f2fs: add noextent_cache mount option
[GitHub/exynos8895/android_kernel_samsung_universal8895.git] / fs / f2fs / data.c
CommitLineData
0a8165d7 1/*
eb47b800
JK
2 * fs/f2fs/data.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11#include <linux/fs.h>
12#include <linux/f2fs_fs.h>
13#include <linux/buffer_head.h>
14#include <linux/mpage.h>
15#include <linux/writeback.h>
16#include <linux/backing-dev.h>
17#include <linux/blkdev.h>
18#include <linux/bio.h>
690e4a3e 19#include <linux/prefetch.h>
e2e40f2c 20#include <linux/uio.h>
f1e88660 21#include <linux/cleancache.h>
eb47b800
JK
22
23#include "f2fs.h"
24#include "node.h"
25#include "segment.h"
db9f7c1a 26#include "trace.h"
848753aa 27#include <trace/events/f2fs.h>
eb47b800 28
429511cd
CY
29static struct kmem_cache *extent_tree_slab;
30static struct kmem_cache *extent_node_slab;
31
93dfe2ac
JK
32static void f2fs_read_end_io(struct bio *bio, int err)
33{
f568849e
LT
34 struct bio_vec *bvec;
35 int i;
93dfe2ac 36
4375a336
JK
37 if (f2fs_bio_encrypted(bio)) {
38 if (err) {
39 f2fs_release_crypto_ctx(bio->bi_private);
40 } else {
41 f2fs_end_io_crypto_work(bio->bi_private, bio);
42 return;
43 }
44 }
45
12377024
CY
46 bio_for_each_segment_all(bvec, bio, i) {
47 struct page *page = bvec->bv_page;
f1e88660
JK
48
49 if (!err) {
50 SetPageUptodate(page);
51 } else {
52 ClearPageUptodate(page);
53 SetPageError(page);
54 }
55 unlock_page(page);
56 }
f1e88660
JK
57 bio_put(bio);
58}
59
93dfe2ac
JK
60static void f2fs_write_end_io(struct bio *bio, int err)
61{
1b1f559f 62 struct f2fs_sb_info *sbi = bio->bi_private;
f568849e
LT
63 struct bio_vec *bvec;
64 int i;
93dfe2ac 65
f568849e 66 bio_for_each_segment_all(bvec, bio, i) {
93dfe2ac
JK
67 struct page *page = bvec->bv_page;
68
4375a336
JK
69 f2fs_restore_and_release_control_page(&page);
70
f568849e 71 if (unlikely(err)) {
cf779cab 72 set_page_dirty(page);
93dfe2ac 73 set_bit(AS_EIO, &page->mapping->flags);
744602cf 74 f2fs_stop_checkpoint(sbi);
93dfe2ac
JK
75 }
76 end_page_writeback(page);
77 dec_page_count(sbi, F2FS_WRITEBACK);
f568849e 78 }
93dfe2ac 79
93dfe2ac
JK
80 if (!get_pages(sbi, F2FS_WRITEBACK) &&
81 !list_empty(&sbi->cp_wait.task_list))
82 wake_up(&sbi->cp_wait);
83
84 bio_put(bio);
85}
86
940a6d34
GZ
87/*
88 * Low-level block read/write IO operations.
89 */
90static struct bio *__bio_alloc(struct f2fs_sb_info *sbi, block_t blk_addr,
91 int npages, bool is_read)
92{
93 struct bio *bio;
94
95 /* No failure on bio allocation */
96 bio = bio_alloc(GFP_NOIO, npages);
97
98 bio->bi_bdev = sbi->sb->s_bdev;
55cf9cb6 99 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
940a6d34 100 bio->bi_end_io = is_read ? f2fs_read_end_io : f2fs_write_end_io;
12377024 101 bio->bi_private = is_read ? NULL : sbi;
940a6d34
GZ
102
103 return bio;
104}
105
458e6197 106static void __submit_merged_bio(struct f2fs_bio_info *io)
93dfe2ac 107{
458e6197 108 struct f2fs_io_info *fio = &io->fio;
93dfe2ac
JK
109
110 if (!io->bio)
111 return;
112
6a8f8ca5 113 if (is_read_io(fio->rw))
2ace38e0 114 trace_f2fs_submit_read_bio(io->sbi->sb, fio, io->bio);
6a8f8ca5 115 else
2ace38e0 116 trace_f2fs_submit_write_bio(io->sbi->sb, fio, io->bio);
940a6d34 117
6a8f8ca5 118 submit_bio(fio->rw, io->bio);
93dfe2ac
JK
119 io->bio = NULL;
120}
121
122void f2fs_submit_merged_bio(struct f2fs_sb_info *sbi,
458e6197 123 enum page_type type, int rw)
93dfe2ac
JK
124{
125 enum page_type btype = PAGE_TYPE_OF_BIO(type);
126 struct f2fs_bio_info *io;
127
128 io = is_read_io(rw) ? &sbi->read_io : &sbi->write_io[btype];
129
df0f8dc0 130 down_write(&io->io_rwsem);
458e6197
JK
131
132 /* change META to META_FLUSH in the checkpoint procedure */
133 if (type >= META_FLUSH) {
134 io->fio.type = META_FLUSH;
0f7b2abd
JK
135 if (test_opt(sbi, NOBARRIER))
136 io->fio.rw = WRITE_FLUSH | REQ_META | REQ_PRIO;
137 else
138 io->fio.rw = WRITE_FLUSH_FUA | REQ_META | REQ_PRIO;
458e6197
JK
139 }
140 __submit_merged_bio(io);
df0f8dc0 141 up_write(&io->io_rwsem);
93dfe2ac
JK
142}
143
144/*
145 * Fill the locked page with data located in the block address.
146 * Return unlocked page.
147 */
05ca3632 148int f2fs_submit_page_bio(struct f2fs_io_info *fio)
93dfe2ac 149{
93dfe2ac 150 struct bio *bio;
4375a336 151 struct page *page = fio->encrypted_page ? fio->encrypted_page : fio->page;
93dfe2ac 152
2ace38e0 153 trace_f2fs_submit_page_bio(page, fio);
05ca3632 154 f2fs_trace_ios(fio, 0);
93dfe2ac
JK
155
156 /* Allocate a new bio */
05ca3632 157 bio = __bio_alloc(fio->sbi, fio->blk_addr, 1, is_read_io(fio->rw));
93dfe2ac
JK
158
159 if (bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) < PAGE_CACHE_SIZE) {
160 bio_put(bio);
161 f2fs_put_page(page, 1);
162 return -EFAULT;
163 }
164
cf04e8eb 165 submit_bio(fio->rw, bio);
93dfe2ac
JK
166 return 0;
167}
168
05ca3632 169void f2fs_submit_page_mbio(struct f2fs_io_info *fio)
93dfe2ac 170{
05ca3632 171 struct f2fs_sb_info *sbi = fio->sbi;
458e6197 172 enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
93dfe2ac 173 struct f2fs_bio_info *io;
940a6d34 174 bool is_read = is_read_io(fio->rw);
4375a336 175 struct page *bio_page;
93dfe2ac 176
940a6d34 177 io = is_read ? &sbi->read_io : &sbi->write_io[btype];
93dfe2ac 178
cf04e8eb 179 verify_block_addr(sbi, fio->blk_addr);
93dfe2ac 180
df0f8dc0 181 down_write(&io->io_rwsem);
93dfe2ac 182
940a6d34 183 if (!is_read)
93dfe2ac
JK
184 inc_page_count(sbi, F2FS_WRITEBACK);
185
cf04e8eb 186 if (io->bio && (io->last_block_in_bio != fio->blk_addr - 1 ||
458e6197
JK
187 io->fio.rw != fio->rw))
188 __submit_merged_bio(io);
93dfe2ac
JK
189alloc_new:
190 if (io->bio == NULL) {
90a893c7 191 int bio_blocks = MAX_BIO_BLOCKS(sbi);
940a6d34 192
cf04e8eb 193 io->bio = __bio_alloc(sbi, fio->blk_addr, bio_blocks, is_read);
458e6197 194 io->fio = *fio;
93dfe2ac
JK
195 }
196
4375a336
JK
197 bio_page = fio->encrypted_page ? fio->encrypted_page : fio->page;
198
199 if (bio_add_page(io->bio, bio_page, PAGE_CACHE_SIZE, 0) <
93dfe2ac 200 PAGE_CACHE_SIZE) {
458e6197 201 __submit_merged_bio(io);
93dfe2ac
JK
202 goto alloc_new;
203 }
204
cf04e8eb 205 io->last_block_in_bio = fio->blk_addr;
05ca3632 206 f2fs_trace_ios(fio, 0);
93dfe2ac 207
df0f8dc0 208 up_write(&io->io_rwsem);
05ca3632 209 trace_f2fs_submit_page_mbio(fio->page, fio);
93dfe2ac
JK
210}
211
0a8165d7 212/*
eb47b800
JK
213 * Lock ordering for the change of data block address:
214 * ->data_page
215 * ->node_page
216 * update block addresses in the node page
217 */
216a620a 218void set_data_blkaddr(struct dnode_of_data *dn)
eb47b800
JK
219{
220 struct f2fs_node *rn;
221 __le32 *addr_array;
222 struct page *node_page = dn->node_page;
223 unsigned int ofs_in_node = dn->ofs_in_node;
224
5514f0aa 225 f2fs_wait_on_page_writeback(node_page, NODE);
eb47b800 226
45590710 227 rn = F2FS_NODE(node_page);
eb47b800
JK
228
229 /* Get physical address of data block */
230 addr_array = blkaddr_in_node(rn);
e1509cf2 231 addr_array[ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
eb47b800
JK
232 set_page_dirty(node_page);
233}
234
235int reserve_new_block(struct dnode_of_data *dn)
236{
4081363f 237 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
eb47b800 238
6bacf52f 239 if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
eb47b800 240 return -EPERM;
cfb271d4 241 if (unlikely(!inc_valid_block_count(sbi, dn->inode, 1)))
eb47b800
JK
242 return -ENOSPC;
243
c01e2853
NJ
244 trace_f2fs_reserve_new_block(dn->inode, dn->nid, dn->ofs_in_node);
245
eb47b800 246 dn->data_blkaddr = NEW_ADDR;
216a620a 247 set_data_blkaddr(dn);
a18ff063 248 mark_inode_dirty(dn->inode);
eb47b800
JK
249 sync_inode_page(dn);
250 return 0;
