f2fs: support fast lookup in extent cache
[GitHub/exynos8895/android_kernel_samsung_universal8895.git] / fs / f2fs / data.c
CommitLineData
0a8165d7 1/*
eb47b800
JK
2 * fs/f2fs/data.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11#include <linux/fs.h>
12#include <linux/f2fs_fs.h>
13#include <linux/buffer_head.h>
14#include <linux/mpage.h>
a27bb332 15#include <linux/aio.h>
eb47b800
JK
16#include <linux/writeback.h>
17#include <linux/backing-dev.h>
18#include <linux/blkdev.h>
19#include <linux/bio.h>
690e4a3e 20#include <linux/prefetch.h>
eb47b800
JK
21
22#include "f2fs.h"
23#include "node.h"
24#include "segment.h"
db9f7c1a 25#include "trace.h"
848753aa 26#include <trace/events/f2fs.h>
eb47b800 27
429511cd
CY
28static struct kmem_cache *extent_tree_slab;
29static struct kmem_cache *extent_node_slab;
30
93dfe2ac
JK
31static void f2fs_read_end_io(struct bio *bio, int err)
32{
f568849e
LT
33 struct bio_vec *bvec;
34 int i;
93dfe2ac 35
f568849e 36 bio_for_each_segment_all(bvec, bio, i) {
93dfe2ac
JK
37 struct page *page = bvec->bv_page;
38
f568849e
LT
39 if (!err) {
40 SetPageUptodate(page);
41 } else {
93dfe2ac
JK
42 ClearPageUptodate(page);
43 SetPageError(page);
44 }
45 unlock_page(page);
f568849e 46 }
93dfe2ac
JK
47 bio_put(bio);
48}
49
50static void f2fs_write_end_io(struct bio *bio, int err)
51{
1b1f559f 52 struct f2fs_sb_info *sbi = bio->bi_private;
f568849e
LT
53 struct bio_vec *bvec;
54 int i;
93dfe2ac 55
f568849e 56 bio_for_each_segment_all(bvec, bio, i) {
93dfe2ac
JK
57 struct page *page = bvec->bv_page;
58
f568849e 59 if (unlikely(err)) {
cf779cab 60 set_page_dirty(page);
93dfe2ac 61 set_bit(AS_EIO, &page->mapping->flags);
744602cf 62 f2fs_stop_checkpoint(sbi);
93dfe2ac
JK
63 }
64 end_page_writeback(page);
65 dec_page_count(sbi, F2FS_WRITEBACK);
f568849e 66 }
93dfe2ac 67
93dfe2ac
JK
68 if (!get_pages(sbi, F2FS_WRITEBACK) &&
69 !list_empty(&sbi->cp_wait.task_list))
70 wake_up(&sbi->cp_wait);
71
72 bio_put(bio);
73}
74
940a6d34
GZ
75/*
76 * Low-level block read/write IO operations.
77 */
78static struct bio *__bio_alloc(struct f2fs_sb_info *sbi, block_t blk_addr,
79 int npages, bool is_read)
80{
81 struct bio *bio;
82
83 /* No failure on bio allocation */
84 bio = bio_alloc(GFP_NOIO, npages);
85
86 bio->bi_bdev = sbi->sb->s_bdev;
55cf9cb6 87 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
940a6d34 88 bio->bi_end_io = is_read ? f2fs_read_end_io : f2fs_write_end_io;
1b1f559f 89 bio->bi_private = sbi;
940a6d34
GZ
90
91 return bio;
92}
93
458e6197 94static void __submit_merged_bio(struct f2fs_bio_info *io)
93dfe2ac 95{
458e6197 96 struct f2fs_io_info *fio = &io->fio;
93dfe2ac
JK
97
98 if (!io->bio)
99 return;
100
6a8f8ca5 101 if (is_read_io(fio->rw))
2ace38e0 102 trace_f2fs_submit_read_bio(io->sbi->sb, fio, io->bio);
6a8f8ca5 103 else
2ace38e0 104 trace_f2fs_submit_write_bio(io->sbi->sb, fio, io->bio);
940a6d34 105
6a8f8ca5 106 submit_bio(fio->rw, io->bio);
93dfe2ac
JK
107 io->bio = NULL;
108}
109
110void f2fs_submit_merged_bio(struct f2fs_sb_info *sbi,
458e6197 111 enum page_type type, int rw)
93dfe2ac
JK
112{
113 enum page_type btype = PAGE_TYPE_OF_BIO(type);
114 struct f2fs_bio_info *io;
115
116 io = is_read_io(rw) ? &sbi->read_io : &sbi->write_io[btype];
117
df0f8dc0 118 down_write(&io->io_rwsem);
458e6197
JK
119
120 /* change META to META_FLUSH in the checkpoint procedure */
121 if (type >= META_FLUSH) {
122 io->fio.type = META_FLUSH;
0f7b2abd
JK
123 if (test_opt(sbi, NOBARRIER))
124 io->fio.rw = WRITE_FLUSH | REQ_META | REQ_PRIO;
125 else
126 io->fio.rw = WRITE_FLUSH_FUA | REQ_META | REQ_PRIO;
458e6197
JK
127 }
128 __submit_merged_bio(io);
df0f8dc0 129 up_write(&io->io_rwsem);
93dfe2ac
JK
130}
131
132/*
133 * Fill the locked page with data located in the block address.
134 * Return unlocked page.
