15. gfs2_control checks if recover_block == recover_start (step 3 occured
367 * again) then do nothing, otherwise if recover_start > recover_block
368 * then clear BLOCK_LOCKS.
369 *
370 * - parallel recovery steps across all nodes
371 *
372 * All nodes attempt to update the control_lock lvb with the new generation
373 * number and jid bits, but only the first to get the control_lock EX will
374 * do so; others will see that it's already done (lvb already contains new
375 * generation number.)
376 *
377 * . All nodes get the same recover_prep/recover_slot/recover_done callbacks
378 * . All nodes attempt to set control_lock lvb gen + bits for the new gen
379 * . One node gets control_lock first and writes the lvb, others see it's done
380 * . All nodes attempt to recover jids for which they see control_lock bits set
381 * . One node succeeds for a jid, and that one clears the jid bit in the lvb
382 * . All nodes will eventually see all lvb bits clear and unblock locks
383 *
384 * - is there a problem with clearing an lvb bit that should be set
385 * and missing a journal recovery?
386 *
387 * 1. jid fails
388 * 2. lvb bit set for step 1
389 * 3. jid recovered for step 1
390 * 4. jid taken again (new mount)
391 * 5. jid fails (for step 4)
392 * 6. lvb bit set for step 5 (will already be set)
393 * 7. lvb bit cleared for step 3
394 *
395 * This is not a problem because the failure in step 5 does not
396 * require recovery, because the mount in step 4 could not have
397 * progressed far enough to unblock locks and access the fs. The
398 * control_mount() function waits for all recoveries to be complete
399 * for the latest lockspace generation before ever unblocking locks
400 * and returning. The mount in step 4 waits until the recovery in
401 * step 1 is done.
402 *
403 * - special case of first mounter: first node to mount the fs
404 *
405 * The first node to mount a gfs2 fs needs to check all the journals
406 * and recover any that need recovery before other nodes are allowed
407 * to mount the fs. (Others may begin mounting, but they must wait
408 * for the first mounter to be done before taking locks on the fs
409 * or accessing the fs.) This has two parts:
410 *
411 * 1. The mounted_lock tells a node it's the first to mount the fs.
412 * Each node holds the mounted_lock in PR while it's mounted.
413 * Each node tries to acquire the mounted_lock in EX when it mounts.
414 * If a node is granted the mounted_lock EX it means there are no
415 * other mounted nodes (no PR locks exist), and it is the first mounter.
416 * The mounted_lock is demoted to PR when first recovery is done, so
417 * others will fail to get an EX lock, but will get a PR lock.
418 *
419 * 2. The control_lock blocks others in control_mount() while the first
420 * mounter is doing first mount recovery of all journals.
421 * A mounting node needs to acquire control_lock in EX mode before
422 * it can proceed. The first mounter holds control_lock in EX while doing
423 * the first mount recovery, blocking mounts from other nodes, then demotes
424 * control_lock to NL when it's done (others_may_mount/first_done),
425 * allowing other nodes to continue mounting.
426 *
427 * first mounter:
428 * control_lock EX/NOQUEUE success
429 * mounted_lock EX/NOQUEUE success (no other PR, so no other mounters)
430 * set first=1
431 * do first mounter recovery
432 * mounted_lock EX->PR
433 * control_lock EX->NL, write lvb generation
434 *
435 * other mounter:
436 * control_lock EX/NOQUEUE success (if fail -EAGAIN, retry)
437 * mounted_lock EX/NOQUEUE fail -EAGAIN (expected due to other mounters PR)
438 * mounted_lock PR/NOQUEUE success
439 * read lvb generation
440 * control_lock EX->NL
441 * set first=0
442 *
443 * - mount during recovery
444 *
445 * If a node mounts while others are doing recovery (not first mounter),
446 * the mounting node will get its initial recover_done() callback without
447 * having seen any previous failures/callbacks.
448 *
449 * It must wait for all recoveries preceding its mount to be finished
450 * before it unblocks locks. It does this by repeating the "other mounter"
451 * steps above until the lvb generation number is >= its mount generation
452 * number (from initial recover_done) and all lvb bits are clear.
453 *
454 * - control_lock lvb format
455 *
456 * 4 bytes generation number: the latest dlm lockspace generation number
457 * from recover_done callback. Indicates the jid bitmap has been updated
458 * to reflect all slot failures through that generation.
459 * 4 bytes unused.
460 * GDLM_LVB_SIZE-8 bytes of jid bit map. If bit N is set, it indicates
461 * that jid N needs recovery.