251}
252
b600965c
HL
253int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
254{
255 bool need_put = dn->inode_page ? false : true;
256 int err;
257
258 err = get_dnode_of_data(dn, index, ALLOC_NODE);
259 if (err)
260 return err;
a8865372 261
b600965c
HL
262 if (dn->data_blkaddr == NULL_ADDR)
263 err = reserve_new_block(dn);
a8865372 264 if (err || need_put)
b600965c
HL
265 f2fs_put_dnode(dn);
266 return err;
267}
268
7e4dde79
CY
269static bool lookup_extent_info(struct inode *inode, pgoff_t pgofs,
270 struct extent_info *ei)
eb47b800
JK
271{
272 struct f2fs_inode_info *fi = F2FS_I(inode);
eb47b800
JK
273 pgoff_t start_fofs, end_fofs;
274 block_t start_blkaddr;
275
0c872e2d 276 read_lock(&fi->ext_lock);
eb47b800 277 if (fi->ext.len == 0) {
0c872e2d 278 read_unlock(&fi->ext_lock);
7e4dde79 279 return false;
eb47b800
JK
280 }
281
dcdfff65
JK
282 stat_inc_total_hit(inode->i_sb);
283
eb47b800
JK
284 start_fofs = fi->ext.fofs;
285 end_fofs = fi->ext.fofs + fi->ext.len - 1;
4d0b0bd4 286 start_blkaddr = fi->ext.blk;
eb47b800
JK
287
288 if (pgofs >= start_fofs && pgofs <= end_fofs) {
a2e7d1bf 289 *ei = fi->ext;
dcdfff65 290 stat_inc_read_hit(inode->i_sb);
0c872e2d 291 read_unlock(&fi->ext_lock);
7e4dde79 292 return true;
eb47b800 293 }
0c872e2d 294 read_unlock(&fi->ext_lock);
7e4dde79 295 return false;
eb47b800
JK
296}
297
7e4dde79
CY
298static bool update_extent_info(struct inode *inode, pgoff_t fofs,
299 block_t blkaddr)
eb47b800 300{
7e4dde79
CY
301 struct f2fs_inode_info *fi = F2FS_I(inode);
302 pgoff_t start_fofs, end_fofs;
eb47b800 303 block_t start_blkaddr, end_blkaddr;
c11abd1a 304 int need_update = true;
eb47b800 305
0c872e2d 306 write_lock(&fi->ext_lock);
eb47b800
JK
307
308 start_fofs = fi->ext.fofs;
309 end_fofs = fi->ext.fofs + fi->ext.len - 1;
4d0b0bd4
CY
310 start_blkaddr = fi->ext.blk;
311 end_blkaddr = fi->ext.blk + fi->ext.len - 1;
eb47b800
JK
312
313 /* Drop and initialize the matched extent */
314 if (fi->ext.len == 1 && fofs == start_fofs)
315 fi->ext.len = 0;
316
317 /* Initial extent */
318 if (fi->ext.len == 0) {
7e4dde79 319 if (blkaddr != NULL_ADDR) {
eb47b800 320 fi->ext.fofs = fofs;
7e4dde79 321 fi->ext.blk = blkaddr;
eb47b800
JK
322 fi->ext.len = 1;
323 }
324 goto end_update;
325 }
326
6224da87 327 /* Front merge */
7e4dde79 328 if (fofs == start_fofs - 1 && blkaddr == start_blkaddr - 1) {
eb47b800 329 fi->ext.fofs--;
4d0b0bd4 330 fi->ext.blk--;
eb47b800
JK
331 fi->ext.len++;
332 goto end_update;
333 }
334
335 /* Back merge */
7e4dde79 336 if (fofs == end_fofs + 1 && blkaddr == end_blkaddr + 1) {
eb47b800
JK
337 fi->ext.len++;
338 goto end_update;
339 }
340
341 /* Split the existing extent */
342 if (fi->ext.len > 1 &&
343 fofs >= start_fofs && fofs <= end_fofs) {
344 if ((end_fofs - fofs) < (fi->ext.len >> 1)) {
345 fi->ext.len = fofs - start_fofs;
346 } else {
347 fi->ext.fofs = fofs + 1;
4d0b0bd4 348 fi->ext.blk = start_blkaddr + fofs - start_fofs + 1;
eb47b800
JK
349 fi->ext.len -= fofs - start_fofs + 1;
350 }
c11abd1a
JK
351 } else {
352 need_update = false;
eb47b800 353 }
eb47b800 354
c11abd1a
JK
355 /* Finally, if the extent is very fragmented, let's drop the cache. */
356 if (fi->ext.len < F2FS_MIN_EXTENT_LEN) {
357 fi->ext.len = 0;
358 set_inode_flag(fi, FI_NO_EXTENT);
359 need_update = true;
360 }
eb47b800 361end_update:
0c872e2d 362 write_unlock(&fi->ext_lock);
7e4dde79
CY
363 return need_update;
364}
365
429511cd
CY
366static struct extent_node *__attach_extent_node(struct f2fs_sb_info *sbi,
367 struct extent_tree *et, struct extent_info *ei,
368 struct rb_node *parent, struct rb_node **p)
369{
370 struct extent_node *en;
371
372 en = kmem_cache_alloc(extent_node_slab, GFP_ATOMIC);
373 if (!en)
374 return NULL;
375
376 en->ei = *ei;
377 INIT_LIST_HEAD(&en->list);
378
379 rb_link_node(&en->rb_node, parent, p);
380 rb_insert_color(&en->rb_node, &et->root);
381 et->count++;
382 atomic_inc(&sbi->total_ext_node);
383 return en;
384}
385
386static void __detach_extent_node(struct f2fs_sb_info *sbi,
387 struct extent_tree *et, struct extent_node *en)
388{
389 rb_erase(&en->rb_node, &et->root);
390 et->count--;
391 atomic_dec(&sbi->total_ext_node);
62c8af65
CY
392
393 if (et->cached_en == en)
394 et->cached_en = NULL;
429511cd
CY
395}
396
93dfc526
CY
397static struct extent_tree *__find_extent_tree(struct f2fs_sb_info *sbi,
398 nid_t ino)
399{
400 struct extent_tree *et;
401
402 down_read(&sbi->extent_tree_lock);
403 et = radix_tree_lookup(&sbi->extent_tree_root, ino);
404 if (!et) {
405 up_read(&sbi->extent_tree_lock);
406 return NULL;
407 }
408 atomic_inc(&et->refcount);
409 up_read(&sbi->extent_tree_lock);
410
411 return et;
412}
413
414static struct extent_tree *__grab_extent_tree(struct inode *inode)
415{
416 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
417 struct extent_tree *et;
418 nid_t ino = inode->i_ino;
419
420 down_write(&sbi->extent_tree_lock);
421 et = radix_tree_lookup(&sbi->extent_tree_root, ino);
422 if (!et) {
423 et = f2fs_kmem_cache_alloc(extent_tree_slab, GFP_NOFS);
424 f2fs_radix_tree_insert(&sbi->extent_tree_root, ino, et);
425 memset(et, 0, sizeof(struct extent_tree));
426 et->ino = ino;
427 et->root = RB_ROOT;
428 et->cached_en = NULL;
429 rwlock_init(&et->lock);
430 atomic_set(&et->refcount, 0);
431 et->count = 0;
432 sbi->total_ext_tree++;
433 }
434 atomic_inc(&et->refcount);
435 up_write(&sbi->extent_tree_lock);
436
437 return et;
438}
439
429511cd
CY
440static struct extent_node *__lookup_extent_tree(struct extent_tree *et,
441 unsigned int fofs)
442{
443 struct rb_node *node = et->root.rb_node;
444 struct extent_node *en;
445
62c8af65
CY
446 if (et->cached_en) {
447 struct extent_info *cei = &et->cached_en->ei;
448
449 if (cei->fofs <= fofs && cei->fofs + cei->len > fofs)
450 return et->cached_en;
451 }
452
429511cd
CY
453 while (node) {
454 en = rb_entry(node, struct extent_node, rb_node);
455
244f4fc1 456 if (fofs < en->ei.fofs)
429511cd 457 node = node->rb_left;
244f4fc1 458 else if (fofs >= en->ei.fofs + en->ei.len)
429511cd 459 node = node->rb_right;
244f4fc1 460 else
429511cd
CY
461 return en;
462 }
463 return NULL;
464}
465
466static struct extent_node *__try_back_merge(struct f2fs_sb_info *sbi,
467 struct extent_tree *et, struct extent_node *en)
468{
469 struct extent_node *prev;
470 struct rb_node *node;
471
472 node = rb_prev(&en->rb_node);
473 if (!node)
474 return NULL;
475
476 prev = rb_entry(node, struct extent_node, rb_node);
477 if (__is_back_mergeable(&en->ei, &prev->ei)) {
478 en->ei.fofs = prev->ei.fofs;
479 en->ei.blk = prev->ei.blk;
480 en->ei.len += prev->ei.len;
481 __detach_extent_node(sbi, et, prev);
482 return prev;
483 }
484 return NULL;
485}
486
487static struct extent_node *__try_front_merge(struct f2fs_sb_info *sbi,
488 struct extent_tree *et, struct extent_node *en)
489{
490 struct extent_node *next;
491 struct rb_node *node;
492
493 node = rb_next(&en->rb_node);
494 if (!node)
495 return NULL;
496
497 next = rb_entry(node, struct extent_node, rb_node);
498 if (__is_front_mergeable(&en->ei, &next->ei)) {
499 en->ei.len += next->ei.len;
500 __detach_extent_node(sbi, et, next);
501 return next;
502 }
503 return NULL;
504}
505
506static struct extent_node *__insert_extent_tree(struct f2fs_sb_info *sbi,
507 struct extent_tree *et, struct extent_info *ei,
508 struct extent_node **den)
509{
510 struct rb_node **p = &et->root.rb_node;
511 struct rb_node *parent = NULL;
512 struct extent_node *en;
513
514 while (*p) {
515 parent = *p;
516 en = rb_entry(parent, struct extent_node, rb_node);
517
518 if (ei->fofs < en->ei.fofs) {
