f2fs: refactor flush_nat_entries to remove costly reorganizing ops
[GitHub/exynos8895/android_kernel_samsung_universal8895.git] / fs / f2fs / segment.h
CommitLineData
0a8165d7 1/*
39a53e0c
JK
2 * fs/f2fs/segment.h
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
ac5d156c
JK
11#include <linux/blkdev.h>
12
39a53e0c
JK
13/* constant macro */
14#define NULL_SEGNO ((unsigned int)(~0))
5ec4e49f 15#define NULL_SECNO ((unsigned int)(~0))
39a53e0c 16
58c41035 17#define DEF_RECLAIM_PREFREE_SEGMENTS 5 /* 5% over total segments */
81eb8d6e 18
6224da87 19/* L: Logical segment # in volume, R: Relative segment # in main area */
39a53e0c
JK
20#define GET_L2R_SEGNO(free_i, segno) (segno - free_i->start_segno)
21#define GET_R2L_SEGNO(free_i, segno) (segno + free_i->start_segno)
22
61ae45c8
CL
23#define IS_DATASEG(t) (t <= CURSEG_COLD_DATA)
24#define IS_NODESEG(t) (t >= CURSEG_HOT_NODE)
39a53e0c 25
5c773ba3
JK
26#define IS_CURSEG(sbi, seg) \
27 ((seg == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) || \
28 (seg == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) || \
29 (seg == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) || \
30 (seg == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) || \
31 (seg == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) || \
32 (seg == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno))
39a53e0c
JK
33
34#define IS_CURSEC(sbi, secno) \
35 ((secno == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno / \
36 sbi->segs_per_sec) || \
37 (secno == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno / \
38 sbi->segs_per_sec) || \
39 (secno == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno / \
40 sbi->segs_per_sec) || \
41 (secno == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno / \
42 sbi->segs_per_sec) || \
43 (secno == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno / \
44 sbi->segs_per_sec) || \
45 (secno == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno / \
46 sbi->segs_per_sec)) \
47
48#define START_BLOCK(sbi, segno) \
49 (SM_I(sbi)->seg0_blkaddr + \
50 (GET_R2L_SEGNO(FREE_I(sbi), segno) << sbi->log_blocks_per_seg))
51#define NEXT_FREE_BLKADDR(sbi, curseg) \
52 (START_BLOCK(sbi, curseg->segno) + curseg->next_blkoff)
53
54#define MAIN_BASE_BLOCK(sbi) (SM_I(sbi)->main_blkaddr)
55
56#define GET_SEGOFF_FROM_SEG0(sbi, blk_addr) \
57 ((blk_addr) - SM_I(sbi)->seg0_blkaddr)
58#define GET_SEGNO_FROM_SEG0(sbi, blk_addr) \
59 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> sbi->log_blocks_per_seg)
491c0854
JK
60#define GET_BLKOFF_FROM_SEG0(sbi, blk_addr) \
61 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & (sbi->blocks_per_seg - 1))
62
39a53e0c
JK
63#define GET_SEGNO(sbi, blk_addr) \
64 (((blk_addr == NULL_ADDR) || (blk_addr == NEW_ADDR)) ? \
65 NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi), \
66 GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
67#define GET_SECNO(sbi, segno) \
68 ((segno) / sbi->segs_per_sec)