462 */
463
464#define JID_BITMAP_OFFSET 8 /* 4 byte generation number + 4 byte unused */
465
466static void control_lvb_read(struct lm_lockstruct *ls, uint32_t *lvb_gen,
467 char *lvb_bits)
468{
469 uint32_t gen;
470 memcpy(lvb_bits, ls->ls_control_lvb, GDLM_LVB_SIZE);
471 memcpy(&gen, lvb_bits, sizeof(uint32_t));
472 *lvb_gen = le32_to_cpu(gen);
473}
474
475static void control_lvb_write(struct lm_lockstruct *ls, uint32_t lvb_gen,
476 char *lvb_bits)
477{
478 uint32_t gen;
479 memcpy(ls->ls_control_lvb, lvb_bits, GDLM_LVB_SIZE);
480 gen = cpu_to_le32(lvb_gen);
481 memcpy(ls->ls_control_lvb, &gen, sizeof(uint32_t));
482}
483
484static int all_jid_bits_clear(char *lvb)
485{
486 int i;
487 for (i = JID_BITMAP_OFFSET; i < GDLM_LVB_SIZE; i++) {
488 if (lvb[i])
489 return 0;
490 }
491 return 1;
492}
493
494static void sync_wait_cb(void *arg)
495{
496 struct lm_lockstruct *ls = arg;
497 complete(&ls->ls_sync_wait);
498}
499
500static int sync_unlock(struct gfs2_sbd *sdp, struct dlm_lksb *lksb, char *name)
f057f6cd
SW
501{
502 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
503 int error;
504
e0c2a9aa
DT
505 error = dlm_unlock(ls->ls_dlm, lksb->sb_lkid, 0, lksb, ls);
506 if (error) {
507 fs_err(sdp, "%s lkid %x error %d\n",
508 name, lksb->sb_lkid, error);
509 return error;
510 }
511
512 wait_for_completion(&ls->ls_sync_wait);
513
514 if (lksb->sb_status != -DLM_EUNLOCK) {
515 fs_err(sdp, "%s lkid %x status %d\n",
516 name, lksb->sb_lkid, lksb->sb_status);
517 return -1;
518 }
519 return 0;
520}
521
522static int sync_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags,
523 unsigned int num, struct dlm_lksb *lksb, char *name)
524{
525 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
526 char strname[GDLM_STRNAME_BYTES];
527 int error, status;
528
529 memset(strname, 0, GDLM_STRNAME_BYTES);
530 snprintf(strname, GDLM_STRNAME_BYTES, "%8x%16x", LM_TYPE_NONDISK, num);
531
532 error = dlm_lock(ls->ls_dlm, mode, lksb, flags,
533 strname, GDLM_STRNAME_BYTES - 1,
534 0, sync_wait_cb, ls, NULL);
535 if (error) {
536 fs_err(sdp, "%s lkid %x flags %x mode %d error %d\n",
537 name, lksb->sb_lkid, flags, mode, error);
538 return error;
539 }
540
541 wait_for_completion(&ls->ls_sync_wait);
542
543 status = lksb->sb_status;
544
545 if (status && status != -EAGAIN) {
546 fs_err(sdp, "%s lkid %x flags %x mode %d status %d\n",
547 name, lksb->sb_lkid, flags, mode, status);
548 }
549
550 return status;
551}
552
553static int mounted_unlock(struct gfs2_sbd *sdp)
554{
555 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
556 return sync_unlock(sdp, &ls->ls_mounted_lksb, "mounted_lock");
557}
558
559static int mounted_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags)
560{
561 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
562 return sync_lock(sdp, mode, flags, GFS2_MOUNTED_LOCK,
563 &ls->ls_mounted_lksb, "mounted_lock");
564}
565
566static int control_unlock(struct gfs2_sbd *sdp)
567{
568 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
569 return sync_unlock(sdp, &ls->ls_control_lksb, "control_lock");
570}
571
572static int control_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags)
573{
574 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
575 return sync_lock(sdp, mode, flags, GFS2_CONTROL_LOCK,
576 &ls->ls_control_lksb, "control_lock");
577}
578
579static void gfs2_control_func(struct work_struct *work)
580{
581 struct gfs2_sbd *sdp = container_of(work, struct gfs2_sbd, sd_control_work.work);
582 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
e0c2a9aa
DT
583 uint32_t block_gen, start_gen, lvb_gen, flags;
584 int recover_set = 0;
585 int write_lvb = 0;
586 int recover_size;
587 int i, error;
588
589 spin_lock(&ls->ls_recover_spin);
590 /*
591 * No MOUNT_DONE means we're still mounting; control_mount()
592 * will set this flag, after which this thread will take over
593 * all further clearing of BLOCK_LOCKS.