519 if (__is_front_mergeable(ei, &en->ei)) {
520 f2fs_bug_on(sbi, !den);
521 en->ei.fofs = ei->fofs;
522 en->ei.blk = ei->blk;
523 en->ei.len += ei->len;
524 *den = __try_back_merge(sbi, et, en);
525 return en;
526 }
527 p = &(*p)->rb_left;
528 } else if (ei->fofs >= en->ei.fofs + en->ei.len) {
529 if (__is_back_mergeable(ei, &en->ei)) {
530 f2fs_bug_on(sbi, !den);
531 en->ei.len += ei->len;
532 *den = __try_front_merge(sbi, et, en);
533 return en;
534 }
535 p = &(*p)->rb_right;
536 } else {
537 f2fs_bug_on(sbi, 1);
538 }
539 }
540
541 return __attach_extent_node(sbi, et, ei, parent, p);
542}
543
544static unsigned int __free_extent_tree(struct f2fs_sb_info *sbi,
545 struct extent_tree *et, bool free_all)
546{
547 struct rb_node *node, *next;
548 struct extent_node *en;
549 unsigned int count = et->count;
550
551 node = rb_first(&et->root);
552 while (node) {
553 next = rb_next(node);
554 en = rb_entry(node, struct extent_node, rb_node);
555
556 if (free_all) {
557 spin_lock(&sbi->extent_lock);
558 if (!list_empty(&en->list))
559 list_del_init(&en->list);
560 spin_unlock(&sbi->extent_lock);
561 }
562
563 if (free_all || list_empty(&en->list)) {
564 __detach_extent_node(sbi, et, en);
565 kmem_cache_free(extent_node_slab, en);
566 }
567 node = next;
568 }
569
570 return count - et->count;
571}
572
028a41e8
CY
573static void f2fs_init_extent_tree(struct inode *inode,
574 struct f2fs_extent *i_ext)
575{
576 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
577 struct extent_tree *et;
578 struct extent_node *en;
579 struct extent_info ei;
580
581 if (le32_to_cpu(i_ext->len) < F2FS_MIN_EXTENT_LEN)
582 return;
583
584 et = __grab_extent_tree(inode);
585
586 write_lock(&et->lock);
587 if (et->count)
588 goto out;
589
590 set_extent_info(&ei, le32_to_cpu(i_ext->fofs),
591 le32_to_cpu(i_ext->blk), le32_to_cpu(i_ext->len));
592
593 en = __insert_extent_tree(sbi, et, &ei, NULL);
594 if (en) {
595 et->cached_en = en;
596
597 spin_lock(&sbi->extent_lock);
598 list_add_tail(&en->list, &sbi->extent_list);
599 spin_unlock(&sbi->extent_lock);
600 }
601out:
602 write_unlock(&et->lock);
603 atomic_dec(&et->refcount);
604}
605
429511cd
CY
606static bool f2fs_lookup_extent_tree(struct inode *inode, pgoff_t pgofs,
607 struct extent_info *ei)
608{
609 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
610 struct extent_tree *et;
611 struct extent_node *en;
612
1ec4610c
CY
613 trace_f2fs_lookup_extent_tree_start(inode, pgofs);
614
93dfc526
CY
615 et = __find_extent_tree(sbi, inode->i_ino);
616 if (!et)
429511cd 617 return false;
429511cd
CY
618
619 read_lock(&et->lock);
620 en = __lookup_extent_tree(et, pgofs);
621 if (en) {
622 *ei = en->ei;
623 spin_lock(&sbi->extent_lock);
624 if (!list_empty(&en->list))
625 list_move_tail(&en->list, &sbi->extent_list);
244f4fc1 626 et->cached_en = en;
429511cd
CY
627 spin_unlock(&sbi->extent_lock);
628 stat_inc_read_hit(sbi->sb);
629 }
630 stat_inc_total_hit(sbi->sb);
631 read_unlock(&et->lock);
632
1ec4610c
CY
633 trace_f2fs_lookup_extent_tree_end(inode, pgofs, en);
634
429511cd
CY
635 atomic_dec(&et->refcount);
636 return en ? true : false;
637}
638
639static void f2fs_update_extent_tree(struct inode *inode, pgoff_t fofs,
640 block_t blkaddr)
641{
642 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
429511cd
CY
643 struct extent_tree *et;
644 struct extent_node *en = NULL, *en1 = NULL, *en2 = NULL, *en3 = NULL;
645 struct extent_node *den = NULL;
646 struct extent_info ei, dei;
647 unsigned int endofs;
648
1ec4610c
CY
649 trace_f2fs_update_extent_tree(inode, fofs, blkaddr);
650
93dfc526 651 et = __grab_extent_tree(inode);
429511cd
CY
652
653 write_lock(&et->lock);
654
655 /* 1. lookup and remove existing extent info in cache */
656 en = __lookup_extent_tree(et, fofs);
657 if (!en)
658 goto update_extent;
659
660 dei = en->ei;
661 __detach_extent_node(sbi, et, en);
662
663 /* 2. if extent can be split more, split and insert the left part */
664 if (dei.len > 1) {
665 /* insert left part of split extent into cache */
666 if (fofs - dei.fofs >= F2FS_MIN_EXTENT_LEN) {
667 set_extent_info(&ei, dei.fofs, dei.blk,
668 fofs - dei.fofs);
669 en1 = __insert_extent_tree(sbi, et, &ei, NULL);
670 }
671
672 /* insert right part of split extent into cache */
673 endofs = dei.fofs + dei.len - 1;
674 if (endofs - fofs >= F2FS_MIN_EXTENT_LEN) {
675 set_extent_info(&ei, fofs + 1,
7a2cb678 676 fofs - dei.fofs + dei.blk + 1, endofs - fofs);
429511cd
CY
677 en2 = __insert_extent_tree(sbi, et, &ei, NULL);
678 }
679 }
680
681update_extent:
682 /* 3. update extent in extent cache */
683 if (blkaddr) {
684 set_extent_info(&ei, fofs, blkaddr, 1);
685 en3 = __insert_extent_tree(sbi, et, &ei, &den);
686 }
687
688 /* 4. update in global extent list */
689 spin_lock(&sbi->extent_lock);
690 if (en && !list_empty(&en->list))
691 list_del(&en->list);
692 /*
693 * en1 and en2 split from en, they will become more and more smaller
694 * fragments after splitting several times. So if the length is smaller
695 * than F2FS_MIN_EXTENT_LEN, we will not add them into extent tree.
696 */
697 if (en1)
698 list_add_tail(&en1->list, &sbi->extent_list);
699 if (en2)
700 list_add_tail(&en2->list, &sbi->extent_list);
701 if (en3) {
702 if (list_empty(&en3->list))
703 list_add_tail(&en3->list, &sbi->extent_list);
704 else
705 list_move_tail(&en3->list, &sbi->extent_list);
706 }
707 if (den && !list_empty(&den->list))
708 list_del(&den->list);
709 spin_unlock(&sbi->extent_lock);
710
711 /* 5. release extent node */
712 if (en)
713 kmem_cache_free(extent_node_slab, en);
714 if (den)
715 kmem_cache_free(extent_node_slab, den);
716
717 write_unlock(&et->lock);
718 atomic_dec(&et->refcount);
719}
720
0bdee482
CY
721void f2fs_preserve_extent_tree(struct inode *inode)
722{
723 struct extent_tree *et;
724 struct extent_info *ext = &F2FS_I(inode)->ext;
725 bool sync = false;
726
727 if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE))
728 return;
729
730 et = __find_extent_tree(F2FS_I_SB(inode), inode->i_ino);
731 if (!et) {
732 if (ext->len) {
733 ext->len = 0;
734 update_inode_page(inode);
735 }
736 return;
737 }
738
739 read_lock(&et->lock);
740 if (et->count) {
741 struct extent_node *en;
742
743 if (et->cached_en) {
744 en = et->cached_en;
745 } else {
746 struct rb_node *node = rb_first(&et->root);
747
748 if (!node)
749 node = rb_last(&et->root);
750 en = rb_entry(node, struct extent_node, rb_node);
751 }
752
753 if (__is_extent_same(ext, &en->ei))
754 goto out;
755
756 *ext = en->ei;
757 sync = true;
758 } else if (ext->len) {
759 ext->len = 0;
760 sync = true;
761 }
762out:
763 read_unlock(&et->lock);
764 atomic_dec(&et->refcount);
765
766 if (sync)
767 update_inode_page(inode);
768}
769
554df79e 770unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink)
429511cd
CY
771{
772 struct extent_tree *treevec[EXT_TREE_VEC_SIZE];
773 struct extent_node *en, *tmp;
774 unsigned long ino = F2FS_ROOT_INO(sbi);
775 struct radix_tree_iter iter;
776 void **slot;
777 unsigned int found;
1ec4610c 778 unsigned int node_cnt = 0, tree_cnt = 0;
429511cd 779
1dcc336b 780 if (!test_opt(sbi, EXTENT_CACHE))
554df79e 781 return 0;
429511cd
CY
782
783 spin_lock(&sbi->extent_lock);
784 list_for_each_entry_safe(en, tmp, &sbi->extent_list, list) {
785 if (!nr_shrink--)
786 break;
787 list_del_init(&en->list);
788 }
789 spin_unlock(&sbi->extent_lock);
790
554df79e
JK
791 if (!down_read_trylock(&sbi->extent_tree_lock))
792 goto out;
793
429511cd
CY
794 while ((found = radix_tree_gang_lookup(&sbi->extent_tree_root,
795 (void **)treevec, ino, EXT_TREE_VEC_SIZE))) {
796 unsigned i;
797