69#define GET_ZONENO_FROM_SEGNO(sbi, segno) \
70 ((segno / sbi->segs_per_sec) / sbi->secs_per_zone)
71
72#define GET_SUM_BLOCK(sbi, segno) \
73 ((sbi->sm_info->ssa_blkaddr) + segno)
74
75#define GET_SUM_TYPE(footer) ((footer)->entry_type)
76#define SET_SUM_TYPE(footer, type) ((footer)->entry_type = type)
77
78#define SIT_ENTRY_OFFSET(sit_i, segno) \
79 (segno % sit_i->sents_per_block)
d3a14afd 80#define SIT_BLOCK_OFFSET(segno) \
39a53e0c 81 (segno / SIT_ENTRY_PER_BLOCK)
d3a14afd
CY
82#define START_SEGNO(segno) \
83 (SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK)
74de593a
CY
84#define SIT_BLK_CNT(sbi) \
85 ((TOTAL_SEGS(sbi) + SIT_ENTRY_PER_BLOCK - 1) / SIT_ENTRY_PER_BLOCK)
39a53e0c
JK
86#define f2fs_bitmap_size(nr) \
87 (BITS_TO_LONGS(nr) * sizeof(unsigned long))
88#define TOTAL_SEGS(sbi) (SM_I(sbi)->main_segments)
53cf9522 89#define TOTAL_SECS(sbi) (sbi->total_sections)
4c521f49 90#define TOTAL_BLKS(sbi) (SM_I(sbi)->segment_count << sbi->log_blocks_per_seg)
39a53e0c 91
55cf9cb6
CY
92#define SECTOR_FROM_BLOCK(blk_addr) \
93 (((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK)
94#define SECTOR_TO_BLOCK(sectors) \
95 (sectors >> F2FS_LOG_SECTORS_PER_BLOCK)
90a893c7
JK
96#define MAX_BIO_BLOCKS(sbi) \
97 ((int)min((int)max_hw_blocks(sbi), BIO_MAX_PAGES))
3cd8a239 98
39a53e0c
JK
99/*
100 * indicate a block allocation direction: RIGHT and LEFT.
101 * RIGHT means allocating new sections towards the end of volume.
102 * LEFT means the opposite direction.
103 */
104enum {
105 ALLOC_RIGHT = 0,
106 ALLOC_LEFT
107};
108
109/*
110 * In the victim_sel_policy->alloc_mode, there are two block allocation modes.
111 * LFS writes data sequentially with cleaning operations.
112 * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
113 */
114enum {
115 LFS = 0,
116 SSR
117};
118
119/*
120 * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes.
121 * GC_CB is based on cost-benefit algorithm.
122 * GC_GREEDY is based on greedy algorithm.
123 */
124enum {
125 GC_CB = 0,
126 GC_GREEDY
127};
128
129/*
130 * BG_GC means the background cleaning job.
131 * FG_GC means the on-demand cleaning job.
132 */
133enum {
134 BG_GC = 0,
135 FG_GC
136};
137
138/* for a function parameter to select a victim segment */
139struct victim_sel_policy {
140 int alloc_mode; /* LFS or SSR */
141 int gc_mode; /* GC_CB or GC_GREEDY */
142 unsigned long *dirty_segmap; /* dirty segment bitmap */
a26b7c8a 143 unsigned int max_search; /* maximum # of segments to search */
39a53e0c
JK
144 unsigned int offset; /* last scanned bitmap offset */
145 unsigned int ofs_unit; /* bitmap search unit */
146 unsigned int min_cost; /* minimum cost */
147 unsigned int min_segno; /* segment # having min. cost */
148};
149
150struct seg_entry {
151 unsigned short valid_blocks; /* # of valid blocks */
152 unsigned char *cur_valid_map; /* validity bitmap of blocks */
153 /*
154 * # of valid blocks and the validity bitmap stored in the the last
155 * checkpoint pack. This information is used by the SSR mode.
