f2fs: shrink unreferenced extent_caches first
[GitHub/exynos8895/android_kernel_samsung_universal8895.git] / fs / f2fs / data.c
CommitLineData
0a8165d7 1/*
eb47b800
JK
2 * fs/f2fs/data.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11#include <linux/fs.h>
12#include <linux/f2fs_fs.h>
13#include <linux/buffer_head.h>
14#include <linux/mpage.h>
15#include <linux/writeback.h>
16#include <linux/backing-dev.h>
17#include <linux/blkdev.h>
18#include <linux/bio.h>
690e4a3e 19#include <linux/prefetch.h>
e2e40f2c 20#include <linux/uio.h>
f1e88660 21#include <linux/cleancache.h>
eb47b800
JK
22
23#include "f2fs.h"
24#include "node.h"
25#include "segment.h"
db9f7c1a 26#include "trace.h"
848753aa 27#include <trace/events/f2fs.h>
eb47b800 28
429511cd
CY
29static struct kmem_cache *extent_tree_slab;
30static struct kmem_cache *extent_node_slab;
31
93dfe2ac
JK
32static void f2fs_read_end_io(struct bio *bio, int err)
33{
f568849e
LT
34 struct bio_vec *bvec;
35 int i;
93dfe2ac 36
4375a336
JK
37 if (f2fs_bio_encrypted(bio)) {
38 if (err) {
39 f2fs_release_crypto_ctx(bio->bi_private);
40 } else {
41 f2fs_end_io_crypto_work(bio->bi_private, bio);
42 return;
43 }
44 }
45
12377024
CY
46 bio_for_each_segment_all(bvec, bio, i) {
47 struct page *page = bvec->bv_page;
f1e88660
JK
48
49 if (!err) {
50 SetPageUptodate(page);
51 } else {
52 ClearPageUptodate(page);
53 SetPageError(page);
54 }
55 unlock_page(page);
56 }
f1e88660
JK
57 bio_put(bio);
58}
59
93dfe2ac
JK
60static void f2fs_write_end_io(struct bio *bio, int err)
61{
1b1f559f 62 struct f2fs_sb_info *sbi = bio->bi_private;
f568849e
LT
63 struct bio_vec *bvec;
64 int i;
93dfe2ac 65
f568849e 66 bio_for_each_segment_all(bvec, bio, i) {
93dfe2ac
JK
67 struct page *page = bvec->bv_page;
68
4375a336
JK
69 f2fs_restore_and_release_control_page(&page);
70
f568849e 71 if (unlikely(err)) {
cf779cab 72 set_page_dirty(page);
93dfe2ac 73 set_bit(AS_EIO, &page->mapping->flags);
744602cf 74 f2fs_stop_checkpoint(sbi);
93dfe2ac
JK
75 }
76 end_page_writeback(page);
77 dec_page_count(sbi, F2FS_WRITEBACK);
f568849e 78 }
93dfe2ac 79
93dfe2ac
JK
80 if (!get_pages(sbi, F2FS_WRITEBACK) &&
81 !list_empty(&sbi->cp_wait.task_list))
82 wake_up(&sbi->cp_wait);
83
84 bio_put(bio);
85}
86
940a6d34
GZ
87/*
88 * Low-level block read/write IO operations.
89 */
90static struct bio *__bio_alloc(struct f2fs_sb_info *sbi, block_t blk_addr,
91 int npages, bool is_read)
92{
93 struct bio *bio;
94
95 /* No failure on bio allocation */
96 bio = bio_alloc(GFP_NOIO, npages);
97
98 bio->bi_bdev = sbi->sb->s_bdev;
55cf9cb6 99 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
940a6d34 100 bio->bi_end_io = is_read ? f2fs_read_end_io : f2fs_write_end_io;
12377024 101 bio->bi_private = is_read ? NULL : sbi;
940a6d34
GZ
102
103 return bio;
104}
105
458e6197 106static void __submit_merged_bio(struct f2fs_bio_info *io)
93dfe2ac 107{
458e6197 108 struct f2fs_io_info *fio = &io->fio;
93dfe2ac
JK
109
110 if (!io->bio)
111 return;
112
6a8f8ca5 113 if (is_read_io(fio->rw))
2ace38e0 114 trace_f2fs_submit_read_bio(io->sbi->sb, fio, io->bio);
6a8f8ca5 115 else
2ace38e0 116 trace_f2fs_submit_write_bio(io->sbi->sb, fio, io->bio);
940a6d34 117
6a8f8ca5 118 submit_bio(fio->rw, io->bio);
93dfe2ac
JK
119 io->bio = NULL;
120}
121
122void f2fs_submit_merged_bio(struct f2fs_sb_info *sbi,
458e6197 123 enum page_type type, int rw)
93dfe2ac
JK
124{
125 enum page_type btype = PAGE_TYPE_OF_BIO(type);
126 struct f2fs_bio_info *io;
127
128 io = is_read_io(rw) ? &sbi->read_io : &sbi->write_io[btype];
129
df0f8dc0 130 down_write(&io->io_rwsem);
458e6197
JK
131
132 /* change META to META_FLUSH in the checkpoint procedure */
133 if (type >= META_FLUSH) {
134 io->fio.type = META_FLUSH;
0f7b2abd
JK
135 if (test_opt(sbi, NOBARRIER))
136 io->fio.rw = WRITE_FLUSH | REQ_META | REQ_PRIO;
137 else
138 io->fio.rw = WRITE_FLUSH_FUA | REQ_META | REQ_PRIO;
458e6197
JK
139 }
140 __submit_merged_bio(io);
df0f8dc0 141 up_write(&io->io_rwsem);
93dfe2ac
JK
142}
143
144/*
145 * Fill the locked page with data located in the block address.
146 * Return unlocked page.
147 */
05ca3632 148int f2fs_submit_page_bio(struct f2fs_io_info *fio)
93dfe2ac 149{
93dfe2ac 150 struct bio *bio;
4375a336 151 struct page *page = fio->encrypted_page ? fio->encrypted_page : fio->page;
93dfe2ac 152
2ace38e0 153 trace_f2fs_submit_page_bio(page, fio);
05ca3632 154 f2fs_trace_ios(fio, 0);
93dfe2ac
JK
155
156 /* Allocate a new bio */
05ca3632 157 bio = __bio_alloc(fio->sbi, fio->blk_addr, 1, is_read_io(fio->rw));
93dfe2ac
JK
158
159 if (bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) < PAGE_CACHE_SIZE) {
160 bio_put(bio);
161 f2fs_put_page(page, 1);
162 return -EFAULT;
163 }
164
cf04e8eb 165 submit_bio(fio->rw, bio);
93dfe2ac
JK
166 return 0;
167}
168
05ca3632 169void f2fs_submit_page_mbio(struct f2fs_io_info *fio)
93dfe2ac 170{
05ca3632 171 struct f2fs_sb_info *sbi = fio->sbi;
458e6197 172 enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
93dfe2ac 173 struct f2fs_bio_info *io;
940a6d34 174 bool is_read = is_read_io(fio->rw);
4375a336 175 struct page *bio_page;
93dfe2ac 176
940a6d34 177 io = is_read ? &sbi->read_io : &sbi->write_io[btype];
93dfe2ac 178
cf04e8eb 179 verify_block_addr(sbi, fio->blk_addr);
93dfe2ac 180
df0f8dc0 181 down_write(&io->io_rwsem);
93dfe2ac 182
940a6d34 183 if (!is_read)
93dfe2ac
JK
184 inc_page_count(sbi, F2FS_WRITEBACK);
185
cf04e8eb 186 if (io->bio && (io->last_block_in_bio != fio->blk_addr - 1 ||
458e6197
JK
187 io->fio.rw != fio->rw))
188 __submit_merged_bio(io);
93dfe2ac
JK
189alloc_new:
190 if (io->bio == NULL) {
90a893c7 191 int bio_blocks = MAX_BIO_BLOCKS(sbi);
940a6d34 192
cf04e8eb 193 io->bio = __bio_alloc(sbi, fio->blk_addr, bio_blocks, is_read);
458e6197 194 io->fio = *fio;
93dfe2ac
JK
195 }
196
4375a336
JK
197 bio_page = fio->encrypted_page ? fio->encrypted_page : fio->page;
198
199 if (bio_add_page(io->bio, bio_page, PAGE_CACHE_SIZE, 0) <
93dfe2ac 200 PAGE_CACHE_SIZE) {
458e6197 201 __submit_merged_bio(io);
93dfe2ac
JK
202 goto alloc_new;
203 }
204
cf04e8eb 205 io->last_block_in_bio = fio->blk_addr;
05ca3632 206 f2fs_trace_ios(fio, 0);
93dfe2ac 207
df0f8dc0 208 up_write(&io->io_rwsem);
05ca3632 209 trace_f2fs_submit_page_mbio(fio->page, fio);
93dfe2ac
JK
210}
211
0a8165d7 212/*
eb47b800
JK
213 * Lock ordering for the change of data block address:
214 * ->data_page
215 * ->node_page
216 * update block addresses in the node page
217 */
216a620a 218void set_data_blkaddr(struct dnode_of_data *dn)
eb47b800
JK
219{
220 struct f2fs_node *rn;
221 __le32 *addr_array;
222 struct page *node_page = dn->node_page;
223 unsigned int ofs_in_node = dn->ofs_in_node;
224
5514f0aa 225 f2fs_wait_on_page_writeback(node_page, NODE);
eb47b800 226
45590710 227 rn = F2FS_NODE(node_page);
eb47b800
JK
228
229 /* Get physical address of data block */
230 addr_array = blkaddr_in_node(rn);
e1509cf2 231 addr_array[ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
eb47b800
JK
232 set_page_dirty(node_page);
233}
234
235int reserve_new_block(struct dnode_of_data *dn)
236{
4081363f 237 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
eb47b800 238
6bacf52f 239 if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
eb47b800 240 return -EPERM;
cfb271d4 241 if (unlikely(!inc_valid_block_count(sbi, dn->inode, 1)))
eb47b800
JK
242 return -ENOSPC;
243
c01e2853
NJ
244 trace_f2fs_reserve_new_block(dn->inode, dn->nid, dn->ofs_in_node);
245
eb47b800 246 dn->data_blkaddr = NEW_ADDR;
216a620a 247 set_data_blkaddr(dn);
a18ff063 248 mark_inode_dirty(dn->inode);
eb47b800
JK
249 sync_inode_page(dn);
250 return 0;
251}
252
b600965c
HL
253int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
254{
255 bool need_put = dn->inode_page ? false : true;
256 int err;
257
258 err = get_dnode_of_data(dn, index, ALLOC_NODE);
259 if (err)
260 return err;
a8865372 261
b600965c
HL
262 if (dn->data_blkaddr == NULL_ADDR)
263 err = reserve_new_block(dn);
a8865372 264 if (err || need_put)
b600965c
HL
265 f2fs_put_dnode(dn);
266 return err;
267}
268
429511cd
CY
269static struct extent_node *__attach_extent_node(struct f2fs_sb_info *sbi,