798 ino = treevec[found - 1]->ino + 1;
799 for (i = 0; i < found; i++) {
800 struct extent_tree *et = treevec[i];
801
802 atomic_inc(&et->refcount);
803 write_lock(&et->lock);
1ec4610c 804 node_cnt += __free_extent_tree(sbi, et, false);
429511cd
CY
805 write_unlock(&et->lock);
806 atomic_dec(&et->refcount);
807 }
808 }
809 up_read(&sbi->extent_tree_lock);
810
554df79e
JK
811 if (!down_write_trylock(&sbi->extent_tree_lock))
812 goto out;
813
429511cd
CY
814 radix_tree_for_each_slot(slot, &sbi->extent_tree_root, &iter,
815 F2FS_ROOT_INO(sbi)) {
816 struct extent_tree *et = (struct extent_tree *)*slot;
817
818 if (!atomic_read(&et->refcount) && !et->count) {
819 radix_tree_delete(&sbi->extent_tree_root, et->ino);
820 kmem_cache_free(extent_tree_slab, et);
821 sbi->total_ext_tree--;
1ec4610c 822 tree_cnt++;
429511cd
CY
823 }
824 }
825 up_write(&sbi->extent_tree_lock);
554df79e 826out:
1ec4610c 827 trace_f2fs_shrink_extent_tree(sbi, node_cnt, tree_cnt);
554df79e
JK
828
829 return node_cnt + tree_cnt;
429511cd
CY
830}
831
832void f2fs_destroy_extent_tree(struct inode *inode)
833{
834 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
835 struct extent_tree *et;
1ec4610c 836 unsigned int node_cnt = 0;
429511cd 837
1dcc336b
CY
838 if (!test_opt(sbi, EXTENT_CACHE))
839 return;
840
93dfc526
CY
841 et = __find_extent_tree(sbi, inode->i_ino);
842 if (!et)
429511cd 843 goto out;
429511cd
CY
844
845 /* free all extent info belong to this extent tree */
846 write_lock(&et->lock);
1ec4610c 847 node_cnt = __free_extent_tree(sbi, et, true);
429511cd
CY
848 write_unlock(&et->lock);
849
850 atomic_dec(&et->refcount);
851
852 /* try to find and delete extent tree entry in radix tree */
853 down_write(&sbi->extent_tree_lock);
854 et = radix_tree_lookup(&sbi->extent_tree_root, inode->i_ino);
855 if (!et) {
856 up_write(&sbi->extent_tree_lock);
857 goto out;
858 }
859 f2fs_bug_on(sbi, atomic_read(&et->refcount) || et->count);
860 radix_tree_delete(&sbi->extent_tree_root, inode->i_ino);
861 kmem_cache_free(extent_tree_slab, et);
862 sbi->total_ext_tree--;
863 up_write(&sbi->extent_tree_lock);
864out:
1ec4610c 865 trace_f2fs_destroy_extent_tree(inode, node_cnt);
c11abd1a 866 return;
eb47b800
JK
867}
868
028a41e8
CY
869void f2fs_init_extent_cache(struct inode *inode, struct f2fs_extent *i_ext)
870{
871 if (test_opt(F2FS_I_SB(inode), EXTENT_CACHE))
872 f2fs_init_extent_tree(inode, i_ext);
873
874 write_lock(&F2FS_I(inode)->ext_lock);
875 get_extent_info(&F2FS_I(inode)->ext, *i_ext);
876 write_unlock(&F2FS_I(inode)->ext_lock);
877}
878
7e4dde79
CY
879static bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
880 struct extent_info *ei)
881{
91c5d9bc
CY
882 if (is_inode_flag_set(F2FS_I(inode), FI_NO_EXTENT))
883 return false;
884
1dcc336b
CY
885 if (test_opt(F2FS_I_SB(inode), EXTENT_CACHE))
886 return f2fs_lookup_extent_tree(inode, pgofs, ei);
887
7e4dde79
CY
888 return lookup_extent_info(inode, pgofs, ei);
889}
890
891void f2fs_update_extent_cache(struct dnode_of_data *dn)
892{
893 struct f2fs_inode_info *fi = F2FS_I(dn->inode);
894 pgoff_t fofs;
895
896 f2fs_bug_on(F2FS_I_SB(dn->inode), dn->data_blkaddr == NEW_ADDR);
897
91c5d9bc
CY
898 if (is_inode_flag_set(fi, FI_NO_EXTENT))
899 return;
900
7e4dde79
CY
901 fofs = start_bidx_of_node(ofs_of_node(dn->node_page), fi) +
902 dn->ofs_in_node;
903
cbe91923 904 /* we should call update_extent_info() to update on-disk extent */
1dcc336b 905 if (test_opt(F2FS_I_SB(dn->inode), EXTENT_CACHE))
cbe91923 906 f2fs_update_extent_tree(dn->inode, fofs, dn->data_blkaddr);
1dcc336b 907
7e4dde79 908 if (update_extent_info(dn->inode, fofs, dn->data_blkaddr))
c11abd1a 909 sync_inode_page(dn);
eb47b800
JK
910}
911
43f3eae1 912struct page *get_read_data_page(struct inode *inode, pgoff_t index, int rw)
eb47b800 913{
eb47b800
JK
914 struct address_space *mapping = inode->i_mapping;
915 struct dnode_of_data dn;
916 struct page *page;
cb3bc9ee 917 struct extent_info ei;
eb47b800 918 int err;
cf04e8eb 919 struct f2fs_io_info fio = {
05ca3632 920 .sbi = F2FS_I_SB(inode),
cf04e8eb 921 .type = DATA,
43f3eae1 922 .rw = rw,
4375a336 923 .encrypted_page = NULL,
cf04e8eb 924 };
eb47b800 925
4375a336
JK
926 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
927 return read_mapping_page(mapping, index, NULL);
928
9ac1349a 929 page = grab_cache_page(mapping, index);
650495de
JK
930 if (!page)
931 return ERR_PTR(-ENOMEM);
932
cb3bc9ee
CY
933 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
934 dn.data_blkaddr = ei.blk + index - ei.fofs;
935 goto got_it;
936 }
937
eb47b800 938 set_new_dnode(&dn, inode, NULL, NULL, 0);
266e97a8 939 err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
650495de
JK
940 if (err) {
941 f2fs_put_page(page, 1);
eb47b800 942 return ERR_PTR(err);
650495de 943 }
eb47b800
JK
944 f2fs_put_dnode(&dn);
945
6bacf52f 946 if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
650495de 947 f2fs_put_page(page, 1);
eb47b800 948 return ERR_PTR(-ENOENT);
650495de 949 }
cb3bc9ee 950got_it:
43f3eae1
JK
951 if (PageUptodate(page)) {
952 unlock_page(page);
eb47b800 953 return page;
43f3eae1 954 }
eb47b800 955
d59ff4df
JK
956 /*
957 * A new dentry page is allocated but not able to be written, since its
958 * new inode page couldn't be allocated due to -ENOSPC.
959 * In such the case, its blkaddr can be remained as NEW_ADDR.
960 * see, f2fs_add_link -> get_new_data_page -> init_inode_metadata.
961 */
962 if (dn.data_blkaddr == NEW_ADDR) {
963 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
964 SetPageUptodate(page);
43f3eae1 965 unlock_page(page);
d59ff4df
JK
966 return page;
967 }
eb47b800 968
cf04e8eb 969 fio.blk_addr = dn.data_blkaddr;
05ca3632
JK
970 fio.page = page;
971 err = f2fs_submit_page_bio(&fio);
393ff91f 972 if (err)
eb47b800 973 return ERR_PTR(err);
43f3eae1
JK
974 return page;
975}
976
977struct page *find_data_page(struct inode *inode, pgoff_t index)
978{
979 struct address_space *mapping = inode->i_mapping;
980 struct page *page;
981
982 page = find_get_page(mapping, index);
983 if (page && PageUptodate(page))
984 return page;
985 f2fs_put_page(page, 0);
986
987 page = get_read_data_page(inode, index, READ_SYNC);
988 if (IS_ERR(page))
989 return page;
990
991 if (PageUptodate(page))
992 return page;
993
994 wait_on_page_locked(page);
995 if (unlikely(!PageUptodate(page))) {
996 f2fs_put_page(page, 0);
997 return ERR_PTR(-EIO);
998 }
999 return page;
1000}
1001
1002/*
1003 * If it tries to access a hole, return an error.
1004 * Because, the callers, functions in dir.c and GC, should be able to know
1005 * whether this page exists or not.
1006 */
1007struct page *get_lock_data_page(struct inode *inode, pgoff_t index)
1008{
1009 struct address_space *mapping = inode->i_mapping;
1010 struct page *page;
1011repeat:
1012 page = get_read_data_page(inode, index, READ_SYNC);
1013 if (IS_ERR(page))
1014 return page;
393ff91f 1015
43f3eae1 1016 /* wait for read completion */
393ff91f 1017 lock_page(page);
6bacf52f 1018 if (unlikely(!PageUptodate(page))) {
393ff91f
JK
1019 f2fs_put_page(page, 1);
1020 return ERR_PTR(-EIO);
eb47b800 1021 }
6bacf52f 1022 if (unlikely(page->mapping != mapping)) {
afcb7ca0
JK
1023 f2fs_put_page(page, 1);
1024 goto repeat;
eb47b800
JK
1025 }
1026 return page;
1027}
1028
0a8165d7 1029/*
eb47b800
JK
1030 * Caller ensures that this data page is never allocated.
1031 * A new zero-filled data page is allocated in the page cache.
39936837 1032 *
4f4124d0
CY
1033 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
1034 * f2fs_unlock_op().
a8865372 1035 * Note that, ipage is set only by make_empty_dir.