594 *
595 * FIRST_MOUNT means this node is doing first mounter recovery,
596 * for which recovery control is handled by
597 * control_mount()/control_first_done(), not this thread.
598 */
599 if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
600 test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
601 spin_unlock(&ls->ls_recover_spin);
602 return;
603 }
604 block_gen = ls->ls_recover_block;
605 start_gen = ls->ls_recover_start;
606 spin_unlock(&ls->ls_recover_spin);
607
608 /*
609 * Equal block_gen and start_gen implies we are between
610 * recover_prep and recover_done callbacks, which means
611 * dlm recovery is in progress and dlm locking is blocked.
612 * There's no point trying to do any work until recover_done.
613 */
614
615 if (block_gen == start_gen)
616 return;
617
618 /*
619 * Propagate recover_submit[] and recover_result[] to lvb:
620 * dlm_recoverd adds to recover_submit[] jids needing recovery
621 * gfs2_recover adds to recover_result[] journal recovery results
622 *
623 * set lvb bit for jids in recover_submit[] if the lvb has not
624 * yet been updated for the generation of the failure
625 *
626 * clear lvb bit for jids in recover_result[] if the result of
627 * the journal recovery is SUCCESS
628 */
629
630 error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_VALBLK);
631 if (error) {
632 fs_err(sdp, "control lock EX error %d\n", error);
633 return;
634 }
635
57c7310b 636 control_lvb_read(ls, &lvb_gen, ls->ls_lvb_bits);
e0c2a9aa
DT
637
638 spin_lock(&ls->ls_recover_spin);
639 if (block_gen != ls->ls_recover_block ||
640 start_gen != ls->ls_recover_start) {
641 fs_info(sdp, "recover generation %u block1 %u %u\n",
642 start_gen, block_gen, ls->ls_recover_block);
643 spin_unlock(&ls->ls_recover_spin);
644 control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
645 return;
646 }
647
648 recover_size = ls->ls_recover_size;
649
650 if (lvb_gen <= start_gen) {
651 /*
652 * Clear lvb bits for jids we've successfully recovered.
653 * Because all nodes attempt to recover failed journals,
654 * a journal can be recovered multiple times successfully
655 * in succession. Only the first will really do recovery,
656 * the others find it clean, but still report a successful
657 * recovery. So, another node may have already recovered
658 * the jid and cleared the lvb bit for it.
659 */
660 for (i = 0; i < recover_size; i++) {
661 if (ls->ls_recover_result[i] != LM_RD_SUCCESS)
662 continue;
663
664 ls->ls_recover_result[i] = 0;
665
57c7310b 666 if (!test_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET))
e0c2a9aa
DT
667 continue;
668
57c7310b 669 __clear_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET);
e0c2a9aa
DT
670 write_lvb = 1;
671 }
672 }
673
674 if (lvb_gen == start_gen) {
675 /*
676 * Failed slots before start_gen are already set in lvb.
677 */
678 for (i = 0; i < recover_size; i++) {
679 if (!ls->ls_recover_submit[i])
680 continue;
681 if (ls->ls_recover_submit[i] < lvb_gen)
682 ls->ls_recover_submit[i] = 0;
683 }
684 } else if (lvb_gen < start_gen) {
685 /*
686 * Failed slots before start_gen are not yet set in lvb.
687 */
688 for (i = 0; i < recover_size; i++) {
689 if (!ls->ls_recover_submit[i])
690 continue;
691 if (ls->ls_recover_submit[i] < start_gen) {
692 ls->ls_recover_submit[i] = 0;
57c7310b 693 __set_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET);
e0c2a9aa
DT
694 }
695 }
696 /* even if there are no bits to set, we need to write the
697 latest generation to the lvb */
698 write_lvb = 1;
699 } else {
700 /*
701 * we should be getting a recover_done() for lvb_gen soon
702 */
703 }
704 spin_unlock(&ls->ls_recover_spin);
705
706 if (write_lvb) {
57c7310b 707 control_lvb_write(ls, start_gen, ls->ls_lvb_bits);
e0c2a9aa
DT
708 flags = DLM_LKF_CONVERT | DLM_LKF_VALBLK;
709 } else {
710 flags = DLM_LKF_CONVERT;
711 }
712
713 error = control_lock(sdp, DLM_LOCK_NL, flags);
714 if (error) {
715 fs_err(sdp, "control lock NL error %d\n", error);
716 return;
717 }
718
719 /*
720 * Everyone will see jid bits set in the lvb, run gfs2_recover_set(),
721 * and clear a jid bit in the lvb if the recovery is a success.