156 */
157 unsigned short ckpt_valid_blocks;
158 unsigned char *ckpt_valid_map;
159 unsigned char type; /* segment type like CURSEG_XXX_TYPE */
160 unsigned long long mtime; /* modification time of the segment */
161};
162
163struct sec_entry {
164 unsigned int valid_blocks; /* # of valid blocks in a section */
165};
166
167struct segment_allocation {
168 void (*allocate_segment)(struct f2fs_sb_info *, int, bool);
169};
170
171struct sit_info {
172 const struct segment_allocation *s_ops;
173
174 block_t sit_base_addr; /* start block address of SIT area */
175 block_t sit_blocks; /* # of blocks used by SIT area */
176 block_t written_valid_blocks; /* # of valid blocks in main area */
177 char *sit_bitmap; /* SIT bitmap pointer */
178 unsigned int bitmap_size; /* SIT bitmap size */
179
180 unsigned long *dirty_sentries_bitmap; /* bitmap for dirty sentries */
181 unsigned int dirty_sentries; /* # of dirty sentries */
182 unsigned int sents_per_block; /* # of SIT entries per block */
183 struct mutex sentry_lock; /* to protect SIT cache */
184 struct seg_entry *sentries; /* SIT segment-level cache */
185 struct sec_entry *sec_entries; /* SIT section-level cache */
186
187 /* for cost-benefit algorithm in cleaning procedure */
188 unsigned long long elapsed_time; /* elapsed time after mount */
189 unsigned long long mounted_time; /* mount time */
190 unsigned long long min_mtime; /* min. modification time */
191 unsigned long long max_mtime; /* max. modification time */
192};
193
194struct free_segmap_info {
195 unsigned int start_segno; /* start segment number logically */
196 unsigned int free_segments; /* # of free segments */
197 unsigned int free_sections; /* # of free sections */
198 rwlock_t segmap_lock; /* free segmap lock */
199 unsigned long *free_segmap; /* free segment bitmap */
200 unsigned long *free_secmap; /* free section bitmap */
201};
202
203/* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
204enum dirty_type {
205 DIRTY_HOT_DATA, /* dirty segments assigned as hot data logs */
206 DIRTY_WARM_DATA, /* dirty segments assigned as warm data logs */
207 DIRTY_COLD_DATA, /* dirty segments assigned as cold data logs */
208 DIRTY_HOT_NODE, /* dirty segments assigned as hot node logs */
209 DIRTY_WARM_NODE, /* dirty segments assigned as warm node logs */
210 DIRTY_COLD_NODE, /* dirty segments assigned as cold node logs */
211 DIRTY, /* to count # of dirty segments */
212 PRE, /* to count # of entirely obsolete segments */
213 NR_DIRTY_TYPE
214};
215
216struct dirty_seglist_info {
217 const struct victim_selection *v_ops; /* victim selction operation */
218 unsigned long *dirty_segmap[NR_DIRTY_TYPE];
219 struct mutex seglist_lock; /* lock for segment bitmaps */
220 int nr_dirty[NR_DIRTY_TYPE]; /* # of dirty segments */
5ec4e49f 221 unsigned long *victim_secmap; /* background GC victims */
39a53e0c
JK
222};
223
224/* victim selection function for cleaning and SSR */
225struct victim_selection {
226 int (*get_victim)(struct f2fs_sb_info *, unsigned int *,
227 int, int, char);
228};
229
230/* for active log information */
231struct curseg_info {
232 struct mutex curseg_mutex; /* lock for consistency */
233 struct f2fs_summary_block *sum_blk; /* cached summary block */
234 unsigned char alloc_type; /* current allocation type */
235 unsigned int segno; /* current segment number */
236 unsigned short next_blkoff; /* next block offset to write */
237 unsigned int zone; /* current zone number */
238 unsigned int next_segno; /* preallocated segment */
239};
240
184a5cd2
CY
241struct sit_entry_set {
242 struct list_head set_list; /* link with all sit sets */
243 unsigned int start_segno; /* start segno of sits in set */
244 unsigned int entry_cnt; /* the # of sit entries in set */
245};
246
39a53e0c
JK
247/*
248 * inline functions
249 */
250static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
251{
252 return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
253}
254
255static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
256 unsigned int segno)
257{
258 struct sit_info *sit_i = SIT_I(sbi);
259 return &sit_i->sentries[segno];
260}
261
262static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
263 unsigned int segno)
264{
265 struct sit_info *sit_i = SIT_I(sbi);
266 return &sit_i->sec_entries[GET_SECNO(sbi, segno)];
267}
268
269static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
270 unsigned int segno, int section)
271{
272 /*
273 * In order to get # of valid blocks in a section instantly from many
274 * segments, f2fs manages two counting structures separately.
