f2fs: call f2fs_unlock_op after error was handled
[GitHub/exynos8895/android_kernel_samsung_universal8895.git] / fs / f2fs / segment.h
CommitLineData
0a8165d7 1/*
39a53e0c
JK
2 * fs/f2fs/segment.h
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
ac5d156c
JK
11#include <linux/blkdev.h>
12
39a53e0c
JK
13/* constant macro */
14#define NULL_SEGNO ((unsigned int)(~0))
5ec4e49f 15#define NULL_SECNO ((unsigned int)(~0))
39a53e0c 16
58c41035 17#define DEF_RECLAIM_PREFREE_SEGMENTS 5 /* 5% over total segments */
81eb8d6e 18
6224da87 19/* L: Logical segment # in volume, R: Relative segment # in main area */
39a53e0c
JK
20#define GET_L2R_SEGNO(free_i, segno) (segno - free_i->start_segno)
21#define GET_R2L_SEGNO(free_i, segno) (segno + free_i->start_segno)
22
61ae45c8
CL
23#define IS_DATASEG(t) (t <= CURSEG_COLD_DATA)
24#define IS_NODESEG(t) (t >= CURSEG_HOT_NODE)
39a53e0c 25
5c773ba3
JK
26#define IS_CURSEG(sbi, seg) \
27 ((seg == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) || \
28 (seg == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) || \
29 (seg == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) || \
30 (seg == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) || \
31 (seg == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) || \
32 (seg == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno))
39a53e0c
JK
33
34#define IS_CURSEC(sbi, secno) \
35 ((secno == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno / \
36 sbi->segs_per_sec) || \
37 (secno == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno / \
38 sbi->segs_per_sec) || \
39 (secno == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno / \
40 sbi->segs_per_sec) || \
41 (secno == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno / \
42 sbi->segs_per_sec) || \
43 (secno == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno / \
44 sbi->segs_per_sec) || \
45 (secno == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno / \
46 sbi->segs_per_sec)) \
47
7cd8558b
JK
48#define MAIN_BLKADDR(sbi) (SM_I(sbi)->main_blkaddr)
49#define SEG0_BLKADDR(sbi) (SM_I(sbi)->seg0_blkaddr)
50
51#define MAIN_SEGS(sbi) (SM_I(sbi)->main_segments)
52#define MAIN_SECS(sbi) (sbi->total_sections)
53
54#define TOTAL_SEGS(sbi) (SM_I(sbi)->segment_count)
55#define TOTAL_BLKS(sbi) (TOTAL_SEGS(sbi) << sbi->log_blocks_per_seg)
56
57#define MAX_BLKADDR(sbi) (SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi))
58#define SEGMENT_SIZE(sbi) (1 << (sbi->log_blocksize + \
59 sbi->log_blocks_per_seg))
60
61#define START_BLOCK(sbi, segno) (SEG0_BLKADDR(sbi) + \
39a53e0c 62 (GET_R2L_SEGNO(FREE_I(sbi), segno) << sbi->log_blocks_per_seg))
7cd8558b 63
39a53e0c
JK
64#define NEXT_FREE_BLKADDR(sbi, curseg) \
65 (START_BLOCK(sbi, curseg->segno) + curseg->next_blkoff)
66
7cd8558b 67#define GET_SEGOFF_FROM_SEG0(sbi, blk_addr) ((blk_addr) - SEG0_BLKADDR(sbi))
39a53e0c
JK
68#define GET_SEGNO_FROM_SEG0(sbi, blk_addr) \
69 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> sbi->log_blocks_per_seg)
491c0854
JK
70#define GET_BLKOFF_FROM_SEG0(sbi, blk_addr) \
71 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & (sbi->blocks_per_seg - 1))