722 * Eventually all journals will be recovered, all jid bits will
723 * be cleared in the lvb, and everyone will clear BLOCK_LOCKS.
724 */
725
726 for (i = 0; i < recover_size; i++) {
57c7310b 727 if (test_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET)) {
e0c2a9aa
DT
728 fs_info(sdp, "recover generation %u jid %d\n",
729 start_gen, i);
730 gfs2_recover_set(sdp, i);
731 recover_set++;
732 }
733 }
734 if (recover_set)
735 return;
736
737 /*
738 * No more jid bits set in lvb, all recovery is done, unblock locks
739 * (unless a new recover_prep callback has occured blocking locks
740 * again while working above)
741 */
742
743 spin_lock(&ls->ls_recover_spin);
744 if (ls->ls_recover_block == block_gen &&
745 ls->ls_recover_start == start_gen) {
746 clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
747 spin_unlock(&ls->ls_recover_spin);
748 fs_info(sdp, "recover generation %u done\n", start_gen);
749 gfs2_glock_thaw(sdp);
750 } else {
751 fs_info(sdp, "recover generation %u block2 %u %u\n",
752 start_gen, block_gen, ls->ls_recover_block);
753 spin_unlock(&ls->ls_recover_spin);
754 }
755}
756
757static int control_mount(struct gfs2_sbd *sdp)
758{
759 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
e0c2a9aa
DT
760 uint32_t start_gen, block_gen, mount_gen, lvb_gen;
761 int mounted_mode;
762 int retries = 0;
763 int error;
764
765 memset(&ls->ls_mounted_lksb, 0, sizeof(struct dlm_lksb));
766 memset(&ls->ls_control_lksb, 0, sizeof(struct dlm_lksb));
767 memset(&ls->ls_control_lvb, 0, GDLM_LVB_SIZE);
768 ls->ls_control_lksb.sb_lvbptr = ls->ls_control_lvb;
769 init_completion(&ls->ls_sync_wait);
770
771 set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
772
773 error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_VALBLK);
774 if (error) {
775 fs_err(sdp, "control_mount control_lock NL error %d\n", error);
776 return error;
777 }
778
779 error = mounted_lock(sdp, DLM_LOCK_NL, 0);
780 if (error) {
781 fs_err(sdp, "control_mount mounted_lock NL error %d\n", error);
782 control_unlock(sdp);
783 return error;
784 }
785 mounted_mode = DLM_LOCK_NL;
786
787restart:
788 if (retries++ && signal_pending(current)) {
789 error = -EINTR;
790 goto fail;
791 }
792
793 /*
794 * We always start with both locks in NL. control_lock is
795 * demoted to NL below so we don't need to do it here.
796 */
797
798 if (mounted_mode != DLM_LOCK_NL) {
799 error = mounted_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
800 if (error)
801 goto fail;
802 mounted_mode = DLM_LOCK_NL;
803 }
804
805 /*
806 * Other nodes need to do some work in dlm recovery and gfs2_control
807 * before the recover_done and control_lock will be ready for us below.
808 * A delay here is not required but often avoids having to retry.
809 */
810
811 msleep_interruptible(500);
812
813 /*
814 * Acquire control_lock in EX and mounted_lock in either EX or PR.
815 * control_lock lvb keeps track of any pending journal recoveries.
816 * mounted_lock indicates if any other nodes have the fs mounted.
817 */
818
819 error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE|DLM_LKF_VALBLK);
820 if (error == -EAGAIN) {
821 goto restart;
822 } else if (error) {
823 fs_err(sdp, "control_mount control_lock EX error %d\n", error);
824 goto fail;
825 }
826
827 error = mounted_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE);
828 if (!error) {
829 mounted_mode = DLM_LOCK_EX;
830 goto locks_done;
831 } else if (error != -EAGAIN) {
832 fs_err(sdp, "control_mount mounted_lock EX error %d\n", error);
833 goto fail;
834 }
835
836 error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE);
837 if (!error) {
838 mounted_mode = DLM_LOCK_PR;
839 goto locks_done;
840 } else {
841 /* not even -EAGAIN should happen here */
842 fs_err(sdp, "control_mount mounted_lock PR error %d\n", error);
843 goto fail;
844 }
845
846locks_done:
847 /*
848 * If we got both locks above in EX, then we're the first mounter.
849 * If not, then we need to wait for the control_lock lvb to be
850 * updated by other mounted nodes to reflect our mount generation.