270 struct extent_tree *et, struct extent_info *ei,
271 struct rb_node *parent, struct rb_node **p)
272{
273 struct extent_node *en;
274
275 en = kmem_cache_alloc(extent_node_slab, GFP_ATOMIC);
276 if (!en)
277 return NULL;
278
279 en->ei = *ei;
280 INIT_LIST_HEAD(&en->list);
281
282 rb_link_node(&en->rb_node, parent, p);
283 rb_insert_color(&en->rb_node, &et->root);
284 et->count++;
285 atomic_inc(&sbi->total_ext_node);
286 return en;
287}
288
289static void __detach_extent_node(struct f2fs_sb_info *sbi,
290 struct extent_tree *et, struct extent_node *en)
291{
292 rb_erase(&en->rb_node, &et->root);
293 et->count--;
294 atomic_dec(&sbi->total_ext_node);
62c8af65
CY
295
296 if (et->cached_en == en)
297 et->cached_en = NULL;
429511cd
CY
298}
299
93dfc526
CY
300static struct extent_tree *__grab_extent_tree(struct inode *inode)
301{
302 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
303 struct extent_tree *et;
304 nid_t ino = inode->i_ino;
305
306 down_write(&sbi->extent_tree_lock);
307 et = radix_tree_lookup(&sbi->extent_tree_root, ino);
308 if (!et) {
309 et = f2fs_kmem_cache_alloc(extent_tree_slab, GFP_NOFS);
310 f2fs_radix_tree_insert(&sbi->extent_tree_root, ino, et);
311 memset(et, 0, sizeof(struct extent_tree));
312 et->ino = ino;
313 et->root = RB_ROOT;
314 et->cached_en = NULL;
315 rwlock_init(&et->lock);
316 atomic_set(&et->refcount, 0);
317 et->count = 0;
318 sbi->total_ext_tree++;
319 }
320 atomic_inc(&et->refcount);
321 up_write(&sbi->extent_tree_lock);
322
3e72f721
JK
323 /* never died untill evict_inode */
324 F2FS_I(inode)->extent_tree = et;
325
93dfc526
CY
326 return et;
327}
328
429511cd
CY
329static struct extent_node *__lookup_extent_tree(struct extent_tree *et,
330 unsigned int fofs)
331{
332 struct rb_node *node = et->root.rb_node;
333 struct extent_node *en;
334
62c8af65
CY
335 if (et->cached_en) {
336 struct extent_info *cei = &et->cached_en->ei;
337
338 if (cei->fofs <= fofs && cei->fofs + cei->len > fofs)
339 return et->cached_en;
340 }
341
429511cd
CY
342 while (node) {
343 en = rb_entry(node, struct extent_node, rb_node);
344
244f4fc1 345 if (fofs < en->ei.fofs)
429511cd 346 node = node->rb_left;
244f4fc1 347 else if (fofs >= en->ei.fofs + en->ei.len)
429511cd 348 node = node->rb_right;
244f4fc1 349 else
429511cd
CY
350 return en;
351 }
352 return NULL;
353}
354
355static struct extent_node *__try_back_merge(struct f2fs_sb_info *sbi,
356 struct extent_tree *et, struct extent_node *en)
357{
358 struct extent_node *prev;
359 struct rb_node *node;
360
361 node = rb_prev(&en->rb_node);
362 if (!node)
363 return NULL;
364
365 prev = rb_entry(node, struct extent_node, rb_node);
366 if (__is_back_mergeable(&en->ei, &prev->ei)) {
367 en->ei.fofs = prev->ei.fofs;
368 en->ei.blk = prev->ei.blk;
369 en->ei.len += prev->ei.len;
370 __detach_extent_node(sbi, et, prev);
371 return prev;
372 }
373 return NULL;
374}
375
376static struct extent_node *__try_front_merge(struct f2fs_sb_info *sbi,
377 struct extent_tree *et, struct extent_node *en)
378{
379 struct extent_node *next;
380 struct rb_node *node;
381
382 node = rb_next(&en->rb_node);
383 if (!node)
384 return NULL;
385
386 next = rb_entry(node, struct extent_node, rb_node);
387 if (__is_front_mergeable(&en->ei, &next->ei)) {
388 en->ei.len += next->ei.len;
389 __detach_extent_node(sbi, et, next);
390 return next;
391 }
392 return NULL;
393}
394
395static struct extent_node *__insert_extent_tree(struct f2fs_sb_info *sbi,
396 struct extent_tree *et, struct extent_info *ei,
397 struct extent_node **den)
398{
399 struct rb_node **p = &et->root.rb_node;
400 struct rb_node *parent = NULL;
401 struct extent_node *en;
402
403 while (*p) {
404 parent = *p;
405 en = rb_entry(parent, struct extent_node, rb_node);
406
407 if (ei->fofs < en->ei.fofs) {
408 if (__is_front_mergeable(ei, &en->ei)) {
409 f2fs_bug_on(sbi, !den);
410 en->ei.fofs = ei->fofs;
411 en->ei.blk = ei->blk;
412 en->ei.len += ei->len;
413 *den = __try_back_merge(sbi, et, en);
3e72f721 414 goto update_out;
429511cd
CY
415 }
416 p = &(*p)->rb_left;
417 } else if (ei->fofs >= en->ei.fofs + en->ei.len) {
418 if (__is_back_mergeable(ei, &en->ei)) {
419 f2fs_bug_on(sbi, !den);
420 en->ei.len += ei->len;
421 *den = __try_front_merge(sbi, et, en);
3e72f721 422 goto update_out;
429511cd
CY
423 }
424 p = &(*p)->rb_right;
425 } else {
426 f2fs_bug_on(sbi, 1);
427 }
428 }
429
3e72f721
JK
430 en = __attach_extent_node(sbi, et, ei, parent, p);
431 if (!en)
432 return NULL;
433update_out:
434 if (en->ei.len > et->largest.len)
435 et->largest = en->ei;
436 et->cached_en = en;
437 return en;
429511cd
CY
438}
439
440static unsigned int __free_extent_tree(struct f2fs_sb_info *sbi,
441 struct extent_tree *et, bool free_all)
442{
443 struct rb_node *node, *next;
444 struct extent_node *en;
445 unsigned int count = et->count;
446
447 node = rb_first(&et->root);
448 while (node) {
449 next = rb_next(node);
450 en = rb_entry(node, struct extent_node, rb_node);
451
452 if (free_all) {
453 spin_lock(&sbi->extent_lock);
454 if (!list_empty(&en->list))
455 list_del_init(&en->list);
456 spin_unlock(&sbi->extent_lock);
457 }
458
459 if (free_all || list_empty(&en->list)) {
460 __detach_extent_node(sbi, et, en);
461 kmem_cache_free(extent_node_slab, en);
462 }
463 node = next;
464 }
465
466 return count - et->count;
467}
468
3e72f721
JK
469static void __drop_largest_extent(struct inode *inode, pgoff_t fofs)
470{
471 struct extent_info *largest = &F2FS_I(inode)->extent_tree->largest;
472
473 if (largest->fofs <= fofs && largest->fofs + largest->len > fofs)
474 largest->len = 0;
475}
476
477void f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext)
028a41e8
CY
478{
479 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
480 struct extent_tree *et;
481 struct extent_node *en;
482 struct extent_info ei;
483
3e72f721 484 if (!f2fs_may_extent_tree(inode))
028a41e8
CY
485 return;
486
487 et = __grab_extent_tree(inode);
488
3e72f721
JK
489 if (!i_ext || le32_to_cpu(i_ext->len) < F2FS_MIN_EXTENT_LEN)
490 return;
028a41e8
CY
491
492 set_extent_info(&ei, le32_to_cpu(i_ext->fofs),
493 le32_to_cpu(i_ext->blk), le32_to_cpu(i_ext->len));
494
3e72f721
JK
495 write_lock(&et->lock);
496 if (et->count)
497 goto out;
498
028a41e8
CY
499 en = __insert_extent_tree(sbi, et, &ei, NULL);
500 if (en) {
028a41e8
CY
501 spin_lock(&sbi->extent_lock);
502 list_add_tail(&en->list, &sbi->extent_list);
503 spin_unlock(&sbi->extent_lock);
504 }
505out:
506 write_unlock(&et->lock);
028a41e8
CY
507}
508
429511cd
CY
509static bool f2fs_lookup_extent_tree(struct inode *inode, pgoff_t pgofs,
510 struct extent_info *ei)
511{
512 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3e72f721 513 struct extent_tree *et = F2FS_I(inode)->extent_tree;
429511cd 514 struct extent_node *en;
84bc926c 515 bool ret = false;
429511cd 516
3e72f721 517 f2fs_bug_on(sbi, !et);
1ec4610c 518
3e72f721 519 trace_f2fs_lookup_extent_tree_start(inode, pgofs);
429511cd
CY
520
521 read_lock(&et->lock);
84bc926c
JK
522
523 if (et->largest.fofs <= pgofs &&
524 et->largest.fofs + et->largest.len > pgofs) {
525 *ei = et->largest;
526 ret = true;
527 stat_inc_read_hit(sbi->sb);
528 goto out;
529 }
530
429511cd
CY
531 en = __lookup_extent_tree(et, pgofs);
532 if (en) {
533 *ei = en->ei;
534 spin_lock(&sbi->extent_lock);
535 if (!list_empty(&en->list))
536 list_move_tail(&en->list, &sbi->extent_list);
244f4fc1 537 et->cached_en = en;
429511cd 538 spin_unlock(&sbi->extent_lock);
84bc926c 539 ret = true;
429511cd
CY
540 stat_inc_read_hit(sbi->sb);
541 }
84bc926c 542out:
429511cd
CY
543 stat_inc_total_hit(sbi->sb);
544 read_unlock(&et->lock);
545
84bc926c
JK
546 trace_f2fs_lookup_extent_tree_end(inode, pgofs, ei);
547 return ret;
429511cd
CY
548}
549
3e72f721
JK
550/* return true, if on-disk extent should be updated */
551static bool f2fs_update_extent_tree(struct inode *inode, pgoff_t fofs,
429511cd
CY
552 block_t blkaddr)
553{
554 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3e72f721 555 struct extent_tree *et = F2FS_I(inode)->extent_tree;
429511cd
CY