72
39a53e0c
JK
73#define GET_SEGNO(sbi, blk_addr) \
74 (((blk_addr == NULL_ADDR) || (blk_addr == NEW_ADDR)) ? \
75 NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi), \
76 GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
77#define GET_SECNO(sbi, segno) \
78 ((segno) / sbi->segs_per_sec)
79#define GET_ZONENO_FROM_SEGNO(sbi, segno) \
80 ((segno / sbi->segs_per_sec) / sbi->secs_per_zone)
81
82#define GET_SUM_BLOCK(sbi, segno) \
83 ((sbi->sm_info->ssa_blkaddr) + segno)
84
85#define GET_SUM_TYPE(footer) ((footer)->entry_type)
86#define SET_SUM_TYPE(footer, type) ((footer)->entry_type = type)
87
88#define SIT_ENTRY_OFFSET(sit_i, segno) \
89 (segno % sit_i->sents_per_block)
d3a14afd 90#define SIT_BLOCK_OFFSET(segno) \
39a53e0c 91 (segno / SIT_ENTRY_PER_BLOCK)
d3a14afd
CY
92#define START_SEGNO(segno) \
93 (SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK)
74de593a 94#define SIT_BLK_CNT(sbi) \
7cd8558b 95 ((MAIN_SEGS(sbi) + SIT_ENTRY_PER_BLOCK - 1) / SIT_ENTRY_PER_BLOCK)
39a53e0c
JK
96#define f2fs_bitmap_size(nr) \
97 (BITS_TO_LONGS(nr) * sizeof(unsigned long))
39a53e0c 98
55cf9cb6
CY
99#define SECTOR_FROM_BLOCK(blk_addr) \
100 (((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK)
101#define SECTOR_TO_BLOCK(sectors) \
102 (sectors >> F2FS_LOG_SECTORS_PER_BLOCK)
90a893c7
JK
103#define MAX_BIO_BLOCKS(sbi) \
104 ((int)min((int)max_hw_blocks(sbi), BIO_MAX_PAGES))
3cd8a239 105
39a53e0c
JK
106/*
107 * indicate a block allocation direction: RIGHT and LEFT.
108 * RIGHT means allocating new sections towards the end of volume.
109 * LEFT means the opposite direction.
110 */
111enum {
112 ALLOC_RIGHT = 0,
113 ALLOC_LEFT
114};
115
116/*
117 * In the victim_sel_policy->alloc_mode, there are two block allocation modes.
118 * LFS writes data sequentially with cleaning operations.
119 * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
120 */
121enum {
122 LFS = 0,
123 SSR
124};
125
126/*
127 * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes.
128 * GC_CB is based on cost-benefit algorithm.
129 * GC_GREEDY is based on greedy algorithm.
130 */
131enum {
132 GC_CB = 0,
133 GC_GREEDY
134};
135
136/*
137 * BG_GC means the background cleaning job.
138 * FG_GC means the on-demand cleaning job.
139 */
140enum {
141 BG_GC = 0,
142 FG_GC
143};
144
145/* for a function parameter to select a victim segment */
146struct victim_sel_policy {
147 int alloc_mode; /* LFS or SSR */
148 int gc_mode; /* GC_CB or GC_GREEDY */
149 unsigned long *dirty_segmap; /* dirty segment bitmap */
a26b7c8a 150 unsigned int max_search; /* maximum # of segments to search */
39a53e0c
JK
151 unsigned int offset; /* last scanned bitmap offset */
152 unsigned int ofs_unit; /* bitmap search unit */
153 unsigned int min_cost; /* minimum cost */
154 unsigned int min_segno; /* segment # having min. cost */
155};
156
157struct seg_entry {
158 unsigned short valid_blocks; /* # of valid blocks */
159 unsigned char *cur_valid_map; /* validity bitmap of blocks */
160 /*
161 * # of valid blocks and the validity bitmap stored in the the last
162 * checkpoint pack. This information is used by the SSR mode.
