f2fs: adds a tracepoint for f2fs_submit_read_bio
[GitHub/exynos8895/android_kernel_samsung_universal8895.git] / fs / f2fs / segment.h
CommitLineData
0a8165d7 1/*
39a53e0c
JK
2 * fs/f2fs/segment.h
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
ac5d156c
JK
11#include <linux/blkdev.h>
12
39a53e0c
JK
13/* constant macro */
14#define NULL_SEGNO ((unsigned int)(~0))
5ec4e49f 15#define NULL_SECNO ((unsigned int)(~0))
39a53e0c 16
81eb8d6e
JK
17#define DEF_RECLAIM_PREFREE_SEGMENTS 100 /* 200MB of prefree segments */
18
6224da87 19/* L: Logical segment # in volume, R: Relative segment # in main area */
39a53e0c
JK
20#define GET_L2R_SEGNO(free_i, segno) (segno - free_i->start_segno)
21#define GET_R2L_SEGNO(free_i, segno) (segno + free_i->start_segno)
22
61ae45c8
CL
23#define IS_DATASEG(t) (t <= CURSEG_COLD_DATA)
24#define IS_NODESEG(t) (t >= CURSEG_HOT_NODE)
39a53e0c 25
5c773ba3
JK
26#define IS_CURSEG(sbi, seg) \
27 ((seg == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) || \
28 (seg == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) || \
29 (seg == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) || \
30 (seg == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) || \
31 (seg == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) || \
32 (seg == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno))
39a53e0c
JK
33
34#define IS_CURSEC(sbi, secno) \
35 ((secno == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno / \
36 sbi->segs_per_sec) || \
37 (secno == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno / \
38 sbi->segs_per_sec) || \
39 (secno == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno / \
40 sbi->segs_per_sec) || \
41 (secno == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno / \
42 sbi->segs_per_sec) || \
43 (secno == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno / \
44 sbi->segs_per_sec) || \
45 (secno == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno / \
46 sbi->segs_per_sec)) \
47
48#define START_BLOCK(sbi, segno) \
49 (SM_I(sbi)->seg0_blkaddr + \
50 (GET_R2L_SEGNO(FREE_I(sbi), segno) << sbi->log_blocks_per_seg))
51#define NEXT_FREE_BLKADDR(sbi, curseg) \
52 (START_BLOCK(sbi, curseg->segno) + curseg->next_blkoff)
53
54#define MAIN_BASE_BLOCK(sbi) (SM_I(sbi)->main_blkaddr)
55
56#define GET_SEGOFF_FROM_SEG0(sbi, blk_addr) \
57 ((blk_addr) - SM_I(sbi)->seg0_blkaddr)
58#define GET_SEGNO_FROM_SEG0(sbi, blk_addr) \
59 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> sbi->log_blocks_per_seg)
60#define GET_SEGNO(sbi, blk_addr) \
61 (((blk_addr == NULL_ADDR) || (blk_addr == NEW_ADDR)) ? \
62 NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi), \
63 GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
64#define GET_SECNO(sbi, segno) \
65 ((segno) / sbi->segs_per_sec)
66#define GET_ZONENO_FROM_SEGNO(sbi, segno) \
67 ((segno / sbi->segs_per_sec) / sbi->secs_per_zone)
68
69#define GET_SUM_BLOCK(sbi, segno) \
70 ((sbi->sm_info->ssa_blkaddr) + segno)
71
72#define GET_SUM_TYPE(footer) ((footer)->entry_type)
73#define SET_SUM_TYPE(footer, type) ((footer)->entry_type = type)
74
75#define SIT_ENTRY_OFFSET(sit_i, segno) \
76 (segno % sit_i->sents_per_block)
77#define SIT_BLOCK_OFFSET(sit_i, segno) \
78 (segno / SIT_ENTRY_PER_BLOCK)
79#define START_SEGNO(sit_i, segno) \
80 (SIT_BLOCK_OFFSET(sit_i, segno) * SIT_ENTRY_PER_BLOCK)
81#define f2fs_bitmap_size(nr) \
82 (BITS_TO_LONGS(nr) * sizeof(unsigned long))
83#define TOTAL_SEGS(sbi) (SM_I(sbi)->main_segments)
53cf9522 84#define TOTAL_SECS(sbi) (sbi->total_sections)
39a53e0c 85
3cd8a239
JK
86#define SECTOR_FROM_BLOCK(sbi, blk_addr) \
87 (blk_addr << ((sbi)->log_blocksize - F2FS_LOG_SECTOR_SIZE))
ac5d156c
JK
88#define SECTOR_TO_BLOCK(sbi, sectors) \
89 (sectors >> ((sbi)->log_blocksize - F2FS_LOG_SECTOR_SIZE))
cc7b1bb1
CY
90#define MAX_BIO_BLOCKS(max_hw_blocks) \
91 (min((int)max_hw_blocks, BIO_MAX_PAGES))
3cd8a239 92
39a53e0c
JK
93/* during checkpoint, bio_private is used to synchronize the last bio */
94struct bio_private {
95 struct f2fs_sb_info *sbi;
96 bool is_sync;
97 void *wait;
98};
99
100/*
101 * indicate a block allocation direction: RIGHT and LEFT.