556 struct extent_node *en = NULL, *en1 = NULL, *en2 = NULL, *en3 = NULL;
557 struct extent_node *den = NULL;
3e72f721 558 struct extent_info ei, dei, prev;
429511cd
CY
559 unsigned int endofs;
560
3e72f721
JK
561 if (!et)
562 return false;
1ec4610c 563
3e72f721 564 trace_f2fs_update_extent_tree(inode, fofs, blkaddr);
429511cd
CY
565
566 write_lock(&et->lock);
567
3e72f721
JK
568 if (is_inode_flag_set(F2FS_I(inode), FI_NO_EXTENT)) {
569 write_unlock(&et->lock);
570 return false;
571 }
572
573 prev = et->largest;
574 dei.len = 0;
575
576 /* we do not guarantee that the largest extent is cached all the time */
577 __drop_largest_extent(inode, fofs);
578
429511cd
CY
579 /* 1. lookup and remove existing extent info in cache */
580 en = __lookup_extent_tree(et, fofs);
581 if (!en)
582 goto update_extent;
583
584 dei = en->ei;
585 __detach_extent_node(sbi, et, en);
586
587 /* 2. if extent can be split more, split and insert the left part */
588 if (dei.len > 1) {
589 /* insert left part of split extent into cache */
590 if (fofs - dei.fofs >= F2FS_MIN_EXTENT_LEN) {
591 set_extent_info(&ei, dei.fofs, dei.blk,
592 fofs - dei.fofs);
593 en1 = __insert_extent_tree(sbi, et, &ei, NULL);
594 }
595
596 /* insert right part of split extent into cache */
597 endofs = dei.fofs + dei.len - 1;
598 if (endofs - fofs >= F2FS_MIN_EXTENT_LEN) {
599 set_extent_info(&ei, fofs + 1,
7a2cb678 600 fofs - dei.fofs + dei.blk + 1, endofs - fofs);
429511cd
CY
601 en2 = __insert_extent_tree(sbi, et, &ei, NULL);
602 }
603 }
604
605update_extent:
606 /* 3. update extent in extent cache */
607 if (blkaddr) {
608 set_extent_info(&ei, fofs, blkaddr, 1);
609 en3 = __insert_extent_tree(sbi, et, &ei, &den);
3e72f721
JK
610
611 /* give up extent_cache, if split and small updates happen */
612 if (dei.len >= 1 &&
613 prev.len < F2FS_MIN_EXTENT_LEN &&
614 et->largest.len < F2FS_MIN_EXTENT_LEN) {
615 et->largest.len = 0;
616 set_inode_flag(F2FS_I(inode), FI_NO_EXTENT);
617 }
429511cd
CY
618 }
619
620 /* 4. update in global extent list */
621 spin_lock(&sbi->extent_lock);
622 if (en && !list_empty(&en->list))
623 list_del(&en->list);
624 /*
625 * en1 and en2 split from en, they will become more and more smaller
626 * fragments after splitting several times. So if the length is smaller
627 * than F2FS_MIN_EXTENT_LEN, we will not add them into extent tree.
628 */
629 if (en1)
630 list_add_tail(&en1->list, &sbi->extent_list);
631 if (en2)
632 list_add_tail(&en2->list, &sbi->extent_list);
633 if (en3) {
634 if (list_empty(&en3->list))
635 list_add_tail(&en3->list, &sbi->extent_list);
636 else
637 list_move_tail(&en3->list, &sbi->extent_list);
638 }
639 if (den && !list_empty(&den->list))
640 list_del(&den->list);
641 spin_unlock(&sbi->extent_lock);
642
643 /* 5. release extent node */
644 if (en)
645 kmem_cache_free(extent_node_slab, en);
646 if (den)
647 kmem_cache_free(extent_node_slab, den);
648
3e72f721
JK
649 if (is_inode_flag_set(F2FS_I(inode), FI_NO_EXTENT))
650 __free_extent_tree(sbi, et, true);
0bdee482 651
3e72f721 652 write_unlock(&et->lock);
0bdee482 653
3e72f721 654 return !__is_extent_same(&prev, &et->largest);
0bdee482
CY
655}
656
554df79e 657unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink)
429511cd
CY
658{
659 struct extent_tree *treevec[EXT_TREE_VEC_SIZE];
660 struct extent_node *en, *tmp;
661 unsigned long ino = F2FS_ROOT_INO(sbi);
3e72f721 662 struct radix_tree_root *root = &sbi->extent_tree_root;
429511cd 663 unsigned int found;
1ec4610c 664 unsigned int node_cnt = 0, tree_cnt = 0;
7023a1ad 665 int remained;
429511cd 666
1dcc336b 667 if (!test_opt(sbi, EXTENT_CACHE))
554df79e 668 return 0;
429511cd 669
7023a1ad
JK
670 if (!down_write_trylock(&sbi->extent_tree_lock))
671 goto out;
672
673 /* 1. remove unreferenced extent tree */
674 while ((found = radix_tree_gang_lookup(root,
675 (void **)treevec, ino, EXT_TREE_VEC_SIZE))) {
676 unsigned i;
677
678 ino = treevec[found - 1]->ino + 1;
679 for (i = 0; i < found; i++) {
680 struct extent_tree *et = treevec[i];
681
682 if (!atomic_read(&et->refcount)) {
683 write_lock(&et->lock);
684 node_cnt += __free_extent_tree(sbi, et, true);
685 write_unlock(&et->lock);
686
687 radix_tree_delete(root, et->ino);
688 kmem_cache_free(extent_tree_slab, et);
689 sbi->total_ext_tree--;
690 tree_cnt++;
691
692 if (node_cnt + tree_cnt >= nr_shrink)
693 goto unlock_out;
694 }
695 }
696 }
697 up_write(&sbi->extent_tree_lock);
698
699 /* 2. remove LRU extent entries */
700 if (!down_write_trylock(&sbi->extent_tree_lock))
701 goto out;
702
703 remained = nr_shrink - (node_cnt + tree_cnt);
704
429511cd
CY
705 spin_lock(&sbi->extent_lock);
706 list_for_each_entry_safe(en, tmp, &sbi->extent_list, list) {
7023a1ad 707 if (!remained--)
429511cd
CY
708 break;
709 list_del_init(&en->list);
710 }
711 spin_unlock(&sbi->extent_lock);
712
3e72f721 713 while ((found = radix_tree_gang_lookup(root,
429511cd
CY
714 (void **)treevec, ino, EXT_TREE_VEC_SIZE))) {
715 unsigned i;
716
717 ino = treevec[found - 1]->ino + 1;
718 for (i = 0; i < found; i++) {
719 struct extent_tree *et = treevec[i];
720
429511cd 721 write_lock(&et->lock);
1ec4610c 722 node_cnt += __free_extent_tree(sbi, et, false);
429511cd 723 write_unlock(&et->lock);
7023a1ad
JK
724
725 if (node_cnt + tree_cnt >= nr_shrink)
726 break;
429511cd
CY
727 }
728 }
7023a1ad 729unlock_out:
429511cd 730 up_write(&sbi->extent_tree_lock);
554df79e 731out:
1ec4610c 732 trace_f2fs_shrink_extent_tree(sbi, node_cnt, tree_cnt);
554df79e
JK
733
734 return node_cnt + tree_cnt;
429511cd
CY
735}
736
3e72f721 737unsigned int f2fs_destroy_extent_node(struct inode *inode)
429511cd
CY
738{
739 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3e72f721 740 struct extent_tree *et = F2FS_I(inode)->extent_tree;
1ec4610c 741 unsigned int node_cnt = 0;
429511cd 742
93dfc526 743 if (!et)
3e72f721 744 return 0;
429511cd 745
429511cd 746 write_lock(&et->lock);
1ec4610c 747 node_cnt = __free_extent_tree(sbi, et, true);
429511cd
CY
748 write_unlock(&et->lock);
749
3e72f721
JK
750 return node_cnt;
751}
429511cd 752
3e72f721
JK
753void f2fs_destroy_extent_tree(struct inode *inode)
754{
755 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
756 struct extent_tree *et = F2FS_I(inode)->extent_tree;
757 unsigned int node_cnt = 0;
758
759 if (!et)
760 return;
761
762 if (inode->i_nlink && !is_bad_inode(inode) && et->count) {
763 atomic_dec(&et->refcount);
764 return;
429511cd 765 }
3e72f721
JK
766
767 /* free all extent info belong to this extent tree */
768 node_cnt = f2fs_destroy_extent_node(inode);
769
770 /* delete extent tree entry in radix tree */
771 down_write(&sbi->extent_tree_lock);
772 atomic_dec(&et->refcount);
429511cd
CY
773 f2fs_bug_on(sbi, atomic_read(&et->refcount) || et->count);
774 radix_tree_delete(&sbi->extent_tree_root, inode->i_ino);
775 kmem_cache_free(extent_tree_slab, et);
776 sbi->total_ext_tree--;
777 up_write(&sbi->extent_tree_lock);
eb47b800 778
3e72f721 779 F2FS_I(inode)->extent_tree = NULL;
028a41e8 780
3e72f721
JK
781 trace_f2fs_destroy_extent_tree(inode, node_cnt);
782 return;
028a41e8
CY
783}
784
7e4dde79
CY
785static bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
786 struct extent_info *ei)
787{
3e72f721 788 if (!f2fs_may_extent_tree(inode))
91c5d9bc
CY
789 return false;
790
3e72f721 791 return f2fs_lookup_extent_tree(inode, pgofs, ei);
7e4dde79
CY
792}
793
794void f2fs_update_extent_cache(struct dnode_of_data *dn)
795{
796 struct f2fs_inode_info *fi = F2FS_I(dn->inode);
797 pgoff_t fofs;
798
3e72f721 799 if (!f2fs_may_extent_tree(dn->inode))
91c5d9bc
CY
800 return;
801
3e72f721
JK
802 f2fs_bug_on(F2FS_I_SB(dn->inode), dn->data_blkaddr == NEW_ADDR);
803
7e4dde79
CY
804 fofs = start_bidx_of_node(ofs_of_node(dn->node_page), fi) +
805 dn->ofs_in_node;
806
3e72f721 807 if (f2fs_update_extent_tree(dn->inode, fofs, dn->data_blkaddr))
c11abd1a 808 sync_inode_page(dn);
eb47b800
JK
809}
810
43f3eae1 811struct page *get_read_data_page(struct inode *inode, pgoff_t index, int rw)
eb47b800 812{
eb47b800
JK
813 struct address_space *mapping = inode->i_mapping;
814 struct dnode_of_data dn;
815 struct page *page;
cb3bc9ee 816 struct extent_info ei;