163 */
164 unsigned short ckpt_valid_blocks;
165 unsigned char *ckpt_valid_map;
166 unsigned char type; /* segment type like CURSEG_XXX_TYPE */
167 unsigned long long mtime; /* modification time of the segment */
168};
169
170struct sec_entry {
171 unsigned int valid_blocks; /* # of valid blocks in a section */
172};
173
174struct segment_allocation {
175 void (*allocate_segment)(struct f2fs_sb_info *, int, bool);
176};
177
178struct sit_info {
179 const struct segment_allocation *s_ops;
180
181 block_t sit_base_addr; /* start block address of SIT area */
182 block_t sit_blocks; /* # of blocks used by SIT area */
183 block_t written_valid_blocks; /* # of valid blocks in main area */
184 char *sit_bitmap; /* SIT bitmap pointer */
185 unsigned int bitmap_size; /* SIT bitmap size */
186
187 unsigned long *dirty_sentries_bitmap; /* bitmap for dirty sentries */
188 unsigned int dirty_sentries; /* # of dirty sentries */
189 unsigned int sents_per_block; /* # of SIT entries per block */
190 struct mutex sentry_lock; /* to protect SIT cache */
191 struct seg_entry *sentries; /* SIT segment-level cache */
192 struct sec_entry *sec_entries; /* SIT section-level cache */
193
194 /* for cost-benefit algorithm in cleaning procedure */
195 unsigned long long elapsed_time; /* elapsed time after mount */
196 unsigned long long mounted_time; /* mount time */
197 unsigned long long min_mtime; /* min. modification time */
198 unsigned long long max_mtime; /* max. modification time */
199};
200
201struct free_segmap_info {
202 unsigned int start_segno; /* start segment number logically */
203 unsigned int free_segments; /* # of free segments */
204 unsigned int free_sections; /* # of free sections */
205 rwlock_t segmap_lock; /* free segmap lock */
206 unsigned long *free_segmap; /* free segment bitmap */
207 unsigned long *free_secmap; /* free section bitmap */
208};
209
210/* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
211enum dirty_type {
212 DIRTY_HOT_DATA, /* dirty segments assigned as hot data logs */
213 DIRTY_WARM_DATA, /* dirty segments assigned as warm data logs */
214 DIRTY_COLD_DATA, /* dirty segments assigned as cold data logs */
215 DIRTY_HOT_NODE, /* dirty segments assigned as hot node logs */
216 DIRTY_WARM_NODE, /* dirty segments assigned as warm node logs */
217 DIRTY_COLD_NODE, /* dirty segments assigned as cold node logs */
218 DIRTY, /* to count # of dirty segments */
219 PRE, /* to count # of entirely obsolete segments */
220 NR_DIRTY_TYPE
221};
222
223struct dirty_seglist_info {
224 const struct victim_selection *v_ops; /* victim selction operation */
225 unsigned long *dirty_segmap[NR_DIRTY_TYPE];
226 struct mutex seglist_lock; /* lock for segment bitmaps */
227 int nr_dirty[NR_DIRTY_TYPE]; /* # of dirty segments */
5ec4e49f 228 unsigned long *victim_secmap; /* background GC victims */
39a53e0c
JK
229};
230
231/* victim selection function for cleaning and SSR */
232struct victim_selection {
233 int (*get_victim)(struct f2fs_sb_info *, unsigned int *,
234 int, int, char);
235};
236
237/* for active log information */
238struct curseg_info {
239 struct mutex curseg_mutex; /* lock for consistency */
240 struct f2fs_summary_block *sum_blk; /* cached summary block */
241 unsigned char alloc_type; /* current allocation type */
242 unsigned int segno; /* current segment number */
243 unsigned short next_blkoff; /* next block offset to write */
244 unsigned int zone; /* current zone number */
245 unsigned int next_segno; /* preallocated segment */
246};
247
184a5cd2
CY
248struct sit_entry_set {
249 struct list_head set_list; /* link with all sit sets */
250 unsigned int start_segno; /* start segno of sits in set */
251 unsigned int entry_cnt; /* the # of sit entries in set */
252};
253
39a53e0c
JK
254/*
255 * inline functions
256 */
257static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
258{
259 return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
260}
261
262static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
263 unsigned int segno)
264{
265 struct sit_info *sit_i = SIT_I(sbi);
266 return &sit_i->sentries[segno];
267}
268
269static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
270 unsigned int segno)
271{
272 struct sit_info *sit_i = SIT_I(sbi);
273 return &sit_i->sec_entries[GET_SECNO(sbi, segno)];
274}
275
276static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
277 unsigned int segno, int section)
278{
279 /*
280 * In order to get # of valid blocks in a section instantly from many
281 * segments, f2fs manages two counting structures separately.