851 *
852 * In simple first mounter cases, first mounter will see zero lvb_gen,
853 * but in cases where all existing nodes leave/fail before mounting
854 * nodes finish control_mount, then all nodes will be mounting and
855 * lvb_gen will be non-zero.
856 */
857
57c7310b 858 control_lvb_read(ls, &lvb_gen, ls->ls_lvb_bits);
e0c2a9aa
DT
859
860 if (lvb_gen == 0xFFFFFFFF) {
861 /* special value to force mount attempts to fail */
862 fs_err(sdp, "control_mount control_lock disabled\n");
863 error = -EINVAL;
864 goto fail;
865 }
866
867 if (mounted_mode == DLM_LOCK_EX) {
868 /* first mounter, keep both EX while doing first recovery */
869 spin_lock(&ls->ls_recover_spin);
870 clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
871 set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags);
872 set_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
873 spin_unlock(&ls->ls_recover_spin);
874 fs_info(sdp, "first mounter control generation %u\n", lvb_gen);
875 return 0;
876 }
877
878 error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
879 if (error)
880 goto fail;
881
882 /*
883 * We are not first mounter, now we need to wait for the control_lock
884 * lvb generation to be >= the generation from our first recover_done
885 * and all lvb bits to be clear (no pending journal recoveries.)
886 */
887
57c7310b 888 if (!all_jid_bits_clear(ls->ls_lvb_bits)) {
e0c2a9aa
DT
889 /* journals need recovery, wait until all are clear */
890 fs_info(sdp, "control_mount wait for journal recovery\n");
891 goto restart;
892 }
893
894 spin_lock(&ls->ls_recover_spin);
895 block_gen = ls->ls_recover_block;
896 start_gen = ls->ls_recover_start;
897 mount_gen = ls->ls_recover_mount;
898
899 if (lvb_gen < mount_gen) {
900 /* wait for mounted nodes to update control_lock lvb to our
901 generation, which might include new recovery bits set */
902 fs_info(sdp, "control_mount wait1 block %u start %u mount %u "
903 "lvb %u flags %lx\n", block_gen, start_gen, mount_gen,
904 lvb_gen, ls->ls_recover_flags);
905 spin_unlock(&ls->ls_recover_spin);
906 goto restart;
907 }
908
909 if (lvb_gen != start_gen) {
910 /* wait for mounted nodes to update control_lock lvb to the
911 latest recovery generation */
912 fs_info(sdp, "control_mount wait2 block %u start %u mount %u "
913 "lvb %u flags %lx\n", block_gen, start_gen, mount_gen,
914 lvb_gen, ls->ls_recover_flags);
915 spin_unlock(&ls->ls_recover_spin);
916 goto restart;
917 }
918
919 if (block_gen == start_gen) {
920 /* dlm recovery in progress, wait for it to finish */
921 fs_info(sdp, "control_mount wait3 block %u start %u mount %u "
922 "lvb %u flags %lx\n", block_gen, start_gen, mount_gen,
923 lvb_gen, ls->ls_recover_flags);
924 spin_unlock(&ls->ls_recover_spin);
925 goto restart;
f057f6cd
SW
926 }
927
e0c2a9aa
DT
928 clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
929 set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags);
930 memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t));
931 memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t));
932 spin_unlock(&ls->ls_recover_spin);
933 return 0;
934
935fail:
936 mounted_unlock(sdp);
937 control_unlock(sdp);
938 return error;
939}
940
941static int dlm_recovery_wait(void *word)
942{
943 schedule();
944 return 0;
945}
946
947static int control_first_done(struct gfs2_sbd *sdp)
948{
949 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
e0c2a9aa
DT
950 uint32_t start_gen, block_gen;
951 int error;
952
953restart:
954 spin_lock(&ls->ls_recover_spin);
955 start_gen = ls->ls_recover_start;
956 block_gen = ls->ls_recover_block;
957
958 if (test_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags) ||
959 !test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
960 !test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
961 /* sanity check, should not happen */
962 fs_err(sdp, "control_first_done start %u block %u flags %lx\n",
963 start_gen, block_gen, ls->ls_recover_flags);
964 spin_unlock(&ls->ls_recover_spin);
965 control_unlock(sdp);
966 return -1;
967 }
968
969 if (start_gen == block_gen) {
970 /*
971 * Wait for the end of a dlm recovery cycle to switch from
972 * first mounter recovery. We can ignore any recover_slot
973 * callbacks between the recover_prep and next recover_done
974 * because we are still the first mounter and any failed nodes
975 * have not fully mounted, so they don't need recovery.