275 */
276 if (section > 1)
277 return get_sec_entry(sbi, segno)->valid_blocks;
278 else
279 return get_seg_entry(sbi, segno)->valid_blocks;
280}
281
282static inline void seg_info_from_raw_sit(struct seg_entry *se,
283 struct f2fs_sit_entry *rs)
284{
285 se->valid_blocks = GET_SIT_VBLOCKS(rs);
286 se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
287 memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
288 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
289 se->type = GET_SIT_TYPE(rs);
290 se->mtime = le64_to_cpu(rs->mtime);
291}
292
293static inline void seg_info_to_raw_sit(struct seg_entry *se,
294 struct f2fs_sit_entry *rs)
295{
296 unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
297 se->valid_blocks;
298 rs->vblocks = cpu_to_le16(raw_vblocks);
299 memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
300 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
301 se->ckpt_valid_blocks = se->valid_blocks;
302 rs->mtime = cpu_to_le64(se->mtime);
303}
304
305static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
306 unsigned int max, unsigned int segno)
307{
308 unsigned int ret;
309 read_lock(&free_i->segmap_lock);
310 ret = find_next_bit(free_i->free_segmap, max, segno);
311 read_unlock(&free_i->segmap_lock);
312 return ret;
313}
314
315static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
316{
317 struct free_segmap_info *free_i = FREE_I(sbi);
318 unsigned int secno = segno / sbi->segs_per_sec;
319 unsigned int start_segno = secno * sbi->segs_per_sec;
320 unsigned int next;
321
322 write_lock(&free_i->segmap_lock);
323 clear_bit(segno, free_i->free_segmap);
324 free_i->free_segments++;
325
326 next = find_next_bit(free_i->free_segmap, TOTAL_SEGS(sbi), start_segno);
327 if (next >= start_segno + sbi->segs_per_sec) {
328 clear_bit(secno, free_i->free_secmap);
329 free_i->free_sections++;
330 }
331 write_unlock(&free_i->segmap_lock);
332}
333
334static inline void __set_inuse(struct f2fs_sb_info *sbi,
335 unsigned int segno)
336{
337 struct free_segmap_info *free_i = FREE_I(sbi);
338 unsigned int secno = segno / sbi->segs_per_sec;
339 set_bit(segno, free_i->free_segmap);
340 free_i->free_segments--;
341 if (!test_and_set_bit(secno, free_i->free_secmap))
342 free_i->free_sections--;
343}
344
345static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
346 unsigned int segno)
347{
348 struct free_segmap_info *free_i = FREE_I(sbi);
349 unsigned int secno = segno / sbi->segs_per_sec;
350 unsigned int start_segno = secno * sbi->segs_per_sec;
351 unsigned int next;
352
353 write_lock(&free_i->segmap_lock);
354 if (test_and_clear_bit(segno, free_i->free_segmap)) {
355 free_i->free_segments++;
356
f1121ab0
CY
357 next = find_next_bit(free_i->free_segmap,
358 start_segno + sbi->segs_per_sec, start_segno);
39a53e0c
JK
359 if (next >= start_segno + sbi->segs_per_sec) {
360 if (test_and_clear_bit(secno, free_i->free_secmap))
361 free_i->free_sections++;
362 }
363 }
364 write_unlock(&free_i->segmap_lock);
365}
366
367static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
368 unsigned int segno)
369{
370 struct free_segmap_info *free_i = FREE_I(sbi);
371 unsigned int secno = segno / sbi->segs_per_sec;
372 write_lock(&free_i->segmap_lock);
373 if (!test_and_set_bit(segno, free_i->free_segmap)) {
374 free_i->free_segments--;
375 if (!test_and_set_bit(secno, free_i->free_secmap))
376 free_i->free_sections--;
377 }
378 write_unlock(&free_i->segmap_lock);
379}
380
381static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
382 void *dst_addr)
383{
384 struct sit_info *sit_i = SIT_I(sbi);
385 memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
386}
387
388static inline block_t written_block_count(struct f2fs_sb_info *sbi)
389{
8b8343fa 390 return SIT_I(sbi)->written_valid_blocks;
39a53e0c
JK
391}
392