282 */
283 if (section > 1)
284 return get_sec_entry(sbi, segno)->valid_blocks;
285 else
286 return get_seg_entry(sbi, segno)->valid_blocks;
287}
288
289static inline void seg_info_from_raw_sit(struct seg_entry *se,
290 struct f2fs_sit_entry *rs)
291{
292 se->valid_blocks = GET_SIT_VBLOCKS(rs);
293 se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
294 memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
295 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
296 se->type = GET_SIT_TYPE(rs);
297 se->mtime = le64_to_cpu(rs->mtime);
298}
299
300static inline void seg_info_to_raw_sit(struct seg_entry *se,
301 struct f2fs_sit_entry *rs)
302{
303 unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
304 se->valid_blocks;
305 rs->vblocks = cpu_to_le16(raw_vblocks);
306 memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
307 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
308 se->ckpt_valid_blocks = se->valid_blocks;
309 rs->mtime = cpu_to_le64(se->mtime);
310}
311
312static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
313 unsigned int max, unsigned int segno)
314{
315 unsigned int ret;
316 read_lock(&free_i->segmap_lock);
317 ret = find_next_bit(free_i->free_segmap, max, segno);
318 read_unlock(&free_i->segmap_lock);
319 return ret;
320}
321
322static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
323{
324 struct free_segmap_info *free_i = FREE_I(sbi);
325 unsigned int secno = segno / sbi->segs_per_sec;
326 unsigned int start_segno = secno * sbi->segs_per_sec;
327 unsigned int next;
328
329 write_lock(&free_i->segmap_lock);
330 clear_bit(segno, free_i->free_segmap);
331 free_i->free_segments++;
332
7cd8558b 333 next = find_next_bit(free_i->free_segmap, MAIN_SEGS(sbi), start_segno);
39a53e0c
JK
334 if (next >= start_segno + sbi->segs_per_sec) {
335 clear_bit(secno, free_i->free_secmap);
336 free_i->free_sections++;
337 }
338 write_unlock(&free_i->segmap_lock);
339}
340
341static inline void __set_inuse(struct f2fs_sb_info *sbi,
342 unsigned int segno)
343{
344 struct free_segmap_info *free_i = FREE_I(sbi);
345 unsigned int secno = segno / sbi->segs_per_sec;
346 set_bit(segno, free_i->free_segmap);
347 free_i->free_segments--;
348 if (!test_and_set_bit(secno, free_i->free_secmap))
349 free_i->free_sections--;
350}
351
352static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
353 unsigned int segno)
354{
355 struct free_segmap_info *free_i = FREE_I(sbi);
356 unsigned int secno = segno / sbi->segs_per_sec;
357 unsigned int start_segno = secno * sbi->segs_per_sec;
358 unsigned int next;
359
360 write_lock(&free_i->segmap_lock);
361 if (test_and_clear_bit(segno, free_i->free_segmap)) {
362 free_i->free_segments++;
363
f1121ab0
CY
364 next = find_next_bit(free_i->free_segmap,
365 start_segno + sbi->segs_per_sec, start_segno);
39a53e0c
JK
366 if (next >= start_segno + sbi->segs_per_sec) {
367 if (test_and_clear_bit(secno, free_i->free_secmap))
368 free_i->free_sections++;
369 }
370 }
371 write_unlock(&free_i->segmap_lock);
372}
373
374static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
375 unsigned int segno)
376{
377 struct free_segmap_info *free_i = FREE_I(sbi);
378 unsigned int secno = segno / sbi->segs_per_sec;
379 write_lock(&free_i->segmap_lock);
380 if (!test_and_set_bit(segno, free_i->free_segmap)) {
381 free_i->free_segments--;
382 if (!test_and_set_bit(secno, free_i->free_secmap))
383 free_i->free_sections--;
384 }
385 write_unlock(&free_i->segmap_lock);
386}
387