135 */
136int f2fs_submit_page_bio(struct f2fs_sb_info *sbi, struct page *page,
cf04e8eb 137 struct f2fs_io_info *fio)
93dfe2ac 138{
93dfe2ac
JK
139 struct bio *bio;
140
2ace38e0 141 trace_f2fs_submit_page_bio(page, fio);
db9f7c1a 142 f2fs_trace_ios(page, fio, 0);
93dfe2ac
JK
143
144 /* Allocate a new bio */
cf04e8eb 145 bio = __bio_alloc(sbi, fio->blk_addr, 1, is_read_io(fio->rw));
93dfe2ac
JK
146
147 if (bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) < PAGE_CACHE_SIZE) {
148 bio_put(bio);
149 f2fs_put_page(page, 1);
150 return -EFAULT;
151 }
152
cf04e8eb 153 submit_bio(fio->rw, bio);
93dfe2ac
JK
154 return 0;
155}
156
157void f2fs_submit_page_mbio(struct f2fs_sb_info *sbi, struct page *page,
cf04e8eb 158 struct f2fs_io_info *fio)
93dfe2ac 159{
458e6197 160 enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
93dfe2ac 161 struct f2fs_bio_info *io;
940a6d34 162 bool is_read = is_read_io(fio->rw);
93dfe2ac 163
940a6d34 164 io = is_read ? &sbi->read_io : &sbi->write_io[btype];
93dfe2ac 165
cf04e8eb 166 verify_block_addr(sbi, fio->blk_addr);
93dfe2ac 167
df0f8dc0 168 down_write(&io->io_rwsem);
93dfe2ac 169
940a6d34 170 if (!is_read)
93dfe2ac
JK
171 inc_page_count(sbi, F2FS_WRITEBACK);
172
cf04e8eb 173 if (io->bio && (io->last_block_in_bio != fio->blk_addr - 1 ||
458e6197
JK
174 io->fio.rw != fio->rw))
175 __submit_merged_bio(io);
93dfe2ac
JK
176alloc_new:
177 if (io->bio == NULL) {
90a893c7 178 int bio_blocks = MAX_BIO_BLOCKS(sbi);
940a6d34 179
cf04e8eb 180 io->bio = __bio_alloc(sbi, fio->blk_addr, bio_blocks, is_read);
458e6197 181 io->fio = *fio;
93dfe2ac
JK
182 }
183
184 if (bio_add_page(io->bio, page, PAGE_CACHE_SIZE, 0) <
185 PAGE_CACHE_SIZE) {
458e6197 186 __submit_merged_bio(io);
93dfe2ac
JK
187 goto alloc_new;
188 }
189
cf04e8eb 190 io->last_block_in_bio = fio->blk_addr;
db9f7c1a 191 f2fs_trace_ios(page, fio, 0);
93dfe2ac 192
df0f8dc0 193 up_write(&io->io_rwsem);
2ace38e0 194 trace_f2fs_submit_page_mbio(page, fio);
93dfe2ac
JK
195}
196
0a8165d7 197/*
eb47b800
JK
198 * Lock ordering for the change of data block address:
199 * ->data_page
200 * ->node_page
201 * update block addresses in the node page
202 */
e1509cf2 203static void __set_data_blkaddr(struct dnode_of_data *dn)
eb47b800
JK
204{
205 struct f2fs_node *rn;
206 __le32 *addr_array;
207 struct page *node_page = dn->node_page;
208 unsigned int ofs_in_node = dn->ofs_in_node;
209
5514f0aa 210 f2fs_wait_on_page_writeback(node_page, NODE);
eb47b800 211
45590710 212 rn = F2FS_NODE(node_page);
eb47b800
JK
213
214 /* Get physical address of data block */
215 addr_array = blkaddr_in_node(rn);
e1509cf2 216 addr_array[ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
eb47b800
JK
217 set_page_dirty(node_page);
218}
219
220int reserve_new_block(struct dnode_of_data *dn)
221{
4081363f 222 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
eb47b800 223
6bacf52f 224 if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
eb47b800 225 return -EPERM;
cfb271d4 226 if (unlikely(!inc_valid_block_count(sbi, dn->inode, 1)))
eb47b800
JK
227 return -ENOSPC;
228
c01e2853
NJ
229 trace_f2fs_reserve_new_block(dn->inode, dn->nid, dn->ofs_in_node);
230
eb47b800 231 dn->data_blkaddr = NEW_ADDR;
e1509cf2 232 __set_data_blkaddr(dn);
a18ff063 233 mark_inode_dirty(dn->inode);
eb47b800
JK
234 sync_inode_page(dn);
235 return 0;
236}
237
b600965c
HL
238int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
239{
240 bool need_put = dn->inode_page ? false : true;
241 int err;
242
243 err = get_dnode_of_data(dn, index, ALLOC_NODE);
244 if (err)
245 return err;
a8865372 246
b600965c
HL
247 if (dn->data_blkaddr == NULL_ADDR)
248 err = reserve_new_block(dn);
a8865372 249 if (err || need_put)
b600965c
HL
250 f2fs_put_dnode(dn);
251 return err;
252}
253
a2e7d1bf
CY
254static void f2fs_map_bh(struct super_block *sb, pgoff_t pgofs,
255 struct extent_info *ei, struct buffer_head *bh_result)
256{
257 unsigned int blkbits = sb->s_blocksize_bits;
258 size_t count;
259
260 set_buffer_new(bh_result);
261 map_bh(bh_result, sb, ei->blk + pgofs - ei->fofs);
262 count = ei->fofs + ei->len - pgofs;
263 if (count < (UINT_MAX >> blkbits))
264 bh_result->b_size = (count << blkbits);
265 else
266 bh_result->b_size = UINT_MAX;
267}
268
7e4dde79
CY
269static bool lookup_extent_info(struct inode *inode, pgoff_t pgofs,
270 struct extent_info *ei)
eb47b800
JK
271{
272 struct f2fs_inode_info *fi = F2FS_I(inode);
eb47b800
JK
273 pgoff_t start_fofs, end_fofs;
274 block_t start_blkaddr;
275
c11abd1a 276 if (is_inode_flag_set(fi, FI_NO_EXTENT))
7e4dde79 277 return false;
c11abd1a 278
0c872e2d 279 read_lock(&fi->ext_lock);
eb47b800 280 if (fi->ext.len == 0) {
0c872e2d 281 read_unlock(&fi->ext_lock);
7e4dde79 282 return false;
eb47b800
JK
283 }
284
dcdfff65
JK
285 stat_inc_total_hit(inode->i_sb);
286
eb47b800
JK
287 start_fofs = fi->ext.fofs;
288 end_fofs = fi->ext.fofs + fi->ext.len - 1;
4d0b0bd4 289 start_blkaddr = fi->ext.blk;
eb47b800
JK
290
291 if (pgofs >= start_fofs && pgofs <= end_fofs) {
a2e7d1bf 292 *ei = fi->ext;
dcdfff65 293 stat_inc_read_hit(inode->i_sb);
0c872e2d 294 read_unlock(&fi->ext_lock);
7e4dde79 295 return true;