976 */
977 spin_unlock(&ls->ls_recover_spin);
978 fs_info(sdp, "control_first_done wait gen %u\n", start_gen);
979
980 wait_on_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY,
981 dlm_recovery_wait, TASK_UNINTERRUPTIBLE);
982 goto restart;
983 }
984
985 clear_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
986 set_bit(DFL_FIRST_MOUNT_DONE, &ls->ls_recover_flags);
987 memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t));
988 memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t));
989 spin_unlock(&ls->ls_recover_spin);
990
57c7310b
DT
991 memset(ls->ls_lvb_bits, 0, GDLM_LVB_SIZE);
992 control_lvb_write(ls, start_gen, ls->ls_lvb_bits);
e0c2a9aa
DT
993
994 error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT);
995 if (error)
996 fs_err(sdp, "control_first_done mounted PR error %d\n", error);
997
998 error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT|DLM_LKF_VALBLK);
f057f6cd 999 if (error)
e0c2a9aa 1000 fs_err(sdp, "control_first_done control NL error %d\n", error);
f057f6cd
SW
1001
1002 return error;
1003}
1004
e0c2a9aa
DT
1005/*
1006 * Expand static jid arrays if necessary (by increments of RECOVER_SIZE_INC)
1007 * to accomodate the largest slot number. (NB dlm slot numbers start at 1,
1008 * gfs2 jids start at 0, so jid = slot - 1)
1009 */
1010
1011#define RECOVER_SIZE_INC 16
1012
1013static int set_recover_size(struct gfs2_sbd *sdp, struct dlm_slot *slots,
1014 int num_slots)
1015{
1016 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1017 uint32_t *submit = NULL;
1018 uint32_t *result = NULL;
1019 uint32_t old_size, new_size;
1020 int i, max_jid;
1021
57c7310b
DT
1022 if (!ls->ls_lvb_bits) {
1023 ls->ls_lvb_bits = kzalloc(GDLM_LVB_SIZE, GFP_NOFS);
1024 if (!ls->ls_lvb_bits)
1025 return -ENOMEM;
1026 }
1027
e0c2a9aa
DT
1028 max_jid = 0;
1029 for (i = 0; i < num_slots; i++) {
1030 if (max_jid < slots[i].slot - 1)
1031 max_jid = slots[i].slot - 1;
1032 }
1033
1034 old_size = ls->ls_recover_size;
1035
1036 if (old_size >= max_jid + 1)
1037 return 0;
1038
1039 new_size = old_size + RECOVER_SIZE_INC;
1040
1041 submit = kzalloc(new_size * sizeof(uint32_t), GFP_NOFS);
1042 result = kzalloc(new_size * sizeof(uint32_t), GFP_NOFS);
1043 if (!submit || !result) {
1044 kfree(submit);
1045 kfree(result);
1046 return -ENOMEM;
1047 }
1048
1049 spin_lock(&ls->ls_recover_spin);
1050 memcpy(submit, ls->ls_recover_submit, old_size * sizeof(uint32_t));
1051 memcpy(result, ls->ls_recover_result, old_size * sizeof(uint32_t));
1052 kfree(ls->ls_recover_submit);
1053 kfree(ls->ls_recover_result);
1054 ls->ls_recover_submit = submit;
1055 ls->ls_recover_result = result;
1056 ls->ls_recover_size = new_size;
1057 spin_unlock(&ls->ls_recover_spin);
1058 return 0;
1059}
1060
1061static void free_recover_size(struct lm_lockstruct *ls)
1062{
57c7310b 1063 kfree(ls->ls_lvb_bits);
e0c2a9aa
DT
1064 kfree(ls->ls_recover_submit);
1065 kfree(ls->ls_recover_result);
1066 ls->ls_recover_submit = NULL;
1067 ls->ls_recover_result = NULL;
1068 ls->ls_recover_size = 0;
1069}
1070
1071/* dlm calls before it does lock recovery */
1072
1073static void gdlm_recover_prep(void *arg)
1074{
1075 struct gfs2_sbd *sdp = arg;
1076 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1077
1078 spin_lock(&ls->ls_recover_spin);
1079 ls->ls_recover_block = ls->ls_recover_start;
1080 set_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags);
1081
1082 if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
1083 test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
1084 spin_unlock(&ls->ls_recover_spin);
1085 return;
1086 }
1087 set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
1088 spin_unlock(&ls->ls_recover_spin);
1089}
1090
1091/* dlm calls after recover_prep has been completed on all lockspace members;
1092 identifies slot/jid of failed member */
1093
1094static void gdlm_recover_slot(void *arg, struct dlm_slot *slot)
1095{
1096 struct gfs2_sbd *sdp = arg;
1097 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1098 int jid = slot->slot - 1;
1099
1100 spin_lock(&ls->ls_recover_spin);
1101 if (ls->ls_recover_size < jid + 1) {
1102 fs_err(sdp, "recover_slot jid %d gen %u short size %d",
1103 jid, ls->ls_recover_block, ls->ls_recover_size);
1104 spin_unlock(&ls->ls_recover_spin);
1105 return;
1106 }
1107
1108 if (ls->ls_recover_submit[jid]) {