388static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
389 void *dst_addr)
390{
391 struct sit_info *sit_i = SIT_I(sbi);
392 memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
393}
394
395static inline block_t written_block_count(struct f2fs_sb_info *sbi)
396{
8b8343fa 397 return SIT_I(sbi)->written_valid_blocks;
39a53e0c
JK
398}
399
400static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
401{
8b8343fa 402 return FREE_I(sbi)->free_segments;
39a53e0c
JK
403}
404
405static inline int reserved_segments(struct f2fs_sb_info *sbi)
406{
407 return SM_I(sbi)->reserved_segments;
408}
409
410static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
411{
8b8343fa 412 return FREE_I(sbi)->free_sections;
39a53e0c
JK
413}
414
415static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
416{
417 return DIRTY_I(sbi)->nr_dirty[PRE];
418}
419
420static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
421{
422 return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
423 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
424 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
425 DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
426 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
427 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
428}
429
430static inline int overprovision_segments(struct f2fs_sb_info *sbi)
431{
432 return SM_I(sbi)->ovp_segments;
433}
434
435static inline int overprovision_sections(struct f2fs_sb_info *sbi)
436{
437 return ((unsigned int) overprovision_segments(sbi)) / sbi->segs_per_sec;
438}
439
440static inline int reserved_sections(struct f2fs_sb_info *sbi)
441{
442 return ((unsigned int) reserved_segments(sbi)) / sbi->segs_per_sec;
443}
444
445static inline bool need_SSR(struct f2fs_sb_info *sbi)
446{
95dd8973
JK
447 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
448 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
449 return free_sections(sbi) <= (node_secs + 2 * dent_secs +
450 reserved_sections(sbi) + 1);
39a53e0c
JK
451}
452
43727527 453static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi, int freed)
39a53e0c 454{
5ac206cf
NJ
455 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
456 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
43727527 457
cfb271d4 458 if (unlikely(sbi->por_doing))
029cd28c
JK
459 return false;
460
6c311ec6
CF
461 return (free_sections(sbi) + freed) <= (node_secs + 2 * dent_secs +
462 reserved_sections(sbi));
39a53e0c
JK
463}
464
81eb8d6e
JK
465static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi)
466{
6c311ec6 467 return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments;
81eb8d6e
JK
468}
469
39a53e0c
JK
470static inline int utilization(struct f2fs_sb_info *sbi)
471{
6c311ec6
CF
472 return div_u64((u64)valid_user_blocks(sbi) * 100,
473 sbi->user_block_count);
39a53e0c
JK
474}
475
476/*
477 * Sometimes f2fs may be better to drop out-of-place update policy.
216fbd64
JK
478 * And, users can control the policy through sysfs entries.
479 * There are five policies with triggering conditions as follows.
480 * F2FS_IPU_FORCE - all the time,
481 * F2FS_IPU_SSR - if SSR mode is activated,
482 * F2FS_IPU_UTIL - if FS utilization is over threashold,
483 * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over
484 * threashold,
c1ce1b02
JK
485 * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash
486 * storages. IPU will be triggered only if the # of dirty
487 * pages over min_fsync_blocks.