eb47b800 296 }
0c872e2d 297 read_unlock(&fi->ext_lock);
7e4dde79 298 return false;
eb47b800
JK
299}
300
7e4dde79
CY
301static bool update_extent_info(struct inode *inode, pgoff_t fofs,
302 block_t blkaddr)
eb47b800 303{
7e4dde79
CY
304 struct f2fs_inode_info *fi = F2FS_I(inode);
305 pgoff_t start_fofs, end_fofs;
eb47b800 306 block_t start_blkaddr, end_blkaddr;
c11abd1a 307 int need_update = true;
eb47b800 308
c11abd1a 309 if (is_inode_flag_set(fi, FI_NO_EXTENT))
7e4dde79 310 return false;
3547ea96 311
0c872e2d 312 write_lock(&fi->ext_lock);
eb47b800
JK
313
314 start_fofs = fi->ext.fofs;
315 end_fofs = fi->ext.fofs + fi->ext.len - 1;
4d0b0bd4
CY
316 start_blkaddr = fi->ext.blk;
317 end_blkaddr = fi->ext.blk + fi->ext.len - 1;
eb47b800
JK
318
319 /* Drop and initialize the matched extent */
320 if (fi->ext.len == 1 && fofs == start_fofs)
321 fi->ext.len = 0;
322
323 /* Initial extent */
324 if (fi->ext.len == 0) {
7e4dde79 325 if (blkaddr != NULL_ADDR) {
eb47b800 326 fi->ext.fofs = fofs;
7e4dde79 327 fi->ext.blk = blkaddr;
eb47b800
JK
328 fi->ext.len = 1;
329 }
330 goto end_update;
331 }
332
6224da87 333 /* Front merge */
7e4dde79 334 if (fofs == start_fofs - 1 && blkaddr == start_blkaddr - 1) {
eb47b800 335 fi->ext.fofs--;
4d0b0bd4 336 fi->ext.blk--;
eb47b800
JK
337 fi->ext.len++;
338 goto end_update;
339 }
340
341 /* Back merge */
7e4dde79 342 if (fofs == end_fofs + 1 && blkaddr == end_blkaddr + 1) {
eb47b800
JK
343 fi->ext.len++;
344 goto end_update;
345 }
346
347 /* Split the existing extent */
348 if (fi->ext.len > 1 &&
349 fofs >= start_fofs && fofs <= end_fofs) {
350 if ((end_fofs - fofs) < (fi->ext.len >> 1)) {
351 fi->ext.len = fofs - start_fofs;
352 } else {
353 fi->ext.fofs = fofs + 1;
4d0b0bd4 354 fi->ext.blk = start_blkaddr + fofs - start_fofs + 1;
eb47b800
JK
355 fi->ext.len -= fofs - start_fofs + 1;
356 }
c11abd1a
JK
357 } else {
358 need_update = false;
eb47b800 359 }
eb47b800 360
c11abd1a
JK
361 /* Finally, if the extent is very fragmented, let's drop the cache. */
362 if (fi->ext.len < F2FS_MIN_EXTENT_LEN) {
363 fi->ext.len = 0;
364 set_inode_flag(fi, FI_NO_EXTENT);
365 need_update = true;
366 }
eb47b800 367end_update:
0c872e2d 368 write_unlock(&fi->ext_lock);
7e4dde79
CY
369 return need_update;
370}
371
429511cd
CY
372static struct extent_node *__attach_extent_node(struct f2fs_sb_info *sbi,
373 struct extent_tree *et, struct extent_info *ei,
374 struct rb_node *parent, struct rb_node **p)
375{
376 struct extent_node *en;
377
378 en = kmem_cache_alloc(extent_node_slab, GFP_ATOMIC);
379 if (!en)
380 return NULL;
381
382 en->ei = *ei;
383 INIT_LIST_HEAD(&en->list);
384
385 rb_link_node(&en->rb_node, parent, p);
386 rb_insert_color(&en->rb_node, &et->root);
387 et->count++;
388 atomic_inc(&sbi->total_ext_node);
389 return en;
390}
391
392static void __detach_extent_node(struct f2fs_sb_info *sbi,
393 struct extent_tree *et, struct extent_node *en)
394{
395 rb_erase(&en->rb_node, &et->root);
396 et->count--;
397 atomic_dec(&sbi->total_ext_node);
62c8af65
CY
398
399 if (et->cached_en == en)
400 et->cached_en = NULL;
429511cd
CY
401}
402
403static struct extent_node *__lookup_extent_tree(struct extent_tree *et,
404 unsigned int fofs)
405{
406 struct rb_node *node = et->root.rb_node;
407 struct extent_node *en;
408
62c8af65
CY
409 if (et->cached_en) {
410 struct extent_info *cei = &et->cached_en->ei;
411
412 if (cei->fofs <= fofs && cei->fofs + cei->len > fofs)
413 return et->cached_en;
414 }
415
429511cd
CY
416 while (node) {
417 en = rb_entry(node, struct extent_node, rb_node);
418
62c8af65 419 if (fofs < en->ei.fofs) {
429511cd 420 node = node->rb_left;
62c8af65 421 } else if (fofs >= en->ei.fofs + en->ei.len) {
429511cd 422 node = node->rb_right;
62c8af65
CY
423 } else {
424 et->cached_en = en;
429511cd 425 return en;
62c8af65 426 }
429511cd
CY
427 }
428 return NULL;
429}
430
431static struct extent_node *__try_back_merge(struct f2fs_sb_info *sbi,
432 struct extent_tree *et, struct extent_node *en)
433{
434 struct extent_node *prev;
435 struct rb_node *node;
436
437 node = rb_prev(&en->rb_node);
438 if (!node)
439 return NULL;
440
441 prev = rb_entry(node, struct extent_node, rb_node);
442 if (__is_back_mergeable(&en->ei, &prev->ei)) {
443 en->ei.fofs = prev->ei.fofs;
444 en->ei.blk = prev->ei.blk;
445 en->ei.len += prev->ei.len;
446 __detach_extent_node(sbi, et, prev);
447 return prev;
448 }
449 return NULL;
450}
451
452static struct extent_node *__try_front_merge(struct f2fs_sb_info *sbi,
453 struct extent_tree *et, struct extent_node *en)
454{
455 struct extent_node *next;
456 struct rb_node *node;
457
458 node = rb_next(&en->rb_node);
459 if (!node)
460 return NULL;
461
462 next = rb_entry(node, struct extent_node, rb_node);
463 if (__is_front_mergeable(&en->ei, &next->ei)) {
464 en->ei.len += next->ei.len;
465 __detach_extent_node(sbi, et, next);
466 return next;
467 }
468 return NULL;
469}
470
471static struct extent_node *__insert_extent_tree(struct f2fs_sb_info *sbi,
472 struct extent_tree *et, struct extent_info *ei,
473 struct extent_node **den)
474{
475 struct rb_node **p = &et->root.rb_node;
476 struct rb_node *parent = NULL;