1109 fs_info(sdp, "recover_slot jid %d gen %u prev %u",
1110 jid, ls->ls_recover_block, ls->ls_recover_submit[jid]);
1111 }
1112 ls->ls_recover_submit[jid] = ls->ls_recover_block;
1113 spin_unlock(&ls->ls_recover_spin);
1114}
1115
1116/* dlm calls after recover_slot and after it completes lock recovery */
1117
1118static void gdlm_recover_done(void *arg, struct dlm_slot *slots, int num_slots,
1119 int our_slot, uint32_t generation)
1120{
1121 struct gfs2_sbd *sdp = arg;
1122 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1123
1124 /* ensure the ls jid arrays are large enough */
1125 set_recover_size(sdp, slots, num_slots);
1126
1127 spin_lock(&ls->ls_recover_spin);
1128 ls->ls_recover_start = generation;
1129
1130 if (!ls->ls_recover_mount) {
1131 ls->ls_recover_mount = generation;
1132 ls->ls_jid = our_slot - 1;
1133 }
1134
1135 if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags))
1136 queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work, 0);
1137
1138 clear_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags);
1139 smp_mb__after_clear_bit();
1140 wake_up_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY);
1141 spin_unlock(&ls->ls_recover_spin);
1142}
1143
1144/* gfs2_recover thread has a journal recovery result */
1145
1146static void gdlm_recovery_result(struct gfs2_sbd *sdp, unsigned int jid,
1147 unsigned int result)
1148{
1149 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1150
1151 if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1152 return;
1153
1154 /* don't care about the recovery of own journal during mount */
1155 if (jid == ls->ls_jid)
1156 return;
1157
1158 spin_lock(&ls->ls_recover_spin);
1159 if (test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
1160 spin_unlock(&ls->ls_recover_spin);
1161 return;
1162 }
1163 if (ls->ls_recover_size < jid + 1) {
1164 fs_err(sdp, "recovery_result jid %d short size %d",
1165 jid, ls->ls_recover_size);
1166 spin_unlock(&ls->ls_recover_spin);
1167 return;
1168 }
1169
1170 fs_info(sdp, "recover jid %d result %s\n", jid,
1171 result == LM_RD_GAVEUP ? "busy" : "success");
1172
1173 ls->ls_recover_result[jid] = result;
1174
1175 /* GAVEUP means another node is recovering the journal; delay our
1176 next attempt to recover it, to give the other node a chance to
1177 finish before trying again */
1178
1179 if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags))
1180 queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work,
1181 result == LM_RD_GAVEUP ? HZ : 0);
1182 spin_unlock(&ls->ls_recover_spin);
1183}
1184
1185const struct dlm_lockspace_ops gdlm_lockspace_ops = {
1186 .recover_prep = gdlm_recover_prep,
1187 .recover_slot = gdlm_recover_slot,
1188 .recover_done = gdlm_recover_done,
1189};
1190
1191static int gdlm_mount(struct gfs2_sbd *sdp, const char *table)
1192{
1193 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1194 char cluster[GFS2_LOCKNAME_LEN];
1195 const char *fsname;
1196 uint32_t flags;
1197 int error, ops_result;
1198
1199 /*
1200 * initialize everything
1201 */
1202
1203 INIT_DELAYED_WORK(&sdp->sd_control_work, gfs2_control_func);
1204 spin_lock_init(&ls->ls_recover_spin);
1205 ls->ls_recover_flags = 0;
1206 ls->ls_recover_mount = 0;
1207 ls->ls_recover_start = 0;
1208 ls->ls_recover_block = 0;
1209 ls->ls_recover_size = 0;
1210 ls->ls_recover_submit = NULL;
1211 ls->ls_recover_result = NULL;
57c7310b 1212 ls->ls_lvb_bits = NULL;
e0c2a9aa
DT
1213
1214 error = set_recover_size(sdp, NULL, 0);
1215 if (error)
1216 goto fail;
1217
1218 /*
1219 * prepare dlm_new_lockspace args
1220 */
1221
1222 fsname = strchr(table, ':');
1223 if (!fsname) {
1224 fs_info(sdp, "no fsname found\n");
1225 error = -EINVAL;
1226 goto fail_free;
1227 }
1228 memset(cluster, 0, sizeof(cluster));
1229 memcpy(cluster, table, strlen(table) - strlen(fsname));
1230 fsname++;
1231
1232 flags = DLM_LSFL_FS | DLM_LSFL_NEWEXCL;
e0c2a9aa
DT
1233
1234 /*
1235 * create/join lockspace
1236 */
1237
1238 error = dlm_new_lockspace(fsname, cluster, flags, GDLM_LVB_SIZE,
1239 &gdlm_lockspace_ops, sdp, &ops_result,
1240 &ls->ls_dlm);
1241 if (error) {
1242 fs_err(sdp, "dlm_new_lockspace error %d\n", error);
1243 goto fail_free;
1244 }
1245
1246 if (ops_result < 0) {
1247 /*
1248 * dlm does not support ops callbacks,
1249 * old dlm_controld/gfs_controld are used, try without ops.