216fbd64 488 * F2FS_IPUT_DISABLE - disable IPU. (=default option)
39a53e0c 489 */
216fbd64 490#define DEF_MIN_IPU_UTIL 70
c1ce1b02 491#define DEF_MIN_FSYNC_BLOCKS 8
216fbd64
JK
492
493enum {
494 F2FS_IPU_FORCE,
495 F2FS_IPU_SSR,
496 F2FS_IPU_UTIL,
497 F2FS_IPU_SSR_UTIL,
c1ce1b02 498 F2FS_IPU_FSYNC,
216fbd64
JK
499};
500
39a53e0c
JK
501static inline bool need_inplace_update(struct inode *inode)
502{
4081363f 503 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
9b5f136f 504 unsigned int policy = SM_I(sbi)->ipu_policy;
216fbd64
JK
505
506 /* IPU can be done only for the user data */
39a53e0c
JK
507 if (S_ISDIR(inode->i_mode))
508 return false;
216fbd64 509
9b5f136f 510 if (policy & (0x1 << F2FS_IPU_FORCE))
39a53e0c 511 return true;
9b5f136f
JK
512 if (policy & (0x1 << F2FS_IPU_SSR) && need_SSR(sbi))
513 return true;
514 if (policy & (0x1 << F2FS_IPU_UTIL) &&
515 utilization(sbi) > SM_I(sbi)->min_ipu_util)
516 return true;
517 if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && need_SSR(sbi) &&
518 utilization(sbi) > SM_I(sbi)->min_ipu_util)
519 return true;
520
521 /* this is only set during fdatasync */
522 if (policy & (0x1 << F2FS_IPU_FSYNC) &&
523 is_inode_flag_set(F2FS_I(inode), FI_NEED_IPU))
524 return true;
525
39a53e0c
JK
526 return false;
527}
528
529static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
530 int type)
531{
532 struct curseg_info *curseg = CURSEG_I(sbi, type);
533 return curseg->segno;
534}
535
536static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
537 int type)
538{
539 struct curseg_info *curseg = CURSEG_I(sbi, type);
540 return curseg->alloc_type;
541}
542
543static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type)
544{
545 struct curseg_info *curseg = CURSEG_I(sbi, type);
546 return curseg->next_blkoff;
547}
548
5d56b671 549#ifdef CONFIG_F2FS_CHECK_FS
39a53e0c
JK
550static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
551{
7cd8558b 552 BUG_ON(segno > TOTAL_SEGS(sbi) - 1);
39a53e0c
JK
553}
554
39a53e0c
JK
555static inline void verify_block_addr(struct f2fs_sb_info *sbi, block_t blk_addr)
556{
7cd8558b
JK
557 BUG_ON(blk_addr < SEG0_BLKADDR(sbi));
558 BUG_ON(blk_addr >= MAX_BLKADDR(sbi));
39a53e0c
JK
559}
560
561/*
e1c42045 562 * Summary block is always treated as an invalid block
39a53e0c
JK
563 */
564static inline void check_block_count(struct f2fs_sb_info *sbi,
565 int segno, struct f2fs_sit_entry *raw_sit)
566{
44c60bf2 567 bool is_valid = test_bit_le(0, raw_sit->valid_map) ? true : false;
39a53e0c 568 int valid_blocks = 0;
44c60bf2 569 int cur_pos = 0, next_pos;
39a53e0c
JK
570
571 /* check segment usage */
572 BUG_ON(GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg);
573
574 /* check boundary of a given segment number */
7cd8558b 575 BUG_ON(segno > TOTAL_SEGS(sbi) - 1);
39a53e0c
JK
576
577 /* check bitmap with valid block count */
44c60bf2
CY
578 do {
579 if (is_valid) {
580 next_pos = find_next_zero_bit_le(&raw_sit->valid_map,
581 sbi->blocks_per_seg,
582 cur_pos);
583 valid_blocks += next_pos - cur_pos;
584 } else
585 next_pos = find_next_bit_le(&raw_sit->valid_map,
586 sbi->blocks_per_seg,
587 cur_pos);
588 cur_pos = next_pos;
589 is_valid = !is_valid;
590 } while (cur_pos < sbi->blocks_per_seg);
39a53e0c
JK
591 BUG_ON(GET_SIT_VBLOCKS(raw_sit) != valid_blocks);
592}
5d56b671 593#else
05796763
JK
594static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
595{
7cd8558b 596 if (segno > TOTAL_SEGS(sbi) - 1)
05796763
JK
597 sbi->need_fsck = true;
598}
599
600static inline void verify_block_addr(struct f2fs_sb_info *sbi, block_t blk_addr)
601{
7cd8558b 602 if (blk_addr < SEG0_BLKADDR(sbi) || blk_addr >= MAX_BLKADDR(sbi))
05796763
JK
603 sbi->need_fsck = true;
604}
605
606/*
607 * Summary block is always treated as an invalid block
608 */
609static inline void check_block_count(struct f2fs_sb_info *sbi,
610 int segno, struct f2fs_sit_entry *raw_sit)
611{