477 struct extent_node *en;
478
479 while (*p) {
480 parent = *p;
481 en = rb_entry(parent, struct extent_node, rb_node);
482
483 if (ei->fofs < en->ei.fofs) {
484 if (__is_front_mergeable(ei, &en->ei)) {
485 f2fs_bug_on(sbi, !den);
486 en->ei.fofs = ei->fofs;
487 en->ei.blk = ei->blk;
488 en->ei.len += ei->len;
489 *den = __try_back_merge(sbi, et, en);
490 return en;
491 }
492 p = &(*p)->rb_left;
493 } else if (ei->fofs >= en->ei.fofs + en->ei.len) {
494 if (__is_back_mergeable(ei, &en->ei)) {
495 f2fs_bug_on(sbi, !den);
496 en->ei.len += ei->len;
497 *den = __try_front_merge(sbi, et, en);
498 return en;
499 }
500 p = &(*p)->rb_right;
501 } else {
502 f2fs_bug_on(sbi, 1);
503 }
504 }
505
506 return __attach_extent_node(sbi, et, ei, parent, p);
507}
508
509static unsigned int __free_extent_tree(struct f2fs_sb_info *sbi,
510 struct extent_tree *et, bool free_all)
511{
512 struct rb_node *node, *next;
513 struct extent_node *en;
514 unsigned int count = et->count;
515
516 node = rb_first(&et->root);
517 while (node) {
518 next = rb_next(node);
519 en = rb_entry(node, struct extent_node, rb_node);
520
521 if (free_all) {
522 spin_lock(&sbi->extent_lock);
523 if (!list_empty(&en->list))
524 list_del_init(&en->list);
525 spin_unlock(&sbi->extent_lock);
526 }
527
528 if (free_all || list_empty(&en->list)) {
529 __detach_extent_node(sbi, et, en);
530 kmem_cache_free(extent_node_slab, en);
531 }
532 node = next;
533 }
534
535 return count - et->count;
536}
537
538static bool f2fs_lookup_extent_tree(struct inode *inode, pgoff_t pgofs,
539 struct extent_info *ei)
540{
541 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
542 struct extent_tree *et;
543 struct extent_node *en;
544
545 if (is_inode_flag_set(F2FS_I(inode), FI_NO_EXTENT))
546 return false;
547
1ec4610c
CY
548 trace_f2fs_lookup_extent_tree_start(inode, pgofs);
549
429511cd
CY
550 down_read(&sbi->extent_tree_lock);
551 et = radix_tree_lookup(&sbi->extent_tree_root, inode->i_ino);
552 if (!et) {
553 up_read(&sbi->extent_tree_lock);
554 return false;
555 }
556 atomic_inc(&et->refcount);
557 up_read(&sbi->extent_tree_lock);
558
559 read_lock(&et->lock);
560 en = __lookup_extent_tree(et, pgofs);
561 if (en) {
562 *ei = en->ei;
563 spin_lock(&sbi->extent_lock);
564 if (!list_empty(&en->list))
565 list_move_tail(&en->list, &sbi->extent_list);
566 spin_unlock(&sbi->extent_lock);
567 stat_inc_read_hit(sbi->sb);
568 }
569 stat_inc_total_hit(sbi->sb);
570 read_unlock(&et->lock);
571
1ec4610c
CY
572 trace_f2fs_lookup_extent_tree_end(inode, pgofs, en);
573
429511cd
CY
574 atomic_dec(&et->refcount);
575 return en ? true : false;
576}
577
578static void f2fs_update_extent_tree(struct inode *inode, pgoff_t fofs,
579 block_t blkaddr)
580{
581 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
582 nid_t ino = inode->i_ino;
583 struct extent_tree *et;
584 struct extent_node *en = NULL, *en1 = NULL, *en2 = NULL, *en3 = NULL;
585 struct extent_node *den = NULL;
586 struct extent_info ei, dei;
587 unsigned int endofs;
588
589 if (is_inode_flag_set(F2FS_I(inode), FI_NO_EXTENT))
590 return;
591
1ec4610c
CY
592 trace_f2fs_update_extent_tree(inode, fofs, blkaddr);
593
429511cd
CY
594 down_write(&sbi->extent_tree_lock);
595 et = radix_tree_lookup(&sbi->extent_tree_root, ino);
596 if (!et) {
597 et = f2fs_kmem_cache_alloc(extent_tree_slab, GFP_NOFS);
598 f2fs_radix_tree_insert(&sbi->extent_tree_root, ino, et);
599 memset(et, 0, sizeof(struct extent_tree));
600 et->ino = ino;
601 et->root = RB_ROOT;
62c8af65 602 et->cached_en = NULL;
429511cd
CY
603 rwlock_init(&et->lock);
604 atomic_set(&et->refcount, 0);
605 et->count = 0;
606 sbi->total_ext_tree++;
607 }
608 atomic_inc(&et->refcount);
609 up_write(&sbi->extent_tree_lock);
610
611 write_lock(&et->lock);
612
613 /* 1. lookup and remove existing extent info in cache */
614 en = __lookup_extent_tree(et, fofs);
615 if (!en)
616 goto update_extent;
617
618 dei = en->ei;
619 __detach_extent_node(sbi, et, en);
620
621 /* 2. if extent can be split more, split and insert the left part */
622 if (dei.len > 1) {
623 /* insert left part of split extent into cache */
624 if (fofs - dei.fofs >= F2FS_MIN_EXTENT_LEN) {
625 set_extent_info(&ei, dei.fofs, dei.blk,
626 fofs - dei.fofs);
627 en1 = __insert_extent_tree(sbi, et, &ei, NULL);
628 }
629
630 /* insert right part of split extent into cache */
631 endofs = dei.fofs + dei.len - 1;
632 if (endofs - fofs >= F2FS_MIN_EXTENT_LEN) {
633 set_extent_info(&ei, fofs + 1,
634 fofs - dei.fofs + dei.blk, endofs - fofs);
635 en2 = __insert_extent_tree(sbi, et, &ei, NULL);
636 }
637 }
638
639update_extent:
640 /* 3. update extent in extent cache */
641 if (blkaddr) {
642 set_extent_info(&ei, fofs, blkaddr, 1);
643 en3 = __insert_extent_tree(sbi, et, &ei, &den);
644 }
645
646 /* 4. update in global extent list */
647 spin_lock(&sbi->extent_lock);
648 if (en && !list_empty(&en->list))
649 list_del(&en->list);
650 /*
651 * en1 and en2 split from en, they will become more and more smaller
652 * fragments after splitting several times. So if the length is smaller
653 * than F2FS_MIN_EXTENT_LEN, we will not add them into extent tree.