eb47b800 1036 */
64aa7ed9 1037struct page *get_new_data_page(struct inode *inode,
a8865372 1038 struct page *ipage, pgoff_t index, bool new_i_size)
eb47b800 1039{
eb47b800
JK
1040 struct address_space *mapping = inode->i_mapping;
1041 struct page *page;
1042 struct dnode_of_data dn;
1043 int err;
01f28610
JK
1044repeat:
1045 page = grab_cache_page(mapping, index);
1046 if (!page)
1047 return ERR_PTR(-ENOMEM);
eb47b800 1048
a8865372 1049 set_new_dnode(&dn, inode, ipage, NULL, 0);
b600965c 1050 err = f2fs_reserve_block(&dn, index);
01f28610
JK
1051 if (err) {
1052 f2fs_put_page(page, 1);
eb47b800 1053 return ERR_PTR(err);
a8865372 1054 }
01f28610
JK
1055 if (!ipage)
1056 f2fs_put_dnode(&dn);
eb47b800
JK
1057
1058 if (PageUptodate(page))
01f28610 1059 goto got_it;
eb47b800
JK
1060
1061 if (dn.data_blkaddr == NEW_ADDR) {
1062 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
393ff91f 1063 SetPageUptodate(page);
eb47b800 1064 } else {
4375a336 1065 f2fs_put_page(page, 1);
a8865372 1066
4375a336
JK
1067 page = get_read_data_page(inode, index, READ_SYNC);
1068 if (IS_ERR(page))
afcb7ca0 1069 goto repeat;
4375a336
JK
1070
1071 /* wait for read completion */
1072 lock_page(page);
eb47b800 1073 }
01f28610 1074got_it:
eb47b800
JK
1075 if (new_i_size &&
1076 i_size_read(inode) < ((index + 1) << PAGE_CACHE_SHIFT)) {
1077 i_size_write(inode, ((index + 1) << PAGE_CACHE_SHIFT));
699489bb
JK
1078 /* Only the directory inode sets new_i_size */
1079 set_inode_flag(F2FS_I(inode), FI_UPDATE_DIR);
eb47b800
JK
1080 }
1081 return page;
1082}
1083
bfad7c2d
JK
1084static int __allocate_data_block(struct dnode_of_data *dn)
1085{
4081363f 1086 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
976e4c50 1087 struct f2fs_inode_info *fi = F2FS_I(dn->inode);
bfad7c2d 1088 struct f2fs_summary sum;
bfad7c2d 1089 struct node_info ni;
38aa0889 1090 int seg = CURSEG_WARM_DATA;
976e4c50 1091 pgoff_t fofs;
bfad7c2d
JK
1092
1093 if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
1094 return -EPERM;
df6136ef
CY
1095
1096 dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
1097 if (dn->data_blkaddr == NEW_ADDR)
1098 goto alloc;
1099
bfad7c2d
JK
1100 if (unlikely(!inc_valid_block_count(sbi, dn->inode, 1)))
1101 return -ENOSPC;
1102
df6136ef 1103alloc:
bfad7c2d
JK
1104 get_node_info(sbi, dn->nid, &ni);
1105 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1106
38aa0889
JK
1107 if (dn->ofs_in_node == 0 && dn->inode_page == dn->node_page)
1108 seg = CURSEG_DIRECT_IO;
1109
df6136ef
CY
1110 allocate_data_block(sbi, NULL, dn->data_blkaddr, &dn->data_blkaddr,
1111 &sum, seg);
bfad7c2d
JK
1112
1113 /* direct IO doesn't use extent cache to maximize the performance */
216a620a 1114 set_data_blkaddr(dn);
bfad7c2d 1115
976e4c50
JK
1116 /* update i_size */
1117 fofs = start_bidx_of_node(ofs_of_node(dn->node_page), fi) +
1118 dn->ofs_in_node;
1119 if (i_size_read(dn->inode) < ((fofs + 1) << PAGE_CACHE_SHIFT))
1120 i_size_write(dn->inode, ((fofs + 1) << PAGE_CACHE_SHIFT));
1121
bfad7c2d
JK
1122 return 0;
1123}
1124
59b802e5
JK
1125static void __allocate_data_blocks(struct inode *inode, loff_t offset,
1126 size_t count)
1127{
1128 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1129 struct dnode_of_data dn;
1130 u64 start = F2FS_BYTES_TO_BLK(offset);
1131 u64 len = F2FS_BYTES_TO_BLK(count);
1132 bool allocated;
1133 u64 end_offset;
1134
1135 while (len) {
1136 f2fs_balance_fs(sbi);
1137 f2fs_lock_op(sbi);
1138
1139 /* When reading holes, we need its node page */
1140 set_new_dnode(&dn, inode, NULL, NULL, 0);
1141 if (get_dnode_of_data(&dn, start, ALLOC_NODE))
1142 goto out;
1143
1144 allocated = false;
1145 end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
1146
1147 while (dn.ofs_in_node < end_offset && len) {
d6d4f1cb
CY
1148 block_t blkaddr;
1149
1150 blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
df6136ef 1151 if (blkaddr == NULL_ADDR || blkaddr == NEW_ADDR) {
59b802e5
JK
1152 if (__allocate_data_block(&dn))
1153 goto sync_out;
1154 allocated = true;
1155 }
1156 len--;
1157 start++;
1158 dn.ofs_in_node++;
1159 }
1160
1161 if (allocated)
1162 sync_inode_page(&dn);
1163
1164 f2fs_put_dnode(&dn);
1165 f2fs_unlock_op(sbi);
1166 }
1167 return;
1168
1169sync_out:
1170 if (allocated)
1171 sync_inode_page(&dn);
1172 f2fs_put_dnode(&dn);
1173out:
1174 f2fs_unlock_op(sbi);
1175 return;
1176}
1177
0a8165d7 1178/*
003a3e1d
JK
1179 * f2fs_map_blocks() now supported readahead/bmap/rw direct_IO with
1180 * f2fs_map_blocks structure.
4f4124d0
CY
1181 * If original data blocks are allocated, then give them to blockdev.
1182 * Otherwise,
1183 * a. preallocate requested block addresses
1184 * b. do not use extent cache for better performance
1185 * c. give the block addresses to blockdev
eb47b800 1186 */
003a3e1d
JK
1187static int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
1188 int create, bool fiemap)
eb47b800 1189{
003a3e1d 1190 unsigned int maxblocks = map->m_len;
eb47b800 1191 struct dnode_of_data dn;
bfad7c2d
JK
1192 int mode = create ? ALLOC_NODE : LOOKUP_NODE_RA;
1193 pgoff_t pgofs, end_offset;
1194 int err = 0, ofs = 1;
a2e7d1bf 1195 struct extent_info ei;
bfad7c2d 1196 bool allocated = false;
eb47b800 1197
003a3e1d
JK
1198 map->m_len = 0;
1199 map->m_flags = 0;
1200
1201 /* it only supports block size == page size */
1202 pgofs = (pgoff_t)map->m_lblk;
eb47b800 1203
7e4dde79 1204 if (f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
003a3e1d
JK
1205 map->m_pblk = ei.blk + pgofs - ei.fofs;
1206 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
1207 map->m_flags = F2FS_MAP_MAPPED;
bfad7c2d 1208 goto out;
a2e7d1bf 1209 }
bfad7c2d 1210
59b802e5 1211 if (create)
4081363f 1212 f2fs_lock_op(F2FS_I_SB(inode));
eb47b800
JK
1213
1214 /* When reading holes, we need its node page */
1215 set_new_dnode(&dn, inode, NULL, NULL, 0);
bfad7c2d 1216 err = get_dnode_of_data(&dn, pgofs, mode);
1ec79083 1217 if (err) {
bfad7c2d
JK
1218 if (err == -ENOENT)
1219 err = 0;
1220 goto unlock_out;
848753aa 1221 }
ccfb3000 1222 if (dn.data_blkaddr == NEW_ADDR && !fiemap)
1ec79083 1223 goto put_out;
eb47b800 1224
bfad7c2d 1225 if (dn.data_blkaddr != NULL_ADDR) {
003a3e1d
JK
1226 map->m_flags = F2FS_MAP_MAPPED;
1227 map->m_pblk = dn.data_blkaddr;
7f63eb77
JK
1228 if (dn.data_blkaddr == NEW_ADDR)
1229 map->m_flags |= F2FS_MAP_UNWRITTEN;
bfad7c2d
JK
1230 } else if (create) {
1231 err = __allocate_data_block(&dn);
1232 if (err)
1233 goto put_out;
1234 allocated = true;
003a3e1d
JK
1235 map->m_flags = F2FS_MAP_NEW | F2FS_MAP_MAPPED;
1236 map->m_pblk = dn.data_blkaddr;
bfad7c2d
JK
1237 } else {
1238 goto put_out;
1239 }
1240
6403eb1f 1241 end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
003a3e1d 1242 map->m_len = 1;
bfad7c2d
JK
1243 dn.ofs_in_node++;
1244 pgofs++;
1245
1246get_next:
1247 if (dn.ofs_in_node >= end_offset) {
1248 if (allocated)
1249 sync_inode_page(&dn);
1250 allocated = false;
1251 f2fs_put_dnode(&dn);
1252
1253 set_new_dnode(&dn, inode, NULL, NULL, 0);
1254 err = get_dnode_of_data(&dn, pgofs, mode);
1ec79083 1255 if (err) {
bfad7c2d
JK
1256 if (err == -ENOENT)
1257 err = 0;
1258 goto unlock_out;
1259 }
ccfb3000 1260 if (dn.data_blkaddr == NEW_ADDR && !fiemap)
1ec79083
JK
1261 goto put_out;
1262
6403eb1f 1263 end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
bfad7c2d 1264 }
eb47b800 1265
003a3e1d 1266 if (maxblocks > map->m_len) {
bfad7c2d
JK
1267 block_t blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
1268 if (blkaddr == NULL_ADDR && create) {
1269 err = __allocate_data_block(&dn);
1270 if (err)
1271 goto sync_out;
1272 allocated = true;
003a3e1d 1273 map->m_flags |= F2FS_MAP_NEW;
bfad7c2d
JK
1274 blkaddr = dn.data_blkaddr;
1275 }
e1c42045 1276 /* Give more consecutive addresses for the readahead */
7f63eb77
JK
1277 if ((map->m_pblk != NEW_ADDR &&
1278 blkaddr == (map->m_pblk + ofs)) ||
1279 (map->m_pblk == NEW_ADDR &&
1280 blkaddr == NEW_ADDR)) {
bfad7c2d
JK
1281 ofs++;
1282 dn.ofs_in_node++;
1283 pgofs++;
003a3e1d 1284 map->m_len++;
bfad7c2d
JK
1285 goto get_next;
1286 }
eb47b800 1287 }
bfad7c2d
JK
1288sync_out:
1289 if (allocated)
1290 sync_inode_page(&dn);
1291put_out:
eb47b800 1292 f2fs_put_dnode(&dn);
bfad7c2d
JK
1293unlock_out:
1294 if (create)
4081363f 1295 f2fs_unlock_op(F2FS_I_SB(inode));
bfad7c2d 1296out:
003a3e1d 1297 trace_f2fs_map_blocks(inode, map, err);
bfad7c2d 1298 return err;
eb47b800
JK
1299}
1300
003a3e1d
JK
1301static int __get_data_block(struct inode *inode, sector_t iblock,
1302 struct buffer_head *bh, int create, bool fiemap)
1303{
1304 struct f2fs_map_blocks map;
1305 int ret;
1306
1307 map.m_lblk = iblock;
1308 map.m_len = bh->b_size >> inode->i_blkbits;
1309
1310 ret = f2fs_map_blocks(inode, &map, create, fiemap);
1311 if (!ret) {
1312 map_bh(bh, inode->i_sb, map.m_pblk);
1313 bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags;
1314 bh->b_size = map.m_len << inode->i_blkbits;
1315 }
1316 return ret;
1317}
1318
ccfb3000
JK
1319static int get_data_block(struct inode *inode, sector_t iblock,
1320 struct buffer_head *bh_result, int create)
1321{
1322 return __get_data_block(inode, iblock, bh_result, create, false);
1323}
1324
1325static int get_data_block_fiemap(struct inode *inode, sector_t iblock,
1326 struct buffer_head *bh_result, int create)
1327{
1328 return __get_data_block(inode, iblock, bh_result, create, true);
1329}
1330
7f63eb77
JK
1331static inline sector_t logical_to_blk(struct inode *inode, loff_t offset)
1332{
1333 return (offset >> inode->i_blkbits);
1334}
1335
1336static inline loff_t blk_to_logical(struct inode *inode, sector_t blk)
1337{
1338 return (blk << inode->i_blkbits);
1339}
1340
9ab70134
JK
1341int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1342 u64 start, u64 len)
1343{
7f63eb77
JK
1344 struct buffer_head map_bh;
1345 sector_t start_blk, last_blk;
1346 loff_t isize = i_size_read(inode);
1347 u64 logical = 0, phys = 0, size = 0;
1348 u32 flags = 0;
1349 bool past_eof = false, whole_file = false;
1350 int ret = 0;
1351
1352 ret = fiemap_check_flags(fieinfo, FIEMAP_FLAG_SYNC);
1353 if (ret)
1354 return ret;
1355
1356 mutex_lock(&inode->i_mutex);
1357
1358 if (len >= isize) {
1359 whole_file = true;
1360 len = isize;
1361 }
1362
1363 if (logical_to_blk(inode, len) == 0)
1364 len = blk_to_logical(inode, 1);
1365
1366 start_blk = logical_to_blk(inode, start);
1367 last_blk = logical_to_blk(inode, start + len - 1);
1368next:
1369 memset(&map_bh, 0, sizeof(struct buffer_head));
1370 map_bh.b_size = len;
1371
1372 ret = get_data_block_fiemap(inode, start_blk, &map_bh, 0);
1373 if (ret)
1374 goto out;
1375
1376 /* HOLE */
1377 if (!buffer_mapped(&map_bh)) {
1378 start_blk++;
1379
1380 if (!past_eof && blk_to_logical(inode, start_blk) >= isize)
1381 past_eof = 1;
1382
1383 if (past_eof && size) {
1384 flags |= FIEMAP_EXTENT_LAST;
1385 ret = fiemap_fill_next_extent(fieinfo, logical,
1386 phys, size, flags);
1387 } else if (size) {
1388 ret = fiemap_fill_next_extent(fieinfo, logical,
1389 phys, size, flags);
1390 size = 0;
1391 }
1392
1393 /* if we have holes up to/past EOF then we're done */
1394 if (start_blk > last_blk || past_eof || ret)
1395 goto out;
1396 } else {
1397 if (start_blk > last_blk && !whole_file) {
1398 ret = fiemap_fill_next_extent(fieinfo, logical,
1399 phys, size, flags);
1400 goto out;
1401 }
1402
1403 /*
1404 * if size != 0 then we know we already have an extent
1405 * to add, so add it.