eb47b800 817 int err;
cf04e8eb 818 struct f2fs_io_info fio = {
05ca3632 819 .sbi = F2FS_I_SB(inode),
cf04e8eb 820 .type = DATA,
43f3eae1 821 .rw = rw,
4375a336 822 .encrypted_page = NULL,
cf04e8eb 823 };
eb47b800 824
4375a336
JK
825 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
826 return read_mapping_page(mapping, index, NULL);
827
9ac1349a 828 page = grab_cache_page(mapping, index);
650495de
JK
829 if (!page)
830 return ERR_PTR(-ENOMEM);
831
cb3bc9ee
CY
832 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
833 dn.data_blkaddr = ei.blk + index - ei.fofs;
834 goto got_it;
835 }
836
eb47b800 837 set_new_dnode(&dn, inode, NULL, NULL, 0);
266e97a8 838 err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
650495de
JK
839 if (err) {
840 f2fs_put_page(page, 1);
eb47b800 841 return ERR_PTR(err);
650495de 842 }
eb47b800
JK
843 f2fs_put_dnode(&dn);
844
6bacf52f 845 if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
650495de 846 f2fs_put_page(page, 1);
eb47b800 847 return ERR_PTR(-ENOENT);
650495de 848 }
cb3bc9ee 849got_it:
43f3eae1
JK
850 if (PageUptodate(page)) {
851 unlock_page(page);
eb47b800 852 return page;
43f3eae1 853 }
eb47b800 854
d59ff4df
JK
855 /*
856 * A new dentry page is allocated but not able to be written, since its
857 * new inode page couldn't be allocated due to -ENOSPC.
858 * In such the case, its blkaddr can be remained as NEW_ADDR.
859 * see, f2fs_add_link -> get_new_data_page -> init_inode_metadata.
860 */
861 if (dn.data_blkaddr == NEW_ADDR) {
862 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
863 SetPageUptodate(page);
43f3eae1 864 unlock_page(page);
d59ff4df
JK
865 return page;
866 }
eb47b800 867
cf04e8eb 868 fio.blk_addr = dn.data_blkaddr;
05ca3632
JK
869 fio.page = page;
870 err = f2fs_submit_page_bio(&fio);
393ff91f 871 if (err)
eb47b800 872 return ERR_PTR(err);
43f3eae1
JK
873 return page;
874}
875
876struct page *find_data_page(struct inode *inode, pgoff_t index)
877{
878 struct address_space *mapping = inode->i_mapping;
879 struct page *page;
880
881 page = find_get_page(mapping, index);
882 if (page && PageUptodate(page))
883 return page;
884 f2fs_put_page(page, 0);
885
886 page = get_read_data_page(inode, index, READ_SYNC);
887 if (IS_ERR(page))
888 return page;
889
890 if (PageUptodate(page))
891 return page;
892
893 wait_on_page_locked(page);
894 if (unlikely(!PageUptodate(page))) {
895 f2fs_put_page(page, 0);
896 return ERR_PTR(-EIO);
897 }
898 return page;
899}
900
901/*
902 * If it tries to access a hole, return an error.
903 * Because, the callers, functions in dir.c and GC, should be able to know
904 * whether this page exists or not.
905 */
906struct page *get_lock_data_page(struct inode *inode, pgoff_t index)
907{
908 struct address_space *mapping = inode->i_mapping;
909 struct page *page;
910repeat:
911 page = get_read_data_page(inode, index, READ_SYNC);
912 if (IS_ERR(page))
913 return page;
393ff91f 914
43f3eae1 915 /* wait for read completion */
393ff91f 916 lock_page(page);
6bacf52f 917 if (unlikely(!PageUptodate(page))) {
393ff91f
JK
918 f2fs_put_page(page, 1);
919 return ERR_PTR(-EIO);
eb47b800 920 }
6bacf52f 921 if (unlikely(page->mapping != mapping)) {
afcb7ca0
JK
922 f2fs_put_page(page, 1);
923 goto repeat;
eb47b800
JK
924 }
925 return page;
926}
927
0a8165d7 928/*
eb47b800
JK
929 * Caller ensures that this data page is never allocated.
930 * A new zero-filled data page is allocated in the page cache.
39936837 931 *
4f4124d0
CY
932 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
933 * f2fs_unlock_op().
a8865372 934 * Note that, ipage is set only by make_empty_dir.
eb47b800 935 */
64aa7ed9 936struct page *get_new_data_page(struct inode *inode,
a8865372 937 struct page *ipage, pgoff_t index, bool new_i_size)
eb47b800 938{
eb47b800
JK
939 struct address_space *mapping = inode->i_mapping;
940 struct page *page;
941 struct dnode_of_data dn;
942 int err;
01f28610
JK
943repeat:
944 page = grab_cache_page(mapping, index);
945 if (!page)
946 return ERR_PTR(-ENOMEM);
eb47b800 947
a8865372 948 set_new_dnode(&dn, inode, ipage, NULL, 0);
b600965c 949 err = f2fs_reserve_block(&dn, index);
01f28610
JK
950 if (err) {
951 f2fs_put_page(page, 1);
eb47b800 952 return ERR_PTR(err);
a8865372 953 }
01f28610
JK
954 if (!ipage)
955 f2fs_put_dnode(&dn);
eb47b800
JK
956
957 if (PageUptodate(page))
01f28610 958 goto got_it;
eb47b800
JK
959
960 if (dn.data_blkaddr == NEW_ADDR) {
961 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
393ff91f 962 SetPageUptodate(page);
eb47b800 963 } else {
4375a336 964 f2fs_put_page(page, 1);
a8865372 965
4375a336
JK
966 page = get_read_data_page(inode, index, READ_SYNC);
967 if (IS_ERR(page))
afcb7ca0 968 goto repeat;
4375a336
JK
969
970 /* wait for read completion */
971 lock_page(page);
eb47b800 972 }
01f28610 973got_it:
eb47b800
JK
974 if (new_i_size &&
975 i_size_read(inode) < ((index + 1) << PAGE_CACHE_SHIFT)) {
976 i_size_write(inode, ((index + 1) << PAGE_CACHE_SHIFT));
699489bb
JK
977 /* Only the directory inode sets new_i_size */
978 set_inode_flag(F2FS_I(inode), FI_UPDATE_DIR);
eb47b800
JK
979 }
980 return page;
981}
982
bfad7c2d
JK
983static int __allocate_data_block(struct dnode_of_data *dn)
984{
4081363f 985 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
976e4c50 986 struct f2fs_inode_info *fi = F2FS_I(dn->inode);
bfad7c2d 987 struct f2fs_summary sum;
bfad7c2d 988 struct node_info ni;
38aa0889 989 int seg = CURSEG_WARM_DATA;
976e4c50 990 pgoff_t fofs;
bfad7c2d
JK
991
992 if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
993 return -EPERM;
df6136ef
CY
994
995 dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
996 if (dn->data_blkaddr == NEW_ADDR)
997 goto alloc;
998
bfad7c2d
JK
999 if (unlikely(!inc_valid_block_count(sbi, dn->inode, 1)))
1000 return -ENOSPC;
1001
df6136ef 1002alloc:
bfad7c2d
JK
1003 get_node_info(sbi, dn->nid, &ni);
1004 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1005
38aa0889
JK
1006 if (dn->ofs_in_node == 0 && dn->inode_page == dn->node_page)
1007 seg = CURSEG_DIRECT_IO;
1008
df6136ef
CY
1009 allocate_data_block(sbi, NULL, dn->data_blkaddr, &dn->data_blkaddr,
1010 &sum, seg);
216a620a 1011 set_data_blkaddr(dn);
bfad7c2d 1012
976e4c50
JK
1013 /* update i_size */
1014 fofs = start_bidx_of_node(ofs_of_node(dn->node_page), fi) +
1015 dn->ofs_in_node;
1016 if (i_size_read(dn->inode) < ((fofs + 1) << PAGE_CACHE_SHIFT))
1017 i_size_write(dn->inode, ((fofs + 1) << PAGE_CACHE_SHIFT));
1018
3e72f721
JK
1019 /* direct IO doesn't use extent cache to maximize the performance */
1020 __drop_largest_extent(dn->inode, fofs);
1021
bfad7c2d
JK
1022 return 0;
1023}
1024
59b802e5
JK
1025static void __allocate_data_blocks(struct inode *inode, loff_t offset,
1026 size_t count)
1027{
1028 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1029 struct dnode_of_data dn;
1030 u64 start = F2FS_BYTES_TO_BLK(offset);
1031 u64 len = F2FS_BYTES_TO_BLK(count);
1032 bool allocated;
1033 u64 end_offset;
1034
1035 while (len) {
1036 f2fs_balance_fs(sbi);
1037 f2fs_lock_op(sbi);
1038
1039 /* When reading holes, we need its node page */
1040 set_new_dnode(&dn, inode, NULL, NULL, 0);
1041 if (get_dnode_of_data(&dn, start, ALLOC_NODE))
1042 goto out;
1043
1044 allocated = false;
1045 end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
1046
1047 while (dn.ofs_in_node < end_offset && len) {
d6d4f1cb
CY
1048 block_t blkaddr;
1049
1050 blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
df6136ef 1051 if (blkaddr == NULL_ADDR || blkaddr == NEW_ADDR) {
59b802e5
JK
1052 if (__allocate_data_block(&dn))
1053 goto sync_out;
1054 allocated = true;
1055 }
1056 len--;
1057 start++;
1058 dn.ofs_in_node++;
1059 }
1060
1061 if (allocated)
1062 sync_inode_page(&dn);
1063
1064 f2fs_put_dnode(&dn);
1065 f2fs_unlock_op(sbi);
1066 }
1067 return;
1068
1069sync_out:
1070 if (allocated)
1071 sync_inode_page(&dn);
1072 f2fs_put_dnode(&dn);
1073out:
1074 f2fs_unlock_op(sbi);
1075 return;
1076}
1077
0a8165d7 1078/*
003a3e1d
JK
1079 * f2fs_map_blocks() now supported readahead/bmap/rw direct_IO with
1080 * f2fs_map_blocks structure.