654 */
655 if (en1)
656 list_add_tail(&en1->list, &sbi->extent_list);
657 if (en2)
658 list_add_tail(&en2->list, &sbi->extent_list);
659 if (en3) {
660 if (list_empty(&en3->list))
661 list_add_tail(&en3->list, &sbi->extent_list);
662 else
663 list_move_tail(&en3->list, &sbi->extent_list);
664 }
665 if (den && !list_empty(&den->list))
666 list_del(&den->list);
667 spin_unlock(&sbi->extent_lock);
668
669 /* 5. release extent node */
670 if (en)
671 kmem_cache_free(extent_node_slab, en);
672 if (den)
673 kmem_cache_free(extent_node_slab, den);
674
675 write_unlock(&et->lock);
676 atomic_dec(&et->refcount);
677}
678
679void f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink)
680{
681 struct extent_tree *treevec[EXT_TREE_VEC_SIZE];
682 struct extent_node *en, *tmp;
683 unsigned long ino = F2FS_ROOT_INO(sbi);
684 struct radix_tree_iter iter;
685 void **slot;
686 unsigned int found;
1ec4610c 687 unsigned int node_cnt = 0, tree_cnt = 0;
429511cd 688
1dcc336b
CY
689 if (!test_opt(sbi, EXTENT_CACHE))
690 return;
691
429511cd
CY
692 if (available_free_memory(sbi, EXTENT_CACHE))
693 return;
694
695 spin_lock(&sbi->extent_lock);
696 list_for_each_entry_safe(en, tmp, &sbi->extent_list, list) {
697 if (!nr_shrink--)
698 break;
699 list_del_init(&en->list);
700 }
701 spin_unlock(&sbi->extent_lock);
702
703 down_read(&sbi->extent_tree_lock);
704 while ((found = radix_tree_gang_lookup(&sbi->extent_tree_root,
705 (void **)treevec, ino, EXT_TREE_VEC_SIZE))) {
706 unsigned i;
707
708 ino = treevec[found - 1]->ino + 1;
709 for (i = 0; i < found; i++) {
710 struct extent_tree *et = treevec[i];
711
712 atomic_inc(&et->refcount);
713 write_lock(&et->lock);
1ec4610c 714 node_cnt += __free_extent_tree(sbi, et, false);
429511cd
CY
715 write_unlock(&et->lock);
716 atomic_dec(&et->refcount);
717 }
718 }
719 up_read(&sbi->extent_tree_lock);
720
721 down_write(&sbi->extent_tree_lock);
722 radix_tree_for_each_slot(slot, &sbi->extent_tree_root, &iter,
723 F2FS_ROOT_INO(sbi)) {
724 struct extent_tree *et = (struct extent_tree *)*slot;
725
726 if (!atomic_read(&et->refcount) && !et->count) {
727 radix_tree_delete(&sbi->extent_tree_root, et->ino);
728 kmem_cache_free(extent_tree_slab, et);
729 sbi->total_ext_tree--;
1ec4610c 730 tree_cnt++;
429511cd
CY
731 }
732 }
733 up_write(&sbi->extent_tree_lock);
1ec4610c
CY
734
735 trace_f2fs_shrink_extent_tree(sbi, node_cnt, tree_cnt);
429511cd
CY
736}
737
738void f2fs_destroy_extent_tree(struct inode *inode)
739{
740 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
741 struct extent_tree *et;
1ec4610c 742 unsigned int node_cnt = 0;
429511cd 743
1dcc336b
CY
744 if (!test_opt(sbi, EXTENT_CACHE))
745 return;
746
429511cd
CY
747 down_read(&sbi->extent_tree_lock);
748 et = radix_tree_lookup(&sbi->extent_tree_root, inode->i_ino);
749 if (!et) {
750 up_read(&sbi->extent_tree_lock);
751 goto out;
752 }
753 atomic_inc(&et->refcount);
754 up_read(&sbi->extent_tree_lock);
755
756 /* free all extent info belong to this extent tree */
757 write_lock(&et->lock);
1ec4610c 758 node_cnt = __free_extent_tree(sbi, et, true);
429511cd
CY
759 write_unlock(&et->lock);
760
761 atomic_dec(&et->refcount);
762
763 /* try to find and delete extent tree entry in radix tree */
764 down_write(&sbi->extent_tree_lock);
765 et = radix_tree_lookup(&sbi->extent_tree_root, inode->i_ino);
766 if (!et) {
767 up_write(&sbi->extent_tree_lock);
768 goto out;
769 }
770 f2fs_bug_on(sbi, atomic_read(&et->refcount) || et->count);
771 radix_tree_delete(&sbi->extent_tree_root, inode->i_ino);
772 kmem_cache_free(extent_tree_slab, et);
773 sbi->total_ext_tree--;
774 up_write(&sbi->extent_tree_lock);
775out:
1ec4610c 776 trace_f2fs_destroy_extent_tree(inode, node_cnt);
429511cd
CY
777 return;
778}
779
7e4dde79
CY
780static bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
781 struct extent_info *ei)
782{
1dcc336b
CY
783 if (test_opt(F2FS_I_SB(inode), EXTENT_CACHE))
784 return f2fs_lookup_extent_tree(inode, pgofs, ei);
785
7e4dde79
CY
786 return lookup_extent_info(inode, pgofs, ei);
787}
788
789void f2fs_update_extent_cache(struct dnode_of_data *dn)
790{
791 struct f2fs_inode_info *fi = F2FS_I(dn->inode);
792 pgoff_t fofs;
793
794 f2fs_bug_on(F2FS_I_SB(dn->inode), dn->data_blkaddr == NEW_ADDR);
795
796 /* Update the page address in the parent node */
797 __set_data_blkaddr(dn);
798
799 fofs = start_bidx_of_node(ofs_of_node(dn->node_page), fi) +
800 dn->ofs_in_node;
801
1dcc336b
CY
802 if (test_opt(F2FS_I_SB(dn->inode), EXTENT_CACHE))
803 return f2fs_update_extent_tree(dn->inode, fofs,
804 dn->data_blkaddr);
805
7e4dde79 806 if (update_extent_info(dn->inode, fofs, dn->data_blkaddr))
c11abd1a 807 sync_inode_page(dn);
eb47b800
JK
808}
809
c718379b 810struct page *find_data_page(struct inode *inode, pgoff_t index, bool sync)
eb47b800 811{
eb47b800
JK
812 struct address_space *mapping = inode->i_mapping;
813 struct dnode_of_data dn;
814 struct page *page;
815 int err;
cf04e8eb
JK
816 struct f2fs_io_info fio = {
817 .type = DATA,
818 .rw = sync ? READ_SYNC : READA,
819 };
eb47b800
JK
820
821 page = find_get_page(mapping, index);
822 if (page && PageUptodate(page))
823 return page;
824 f2fs_put_page(page, 0);
825
826 set_new_dnode(&dn, inode, NULL, NULL, 0);
266e97a8 827 err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
eb47b800
JK
828 if (err)
829 return ERR_PTR(err);
830 f2fs_put_dnode(&dn);
831
832 if (dn.data_blkaddr == NULL_ADDR)
833 return ERR_PTR(-ENOENT);
834
835 /* By fallocate(), there is no cached page, but with NEW_ADDR */
6bacf52f 836 if (unlikely(dn.data_blkaddr == NEW_ADDR))
eb47b800
JK
837 return ERR_PTR(-EINVAL);
838
9ac1349a 839 page = grab_cache_page(mapping, index);
eb47b800
JK
840 if (!page)
841 return ERR_PTR(-ENOMEM);
842
393ff91f
JK
843 if (PageUptodate(page)) {
844 unlock_page(page);
845 return page;
846 }
847
cf04e8eb
JK
848 fio.blk_addr = dn.data_blkaddr;
849 err = f2fs_submit_page_bio(F2FS_I_SB(inode), page, &fio);
1069bbf7
CY
850 if (err)
851 return ERR_PTR(err);
852
c718379b
JK
853 if (sync) {
854 wait_on_page_locked(page);
6bacf52f 855 if (unlikely(!PageUptodate(page))) {
c718379b
JK
856 f2fs_put_page(page, 0);
857 return ERR_PTR(-EIO);
858 }
eb47b800 859 }
eb47b800
JK
860 return page;
861}
862
0a8165d7 863/*
eb47b800
JK
864 * If it tries to access a hole, return an error.