393static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
394{
8b8343fa 395 return FREE_I(sbi)->free_segments;
39a53e0c
JK
396}
397
398static inline int reserved_segments(struct f2fs_sb_info *sbi)
399{
400 return SM_I(sbi)->reserved_segments;
401}
402
403static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
404{
8b8343fa 405 return FREE_I(sbi)->free_sections;
39a53e0c
JK
406}
407
408static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
409{
410 return DIRTY_I(sbi)->nr_dirty[PRE];
411}
412
413static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
414{
415 return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
416 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
417 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
418 DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
419 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
420 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
421}
422
423static inline int overprovision_segments(struct f2fs_sb_info *sbi)
424{
425 return SM_I(sbi)->ovp_segments;
426}
427
428static inline int overprovision_sections(struct f2fs_sb_info *sbi)
429{
430 return ((unsigned int) overprovision_segments(sbi)) / sbi->segs_per_sec;
431}
432
433static inline int reserved_sections(struct f2fs_sb_info *sbi)
434{
435 return ((unsigned int) reserved_segments(sbi)) / sbi->segs_per_sec;
436}
437
438static inline bool need_SSR(struct f2fs_sb_info *sbi)
439{
95dd8973
JK
440 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
441 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
442 return free_sections(sbi) <= (node_secs + 2 * dent_secs +
443 reserved_sections(sbi) + 1);
39a53e0c
JK
444}
445
43727527 446static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi, int freed)
39a53e0c 447{
5ac206cf
NJ
448 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
449 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
43727527 450
cfb271d4 451 if (unlikely(sbi->por_doing))
029cd28c
JK
452 return false;
453
6c311ec6
CF
454 return (free_sections(sbi) + freed) <= (node_secs + 2 * dent_secs +
455 reserved_sections(sbi));
39a53e0c
JK
456}
457
81eb8d6e
JK
458static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi)
459{
6c311ec6 460 return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments;
81eb8d6e
JK
461}
462
39a53e0c
JK
463static inline int utilization(struct f2fs_sb_info *sbi)
464{
6c311ec6
CF
465 return div_u64((u64)valid_user_blocks(sbi) * 100,
466 sbi->user_block_count);
39a53e0c
JK
467}
468
469/*
470 * Sometimes f2fs may be better to drop out-of-place update policy.
216fbd64
JK
471 * And, users can control the policy through sysfs entries.
472 * There are five policies with triggering conditions as follows.
473 * F2FS_IPU_FORCE - all the time,
474 * F2FS_IPU_SSR - if SSR mode is activated,
475 * F2FS_IPU_UTIL - if FS utilization is over threashold,
476 * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over
477 * threashold,
c1ce1b02
JK
478 * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash
479 * storages. IPU will be triggered only if the # of dirty
480 * pages over min_fsync_blocks.
216fbd64 481 * F2FS_IPUT_DISABLE - disable IPU. (=default option)
39a53e0c 482 */
216fbd64 483#define DEF_MIN_IPU_UTIL 70
c1ce1b02 484#define DEF_MIN_FSYNC_BLOCKS 8
216fbd64
JK
485
486enum {
487 F2FS_IPU_FORCE,
488 F2FS_IPU_SSR,
489 F2FS_IPU_UTIL,
490 F2FS_IPU_SSR_UTIL,
c1ce1b02 491 F2FS_IPU_FSYNC,
216fbd64
JK
492};
493
39a53e0c
JK
494static inline bool need_inplace_update(struct inode *inode)
495{
4081363f 496 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
9b5f136f 497 unsigned int policy = SM_I(sbi)->ipu_policy;
216fbd64
JK
498
499 /* IPU can be done only for the user data */
39a53e0c
JK
500 if (S_ISDIR(inode->i_mode))
501 return false;
216fbd64 502