4f4124d0
CY
1081 * If original data blocks are allocated, then give them to blockdev.
1082 * Otherwise,
1083 * a. preallocate requested block addresses
1084 * b. do not use extent cache for better performance
1085 * c. give the block addresses to blockdev
eb47b800 1086 */
003a3e1d
JK
1087static int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
1088 int create, bool fiemap)
eb47b800 1089{
003a3e1d 1090 unsigned int maxblocks = map->m_len;
eb47b800 1091 struct dnode_of_data dn;
bfad7c2d
JK
1092 int mode = create ? ALLOC_NODE : LOOKUP_NODE_RA;
1093 pgoff_t pgofs, end_offset;
1094 int err = 0, ofs = 1;
a2e7d1bf 1095 struct extent_info ei;
bfad7c2d 1096 bool allocated = false;
eb47b800 1097
003a3e1d
JK
1098 map->m_len = 0;
1099 map->m_flags = 0;
1100
1101 /* it only supports block size == page size */
1102 pgofs = (pgoff_t)map->m_lblk;
eb47b800 1103
7e4dde79 1104 if (f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
003a3e1d
JK
1105 map->m_pblk = ei.blk + pgofs - ei.fofs;
1106 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
1107 map->m_flags = F2FS_MAP_MAPPED;
bfad7c2d 1108 goto out;
a2e7d1bf 1109 }
bfad7c2d 1110
59b802e5 1111 if (create)
4081363f 1112 f2fs_lock_op(F2FS_I_SB(inode));
eb47b800
JK
1113
1114 /* When reading holes, we need its node page */
1115 set_new_dnode(&dn, inode, NULL, NULL, 0);
bfad7c2d 1116 err = get_dnode_of_data(&dn, pgofs, mode);
1ec79083 1117 if (err) {
bfad7c2d
JK
1118 if (err == -ENOENT)
1119 err = 0;
1120 goto unlock_out;
848753aa 1121 }
ccfb3000 1122 if (dn.data_blkaddr == NEW_ADDR && !fiemap)
1ec79083 1123 goto put_out;
eb47b800 1124
bfad7c2d 1125 if (dn.data_blkaddr != NULL_ADDR) {
003a3e1d
JK
1126 map->m_flags = F2FS_MAP_MAPPED;
1127 map->m_pblk = dn.data_blkaddr;
7f63eb77
JK
1128 if (dn.data_blkaddr == NEW_ADDR)
1129 map->m_flags |= F2FS_MAP_UNWRITTEN;
bfad7c2d
JK
1130 } else if (create) {
1131 err = __allocate_data_block(&dn);
1132 if (err)
1133 goto put_out;
1134 allocated = true;
003a3e1d
JK
1135 map->m_flags = F2FS_MAP_NEW | F2FS_MAP_MAPPED;
1136 map->m_pblk = dn.data_blkaddr;
bfad7c2d
JK
1137 } else {
1138 goto put_out;
1139 }
1140
6403eb1f 1141 end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
003a3e1d 1142 map->m_len = 1;
bfad7c2d
JK
1143 dn.ofs_in_node++;
1144 pgofs++;
1145
1146get_next:
1147 if (dn.ofs_in_node >= end_offset) {
1148 if (allocated)
1149 sync_inode_page(&dn);
1150 allocated = false;
1151 f2fs_put_dnode(&dn);
1152
1153 set_new_dnode(&dn, inode, NULL, NULL, 0);
1154 err = get_dnode_of_data(&dn, pgofs, mode);
1ec79083 1155 if (err) {
bfad7c2d
JK
1156 if (err == -ENOENT)
1157 err = 0;
1158 goto unlock_out;
1159 }
ccfb3000 1160 if (dn.data_blkaddr == NEW_ADDR && !fiemap)
1ec79083
JK
1161 goto put_out;
1162
6403eb1f 1163 end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
bfad7c2d 1164 }
eb47b800 1165
003a3e1d 1166 if (maxblocks > map->m_len) {
bfad7c2d
JK
1167 block_t blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
1168 if (blkaddr == NULL_ADDR && create) {
1169 err = __allocate_data_block(&dn);
1170 if (err)
1171 goto sync_out;
1172 allocated = true;
003a3e1d 1173 map->m_flags |= F2FS_MAP_NEW;
bfad7c2d
JK
1174 blkaddr = dn.data_blkaddr;
1175 }
e1c42045 1176 /* Give more consecutive addresses for the readahead */
7f63eb77
JK
1177 if ((map->m_pblk != NEW_ADDR &&
1178 blkaddr == (map->m_pblk + ofs)) ||
1179 (map->m_pblk == NEW_ADDR &&
1180 blkaddr == NEW_ADDR)) {
bfad7c2d
JK
1181 ofs++;
1182 dn.ofs_in_node++;
1183 pgofs++;
003a3e1d 1184 map->m_len++;
bfad7c2d
JK
1185 goto get_next;
1186 }
eb47b800 1187 }
bfad7c2d
JK
1188sync_out:
1189 if (allocated)
1190 sync_inode_page(&dn);
1191put_out:
eb47b800 1192 f2fs_put_dnode(&dn);
bfad7c2d
JK
1193unlock_out:
1194 if (create)
4081363f 1195 f2fs_unlock_op(F2FS_I_SB(inode));
bfad7c2d 1196out:
003a3e1d 1197 trace_f2fs_map_blocks(inode, map, err);
bfad7c2d 1198 return err;
eb47b800
JK
1199}
1200
003a3e1d
JK
1201static int __get_data_block(struct inode *inode, sector_t iblock,
1202 struct buffer_head *bh, int create, bool fiemap)
1203{
1204 struct f2fs_map_blocks map;
1205 int ret;
1206
1207 map.m_lblk = iblock;
1208 map.m_len = bh->b_size >> inode->i_blkbits;
1209
1210 ret = f2fs_map_blocks(inode, &map, create, fiemap);
1211 if (!ret) {
1212 map_bh(bh, inode->i_sb, map.m_pblk);
1213 bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags;
1214 bh->b_size = map.m_len << inode->i_blkbits;
1215 }
1216 return ret;
1217}
1218
ccfb3000
JK
1219static int get_data_block(struct inode *inode, sector_t iblock,
1220 struct buffer_head *bh_result, int create)
1221{
1222 return __get_data_block(inode, iblock, bh_result, create, false);
1223}
1224
1225static int get_data_block_fiemap(struct inode *inode, sector_t iblock,
1226 struct buffer_head *bh_result, int create)
1227{
1228 return __get_data_block(inode, iblock, bh_result, create, true);
1229}
1230
7f63eb77
JK
1231static inline sector_t logical_to_blk(struct inode *inode, loff_t offset)
1232{
1233 return (offset >> inode->i_blkbits);
1234}
1235
1236static inline loff_t blk_to_logical(struct inode *inode, sector_t blk)
1237{
1238 return (blk << inode->i_blkbits);
1239}
1240
9ab70134
JK
1241int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1242 u64 start, u64 len)
1243{
7f63eb77
JK
1244 struct buffer_head map_bh;
1245 sector_t start_blk, last_blk;
1246 loff_t isize = i_size_read(inode);
1247 u64 logical = 0, phys = 0, size = 0;
1248 u32 flags = 0;
1249 bool past_eof = false, whole_file = false;
1250 int ret = 0;
1251
1252 ret = fiemap_check_flags(fieinfo, FIEMAP_FLAG_SYNC);
1253 if (ret)
1254 return ret;
1255
1256 mutex_lock(&inode->i_mutex);
1257
1258 if (len >= isize) {
1259 whole_file = true;
1260 len = isize;
1261 }
1262
1263 if (logical_to_blk(inode, len) == 0)
1264 len = blk_to_logical(inode, 1);
1265
1266 start_blk = logical_to_blk(inode, start);
1267 last_blk = logical_to_blk(inode, start + len - 1);
1268next:
1269 memset(&map_bh, 0, sizeof(struct buffer_head));
1270 map_bh.b_size = len;
1271
1272 ret = get_data_block_fiemap(inode, start_blk, &map_bh, 0);
1273 if (ret)
1274 goto out;
1275
1276 /* HOLE */
1277 if (!buffer_mapped(&map_bh)) {
1278 start_blk++;
1279
1280 if (!past_eof && blk_to_logical(inode, start_blk) >= isize)
1281 past_eof = 1;
1282
1283 if (past_eof && size) {
1284 flags |= FIEMAP_EXTENT_LAST;
1285 ret = fiemap_fill_next_extent(fieinfo, logical,
1286 phys, size, flags);
1287 } else if (size) {
1288 ret = fiemap_fill_next_extent(fieinfo, logical,
1289 phys, size, flags);
1290 size = 0;
1291 }
1292
1293 /* if we have holes up to/past EOF then we're done */
1294 if (start_blk > last_blk || past_eof || ret)
1295 goto out;
1296 } else {
1297 if (start_blk > last_blk && !whole_file) {
1298 ret = fiemap_fill_next_extent(fieinfo, logical,
1299 phys, size, flags);
1300 goto out;
1301 }
1302
1303 /*
1304 * if size != 0 then we know we already have an extent
1305 * to add, so add it.