865 * Because, the callers, functions in dir.c and GC, should be able to know
866 * whether this page exists or not.
867 */
868struct page *get_lock_data_page(struct inode *inode, pgoff_t index)
869{
eb47b800
JK
870 struct address_space *mapping = inode->i_mapping;
871 struct dnode_of_data dn;
872 struct page *page;
873 int err;
cf04e8eb
JK
874 struct f2fs_io_info fio = {
875 .type = DATA,
876 .rw = READ_SYNC,
877 };
650495de 878repeat:
9ac1349a 879 page = grab_cache_page(mapping, index);
650495de
JK
880 if (!page)
881 return ERR_PTR(-ENOMEM);
882
eb47b800 883 set_new_dnode(&dn, inode, NULL, NULL, 0);
266e97a8 884 err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
650495de
JK
885 if (err) {
886 f2fs_put_page(page, 1);
eb47b800 887 return ERR_PTR(err);
650495de 888 }
eb47b800
JK
889 f2fs_put_dnode(&dn);
890
6bacf52f 891 if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
650495de 892 f2fs_put_page(page, 1);
eb47b800 893 return ERR_PTR(-ENOENT);
650495de 894 }
eb47b800
JK
895
896 if (PageUptodate(page))
897 return page;
898
d59ff4df
JK
899 /*
900 * A new dentry page is allocated but not able to be written, since its
901 * new inode page couldn't be allocated due to -ENOSPC.
902 * In such the case, its blkaddr can be remained as NEW_ADDR.
903 * see, f2fs_add_link -> get_new_data_page -> init_inode_metadata.
904 */
905 if (dn.data_blkaddr == NEW_ADDR) {
906 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
907 SetPageUptodate(page);
908 return page;
909 }
eb47b800 910
cf04e8eb
JK
911 fio.blk_addr = dn.data_blkaddr;
912 err = f2fs_submit_page_bio(F2FS_I_SB(inode), page, &fio);
393ff91f 913 if (err)
eb47b800 914 return ERR_PTR(err);
393ff91f
JK
915
916 lock_page(page);
6bacf52f 917 if (unlikely(!PageUptodate(page))) {
393ff91f
JK
918 f2fs_put_page(page, 1);
919 return ERR_PTR(-EIO);
eb47b800 920 }
6bacf52f 921 if (unlikely(page->mapping != mapping)) {
afcb7ca0
JK
922 f2fs_put_page(page, 1);
923 goto repeat;
eb47b800
JK
924 }
925 return page;
926}
927
0a8165d7 928/*
eb47b800
JK
929 * Caller ensures that this data page is never allocated.
930 * A new zero-filled data page is allocated in the page cache.
39936837 931 *
4f4124d0
CY
932 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
933 * f2fs_unlock_op().
a8865372 934 * Note that, ipage is set only by make_empty_dir.
eb47b800 935 */
64aa7ed9 936struct page *get_new_data_page(struct inode *inode,
a8865372 937 struct page *ipage, pgoff_t index, bool new_i_size)
eb47b800 938{
eb47b800
JK
939 struct address_space *mapping = inode->i_mapping;
940 struct page *page;
941 struct dnode_of_data dn;
942 int err;
943
a8865372 944 set_new_dnode(&dn, inode, ipage, NULL, 0);
b600965c 945 err = f2fs_reserve_block(&dn, index);
eb47b800
JK
946 if (err)
947 return ERR_PTR(err);
afcb7ca0 948repeat:
eb47b800 949 page = grab_cache_page(mapping, index);
a8865372
JK
950 if (!page) {
951 err = -ENOMEM;
952 goto put_err;
953 }
eb47b800
JK
954
955 if (PageUptodate(page))
956 return page;
957
958 if (dn.data_blkaddr == NEW_ADDR) {
959 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
393ff91f 960 SetPageUptodate(page);
eb47b800 961 } else {
cf04e8eb
JK
962 struct f2fs_io_info fio = {
963 .type = DATA,
964 .rw = READ_SYNC,
965 .blk_addr = dn.data_blkaddr,
966 };
967 err = f2fs_submit_page_bio(F2FS_I_SB(inode), page, &fio);
393ff91f 968 if (err)
a8865372
JK
969 goto put_err;
970
393ff91f 971 lock_page(page);
6bacf52f 972 if (unlikely(!PageUptodate(page))) {
393ff91f 973 f2fs_put_page(page, 1);
a8865372
JK
974 err = -EIO;
975 goto put_err;
eb47b800 976 }
6bacf52f 977 if (unlikely(page->mapping != mapping)) {
afcb7ca0
JK
978 f2fs_put_page(page, 1);
979 goto repeat;
eb47b800
JK
980 }
981 }
eb47b800
JK
982
983 if (new_i_size &&
984 i_size_read(inode) < ((index + 1) << PAGE_CACHE_SHIFT)) {
985 i_size_write(inode, ((index + 1) << PAGE_CACHE_SHIFT));
699489bb
JK
986 /* Only the directory inode sets new_i_size */
987 set_inode_flag(F2FS_I(inode), FI_UPDATE_DIR);
eb47b800
JK
988 }
989 return page;
a8865372
JK
990
991put_err:
992 f2fs_put_dnode(&dn);
993 return ERR_PTR(err);
eb47b800
JK
994}
995
bfad7c2d
JK
996static int __allocate_data_block(struct dnode_of_data *dn)
997{
4081363f 998 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
976e4c50 999 struct f2fs_inode_info *fi = F2FS_I(dn->inode);
bfad7c2d 1000 struct f2fs_summary sum;
bfad7c2d 1001 struct node_info ni;
38aa0889 1002 int seg = CURSEG_WARM_DATA;
976e4c50 1003 pgoff_t fofs;
bfad7c2d
JK
1004
1005 if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
1006 return -EPERM;
1007 if (unlikely(!inc_valid_block_count(sbi, dn->inode, 1)))
1008 return -ENOSPC;
1009
bfad7c2d
JK
1010 get_node_info(sbi, dn->nid, &ni);