102 * RIGHT means allocating new sections towards the end of volume.
103 * LEFT means the opposite direction.
104 */
105enum {
106 ALLOC_RIGHT = 0,
107 ALLOC_LEFT
108};
109
110/*
111 * In the victim_sel_policy->alloc_mode, there are two block allocation modes.
112 * LFS writes data sequentially with cleaning operations.
113 * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
114 */
115enum {
116 LFS = 0,
117 SSR
118};
119
120/*
121 * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes.
122 * GC_CB is based on cost-benefit algorithm.
123 * GC_GREEDY is based on greedy algorithm.
124 */
125enum {
126 GC_CB = 0,
127 GC_GREEDY
128};
129
130/*
131 * BG_GC means the background cleaning job.
132 * FG_GC means the on-demand cleaning job.
133 */
134enum {
135 BG_GC = 0,
136 FG_GC
137};
138
139/* for a function parameter to select a victim segment */
140struct victim_sel_policy {
141 int alloc_mode; /* LFS or SSR */
142 int gc_mode; /* GC_CB or GC_GREEDY */
143 unsigned long *dirty_segmap; /* dirty segment bitmap */
a26b7c8a 144 unsigned int max_search; /* maximum # of segments to search */
39a53e0c
JK
145 unsigned int offset; /* last scanned bitmap offset */
146 unsigned int ofs_unit; /* bitmap search unit */
147 unsigned int min_cost; /* minimum cost */
148 unsigned int min_segno; /* segment # having min. cost */
149};
150
151struct seg_entry {
152 unsigned short valid_blocks; /* # of valid blocks */
153 unsigned char *cur_valid_map; /* validity bitmap of blocks */
154 /*
155 * # of valid blocks and the validity bitmap stored in the the last
156 * checkpoint pack. This information is used by the SSR mode.