1306 */
1307 if (size) {
1308 ret = fiemap_fill_next_extent(fieinfo, logical,
1309 phys, size, flags);
1310 if (ret)
1311 goto out;
1312 }
1313
1314 logical = blk_to_logical(inode, start_blk);
1315 phys = blk_to_logical(inode, map_bh.b_blocknr);
1316 size = map_bh.b_size;
1317 flags = 0;
1318 if (buffer_unwritten(&map_bh))
1319 flags = FIEMAP_EXTENT_UNWRITTEN;
1320
1321 start_blk += logical_to_blk(inode, size);
1322
1323 /*
1324 * If we are past the EOF, then we need to make sure as
1325 * soon as we find a hole that the last extent we found
1326 * is marked with FIEMAP_EXTENT_LAST
1327 */
1328 if (!past_eof && logical + size >= isize)
1329 past_eof = true;
1330 }
1331 cond_resched();
1332 if (fatal_signal_pending(current))
1333 ret = -EINTR;
1334 else
1335 goto next;
1336out:
1337 if (ret == 1)
1338 ret = 0;
1339
1340 mutex_unlock(&inode->i_mutex);
1341 return ret;
9ab70134
JK
1342}
1343
f1e88660
JK
1344/*
1345 * This function was originally taken from fs/mpage.c, and customized for f2fs.
1346 * Major change was from block_size == page_size in f2fs by default.
1347 */
1348static int f2fs_mpage_readpages(struct address_space *mapping,
1349 struct list_head *pages, struct page *page,
1350 unsigned nr_pages)
1351{
1352 struct bio *bio = NULL;
1353 unsigned page_idx;
1354 sector_t last_block_in_bio = 0;
1355 struct inode *inode = mapping->host;
1356 const unsigned blkbits = inode->i_blkbits;
1357 const unsigned blocksize = 1 << blkbits;
1358 sector_t block_in_file;
1359 sector_t last_block;
1360 sector_t last_block_in_file;
1361 sector_t block_nr;
1362 struct block_device *bdev = inode->i_sb->s_bdev;
1363 struct f2fs_map_blocks map;
1364
1365 map.m_pblk = 0;
1366 map.m_lblk = 0;
1367 map.m_len = 0;
1368 map.m_flags = 0;
1369
1370 for (page_idx = 0; nr_pages; page_idx++, nr_pages--) {
1371
1372 prefetchw(&page->flags);
1373 if (pages) {
1374 page = list_entry(pages->prev, struct page, lru);
1375 list_del(&page->lru);
1376 if (add_to_page_cache_lru(page, mapping,
1377 page->index, GFP_KERNEL))
1378 goto next_page;
1379 }
1380
1381 block_in_file = (sector_t)page->index;
1382 last_block = block_in_file + nr_pages;
1383 last_block_in_file = (i_size_read(inode) + blocksize - 1) >>
1384 blkbits;
1385 if (last_block > last_block_in_file)
1386 last_block = last_block_in_file;
1387
1388 /*
1389 * Map blocks using the previous result first.
1390 */
1391 if ((map.m_flags & F2FS_MAP_MAPPED) &&
1392 block_in_file > map.m_lblk &&
1393 block_in_file < (map.m_lblk + map.m_len))
1394 goto got_it;
1395
1396 /*
1397 * Then do more f2fs_map_blocks() calls until we are
1398 * done with this page.
1399 */
1400 map.m_flags = 0;
1401
1402 if (block_in_file < last_block) {
1403 map.m_lblk = block_in_file;
1404 map.m_len = last_block - block_in_file;
1405
1406 if (f2fs_map_blocks(inode, &map, 0, false))
1407 goto set_error_page;
1408 }
1409got_it:
1410 if ((map.m_flags & F2FS_MAP_MAPPED)) {
1411 block_nr = map.m_pblk + block_in_file - map.m_lblk;
1412 SetPageMappedToDisk(page);
1413
1414 if (!PageUptodate(page) && !cleancache_get_page(page)) {
1415 SetPageUptodate(page);
1416 goto confused;
1417 }
1418 } else {
1419 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
1420 SetPageUptodate(page);
1421 unlock_page(page);
1422 goto next_page;
1423 }
1424
1425 /*
1426 * This page will go to BIO. Do we need to send this
1427 * BIO off first?
1428 */
1429 if (bio && (last_block_in_bio != block_nr - 1)) {
1430submit_and_realloc:
1431 submit_bio(READ, bio);
1432 bio = NULL;
1433 }
1434 if (bio == NULL) {
4375a336
JK
1435 struct f2fs_crypto_ctx *ctx = NULL;
1436
1437 if (f2fs_encrypted_inode(inode) &&
1438 S_ISREG(inode->i_mode)) {
1439 struct page *cpage;
1440
1441 ctx = f2fs_get_crypto_ctx(inode);
1442 if (IS_ERR(ctx))
1443 goto set_error_page;
1444
1445 /* wait the page to be moved by cleaning */
1446 cpage = find_lock_page(
1447 META_MAPPING(F2FS_I_SB(inode)),
1448 block_nr);
1449 if (cpage) {
1450 f2fs_wait_on_page_writeback(cpage,
1451 DATA);
1452 f2fs_put_page(cpage, 1);
1453 }
1454 }
1455
f1e88660
JK
1456 bio = bio_alloc(GFP_KERNEL,
1457 min_t(int, nr_pages, bio_get_nr_vecs(bdev)));
4375a336
JK
1458 if (!bio) {
1459 if (ctx)
1460 f2fs_release_crypto_ctx(ctx);
f1e88660 1461 goto set_error_page;
4375a336 1462 }
f1e88660
JK
1463 bio->bi_bdev = bdev;
1464 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(block_nr);
12377024 1465 bio->bi_end_io = f2fs_read_end_io;
4375a336 1466 bio->bi_private = ctx;
f1e88660
JK
1467 }
1468
1469 if (bio_add_page(bio, page, blocksize, 0) < blocksize)
1470 goto submit_and_realloc;
1471
1472 last_block_in_bio = block_nr;
1473 goto next_page;
1474set_error_page:
1475 SetPageError(page);
1476 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
1477 unlock_page(page);
1478 goto next_page;
1479confused:
1480 if (bio) {
1481 submit_bio(READ, bio);
1482 bio = NULL;
1483 }
1484 unlock_page(page);
1485next_page:
1486 if (pages)
1487 page_cache_release(page);
1488 }
1489 BUG_ON(pages && !list_empty(pages));
1490 if (bio)
1491 submit_bio(READ, bio);
1492 return 0;
1493}
1494
eb47b800
JK
1495static int f2fs_read_data_page(struct file *file, struct page *page)
1496{
9ffe0fb5 1497 struct inode *inode = page->mapping->host;
b3d208f9 1498 int ret = -EAGAIN;
9ffe0fb5 1499
c20e89cd
CY
1500 trace_f2fs_readpage(page, DATA);
1501
e1c42045 1502 /* If the file has inline data, try to read it directly */
9ffe0fb5
HL
1503 if (f2fs_has_inline_data(inode))
1504 ret = f2fs_read_inline_data(inode, page);
b3d208f9 1505 if (ret == -EAGAIN)
f1e88660 1506 ret = f2fs_mpage_readpages(page->mapping, NULL, page, 1);
9ffe0fb5 1507 return ret;
eb47b800
JK
1508}
1509
1510static int f2fs_read_data_pages(struct file *file,
1511 struct address_space *mapping,
1512 struct list_head *pages, unsigned nr_pages)
1513{
9ffe0fb5
HL
1514 struct inode *inode = file->f_mapping->host;
1515
1516 /* If the file has inline data, skip readpages */
1517 if (f2fs_has_inline_data(inode))
1518 return 0;
1519
f1e88660 1520 return f2fs_mpage_readpages(mapping, pages, NULL, nr_pages);
eb47b800
JK
1521}
1522
05ca3632 1523int do_write_data_page(struct f2fs_io_info *fio)
eb47b800 1524{
05ca3632 1525 struct page *page = fio->page;
eb47b800 1526 struct inode *inode = page->mapping->host;
eb47b800
JK
1527 struct dnode_of_data dn;
1528 int err = 0;
1529
1530 set_new_dnode(&dn, inode, NULL, NULL, 0);
266e97a8 1531 err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
eb47b800
JK
1532 if (err)
1533 return err;
1534
cf04e8eb 1535 fio->blk_addr = dn.data_blkaddr;
eb47b800
JK
1536
1537 /* This page is already truncated */
2bca1e23
JK
1538 if (fio->blk_addr == NULL_ADDR) {
1539 ClearPageUptodate(page);
eb47b800 1540 goto out_writepage;
2bca1e23 1541 }
eb47b800 1542
4375a336
JK
1543 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) {
1544 fio->encrypted_page = f2fs_encrypt(inode, fio->page);
1545 if (IS_ERR(fio->encrypted_page)) {
1546 err = PTR_ERR(fio->encrypted_page);
1547 goto out_writepage;
1548 }
1549 }
1550
eb47b800
JK
1551 set_page_writeback(page);
1552
1553 /*
1554 * If current allocation needs SSR,
1555 * it had better in-place writes for updated data.