1250 */
1251 fs_info(sdp, "dlm lockspace ops not used\n");
1252 free_recover_size(ls);
1253 set_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags);
1254 return 0;
1255 }
1256
1257 if (!test_bit(SDF_NOJOURNALID, &sdp->sd_flags)) {
1258 fs_err(sdp, "dlm lockspace ops disallow jid preset\n");
1259 error = -EINVAL;
1260 goto fail_release;
1261 }
1262
1263 /*
1264 * control_mount() uses control_lock to determine first mounter,
1265 * and for later mounts, waits for any recoveries to be cleared.
1266 */
1267
1268 error = control_mount(sdp);
1269 if (error) {
1270 fs_err(sdp, "mount control error %d\n", error);
1271 goto fail_release;
1272 }
1273
1274 ls->ls_first = !!test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
1275 clear_bit(SDF_NOJOURNALID, &sdp->sd_flags);
1276 smp_mb__after_clear_bit();
1277 wake_up_bit(&sdp->sd_flags, SDF_NOJOURNALID);
1278 return 0;
1279
1280fail_release:
1281 dlm_release_lockspace(ls->ls_dlm, 2);
1282fail_free:
1283 free_recover_size(ls);
1284fail:
1285 return error;
1286}
1287
1288static void gdlm_first_done(struct gfs2_sbd *sdp)
1289{
1290 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1291 int error;
1292
1293 if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1294 return;
1295
1296 error = control_first_done(sdp);
1297 if (error)
1298 fs_err(sdp, "mount first_done error %d\n", error);
1299}
1300
f057f6cd
SW
1301static void gdlm_unmount(struct gfs2_sbd *sdp)
1302{
1303 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1304
e0c2a9aa
DT
1305 if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1306 goto release;
1307
1308 /* wait for gfs2_control_wq to be done with this mount */
1309
1310 spin_lock(&ls->ls_recover_spin);
1311 set_bit(DFL_UNMOUNT, &ls->ls_recover_flags);
1312 spin_unlock(&ls->ls_recover_spin);
43829731 1313 flush_delayed_work(&sdp->sd_control_work);
e0c2a9aa
DT
1314
1315 /* mounted_lock and control_lock will be purged in dlm recovery */
1316release:
f057f6cd
SW
1317 if (ls->ls_dlm) {
1318 dlm_release_lockspace(ls->ls_dlm, 2);
1319 ls->ls_dlm = NULL;
1320 }
e0c2a9aa
DT
1321
1322 free_recover_size(ls);
f057f6cd
SW
1323}
1324
1325static const match_table_t dlm_tokens = {
1326 { Opt_jid, "jid=%d"},
1327 { Opt_id, "id=%d"},
1328 { Opt_first, "first=%d"},
1329 { Opt_nodir, "nodir=%d"},
1330 { Opt_err, NULL },
1331};
1332
1333const struct lm_lockops gfs2_dlm_ops = {
1334 .lm_proto_name = "lock_dlm",
1335 .lm_mount = gdlm_mount,
e0c2a9aa
DT
1336 .lm_first_done = gdlm_first_done,
1337 .lm_recovery_result = gdlm_recovery_result,
f057f6cd
SW
1338 .lm_unmount = gdlm_unmount,
1339 .lm_put_lock = gdlm_put_lock,
1340 .lm_lock = gdlm_lock,
1341 .lm_cancel = gdlm_cancel,
1342 .lm_tokens = &dlm_tokens,
1343};
1344