157 */
158 unsigned short ckpt_valid_blocks;
159 unsigned char *ckpt_valid_map;
160 unsigned char type; /* segment type like CURSEG_XXX_TYPE */
161 unsigned long long mtime; /* modification time of the segment */
162};
163
164struct sec_entry {
165 unsigned int valid_blocks; /* # of valid blocks in a section */
166};
167
168struct segment_allocation {
169 void (*allocate_segment)(struct f2fs_sb_info *, int, bool);
170};
171
172struct sit_info {
173 const struct segment_allocation *s_ops;
174
175 block_t sit_base_addr; /* start block address of SIT area */
176 block_t sit_blocks; /* # of blocks used by SIT area */
177 block_t written_valid_blocks; /* # of valid blocks in main area */
178 char *sit_bitmap; /* SIT bitmap pointer */
179 unsigned int bitmap_size; /* SIT bitmap size */
180
181 unsigned long *dirty_sentries_bitmap; /* bitmap for dirty sentries */
182 unsigned int dirty_sentries; /* # of dirty sentries */
183 unsigned int sents_per_block; /* # of SIT entries per block */
184 struct mutex sentry_lock; /* to protect SIT cache */
185 struct seg_entry *sentries; /* SIT segment-level cache */
186 struct sec_entry *sec_entries; /* SIT section-level cache */
187
188 /* for cost-benefit algorithm in cleaning procedure */
189 unsigned long long elapsed_time; /* elapsed time after mount */
190 unsigned long long mounted_time; /* mount time */
191 unsigned long long min_mtime; /* min. modification time */
192 unsigned long long max_mtime; /* max. modification time */
193};
194
195struct free_segmap_info {
196 unsigned int start_segno; /* start segment number logically */
197 unsigned int free_segments; /* # of free segments */
198 unsigned int free_sections; /* # of free sections */
199 rwlock_t segmap_lock; /* free segmap lock */
200 unsigned long *free_segmap; /* free segment bitmap */
201 unsigned long *free_secmap; /* free section bitmap */
202};
203
204/* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
205enum dirty_type {
206 DIRTY_HOT_DATA, /* dirty segments assigned as hot data logs */
207 DIRTY_WARM_DATA, /* dirty segments assigned as warm data logs */
208 DIRTY_COLD_DATA, /* dirty segments assigned as cold data logs */
209 DIRTY_HOT_NODE, /* dirty segments assigned as hot node logs */
210 DIRTY_WARM_NODE, /* dirty segments assigned as warm node logs */
211 DIRTY_COLD_NODE, /* dirty segments assigned as cold node logs */
212 DIRTY, /* to count # of dirty segments */
213 PRE, /* to count # of entirely obsolete segments */
214 NR_DIRTY_TYPE
215};
216
217struct dirty_seglist_info {
218 const struct victim_selection *v_ops; /* victim selction operation */
219 unsigned long *dirty_segmap[NR_DIRTY_TYPE];
220 struct mutex seglist_lock; /* lock for segment bitmaps */
221 int nr_dirty[NR_DIRTY_TYPE]; /* # of dirty segments */
5ec4e49f 222 unsigned long *victim_secmap; /* background GC victims */
39a53e0c
JK
223};
224
225/* victim selection function for cleaning and SSR */
226struct victim_selection {
227 int (*get_victim)(struct f2fs_sb_info *, unsigned int *,
228 int, int, char);
229};
230
231/* for active log information */
232struct curseg_info {
233 struct mutex curseg_mutex; /* lock for consistency */
234 struct f2fs_summary_block *sum_blk; /* cached summary block */
235 unsigned char alloc_type; /* current allocation type */
236 unsigned int segno; /* current segment number */
237 unsigned short next_blkoff; /* next block offset to write */
238 unsigned int zone; /* current zone number */
239 unsigned int next_segno; /* preallocated segment */
240};
241
242/*
243 * inline functions
244 */
245static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
246{
247 return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
248}
249
250static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
251 unsigned int segno)
252{
253 struct sit_info *sit_i = SIT_I(sbi);
254 return &sit_i->sentries[segno];
255}
256
257static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
258 unsigned int segno)
259{
260 struct sit_info *sit_i = SIT_I(sbi);
261 return &sit_i->sec_entries[GET_SECNO(sbi, segno)];
262}
263
264static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
265 unsigned int segno, int section)
266{
267 /*
268 * In order to get # of valid blocks in a section instantly from many
269 * segments, f2fs manages two counting structures separately.