1011 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1012
38aa0889
JK
1013 if (dn->ofs_in_node == 0 && dn->inode_page == dn->node_page)
1014 seg = CURSEG_DIRECT_IO;
1015
1016 allocate_data_block(sbi, NULL, NULL_ADDR, &dn->data_blkaddr, &sum, seg);
bfad7c2d
JK
1017
1018 /* direct IO doesn't use extent cache to maximize the performance */
41ef94b3 1019 __set_data_blkaddr(dn);
bfad7c2d 1020
976e4c50
JK
1021 /* update i_size */
1022 fofs = start_bidx_of_node(ofs_of_node(dn->node_page), fi) +
1023 dn->ofs_in_node;
1024 if (i_size_read(dn->inode) < ((fofs + 1) << PAGE_CACHE_SHIFT))
1025 i_size_write(dn->inode, ((fofs + 1) << PAGE_CACHE_SHIFT));
1026
bfad7c2d
JK
1027 return 0;
1028}
1029
59b802e5
JK
1030static void __allocate_data_blocks(struct inode *inode, loff_t offset,
1031 size_t count)
1032{
1033 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1034 struct dnode_of_data dn;
1035 u64 start = F2FS_BYTES_TO_BLK(offset);
1036 u64 len = F2FS_BYTES_TO_BLK(count);
1037 bool allocated;
1038 u64 end_offset;
1039
1040 while (len) {
1041 f2fs_balance_fs(sbi);
1042 f2fs_lock_op(sbi);
1043
1044 /* When reading holes, we need its node page */
1045 set_new_dnode(&dn, inode, NULL, NULL, 0);
1046 if (get_dnode_of_data(&dn, start, ALLOC_NODE))
1047 goto out;
1048
1049 allocated = false;
1050 end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
1051
1052 while (dn.ofs_in_node < end_offset && len) {
1053 if (dn.data_blkaddr == NULL_ADDR) {
1054 if (__allocate_data_block(&dn))
1055 goto sync_out;
1056 allocated = true;
1057 }
1058 len--;
1059 start++;
1060 dn.ofs_in_node++;
1061 }
1062
1063 if (allocated)
1064 sync_inode_page(&dn);
1065
1066 f2fs_put_dnode(&dn);
1067 f2fs_unlock_op(sbi);
1068 }
1069 return;
1070
1071sync_out:
1072 if (allocated)
1073 sync_inode_page(&dn);
1074 f2fs_put_dnode(&dn);
1075out:
1076 f2fs_unlock_op(sbi);
1077 return;
1078}
1079
0a8165d7 1080/*
4f4124d0
CY
1081 * get_data_block() now supported readahead/bmap/rw direct_IO with mapped bh.
1082 * If original data blocks are allocated, then give them to blockdev.
1083 * Otherwise,
1084 * a. preallocate requested block addresses
1085 * b. do not use extent cache for better performance
1086 * c. give the block addresses to blockdev
eb47b800 1087 */
ccfb3000
JK
1088static int __get_data_block(struct inode *inode, sector_t iblock,
1089 struct buffer_head *bh_result, int create, bool fiemap)
eb47b800
JK
1090{
1091 unsigned int blkbits = inode->i_sb->s_blocksize_bits;
1092 unsigned maxblocks = bh_result->b_size >> blkbits;
1093 struct dnode_of_data dn;
bfad7c2d
JK
1094 int mode = create ? ALLOC_NODE : LOOKUP_NODE_RA;
1095 pgoff_t pgofs, end_offset;
1096 int err = 0, ofs = 1;
a2e7d1bf 1097 struct extent_info ei;
bfad7c2d 1098 bool allocated = false;
eb47b800
JK
1099
1100 /* Get the page offset from the block offset(iblock) */
1101 pgofs = (pgoff_t)(iblock >> (PAGE_CACHE_SHIFT - blkbits));
1102
7e4dde79 1103 if (f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
a2e7d1bf 1104 f2fs_map_bh(inode->i_sb, pgofs, &ei, bh_result);
bfad7c2d 1105 goto out;
a2e7d1bf 1106 }
bfad7c2d 1107
59b802e5 1108 if (create)
4081363f 1109 f2fs_lock_op(F2FS_I_SB(inode));
eb47b800
JK
1110
1111 /* When reading holes, we need its node page */
1112 set_new_dnode(&dn, inode, NULL, NULL, 0);
bfad7c2d 1113 err = get_dnode_of_data(&dn, pgofs, mode);
1ec79083 1114 if (err) {
bfad7c2d
JK
1115 if (err == -ENOENT)
1116 err = 0;
1117 goto unlock_out;
848753aa 1118 }
ccfb3000 1119 if (dn.data_blkaddr == NEW_ADDR && !fiemap)
1ec79083 1120 goto put_out;
eb47b800 1121
bfad7c2d 1122 if (dn.data_blkaddr != NULL_ADDR) {
da17eece 1123 set_buffer_new(bh_result);
bfad7c2d
JK
1124 map_bh(bh_result, inode->i_sb, dn.data_blkaddr);
1125 } else if (create) {
1126 err = __allocate_data_block(&dn);
1127 if (err)
1128 goto put_out;
1129 allocated = true;
da17eece 1130 set_buffer_new(bh_result);
bfad7c2d
JK
1131 map_bh(bh_result, inode->i_sb, dn.data_blkaddr);
1132 } else {
1133 goto put_out;
1134 }
1135
6403eb1f 1136 end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
bfad7c2d
JK
1137 bh_result->b_size = (((size_t)1) << blkbits);
1138 dn.ofs_in_node++;
1139 pgofs++;
1140
1141get_next:
1142 if (dn.ofs_in_node >= end_offset) {
1143 if (allocated)
1144 sync_inode_page(&dn);
1145 allocated = false;
1146 f2fs_put_dnode(&dn);
1147
1148 set_new_dnode(&dn, inode, NULL, NULL, 0);
1149 err = get_dnode_of_data(&dn, pgofs, mode);
1ec79083 1150 if (err) {
bfad7c2d
JK
1151 if (err == -ENOENT)
1152 err = 0;
1153 goto unlock_out;
1154 }
ccfb3000 1155 if (dn.data_blkaddr == NEW_ADDR && !fiemap)
1ec79083
JK
1156 goto put_out;
1157
6403eb1f 1158 end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
bfad7c2d 1159 }
eb47b800 1160