1406 */
1407 if (size) {
1408 ret = fiemap_fill_next_extent(fieinfo, logical,
1409 phys, size, flags);
1410 if (ret)
1411 goto out;
1412 }
1413
1414 logical = blk_to_logical(inode, start_blk);
1415 phys = blk_to_logical(inode, map_bh.b_blocknr);
1416 size = map_bh.b_size;
1417 flags = 0;
1418 if (buffer_unwritten(&map_bh))
1419 flags = FIEMAP_EXTENT_UNWRITTEN;
1420
1421 start_blk += logical_to_blk(inode, size);
1422
1423 /*
1424 * If we are past the EOF, then we need to make sure as
1425 * soon as we find a hole that the last extent we found
1426 * is marked with FIEMAP_EXTENT_LAST
1427 */
1428 if (!past_eof && logical + size >= isize)
1429 past_eof = true;
1430 }
1431 cond_resched();
1432 if (fatal_signal_pending(current))
1433 ret = -EINTR;
1434 else
1435 goto next;
1436out:
1437 if (ret == 1)
1438 ret = 0;
1439
1440 mutex_unlock(&inode->i_mutex);
1441 return ret;
9ab70134
JK
1442}
1443
f1e88660
JK
1444/*
1445 * This function was originally taken from fs/mpage.c, and customized for f2fs.
1446 * Major change was from block_size == page_size in f2fs by default.
1447 */
1448static int f2fs_mpage_readpages(struct address_space *mapping,
1449 struct list_head *pages, struct page *page,
1450 unsigned nr_pages)
1451{
1452 struct bio *bio = NULL;
1453 unsigned page_idx;
1454 sector_t last_block_in_bio = 0;
1455 struct inode *inode = mapping->host;
1456 const unsigned blkbits = inode->i_blkbits;
1457 const unsigned blocksize = 1 << blkbits;
1458 sector_t block_in_file;
1459 sector_t last_block;
1460 sector_t last_block_in_file;
1461 sector_t block_nr;
1462 struct block_device *bdev = inode->i_sb->s_bdev;
1463 struct f2fs_map_blocks map;
1464
1465 map.m_pblk = 0;
1466 map.m_lblk = 0;
1467 map.m_len = 0;
1468 map.m_flags = 0;
1469
1470 for (page_idx = 0; nr_pages; page_idx++, nr_pages--) {
1471
1472 prefetchw(&page->flags);
1473 if (pages) {
1474 page = list_entry(pages->prev, struct page, lru);
1475 list_del(&page->lru);
1476 if (add_to_page_cache_lru(page, mapping,
1477 page->index, GFP_KERNEL))
1478 goto next_page;
1479 }
1480
1481 block_in_file = (sector_t)page->index;
1482 last_block = block_in_file + nr_pages;
1483 last_block_in_file = (i_size_read(inode) + blocksize - 1) >>
1484 blkbits;
1485 if (last_block > last_block_in_file)
1486 last_block = last_block_in_file;
1487
1488 /*
1489 * Map blocks using the previous result first.
1490 */
1491 if ((map.m_flags & F2FS_MAP_MAPPED) &&
1492 block_in_file > map.m_lblk &&
1493 block_in_file < (map.m_lblk + map.m_len))
1494 goto got_it;
1495
1496 /*
1497 * Then do more f2fs_map_blocks() calls until we are
1498 * done with this page.
1499 */
1500 map.m_flags = 0;
1501
1502 if (block_in_file < last_block) {
1503 map.m_lblk = block_in_file;
1504 map.m_len = last_block - block_in_file;
1505
1506 if (f2fs_map_blocks(inode, &map, 0, false))
1507 goto set_error_page;
1508 }
1509got_it:
1510 if ((map.m_flags & F2FS_MAP_MAPPED)) {
1511 block_nr = map.m_pblk + block_in_file - map.m_lblk;
1512 SetPageMappedToDisk(page);
1513
1514 if (!PageUptodate(page) && !cleancache_get_page(page)) {
1515 SetPageUptodate(page);
1516 goto confused;
1517 }
1518 } else {
1519 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
1520 SetPageUptodate(page);
1521 unlock_page(page);
1522 goto next_page;
1523 }
1524
1525 /*
1526 * This page will go to BIO. Do we need to send this
1527 * BIO off first?
1528 */
1529 if (bio && (last_block_in_bio != block_nr - 1)) {
1530submit_and_realloc:
1531 submit_bio(READ, bio);
1532 bio = NULL;
1533 }
1534 if (bio == NULL) {
4375a336
JK
1535 struct f2fs_crypto_ctx *ctx = NULL;
1536
1537 if (f2fs_encrypted_inode(inode) &&
1538 S_ISREG(inode->i_mode)) {
1539 struct page *cpage;
1540
1541 ctx = f2fs_get_crypto_ctx(inode);
1542 if (IS_ERR(ctx))
1543 goto set_error_page;
1544
1545 /* wait the page to be moved by cleaning */
1546 cpage = find_lock_page(
1547 META_MAPPING(F2FS_I_SB(inode)),
1548 block_nr);
1549 if (cpage) {
1550 f2fs_wait_on_page_writeback(cpage,
1551 DATA);
1552 f2fs_put_page(cpage, 1);
1553 }
1554 }
1555
f1e88660
JK
1556 bio = bio_alloc(GFP_KERNEL,
1557 min_t(int, nr_pages, bio_get_nr_vecs(bdev)));
4375a336
JK
1558 if (!bio) {
1559 if (ctx)
1560 f2fs_release_crypto_ctx(ctx);
f1e88660 1561 goto set_error_page;
4375a336 1562 }
f1e88660
JK
1563 bio->bi_bdev = bdev;
1564 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(block_nr);
12377024 1565 bio->bi_end_io = f2fs_read_end_io;
4375a336 1566 bio->bi_private = ctx;
f1e88660
JK
1567 }
1568
1569 if (bio_add_page(bio, page, blocksize, 0) < blocksize)
1570 goto submit_and_realloc;
1571
1572 last_block_in_bio = block_nr;
1573 goto next_page;
1574set_error_page:
1575 SetPageError(page);
1576 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
1577 unlock_page(page);
1578 goto next_page;
1579confused:
1580 if (bio) {
1581 submit_bio(READ, bio);
1582 bio = NULL;
1583 }
1584 unlock_page(page);
1585next_page:
1586 if (pages)
1587 page_cache_release(page);
1588 }
1589 BUG_ON(pages && !list_empty(pages));
1590 if (bio)
1591 submit_bio(READ, bio);
1592 return 0;
1593}
1594
eb47b800
JK
1595static int f2fs_read_data_page(struct file *file, struct page *page)
1596{
9ffe0fb5 1597 struct inode *inode = page->mapping->host;
b3d208f9 1598 int ret = -EAGAIN;
9ffe0fb5 1599
c20e89cd
CY
1600 trace_f2fs_readpage(page, DATA);
1601
e1c42045 1602 /* If the file has inline data, try to read it directly */
9ffe0fb5
HL
1603 if (f2fs_has_inline_data(inode))
1604 ret = f2fs_read_inline_data(inode, page);
b3d208f9 1605 if (ret == -EAGAIN)
f1e88660 1606 ret = f2fs_mpage_readpages(page->mapping, NULL, page, 1);
9ffe0fb5 1607 return ret;
eb47b800
JK
1608}
1609
1610static int f2fs_read_data_pages(struct file *file,
1611 struct address_space *mapping,
1612 struct list_head *pages, unsigned nr_pages)
1613{
9ffe0fb5
HL
1614 struct inode *inode = file->f_mapping->host;
1615
1616 /* If the file has inline data, skip readpages */
1617 if (f2fs_has_inline_data(inode))
1618 return 0;
1619
f1e88660 1620 return f2fs_mpage_readpages(mapping, pages, NULL, nr_pages);
eb47b800
JK
1621}
1622
05ca3632 1623int do_write_data_page(struct f2fs_io_info *fio)
eb47b800 1624{
05ca3632 1625 struct page *page = fio->page;
eb47b800 1626 struct inode *inode = page->mapping->host;
eb47b800
JK
1627 struct dnode_of_data dn;
1628 int err = 0;
1629
1630 set_new_dnode(&dn, inode, NULL, NULL, 0);
266e97a8 1631 err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
eb47b800
JK
1632 if (err)
1633 return err;
1634
cf04e8eb 1635 fio->blk_addr = dn.data_blkaddr;
eb47b800
JK
1636
1637 /* This page is already truncated */
2bca1e23
JK
1638 if (fio->blk_addr == NULL_ADDR) {
1639 ClearPageUptodate(page);
eb47b800 1640 goto out_writepage;
2bca1e23 1641 }
eb47b800 1642
4375a336
JK
1643 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) {
1644 fio->encrypted_page = f2fs_encrypt(inode, fio->page);
1645 if (IS_ERR(fio->encrypted_page)) {
1646 err = PTR_ERR(fio->encrypted_page);
1647 goto out_writepage;
1648 }
1649 }
1650
eb47b800
JK
1651 set_page_writeback(page);
1652
1653 /*
1654 * If current allocation needs SSR,
1655 * it had better in-place writes for updated data.