1556 */
cf04e8eb 1557 if (unlikely(fio->blk_addr != NEW_ADDR &&
b25958b6
HL
1558 !is_cold_data(page) &&
1559 need_inplace_update(inode))) {
05ca3632 1560 rewrite_data_page(fio);
fff04f90 1561 set_inode_flag(F2FS_I(inode), FI_UPDATE_WRITE);
8ce67cb0 1562 trace_f2fs_do_write_data_page(page, IPU);
eb47b800 1563 } else {
05ca3632 1564 write_data_page(&dn, fio);
216a620a 1565 set_data_blkaddr(&dn);
7e4dde79 1566 f2fs_update_extent_cache(&dn);
8ce67cb0 1567 trace_f2fs_do_write_data_page(page, OPU);
fff04f90 1568 set_inode_flag(F2FS_I(inode), FI_APPEND_WRITE);
3c6c2beb
JK
1569 if (page->index == 0)
1570 set_inode_flag(F2FS_I(inode), FI_FIRST_BLOCK_WRITTEN);
eb47b800
JK
1571 }
1572out_writepage:
1573 f2fs_put_dnode(&dn);
1574 return err;
1575}
1576
1577static int f2fs_write_data_page(struct page *page,
1578 struct writeback_control *wbc)
1579{
1580 struct inode *inode = page->mapping->host;
4081363f 1581 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
eb47b800
JK
1582 loff_t i_size = i_size_read(inode);
1583 const pgoff_t end_index = ((unsigned long long) i_size)
1584 >> PAGE_CACHE_SHIFT;
9ffe0fb5 1585 unsigned offset = 0;
39936837 1586 bool need_balance_fs = false;
eb47b800 1587 int err = 0;
458e6197 1588 struct f2fs_io_info fio = {
05ca3632 1589 .sbi = sbi,
458e6197 1590 .type = DATA,
6c311ec6 1591 .rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE,
05ca3632 1592 .page = page,
4375a336 1593 .encrypted_page = NULL,
458e6197 1594 };
eb47b800 1595
ecda0de3
CY
1596 trace_f2fs_writepage(page, DATA);
1597
eb47b800 1598 if (page->index < end_index)
39936837 1599 goto write;
eb47b800
JK
1600
1601 /*
1602 * If the offset is out-of-range of file size,
1603 * this page does not have to be written to disk.
1604 */
1605 offset = i_size & (PAGE_CACHE_SIZE - 1);
76f60268 1606 if ((page->index >= end_index + 1) || !offset)
39936837 1607 goto out;
eb47b800
JK
1608
1609 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
39936837 1610write:
caf0047e 1611 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
eb47b800 1612 goto redirty_out;
1e84371f
JK
1613 if (f2fs_is_drop_cache(inode))
1614 goto out;
1615 if (f2fs_is_volatile_file(inode) && !wbc->for_reclaim &&
1616 available_free_memory(sbi, BASE_CHECK))
1617 goto redirty_out;
eb47b800 1618
39936837 1619 /* Dentry blocks are controlled by checkpoint */
eb47b800 1620 if (S_ISDIR(inode->i_mode)) {
cf779cab
JK
1621 if (unlikely(f2fs_cp_error(sbi)))
1622 goto redirty_out;
05ca3632 1623 err = do_write_data_page(&fio);
8618b881
JK
1624 goto done;
1625 }
9ffe0fb5 1626
cf779cab
JK
1627 /* we should bypass data pages to proceed the kworkder jobs */
1628 if (unlikely(f2fs_cp_error(sbi))) {
1629 SetPageError(page);
a7ffdbe2 1630 goto out;
cf779cab
JK
1631 }
1632
8618b881 1633 if (!wbc->for_reclaim)
39936837 1634 need_balance_fs = true;
8618b881 1635 else if (has_not_enough_free_secs(sbi, 0))
39936837 1636 goto redirty_out;
eb47b800 1637
b3d208f9 1638 err = -EAGAIN;
8618b881 1639 f2fs_lock_op(sbi);
b3d208f9
JK
1640 if (f2fs_has_inline_data(inode))
1641 err = f2fs_write_inline_data(inode, page);
1642 if (err == -EAGAIN)
05ca3632 1643 err = do_write_data_page(&fio);
8618b881
JK
1644 f2fs_unlock_op(sbi);
1645done:
1646 if (err && err != -ENOENT)
1647 goto redirty_out;
eb47b800 1648
eb47b800 1649 clear_cold_data(page);
39936837 1650out:
a7ffdbe2 1651 inode_dec_dirty_pages(inode);
2bca1e23
JK
1652 if (err)
1653 ClearPageUptodate(page);
eb47b800 1654 unlock_page(page);
39936837 1655 if (need_balance_fs)
eb47b800 1656 f2fs_balance_fs(sbi);
2aea39ec
JK
1657 if (wbc->for_reclaim)
1658 f2fs_submit_merged_bio(sbi, DATA, WRITE);
eb47b800
JK
1659 return 0;
1660
eb47b800 1661redirty_out:
76f60268 1662 redirty_page_for_writepage(wbc, page);
8618b881 1663 return AOP_WRITEPAGE_ACTIVATE;
eb47b800
JK
1664}
1665
fa9150a8
NJ
1666static int __f2fs_writepage(struct page *page, struct writeback_control *wbc,
1667 void *data)
1668{
1669 struct address_space *mapping = data;
1670 int ret = mapping->a_ops->writepage(page, wbc);
1671 mapping_set_error(mapping, ret);
1672 return ret;
1673}
1674
25ca923b 1675static int f2fs_write_data_pages(struct address_space *mapping,
eb47b800
JK
1676 struct writeback_control *wbc)
1677{
1678 struct inode *inode = mapping->host;
4081363f 1679 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
5463e7c1 1680 bool locked = false;
eb47b800 1681 int ret;
50c8cdb3 1682 long diff;
eb47b800 1683
e5748434
CY
1684 trace_f2fs_writepages(mapping->host, wbc, DATA);
1685
cfb185a1 1686 /* deal with chardevs and other special file */
1687 if (!mapping->a_ops->writepage)
1688 return 0;
1689
87d6f890 1690 if (S_ISDIR(inode->i_mode) && wbc->sync_mode == WB_SYNC_NONE &&
a7ffdbe2 1691 get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
6fb03f3a 1692 available_free_memory(sbi, DIRTY_DENTS))
d3baf95d 1693 goto skip_write;
87d6f890 1694
d5669f7b
JK
1695 /* during POR, we don't need to trigger writepage at all. */
1696 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1697 goto skip_write;
1698
50c8cdb3 1699 diff = nr_pages_to_write(sbi, DATA, wbc);
eb47b800 1700
5463e7c1
JK
1701 if (!S_ISDIR(inode->i_mode)) {
1702 mutex_lock(&sbi->writepages);
1703 locked = true;
1704 }
fa9150a8 1705 ret = write_cache_pages(mapping, wbc, __f2fs_writepage, mapping);
bb96a8d5 1706 f2fs_submit_merged_bio(sbi, DATA, WRITE);
5463e7c1
JK
1707 if (locked)
1708 mutex_unlock(&sbi->writepages);
458e6197 1709
eb47b800
JK
1710 remove_dirty_dir_inode(inode);
1711
50c8cdb3 1712 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
eb47b800 1713 return ret;
d3baf95d
JK
1714
1715skip_write:
a7ffdbe2 1716 wbc->pages_skipped += get_dirty_pages(inode);
d3baf95d 1717 return 0;
eb47b800
JK
1718}
1719
3aab8f82
CY
1720static void f2fs_write_failed(struct address_space *mapping, loff_t to)
1721{
1722 struct inode *inode = mapping->host;
1723
1724 if (to > inode->i_size) {
1725 truncate_pagecache(inode, inode->i_size);
764aa3e9 1726 truncate_blocks(inode, inode->i_size, true);
3aab8f82
CY
1727 }
1728}
1729
eb47b800
JK
1730static int f2fs_write_begin(struct file *file, struct address_space *mapping,
1731 loff_t pos, unsigned len, unsigned flags,
1732 struct page **pagep, void **fsdata)
1733{
1734 struct inode *inode = mapping->host;
4081363f 1735 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
9ba69cf9 1736 struct page *page, *ipage;
eb47b800
JK
1737 pgoff_t index = ((unsigned long long) pos) >> PAGE_CACHE_SHIFT;
1738 struct dnode_of_data dn;
1739 int err = 0;
1740
62aed044
CY
1741 trace_f2fs_write_begin(inode, pos, len, flags);
1742
eb47b800 1743 f2fs_balance_fs(sbi);
5f727395
JK
1744
1745 /*
1746 * We should check this at this moment to avoid deadlock on inode page
1747 * and #0 page. The locking rule for inline_data conversion should be:
1748 * lock_page(page #0) -> lock_page(inode_page)
1749 */
1750 if (index != 0) {
1751 err = f2fs_convert_inline_inode(inode);
1752 if (err)
1753 goto fail;
1754 }
afcb7ca0 1755repeat:
eb47b800 1756 page = grab_cache_page_write_begin(mapping, index, flags);
3aab8f82
CY
1757 if (!page) {
1758 err = -ENOMEM;
1759 goto fail;
1760 }
d5f66990 1761
eb47b800
JK
1762 *pagep = page;
1763
e479556b 1764 f2fs_lock_op(sbi);
9ba69cf9
JK
1765
1766 /* check inline_data */
1767 ipage = get_node_page(sbi, inode->i_ino);
cd34e296
CY
1768 if (IS_ERR(ipage)) {
1769 err = PTR_ERR(ipage);
9ba69cf9 1770 goto unlock_fail;
cd34e296 1771 }
9ba69cf9 1772
b3d208f9
JK
1773 set_new_dnode(&dn, inode, ipage, ipage, 0);
1774
9ba69cf9 1775 if (f2fs_has_inline_data(inode)) {
b3d208f9
JK
1776 if (pos + len <= MAX_INLINE_DATA) {
1777 read_inline_data(page, ipage);
1778 set_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
1779 sync_inode_page(&dn);
1780 goto put_next;
b3d208f9 1781 }
5f727395
JK
1782 err = f2fs_convert_inline_page(&dn, page);
1783 if (err)
1784 goto put_fail;
b600965c 1785 }
9ba69cf9
JK
1786 err = f2fs_reserve_block(&dn, index);