270 */
271 if (section > 1)
272 return get_sec_entry(sbi, segno)->valid_blocks;
273 else
274 return get_seg_entry(sbi, segno)->valid_blocks;
275}
276
277static inline void seg_info_from_raw_sit(struct seg_entry *se,
278 struct f2fs_sit_entry *rs)
279{
280 se->valid_blocks = GET_SIT_VBLOCKS(rs);
281 se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
282 memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
283 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
284 se->type = GET_SIT_TYPE(rs);
285 se->mtime = le64_to_cpu(rs->mtime);
286}
287
288static inline void seg_info_to_raw_sit(struct seg_entry *se,
289 struct f2fs_sit_entry *rs)
290{
291 unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
292 se->valid_blocks;
293 rs->vblocks = cpu_to_le16(raw_vblocks);
294 memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
295 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
296 se->ckpt_valid_blocks = se->valid_blocks;
297 rs->mtime = cpu_to_le64(se->mtime);
298}
299
300static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
301 unsigned int max, unsigned int segno)
302{
303 unsigned int ret;
304 read_lock(&free_i->segmap_lock);
305 ret = find_next_bit(free_i->free_segmap, max, segno);
306 read_unlock(&free_i->segmap_lock);
307 return ret;
308}
309
310static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
311{
312 struct free_segmap_info *free_i = FREE_I(sbi);
313 unsigned int secno = segno / sbi->segs_per_sec;
314 unsigned int start_segno = secno * sbi->segs_per_sec;
315 unsigned int next;
316
317 write_lock(&free_i->segmap_lock);
318 clear_bit(segno, free_i->free_segmap);
319 free_i->free_segments++;
320
321 next = find_next_bit(free_i->free_segmap, TOTAL_SEGS(sbi), start_segno);
322 if (next >= start_segno + sbi->segs_per_sec) {
323 clear_bit(secno, free_i->free_secmap);
324 free_i->free_sections++;
325 }
326 write_unlock(&free_i->segmap_lock);
327}
328
329static inline void __set_inuse(struct f2fs_sb_info *sbi,
330 unsigned int segno)
331{
332 struct free_segmap_info *free_i = FREE_I(sbi);
333 unsigned int secno = segno / sbi->segs_per_sec;
334 set_bit(segno, free_i->free_segmap);
335 free_i->free_segments--;
336 if (!test_and_set_bit(secno, free_i->free_secmap))
337 free_i->free_sections--;
338}
339
340static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
341 unsigned int segno)
342{
343 struct free_segmap_info *free_i = FREE_I(sbi);
344 unsigned int secno = segno / sbi->segs_per_sec;
345 unsigned int start_segno = secno * sbi->segs_per_sec;
346 unsigned int next;
347
348 write_lock(&free_i->segmap_lock);
349 if (test_and_clear_bit(segno, free_i->free_segmap)) {
350 free_i->free_segments++;
351
352 next = find_next_bit(free_i->free_segmap, TOTAL_SEGS(sbi),
353 start_segno);
354 if (next >= start_segno + sbi->segs_per_sec) {
355 if (test_and_clear_bit(secno, free_i->free_secmap))
356 free_i->free_sections++;
357 }
358 }
359 write_unlock(&free_i->segmap_lock);
360}
361
362static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
363 unsigned int segno)
364{
365 struct free_segmap_info *free_i = FREE_I(sbi);
366 unsigned int secno = segno / sbi->segs_per_sec;
367 write_lock(&free_i->segmap_lock);
368 if (!test_and_set_bit(segno, free_i->free_segmap)) {
369 free_i->free_segments--;
370 if (!test_and_set_bit(secno, free_i->free_secmap))
371 free_i->free_sections--;
372 }
373 write_unlock(&free_i->segmap_lock);
374}
375
376static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
377 void *dst_addr)
378{
379 struct sit_info *sit_i = SIT_I(sbi);
380 memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
381}
382
383static inline block_t written_block_count(struct f2fs_sb_info *sbi)
384{
385 struct sit_info *sit_i = SIT_I(sbi);
386 block_t vblocks;
387
388 mutex_lock(&sit_i->sentry_lock);
389 vblocks = sit_i->written_valid_blocks;
390 mutex_unlock(&sit_i->sentry_lock);
391
392 return vblocks;
393}
394
395static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
396{
397 struct free_segmap_info *free_i = FREE_I(sbi);