1656 */
cf04e8eb 1657 if (unlikely(fio->blk_addr != NEW_ADDR &&
b25958b6
HL
1658 !is_cold_data(page) &&
1659 need_inplace_update(inode))) {
05ca3632 1660 rewrite_data_page(fio);
fff04f90 1661 set_inode_flag(F2FS_I(inode), FI_UPDATE_WRITE);
8ce67cb0 1662 trace_f2fs_do_write_data_page(page, IPU);
eb47b800 1663 } else {
05ca3632 1664 write_data_page(&dn, fio);
216a620a 1665 set_data_blkaddr(&dn);
7e4dde79 1666 f2fs_update_extent_cache(&dn);
8ce67cb0 1667 trace_f2fs_do_write_data_page(page, OPU);
fff04f90 1668 set_inode_flag(F2FS_I(inode), FI_APPEND_WRITE);
3c6c2beb
JK
1669 if (page->index == 0)
1670 set_inode_flag(F2FS_I(inode), FI_FIRST_BLOCK_WRITTEN);
eb47b800
JK
1671 }
1672out_writepage:
1673 f2fs_put_dnode(&dn);
1674 return err;
1675}
1676
1677static int f2fs_write_data_page(struct page *page,
1678 struct writeback_control *wbc)
1679{
1680 struct inode *inode = page->mapping->host;
4081363f 1681 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
eb47b800
JK
1682 loff_t i_size = i_size_read(inode);
1683 const pgoff_t end_index = ((unsigned long long) i_size)
1684 >> PAGE_CACHE_SHIFT;
9ffe0fb5 1685 unsigned offset = 0;
39936837 1686 bool need_balance_fs = false;
eb47b800 1687 int err = 0;
458e6197 1688 struct f2fs_io_info fio = {
05ca3632 1689 .sbi = sbi,
458e6197 1690 .type = DATA,
6c311ec6 1691 .rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE,
05ca3632 1692 .page = page,
4375a336 1693 .encrypted_page = NULL,
458e6197 1694 };
eb47b800 1695
ecda0de3
CY
1696 trace_f2fs_writepage(page, DATA);
1697
eb47b800 1698 if (page->index < end_index)
39936837 1699 goto write;
eb47b800
JK
1700
1701 /*
1702 * If the offset is out-of-range of file size,
1703 * this page does not have to be written to disk.
1704 */
1705 offset = i_size & (PAGE_CACHE_SIZE - 1);
76f60268 1706 if ((page->index >= end_index + 1) || !offset)
39936837 1707 goto out;
eb47b800
JK
1708
1709 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
39936837 1710write:
caf0047e 1711 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
eb47b800 1712 goto redirty_out;
1e84371f
JK
1713 if (f2fs_is_drop_cache(inode))
1714 goto out;
1715 if (f2fs_is_volatile_file(inode) && !wbc->for_reclaim &&
1716 available_free_memory(sbi, BASE_CHECK))
1717 goto redirty_out;
eb47b800 1718
39936837 1719 /* Dentry blocks are controlled by checkpoint */
eb47b800 1720 if (S_ISDIR(inode->i_mode)) {
cf779cab
JK
1721 if (unlikely(f2fs_cp_error(sbi)))
1722 goto redirty_out;
05ca3632 1723 err = do_write_data_page(&fio);
8618b881
JK
1724 goto done;
1725 }
9ffe0fb5 1726
cf779cab
JK
1727 /* we should bypass data pages to proceed the kworkder jobs */
1728 if (unlikely(f2fs_cp_error(sbi))) {
1729 SetPageError(page);
a7ffdbe2 1730 goto out;
cf779cab
JK
1731 }
1732
8618b881 1733 if (!wbc->for_reclaim)
39936837 1734 need_balance_fs = true;
8618b881 1735 else if (has_not_enough_free_secs(sbi, 0))
39936837 1736 goto redirty_out;
eb47b800 1737
b3d208f9 1738 err = -EAGAIN;
8618b881 1739 f2fs_lock_op(sbi);
b3d208f9
JK
1740 if (f2fs_has_inline_data(inode))
1741 err = f2fs_write_inline_data(inode, page);
1742 if (err == -EAGAIN)
05ca3632 1743 err = do_write_data_page(&fio);
8618b881
JK
1744 f2fs_unlock_op(sbi);
1745done:
1746 if (err && err != -ENOENT)
1747 goto redirty_out;
eb47b800 1748
eb47b800 1749 clear_cold_data(page);
39936837 1750out:
a7ffdbe2 1751 inode_dec_dirty_pages(inode);
2bca1e23
JK
1752 if (err)
1753 ClearPageUptodate(page);
eb47b800 1754 unlock_page(page);
39936837 1755 if (need_balance_fs)
eb47b800 1756 f2fs_balance_fs(sbi);
2aea39ec
JK
1757 if (wbc->for_reclaim)
1758 f2fs_submit_merged_bio(sbi, DATA, WRITE);
eb47b800
JK
1759 return 0;
1760
eb47b800 1761redirty_out:
76f60268 1762 redirty_page_for_writepage(wbc, page);
8618b881 1763 return AOP_WRITEPAGE_ACTIVATE;
eb47b800
JK
1764}
1765
fa9150a8
NJ
1766static int __f2fs_writepage(struct page *page, struct writeback_control *wbc,
1767 void *data)
1768{
1769 struct address_space *mapping = data;
1770 int ret = mapping->a_ops->writepage(page, wbc);
1771 mapping_set_error(mapping, ret);
1772 return ret;
1773}
1774
25ca923b 1775static int f2fs_write_data_pages(struct address_space *mapping,
eb47b800
JK
1776 struct writeback_control *wbc)
1777{
1778 struct inode *inode = mapping->host;
4081363f 1779 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
5463e7c1 1780 bool locked = false;
eb47b800 1781 int ret;
50c8cdb3 1782 long diff;
eb47b800 1783
e5748434
CY
1784 trace_f2fs_writepages(mapping->host, wbc, DATA);
1785
cfb185a1 1786 /* deal with chardevs and other special file */
1787 if (!mapping->a_ops->writepage)
1788 return 0;
1789
87d6f890 1790 if (S_ISDIR(inode->i_mode) && wbc->sync_mode == WB_SYNC_NONE &&
a7ffdbe2 1791 get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
6fb03f3a 1792 available_free_memory(sbi, DIRTY_DENTS))
d3baf95d 1793 goto skip_write;
87d6f890 1794
d5669f7b
JK
1795 /* during POR, we don't need to trigger writepage at all. */
1796 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1797 goto skip_write;
1798
50c8cdb3 1799 diff = nr_pages_to_write(sbi, DATA, wbc);
eb47b800 1800
5463e7c1
JK
1801 if (!S_ISDIR(inode->i_mode)) {
1802 mutex_lock(&sbi->writepages);
1803 locked = true;
1804 }
fa9150a8 1805 ret = write_cache_pages(mapping, wbc, __f2fs_writepage, mapping);
5463e7c1
JK
1806 if (locked)
1807 mutex_unlock(&sbi->writepages);
458e6197
JK
1808
1809 f2fs_submit_merged_bio(sbi, DATA, WRITE);
eb47b800
JK
1810
1811 remove_dirty_dir_inode(inode);
1812
50c8cdb3 1813 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
eb47b800 1814 return ret;
d3baf95d
JK
1815
1816skip_write:
a7ffdbe2 1817 wbc->pages_skipped += get_dirty_pages(inode);
d3baf95d 1818 return 0;
eb47b800
JK
1819}
1820
3aab8f82
CY
1821static void f2fs_write_failed(struct address_space *mapping, loff_t to)
1822{
1823 struct inode *inode = mapping->host;
1824
1825 if (to > inode->i_size) {
1826 truncate_pagecache(inode, inode->i_size);
764aa3e9 1827 truncate_blocks(inode, inode->i_size, true);
3aab8f82
CY
1828 }
1829}
1830
eb47b800
JK
1831static int f2fs_write_begin(struct file *file, struct address_space *mapping,
1832 loff_t pos, unsigned len, unsigned flags,
1833 struct page **pagep, void **fsdata)
1834{
1835 struct inode *inode = mapping->host;
4081363f 1836 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
9ba69cf9 1837 struct page *page, *ipage;
eb47b800
JK
1838 pgoff_t index = ((unsigned long long) pos) >> PAGE_CACHE_SHIFT;
1839 struct dnode_of_data dn;
1840 int err = 0;
1841
62aed044
CY
1842 trace_f2fs_write_begin(inode, pos, len, flags);
1843
eb47b800 1844 f2fs_balance_fs(sbi);
5f727395
JK
1845
1846 /*
1847 * We should check this at this moment to avoid deadlock on inode page
1848 * and #0 page. The locking rule for inline_data conversion should be:
1849 * lock_page(page #0) -> lock_page(inode_page)
1850 */
1851 if (index != 0) {
1852 err = f2fs_convert_inline_inode(inode);
1853 if (err)
1854 goto fail;
1855 }
afcb7ca0 1856repeat:
eb47b800 1857 page = grab_cache_page_write_begin(mapping, index, flags);
3aab8f82
CY
1858 if (!page) {
1859 err = -ENOMEM;
1860 goto fail;
1861 }
d5f66990 1862
eb47b800
JK
1863 *pagep = page;
1864
e479556b 1865 f2fs_lock_op(sbi);
9ba69cf9
JK
1866
1867 /* check inline_data */
1868 ipage = get_node_page(sbi, inode->i_ino);
cd34e296
CY
1869 if (IS_ERR(ipage)) {
1870 err = PTR_ERR(ipage);
9ba69cf9 1871 goto unlock_fail;
cd34e296 1872 }
9ba69cf9 1873
b3d208f9
JK
1874 set_new_dnode(&dn, inode, ipage, ipage, 0);
1875
9ba69cf9 1876 if (f2fs_has_inline_data(inode)) {
b3d208f9
JK
1877 if (pos + len <= MAX_INLINE_DATA) {
1878 read_inline_data(page, ipage);
1879 set_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
1880 sync_inode_page(&dn);
1881 goto put_next;
b3d208f9 1882 }
5f727395
JK
1883 err = f2fs_convert_inline_page(&dn, page);
1884 if (err)
1885 goto put_fail;
b600965c 1886 }
9ba69cf9
JK
1887 err = f2fs_reserve_block(&dn, index);