1787 if (err)
8cdcb713 1788 goto put_fail;
b3d208f9 1789put_next:
9ba69cf9
JK
1790 f2fs_put_dnode(&dn);
1791 f2fs_unlock_op(sbi);
1792
eb47b800
JK
1793 if ((len == PAGE_CACHE_SIZE) || PageUptodate(page))
1794 return 0;
1795
b3d208f9
JK
1796 f2fs_wait_on_page_writeback(page, DATA);
1797
eb47b800
JK
1798 if ((pos & PAGE_CACHE_MASK) >= i_size_read(inode)) {
1799 unsigned start = pos & (PAGE_CACHE_SIZE - 1);
1800 unsigned end = start + len;
1801
1802 /* Reading beyond i_size is simple: memset to zero */
1803 zero_user_segments(page, 0, start, end, PAGE_CACHE_SIZE);
393ff91f 1804 goto out;
eb47b800
JK
1805 }
1806
b3d208f9 1807 if (dn.data_blkaddr == NEW_ADDR) {
eb47b800
JK
1808 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
1809 } else {
cf04e8eb 1810 struct f2fs_io_info fio = {
05ca3632 1811 .sbi = sbi,
cf04e8eb
JK
1812 .type = DATA,
1813 .rw = READ_SYNC,
1814 .blk_addr = dn.data_blkaddr,
05ca3632 1815 .page = page,
4375a336 1816 .encrypted_page = NULL,
cf04e8eb 1817 };
05ca3632 1818 err = f2fs_submit_page_bio(&fio);
9234f319
JK
1819 if (err)
1820 goto fail;
d54c795b 1821
393ff91f 1822 lock_page(page);
6bacf52f 1823 if (unlikely(!PageUptodate(page))) {
393ff91f 1824 f2fs_put_page(page, 1);
3aab8f82
CY
1825 err = -EIO;
1826 goto fail;
eb47b800 1827 }
6bacf52f 1828 if (unlikely(page->mapping != mapping)) {
afcb7ca0
JK
1829 f2fs_put_page(page, 1);
1830 goto repeat;
eb47b800 1831 }
4375a336
JK
1832
1833 /* avoid symlink page */
1834 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) {
1835 err = f2fs_decrypt_one(inode, page);
1836 if (err) {
1837 f2fs_put_page(page, 1);
1838 goto fail;
1839 }
1840 }
eb47b800 1841 }
393ff91f 1842out:
eb47b800
JK
1843 SetPageUptodate(page);
1844 clear_cold_data(page);
1845 return 0;
9ba69cf9 1846
8cdcb713
JK
1847put_fail:
1848 f2fs_put_dnode(&dn);
9ba69cf9
JK
1849unlock_fail:
1850 f2fs_unlock_op(sbi);
b3d208f9 1851 f2fs_put_page(page, 1);
3aab8f82
CY
1852fail:
1853 f2fs_write_failed(mapping, pos + len);
1854 return err;
eb47b800
JK
1855}
1856
a1dd3c13
JK
1857static int f2fs_write_end(struct file *file,
1858 struct address_space *mapping,
1859 loff_t pos, unsigned len, unsigned copied,
1860 struct page *page, void *fsdata)
1861{
1862 struct inode *inode = page->mapping->host;
1863
dfb2bf38
CY
1864 trace_f2fs_write_end(inode, pos, len, copied);
1865
34ba94ba 1866 set_page_dirty(page);
a1dd3c13
JK
1867
1868 if (pos + copied > i_size_read(inode)) {
1869 i_size_write(inode, pos + copied);
1870 mark_inode_dirty(inode);
1871 update_inode_page(inode);
1872 }
1873
75c3c8bc 1874 f2fs_put_page(page, 1);
a1dd3c13
JK
1875 return copied;
1876}
1877
6f673763
OS
1878static int check_direct_IO(struct inode *inode, struct iov_iter *iter,
1879 loff_t offset)
944fcfc1
JK
1880{
1881 unsigned blocksize_mask = inode->i_sb->s_blocksize - 1;
944fcfc1 1882
6f673763 1883 if (iov_iter_rw(iter) == READ)
944fcfc1
JK
1884 return 0;
1885
1886 if (offset & blocksize_mask)
1887 return -EINVAL;
1888
5b46f25d
AV
1889 if (iov_iter_alignment(iter) & blocksize_mask)
1890 return -EINVAL;
1891
944fcfc1
JK
1892 return 0;
1893}
1894
22c6186e
OS
1895static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
1896 loff_t offset)
eb47b800
JK
1897{
1898 struct file *file = iocb->ki_filp;
3aab8f82
CY
1899 struct address_space *mapping = file->f_mapping;
1900 struct inode *inode = mapping->host;
1901 size_t count = iov_iter_count(iter);
1902 int err;
944fcfc1 1903
b3d208f9
JK
1904 /* we don't need to use inline_data strictly */
1905 if (f2fs_has_inline_data(inode)) {
1906 err = f2fs_convert_inline_inode(inode);
1907 if (err)
1908 return err;
1909 }
9ffe0fb5 1910
fcc85a4d
JK
1911 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
1912 return 0;
1913
6f673763 1914 if (check_direct_IO(inode, iter, offset))
944fcfc1
JK
1915 return 0;
1916
6f673763 1917 trace_f2fs_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
70407fad 1918
6f673763 1919 if (iov_iter_rw(iter) == WRITE)
59b802e5
JK
1920 __allocate_data_blocks(inode, offset, count);
1921
17f8c842 1922 err = blockdev_direct_IO(iocb, inode, iter, offset, get_data_block);
6f673763 1923 if (err < 0 && iov_iter_rw(iter) == WRITE)
3aab8f82 1924 f2fs_write_failed(mapping, offset + count);
70407fad 1925
6f673763 1926 trace_f2fs_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), err);
70407fad 1927
3aab8f82 1928 return err;
eb47b800
JK
1929}
1930
487261f3
CY
1931void f2fs_invalidate_page(struct page *page, unsigned int offset,
1932 unsigned int length)
eb47b800
JK
1933{
1934 struct inode *inode = page->mapping->host;
487261f3 1935 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
a7ffdbe2 1936
487261f3
CY
1937 if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
1938 (offset % PAGE_CACHE_SIZE || length != PAGE_CACHE_SIZE))
a7ffdbe2
JK
1939 return;
1940
487261f3
CY
1941 if (PageDirty(page)) {
1942 if (inode->i_ino == F2FS_META_INO(sbi))
1943 dec_page_count(sbi, F2FS_DIRTY_META);
1944 else if (inode->i_ino == F2FS_NODE_INO(sbi))
1945 dec_page_count(sbi, F2FS_DIRTY_NODES);
1946 else
1947 inode_dec_dirty_pages(inode);
1948 }
eb47b800
JK
1949 ClearPagePrivate(page);
1950}
1951
487261f3 1952int f2fs_release_page(struct page *page, gfp_t wait)
eb47b800 1953{
f68daeeb
JK
1954 /* If this is dirty page, keep PagePrivate */
1955 if (PageDirty(page))
1956 return 0;
1957
eb47b800 1958 ClearPagePrivate(page);
c3850aa1 1959 return 1;
eb47b800
JK
1960}
1961
1962static int f2fs_set_data_page_dirty(struct page *page)
1963{
1964 struct address_space *mapping = page->mapping;
1965 struct inode *inode = mapping->host;
1966
26c6b887
JK
1967 trace_f2fs_set_page_dirty(page, DATA);
1968
eb47b800 1969 SetPageUptodate(page);
34ba94ba 1970
1e84371f 1971 if (f2fs_is_atomic_file(inode)) {
34ba94ba
JK
1972 register_inmem_page(inode, page);
1973 return 1;
1974 }
1975
eb47b800
JK
1976 if (!PageDirty(page)) {
1977 __set_page_dirty_nobuffers(page);
a7ffdbe2 1978 update_dirty_page(inode, page);
eb47b800
JK
1979 return 1;
1980 }
1981 return 0;
1982}
1983
c01e54b7
JK
1984static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
1985{
454ae7e5
CY
1986 struct inode *inode = mapping->host;
1987
b3d208f9
JK
1988 /* we don't need to use inline_data strictly */
1989 if (f2fs_has_inline_data(inode)) {
1990 int err = f2fs_convert_inline_inode(inode);
1991 if (err)
1992 return err;
1993 }
bfad7c2d 1994 return generic_block_bmap(mapping, block, get_data_block);
c01e54b7
JK
1995}
1996
429511cd
CY
1997void init_extent_cache_info(struct f2fs_sb_info *sbi)
1998{
1999 INIT_RADIX_TREE(&sbi->extent_tree_root, GFP_NOIO);
2000 init_rwsem(&sbi->extent_tree_lock);
2001 INIT_LIST_HEAD(&sbi->extent_list);
2002 spin_lock_init(&sbi->extent_lock);
2003 sbi->total_ext_tree = 0;
2004 atomic_set(&sbi->total_ext_node, 0);
2005}
2006
2007int __init create_extent_cache(void)
2008{
2009 extent_tree_slab = f2fs_kmem_cache_create("f2fs_extent_tree",
2010 sizeof(struct extent_tree));
2011 if (!extent_tree_slab)
2012 return -ENOMEM;
2013 extent_node_slab = f2fs_kmem_cache_create("f2fs_extent_node",
2014 sizeof(struct extent_node));
2015 if (!extent_node_slab) {
2016 kmem_cache_destroy(extent_tree_slab);
2017 return -ENOMEM;
2018 }
2019 return 0;
2020}
2021
2022void destroy_extent_cache(void)
2023{
2024 kmem_cache_destroy(extent_node_slab);
2025 kmem_cache_destroy(extent_tree_slab);
2026}
2027
eb47b800
JK
2028const struct address_space_operations f2fs_dblock_aops = {
2029 .readpage = f2fs_read_data_page,
2030 .readpages = f2fs_read_data_pages,
2031 .writepage = f2fs_write_data_page,
2032 .writepages = f2fs_write_data_pages,
2033 .write_begin = f2fs_write_begin,
a1dd3c13 2034 .write_end = f2fs_write_end,
eb47b800 2035 .set_page_dirty = f2fs_set_data_page_dirty,
487261f3
CY
2036 .invalidatepage = f2fs_invalidate_page,
2037 .releasepage = f2fs_release_page,
eb47b800 2038 .direct_IO = f2fs_direct_IO,
c01e54b7 2039 .bmap = f2fs_bmap,
eb47b800 2040};