398 unsigned int free_segs;
399
400 read_lock(&free_i->segmap_lock);
401 free_segs = free_i->free_segments;
402 read_unlock(&free_i->segmap_lock);
403
404 return free_segs;
405}
406
407static inline int reserved_segments(struct f2fs_sb_info *sbi)
408{
409 return SM_I(sbi)->reserved_segments;
410}
411
412static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
413{
414 struct free_segmap_info *free_i = FREE_I(sbi);
415 unsigned int free_secs;
416
417 read_lock(&free_i->segmap_lock);
418 free_secs = free_i->free_sections;
419 read_unlock(&free_i->segmap_lock);
420
421 return free_secs;
422}
423
424static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
425{
426 return DIRTY_I(sbi)->nr_dirty[PRE];
427}
428
429static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
430{
431 return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
432 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
433 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
434 DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
435 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
436 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
437}
438
439static inline int overprovision_segments(struct f2fs_sb_info *sbi)
440{
441 return SM_I(sbi)->ovp_segments;
442}
443
444static inline int overprovision_sections(struct f2fs_sb_info *sbi)
445{
446 return ((unsigned int) overprovision_segments(sbi)) / sbi->segs_per_sec;
447}
448
449static inline int reserved_sections(struct f2fs_sb_info *sbi)
450{
451 return ((unsigned int) reserved_segments(sbi)) / sbi->segs_per_sec;
452}
453
454static inline bool need_SSR(struct f2fs_sb_info *sbi)
455{
c34e333f
JK
456 return ((prefree_segments(sbi) / sbi->segs_per_sec)
457 + free_sections(sbi) < overprovision_sections(sbi));
39a53e0c
JK
458}
459
43727527 460static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi, int freed)
39a53e0c 461{
5ac206cf
NJ
462 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
463 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
43727527 464
029cd28c
JK
465 if (sbi->por_doing)
466 return false;
467
43727527 468 return ((free_sections(sbi) + freed) <= (node_secs + 2 * dent_secs +
b1f1daf8 469 reserved_sections(sbi)));
39a53e0c
JK
470}
471
81eb8d6e
JK
472static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi)
473{
474 return (prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments);
475}
476
39a53e0c
JK
477static inline int utilization(struct f2fs_sb_info *sbi)
478{
222cbdc4 479 return div_u64((u64)valid_user_blocks(sbi) * 100, sbi->user_block_count);
39a53e0c
JK
480}
481
482/*
483 * Sometimes f2fs may be better to drop out-of-place update policy.
484 * So, if fs utilization is over MIN_IPU_UTIL, then f2fs tries to write
485 * data in the original place likewise other traditional file systems.
486 * But, currently set 100 in percentage, which means it is disabled.
487 * See below need_inplace_update().
488 */
489#define MIN_IPU_UTIL 100
490static inline bool need_inplace_update(struct inode *inode)
491{
492 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
493 if (S_ISDIR(inode->i_mode))
494 return false;
495 if (need_SSR(sbi) && utilization(sbi) > MIN_IPU_UTIL)
496 return true;
497 return false;
498}
499
500static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
501 int type)
502{
503 struct curseg_info *curseg = CURSEG_I(sbi, type);
504 return curseg->segno;
505}
506
507static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
508 int type)
509{
510 struct curseg_info *curseg = CURSEG_I(sbi, type);
511 return curseg->alloc_type;
512}
513
514static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type)
515{
516 struct curseg_info *curseg = CURSEG_I(sbi, type);
517 return curseg->next_blkoff;
518}
519
5d56b671 520#ifdef CONFIG_F2FS_CHECK_FS
39a53e0c
JK
521static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
522{
523 unsigned int end_segno = SM_I(sbi)->segment_count - 1;
524 BUG_ON(segno > end_segno);
525}
526
39a53e0c
JK