05796763
JK
612 /* check segment usage */
613 if (GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg)
614 sbi->need_fsck = true;
615
616 /* check boundary of a given segment number */
7cd8558b 617 if (segno > TOTAL_SEGS(sbi) - 1)
05796763
JK
618 sbi->need_fsck = true;
619}
5d56b671 620#endif
39a53e0c
JK
621
622static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
623 unsigned int start)
624{
625 struct sit_info *sit_i = SIT_I(sbi);
d3a14afd 626 unsigned int offset = SIT_BLOCK_OFFSET(start);
39a53e0c
JK
627 block_t blk_addr = sit_i->sit_base_addr + offset;
628
629 check_seg_range(sbi, start);
630
631 /* calculate sit block address */
632 if (f2fs_test_bit(offset, sit_i->sit_bitmap))
633 blk_addr += sit_i->sit_blocks;
634
635 return blk_addr;
636}
637
638static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
639 pgoff_t block_addr)
640{
641 struct sit_info *sit_i = SIT_I(sbi);
642 block_addr -= sit_i->sit_base_addr;
643 if (block_addr < sit_i->sit_blocks)
644 block_addr += sit_i->sit_blocks;
645 else
646 block_addr -= sit_i->sit_blocks;
647
648 return block_addr + sit_i->sit_base_addr;
649}
650
651static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
652{
d3a14afd 653 unsigned int block_off = SIT_BLOCK_OFFSET(start);
39a53e0c
JK
654
655 if (f2fs_test_bit(block_off, sit_i->sit_bitmap))
656 f2fs_clear_bit(block_off, sit_i->sit_bitmap);
657 else
658 f2fs_set_bit(block_off, sit_i->sit_bitmap);
659}
660
661static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi)
662{
663 struct sit_info *sit_i = SIT_I(sbi);
664 return sit_i->elapsed_time + CURRENT_TIME_SEC.tv_sec -
665 sit_i->mounted_time;
666}
667
668static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
669 unsigned int ofs_in_node, unsigned char version)
670{
671 sum->nid = cpu_to_le32(nid);
672 sum->ofs_in_node = cpu_to_le16(ofs_in_node);
673 sum->version = version;
674}
675
676static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
677{
678 return __start_cp_addr(sbi) +
679 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
680}
681
682static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
683{
684 return __start_cp_addr(sbi) +
685 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
686 - (base + 1) + type;
687}
5ec4e49f
JK
688
689static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno)
690{
691 if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno))
692 return true;
693 return false;
694}
ac5d156c
JK
695
696static inline unsigned int max_hw_blocks(struct f2fs_sb_info *sbi)
697{
698 struct block_device *bdev = sbi->sb->s_bdev;
699 struct request_queue *q = bdev_get_queue(bdev);
55cf9cb6 700 return SECTOR_TO_BLOCK(queue_max_sectors(q));
ac5d156c 701}
87d6f890
JK
702
703/*
704 * It is very important to gather dirty pages and write at once, so that we can
705 * submit a big bio without interfering other data writes.
706 * By default, 512 pages for directory data,
707 * 512 pages (2MB) * 3 for three types of nodes, and
708 * max_bio_blocks for meta are set.
709 */
710static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type)
711{
712 if (type == DATA)
713 return sbi->blocks_per_seg;
714 else if (type == NODE)
715 return 3 * sbi->blocks_per_seg;
716 else if (type == META)
90a893c7 717 return MAX_BIO_BLOCKS(sbi);
87d6f890
JK
718 else
719 return 0;
720}
50c8cdb3
JK
721
722/*
723 * When writing pages, it'd better align nr_to_write for segment size.
724 */
725static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type,
726 struct writeback_control *wbc)
727{
728 long nr_to_write, desired;
729
730 if (wbc->sync_mode != WB_SYNC_NONE)
731 return 0;
732
733 nr_to_write = wbc->nr_to_write;
734
735 if (type == DATA)
736 desired = 4096;
737 else if (type == NODE)
738 desired = 3 * max_hw_blocks(sbi);
739 else
90a893c7 740 desired = MAX_BIO_BLOCKS(sbi);
50c8cdb3
JK
741
742 wbc->nr_to_write = desired;
743 return desired - nr_to_write;
744}