1888 if (err)
8cdcb713 1889 goto put_fail;
b3d208f9 1890put_next:
9ba69cf9
JK
1891 f2fs_put_dnode(&dn);
1892 f2fs_unlock_op(sbi);
1893
eb47b800
JK
1894 if ((len == PAGE_CACHE_SIZE) || PageUptodate(page))
1895 return 0;
1896
b3d208f9
JK
1897 f2fs_wait_on_page_writeback(page, DATA);
1898
eb47b800
JK
1899 if ((pos & PAGE_CACHE_MASK) >= i_size_read(inode)) {
1900 unsigned start = pos & (PAGE_CACHE_SIZE - 1);
1901 unsigned end = start + len;
1902
1903 /* Reading beyond i_size is simple: memset to zero */
1904 zero_user_segments(page, 0, start, end, PAGE_CACHE_SIZE);
393ff91f 1905 goto out;
eb47b800
JK
1906 }
1907
b3d208f9 1908 if (dn.data_blkaddr == NEW_ADDR) {
eb47b800
JK
1909 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
1910 } else {
cf04e8eb 1911 struct f2fs_io_info fio = {
05ca3632 1912 .sbi = sbi,
cf04e8eb
JK
1913 .type = DATA,
1914 .rw = READ_SYNC,
1915 .blk_addr = dn.data_blkaddr,
05ca3632 1916 .page = page,
4375a336 1917 .encrypted_page = NULL,
cf04e8eb 1918 };
05ca3632 1919 err = f2fs_submit_page_bio(&fio);
9234f319
JK
1920 if (err)
1921 goto fail;
d54c795b 1922
393ff91f 1923 lock_page(page);
6bacf52f 1924 if (unlikely(!PageUptodate(page))) {
393ff91f 1925 f2fs_put_page(page, 1);
3aab8f82
CY
1926 err = -EIO;
1927 goto fail;
eb47b800 1928 }
6bacf52f 1929 if (unlikely(page->mapping != mapping)) {
afcb7ca0
JK
1930 f2fs_put_page(page, 1);
1931 goto repeat;
eb47b800 1932 }
4375a336
JK
1933
1934 /* avoid symlink page */
1935 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) {
1936 err = f2fs_decrypt_one(inode, page);
1937 if (err) {
1938 f2fs_put_page(page, 1);
1939 goto fail;
1940 }
1941 }
eb47b800 1942 }
393ff91f 1943out:
eb47b800
JK
1944 SetPageUptodate(page);
1945 clear_cold_data(page);
1946 return 0;
9ba69cf9 1947
8cdcb713
JK
1948put_fail:
1949 f2fs_put_dnode(&dn);
9ba69cf9
JK
1950unlock_fail:
1951 f2fs_unlock_op(sbi);
b3d208f9 1952 f2fs_put_page(page, 1);
3aab8f82
CY
1953fail:
1954 f2fs_write_failed(mapping, pos + len);
1955 return err;
eb47b800
JK
1956}
1957
a1dd3c13
JK
1958static int f2fs_write_end(struct file *file,
1959 struct address_space *mapping,
1960 loff_t pos, unsigned len, unsigned copied,
1961 struct page *page, void *fsdata)
1962{
1963 struct inode *inode = page->mapping->host;
1964
dfb2bf38
CY
1965 trace_f2fs_write_end(inode, pos, len, copied);
1966
34ba94ba 1967 set_page_dirty(page);
a1dd3c13
JK
1968
1969 if (pos + copied > i_size_read(inode)) {
1970 i_size_write(inode, pos + copied);
1971 mark_inode_dirty(inode);
1972 update_inode_page(inode);
1973 }
1974
75c3c8bc 1975 f2fs_put_page(page, 1);
a1dd3c13
JK
1976 return copied;
1977}
1978
6f673763
OS
1979static int check_direct_IO(struct inode *inode, struct iov_iter *iter,
1980 loff_t offset)
944fcfc1
JK
1981{
1982 unsigned blocksize_mask = inode->i_sb->s_blocksize - 1;
944fcfc1 1983
6f673763 1984 if (iov_iter_rw(iter) == READ)
944fcfc1
JK
1985 return 0;
1986
1987 if (offset & blocksize_mask)
1988 return -EINVAL;
1989
5b46f25d
AV
1990 if (iov_iter_alignment(iter) & blocksize_mask)
1991 return -EINVAL;
1992
944fcfc1
JK
1993 return 0;
1994}
1995
22c6186e
OS
1996static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
1997 loff_t offset)
eb47b800
JK
1998{
1999 struct file *file = iocb->ki_filp;
3aab8f82
CY
2000 struct address_space *mapping = file->f_mapping;
2001 struct inode *inode = mapping->host;
2002 size_t count = iov_iter_count(iter);
2003 int err;
944fcfc1 2004
b3d208f9
JK
2005 /* we don't need to use inline_data strictly */
2006 if (f2fs_has_inline_data(inode)) {
2007 err = f2fs_convert_inline_inode(inode);
2008 if (err)
2009 return err;
2010 }
9ffe0fb5 2011
fcc85a4d
JK
2012 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
2013 return 0;
2014
6f673763 2015 if (check_direct_IO(inode, iter, offset))
944fcfc1
JK
2016 return 0;
2017
6f673763 2018 trace_f2fs_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
70407fad 2019
6f673763 2020 if (iov_iter_rw(iter) == WRITE)
59b802e5
JK
2021 __allocate_data_blocks(inode, offset, count);
2022
17f8c842 2023 err = blockdev_direct_IO(iocb, inode, iter, offset, get_data_block);
6f673763 2024 if (err < 0 && iov_iter_rw(iter) == WRITE)
3aab8f82 2025 f2fs_write_failed(mapping, offset + count);
70407fad 2026
6f673763 2027 trace_f2fs_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), err);
70407fad 2028
3aab8f82 2029 return err;
eb47b800
JK
2030}
2031
487261f3
CY
2032void f2fs_invalidate_page(struct page *page, unsigned int offset,
2033 unsigned int length)
eb47b800
JK
2034{
2035 struct inode *inode = page->mapping->host;
487261f3 2036 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
a7ffdbe2 2037
487261f3
CY
2038 if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
2039 (offset % PAGE_CACHE_SIZE || length != PAGE_CACHE_SIZE))
a7ffdbe2
JK
2040 return;
2041
487261f3
CY
2042 if (PageDirty(page)) {
2043 if (inode->i_ino == F2FS_META_INO(sbi))
2044 dec_page_count(sbi, F2FS_DIRTY_META);
2045 else if (inode->i_ino == F2FS_NODE_INO(sbi))
2046 dec_page_count(sbi, F2FS_DIRTY_NODES);
2047 else
2048 inode_dec_dirty_pages(inode);
2049 }
eb47b800
JK
2050 ClearPagePrivate(page);
2051}
2052
487261f3 2053int f2fs_release_page(struct page *page, gfp_t wait)
eb47b800 2054{
f68daeeb
JK
2055 /* If this is dirty page, keep PagePrivate */
2056 if (PageDirty(page))
2057 return 0;
2058
eb47b800 2059 ClearPagePrivate(page);
c3850aa1 2060 return 1;
eb47b800
JK
2061}
2062
2063static int f2fs_set_data_page_dirty(struct page *page)
2064{
2065 struct address_space *mapping = page->mapping;
2066 struct inode *inode = mapping->host;
2067
26c6b887
JK
2068 trace_f2fs_set_page_dirty(page, DATA);
2069
eb47b800 2070 SetPageUptodate(page);
34ba94ba 2071
1e84371f 2072 if (f2fs_is_atomic_file(inode)) {
34ba94ba
JK
2073 register_inmem_page(inode, page);
2074 return 1;
2075 }
2076
eb47b800
JK
2077 if (!PageDirty(page)) {
2078 __set_page_dirty_nobuffers(page);
a7ffdbe2 2079 update_dirty_page(inode, page);
eb47b800
JK
2080 return 1;
2081 }
2082 return 0;
2083}
2084
c01e54b7
JK
2085static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
2086{
454ae7e5
CY
2087 struct inode *inode = mapping->host;
2088
b3d208f9
JK
2089 /* we don't need to use inline_data strictly */
2090 if (f2fs_has_inline_data(inode)) {
2091 int err = f2fs_convert_inline_inode(inode);
2092 if (err)
2093 return err;
2094 }
bfad7c2d 2095 return generic_block_bmap(mapping, block, get_data_block);
c01e54b7
JK
2096}
2097
429511cd
CY
2098void init_extent_cache_info(struct f2fs_sb_info *sbi)
2099{
2100 INIT_RADIX_TREE(&sbi->extent_tree_root, GFP_NOIO);
2101 init_rwsem(&sbi->extent_tree_lock);
2102 INIT_LIST_HEAD(&sbi->extent_list);
2103 spin_lock_init(&sbi->extent_lock);
2104 sbi->total_ext_tree = 0;
2105 atomic_set(&sbi->total_ext_node, 0);
2106}
2107
2108int __init create_extent_cache(void)
2109{
2110 extent_tree_slab = f2fs_kmem_cache_create("f2fs_extent_tree",
2111 sizeof(struct extent_tree));
2112 if (!extent_tree_slab)
2113 return -ENOMEM;
2114 extent_node_slab = f2fs_kmem_cache_create("f2fs_extent_node",
2115 sizeof(struct extent_node));
2116 if (!extent_node_slab) {
2117 kmem_cache_destroy(extent_tree_slab);
2118 return -ENOMEM;
2119 }
2120 return 0;
2121}
2122
2123void destroy_extent_cache(void)
2124{
2125 kmem_cache_destroy(extent_node_slab);
2126 kmem_cache_destroy(extent_tree_slab);
2127}
2128
eb47b800
JK
2129const struct address_space_operations f2fs_dblock_aops = {
2130 .readpage = f2fs_read_data_page,
2131 .readpages = f2fs_read_data_pages,
2132 .writepage = f2fs_write_data_page,
2133 .writepages = f2fs_write_data_pages,
2134 .write_begin = f2fs_write_begin,
a1dd3c13 2135 .write_end = f2fs_write_end,
eb47b800 2136 .set_page_dirty = f2fs_set_data_page_dirty,
487261f3
CY
2137 .invalidatepage = f2fs_invalidate_page,
2138 .releasepage = f2fs_release_page,
eb47b800 2139 .direct_IO = f2fs_direct_IO,
c01e54b7 2140 .bmap = f2fs_bmap,
eb47b800 2141};