9b5f136f 503 if (policy & (0x1 << F2FS_IPU_FORCE))
39a53e0c 504 return true;
9b5f136f
JK
505 if (policy & (0x1 << F2FS_IPU_SSR) && need_SSR(sbi))
506 return true;
507 if (policy & (0x1 << F2FS_IPU_UTIL) &&
508 utilization(sbi) > SM_I(sbi)->min_ipu_util)
509 return true;
510 if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && need_SSR(sbi) &&
511 utilization(sbi) > SM_I(sbi)->min_ipu_util)
512 return true;
513
514 /* this is only set during fdatasync */
515 if (policy & (0x1 << F2FS_IPU_FSYNC) &&
516 is_inode_flag_set(F2FS_I(inode), FI_NEED_IPU))
517 return true;
518
39a53e0c
JK
519 return false;
520}
521
522static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
523 int type)
524{
525 struct curseg_info *curseg = CURSEG_I(sbi, type);
526 return curseg->segno;
527}
528
529static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
530 int type)
531{
532 struct curseg_info *curseg = CURSEG_I(sbi, type);
533 return curseg->alloc_type;
534}
535
536static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type)
537{
538 struct curseg_info *curseg = CURSEG_I(sbi, type);
539 return curseg->next_blkoff;
540}
541
5d56b671 542#ifdef CONFIG_F2FS_CHECK_FS
39a53e0c
JK
543static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
544{
545 unsigned int end_segno = SM_I(sbi)->segment_count - 1;
546 BUG_ON(segno > end_segno);
547}
548
39a53e0c
JK
549static inline void verify_block_addr(struct f2fs_sb_info *sbi, block_t blk_addr)
550{
551 struct f2fs_sm_info *sm_info = SM_I(sbi);
4c521f49 552 block_t total_blks = TOTAL_BLKS(sbi);
39a53e0c
JK
553 block_t start_addr = sm_info->seg0_blkaddr;
554 block_t end_addr = start_addr + total_blks - 1;
555 BUG_ON(blk_addr < start_addr);
556 BUG_ON(blk_addr > end_addr);
557}
558
559/*
e1c42045 560 * Summary block is always treated as an invalid block
39a53e0c
JK
561 */
562static inline void check_block_count(struct f2fs_sb_info *sbi,
563 int segno, struct f2fs_sit_entry *raw_sit)
564{
565 struct f2fs_sm_info *sm_info = SM_I(sbi);
566 unsigned int end_segno = sm_info->segment_count - 1;
44c60bf2 567 bool is_valid = test_bit_le(0, raw_sit->valid_map) ? true : false;
39a53e0c 568 int valid_blocks = 0;
44c60bf2 569 int cur_pos = 0, next_pos;
39a53e0c
JK
570
571 /* check segment usage */
572 BUG_ON(GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg);
573
574 /* check boundary of a given segment number */
575 BUG_ON(segno > end_segno);
576
577 /* check bitmap with valid block count */
44c60bf2
CY
578 do {
579 if (is_valid) {
580 next_pos = find_next_zero_bit_le(&raw_sit->valid_map,
581 sbi->blocks_per_seg,
582 cur_pos);
583 valid_blocks += next_pos - cur_pos;
584 } else
585 next_pos = find_next_bit_le(&raw_sit->valid_map,
586 sbi->blocks_per_seg,
587 cur_pos);
588 cur_pos = next_pos;
589 is_valid = !is_valid;
590 } while (cur_pos < sbi->blocks_per_seg);
39a53e0c
JK
591 BUG_ON(GET_SIT_VBLOCKS(raw_sit) != valid_blocks);
592}
5d56b671 593#else
05796763
JK
594static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
595{
596 unsigned int end_segno = SM_I(sbi)->segment_count - 1;
597
598 if (segno > end_segno)
599 sbi->need_fsck = true;
600}
601
602static inline void verify_block_addr(struct f2fs_sb_info *sbi, block_t blk_addr)
603{
604 struct f2fs_sm_info *sm_info = SM_I(sbi);
4c521f49 605 block_t total_blks = TOTAL_BLKS(sbi);
05796763
JK
606 block_t start_addr = sm_info->seg0_blkaddr;
607 block_t end_addr = start_addr + total_blks - 1;
608
609 if (blk_addr < start_addr || blk_addr > end_addr)
610 sbi->need_fsck = true;
611}
612
613/*
614 * Summary block is always treated as an invalid block
615 */
616static inline void check_block_count(struct f2fs_sb_info *sbi,
617 int segno, struct f2fs_sit_entry *raw_sit)
618{
619 unsigned int end_segno = SM_I(sbi)->segment_count - 1;
620
621 /* check segment usage */