527static inline void verify_block_addr(struct f2fs_sb_info *sbi, block_t blk_addr)
528{
529 struct f2fs_sm_info *sm_info = SM_I(sbi);
530 block_t total_blks = sm_info->segment_count << sbi->log_blocks_per_seg;
531 block_t start_addr = sm_info->seg0_blkaddr;
532 block_t end_addr = start_addr + total_blks - 1;
533 BUG_ON(blk_addr < start_addr);
534 BUG_ON(blk_addr > end_addr);
535}
536
537/*
538 * Summary block is always treated as invalid block
539 */
540static inline void check_block_count(struct f2fs_sb_info *sbi,
541 int segno, struct f2fs_sit_entry *raw_sit)
542{
543 struct f2fs_sm_info *sm_info = SM_I(sbi);
544 unsigned int end_segno = sm_info->segment_count - 1;
44c60bf2 545 bool is_valid = test_bit_le(0, raw_sit->valid_map) ? true : false;
39a53e0c 546 int valid_blocks = 0;
44c60bf2 547 int cur_pos = 0, next_pos;
39a53e0c
JK
548
549 /* check segment usage */
550 BUG_ON(GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg);
551
552 /* check boundary of a given segment number */
553 BUG_ON(segno > end_segno);
554
555 /* check bitmap with valid block count */
44c60bf2
CY
556 do {
557 if (is_valid) {
558 next_pos = find_next_zero_bit_le(&raw_sit->valid_map,
559 sbi->blocks_per_seg,
560 cur_pos);
561 valid_blocks += next_pos - cur_pos;
562 } else
563 next_pos = find_next_bit_le(&raw_sit->valid_map,
564 sbi->blocks_per_seg,
565 cur_pos);
566 cur_pos = next_pos;
567 is_valid = !is_valid;
568 } while (cur_pos < sbi->blocks_per_seg);
39a53e0c
JK
569 BUG_ON(GET_SIT_VBLOCKS(raw_sit) != valid_blocks);
570}
5d56b671
JK
571#else
572#define check_seg_range(sbi, segno)
573#define verify_block_addr(sbi, blk_addr)
574#define check_block_count(sbi, segno, raw_sit)
575#endif
39a53e0c
JK
576
577static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
578 unsigned int start)
579{
580 struct sit_info *sit_i = SIT_I(sbi);
581 unsigned int offset = SIT_BLOCK_OFFSET(sit_i, start);
582 block_t blk_addr = sit_i->sit_base_addr + offset;
583
584 check_seg_range(sbi, start);
585
586 /* calculate sit block address */
587 if (f2fs_test_bit(offset, sit_i->sit_bitmap))
588 blk_addr += sit_i->sit_blocks;
589
590 return blk_addr;
591}
592
593static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
594 pgoff_t block_addr)
595{
596 struct sit_info *sit_i = SIT_I(sbi);
597 block_addr -= sit_i->sit_base_addr;
598 if (block_addr < sit_i->sit_blocks)
599 block_addr += sit_i->sit_blocks;
600 else
601 block_addr -= sit_i->sit_blocks;
602
603 return block_addr + sit_i->sit_base_addr;
604}
605
606static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
607{
608 unsigned int block_off = SIT_BLOCK_OFFSET(sit_i, start);
609
610 if (f2fs_test_bit(block_off, sit_i->sit_bitmap))
611 f2fs_clear_bit(block_off, sit_i->sit_bitmap);
612 else
613 f2fs_set_bit(block_off, sit_i->sit_bitmap);
614}
615
616static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi)
617{
618 struct sit_info *sit_i = SIT_I(sbi);
619 return sit_i->elapsed_time + CURRENT_TIME_SEC.tv_sec -
620 sit_i->mounted_time;
621}
622
623static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
624 unsigned int ofs_in_node, unsigned char version)
625{
626 sum->nid = cpu_to_le32(nid);
627 sum->ofs_in_node = cpu_to_le16(ofs_in_node);
628 sum->version = version;
629}
630
631static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
632{
633 return __start_cp_addr(sbi) +
634 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
635}
636
637static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
638{
639 return __start_cp_addr(sbi) +
640 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
641 - (base + 1) + type;
642}
5ec4e49f
JK
643
644static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno)
645{
646 if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno))
647 return true;
648 return false;
649}
ac5d156c
JK
650
651static inline unsigned int max_hw_blocks(struct f2fs_sb_info *sbi)
652{
653 struct block_device *bdev = sbi->sb->s_bdev;
654 struct request_queue *q = bdev_get_queue(bdev);
655 return SECTOR_TO_BLOCK(sbi, queue_max_sectors(q));
656}