622 if (GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg)
623 sbi->need_fsck = true;
624
625 /* check boundary of a given segment number */
626 if (segno > end_segno)
627 sbi->need_fsck = true;
628}
5d56b671 629#endif
39a53e0c
JK
630
631static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
632 unsigned int start)
633{
634 struct sit_info *sit_i = SIT_I(sbi);
d3a14afd 635 unsigned int offset = SIT_BLOCK_OFFSET(start);
39a53e0c
JK
636 block_t blk_addr = sit_i->sit_base_addr + offset;
637
638 check_seg_range(sbi, start);
639
640 /* calculate sit block address */
641 if (f2fs_test_bit(offset, sit_i->sit_bitmap))
642 blk_addr += sit_i->sit_blocks;
643
644 return blk_addr;
645}
646
647static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
648 pgoff_t block_addr)
649{
650 struct sit_info *sit_i = SIT_I(sbi);
651 block_addr -= sit_i->sit_base_addr;
652 if (block_addr < sit_i->sit_blocks)
653 block_addr += sit_i->sit_blocks;
654 else
655 block_addr -= sit_i->sit_blocks;
656
657 return block_addr + sit_i->sit_base_addr;
658}
659
660static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
661{
d3a14afd 662 unsigned int block_off = SIT_BLOCK_OFFSET(start);
39a53e0c
JK
663
664 if (f2fs_test_bit(block_off, sit_i->sit_bitmap))
665 f2fs_clear_bit(block_off, sit_i->sit_bitmap);
666 else
667 f2fs_set_bit(block_off, sit_i->sit_bitmap);
668}
669
670static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi)
671{
672 struct sit_info *sit_i = SIT_I(sbi);
673 return sit_i->elapsed_time + CURRENT_TIME_SEC.tv_sec -
674 sit_i->mounted_time;
675}
676
677static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
678 unsigned int ofs_in_node, unsigned char version)
679{
680 sum->nid = cpu_to_le32(nid);
681 sum->ofs_in_node = cpu_to_le16(ofs_in_node);
682 sum->version = version;
683}
684
685static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
686{
687 return __start_cp_addr(sbi) +
688 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
689}
690
691static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
692{
693 return __start_cp_addr(sbi) +
694 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
695 - (base + 1) + type;
696}
5ec4e49f
JK
697
698static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno)
699{
700 if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno))
701 return true;
702 return false;
703}
ac5d156c
JK
704
705static inline unsigned int max_hw_blocks(struct f2fs_sb_info *sbi)
706{
707 struct block_device *bdev = sbi->sb->s_bdev;
708 struct request_queue *q = bdev_get_queue(bdev);
55cf9cb6 709 return SECTOR_TO_BLOCK(queue_max_sectors(q));
ac5d156c 710}
87d6f890
JK
711
712/*
713 * It is very important to gather dirty pages and write at once, so that we can
714 * submit a big bio without interfering other data writes.
715 * By default, 512 pages for directory data,
716 * 512 pages (2MB) * 3 for three types of nodes, and
717 * max_bio_blocks for meta are set.
718 */
719static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type)
720{
721 if (type == DATA)
722 return sbi->blocks_per_seg;
723 else if (type == NODE)
724 return 3 * sbi->blocks_per_seg;
725 else if (type == META)
90a893c7 726 return MAX_BIO_BLOCKS(sbi);
87d6f890
JK
727 else
728 return 0;
729}
50c8cdb3
JK
730
731/*
732 * When writing pages, it'd better align nr_to_write for segment size.
733 */
734static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type,
735 struct writeback_control *wbc)
736{
737 long nr_to_write, desired;
738
739 if (wbc->sync_mode != WB_SYNC_NONE)
740 return 0;
741
742 nr_to_write = wbc->nr_to_write;
743
744 if (type == DATA)
745 desired = 4096;
746 else if (type == NODE)
747 desired = 3 * max_hw_blocks(sbi);
748 else
90a893c7 749 desired = MAX_BIO_BLOCKS(sbi);
50c8cdb3
JK
750
751 wbc->nr_to_write = desired;
752 return desired - nr_to_write;
753}