bfad7c2d
JK
1161 if (maxblocks > (bh_result->b_size >> blkbits)) {
1162 block_t blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
1163 if (blkaddr == NULL_ADDR && create) {
1164 err = __allocate_data_block(&dn);
1165 if (err)
1166 goto sync_out;
1167 allocated = true;
1168 blkaddr = dn.data_blkaddr;
1169 }
e1c42045 1170 /* Give more consecutive addresses for the readahead */
bfad7c2d
JK
1171 if (blkaddr == (bh_result->b_blocknr + ofs)) {
1172 ofs++;
1173 dn.ofs_in_node++;
1174 pgofs++;
1175 bh_result->b_size += (((size_t)1) << blkbits);
1176 goto get_next;
1177 }
eb47b800 1178 }
bfad7c2d
JK
1179sync_out:
1180 if (allocated)
1181 sync_inode_page(&dn);
1182put_out:
eb47b800 1183 f2fs_put_dnode(&dn);
bfad7c2d
JK
1184unlock_out:
1185 if (create)
4081363f 1186 f2fs_unlock_op(F2FS_I_SB(inode));
bfad7c2d
JK
1187out:
1188 trace_f2fs_get_data_block(inode, iblock, bh_result, err);
1189 return err;
eb47b800
JK
1190}
1191
ccfb3000
JK
1192static int get_data_block(struct inode *inode, sector_t iblock,
1193 struct buffer_head *bh_result, int create)
1194{
1195 return __get_data_block(inode, iblock, bh_result, create, false);
1196}
1197
1198static int get_data_block_fiemap(struct inode *inode, sector_t iblock,
1199 struct buffer_head *bh_result, int create)
1200{
1201 return __get_data_block(inode, iblock, bh_result, create, true);
1202}
1203
9ab70134
JK
1204int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1205 u64 start, u64 len)
1206{
ccfb3000
JK
1207 return generic_block_fiemap(inode, fieinfo,
1208 start, len, get_data_block_fiemap);
9ab70134
JK
1209}
1210
eb47b800
JK
1211static int f2fs_read_data_page(struct file *file, struct page *page)
1212{
9ffe0fb5 1213 struct inode *inode = page->mapping->host;
b3d208f9 1214 int ret = -EAGAIN;
9ffe0fb5 1215
c20e89cd
CY
1216 trace_f2fs_readpage(page, DATA);
1217
e1c42045 1218 /* If the file has inline data, try to read it directly */
9ffe0fb5
HL
1219 if (f2fs_has_inline_data(inode))
1220 ret = f2fs_read_inline_data(inode, page);
b3d208f9 1221 if (ret == -EAGAIN)
9ffe0fb5
HL
1222 ret = mpage_readpage(page, get_data_block);
1223
1224 return ret;
eb47b800
JK
1225}
1226
1227static int f2fs_read_data_pages(struct file *file,
1228 struct address_space *mapping,
1229 struct list_head *pages, unsigned nr_pages)
1230{
9ffe0fb5
HL
1231 struct inode *inode = file->f_mapping->host;
1232
1233 /* If the file has inline data, skip readpages */
1234 if (f2fs_has_inline_data(inode))
1235 return 0;
1236
bfad7c2d 1237 return mpage_readpages(mapping, pages, nr_pages, get_data_block);
eb47b800
JK
1238}
1239
458e6197 1240int do_write_data_page(struct page *page, struct f2fs_io_info *fio)
eb47b800
JK
1241{
1242 struct inode *inode = page->mapping->host;
eb47b800
JK
1243 struct dnode_of_data dn;
1244 int err = 0;
1245
1246 set_new_dnode(&dn, inode, NULL, NULL, 0);
266e97a8 1247 err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
eb47b800
JK
1248 if (err)
1249 return err;
1250
cf04e8eb 1251 fio->blk_addr = dn.data_blkaddr;
eb47b800
JK
1252
1253 /* This page is already truncated */
cf04e8eb 1254 if (fio->blk_addr == NULL_ADDR)
eb47b800
JK
1255 goto out_writepage;
1256
1257 set_page_writeback(page);
1258
1259 /*
1260 * If current allocation needs SSR,
1261 * it had better in-place writes for updated data.
1262 */
cf04e8eb 1263 if (unlikely(fio->blk_addr != NEW_ADDR &&
b25958b6
HL
1264 !is_cold_data(page) &&
1265 need_inplace_update(inode))) {
cf04e8eb 1266 rewrite_data_page(page, fio);
fff04f90 1267 set_inode_flag(F2FS_I(inode), FI_UPDATE_WRITE);
eb47b800 1268 } else {
cf04e8eb 1269 write_data_page(page, &dn, fio);
7e4dde79 1270 f2fs_update_extent_cache(&dn);
fff04f90 1271 set_inode_flag(F2FS_I(inode), FI_APPEND_WRITE);
eb47b800
JK
1272 }
1273out_writepage:
1274 f2fs_put_dnode(&dn);
1275 return err;
1276}
1277
1278static int f2fs_write_data_page(struct page *page,
1279 struct writeback_control *wbc)
1280{
1281 struct inode *inode = page->mapping->host;
4081363f 1282 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
eb47b800
JK
1283 loff_t i_size = i_size_read(inode);
1284 const pgoff_t end_index = ((unsigned long long) i_size)
1285 >> PAGE_CACHE_SHIFT;
9ffe0fb5 1286 unsigned offset = 0;
39936837 1287 bool need_balance_fs = false;
eb47b800 1288 int err = 0;
458e6197
JK
1289 struct f2fs_io_info fio = {
1290 .type = DATA,
6c311ec6 1291 .rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE,
458e6197 1292 };
eb47b800 1293
ecda0de3
CY
1294 trace_f2fs_writepage(page, DATA);
1295
eb47b800 1296 if (page->index < end_index)
39936837 1297 goto write;
eb47b800
JK
1298
1299 /*
1300 * If the offset is out-of-range of file size,
1301 * this page does not have to be written to disk.
1302 */
1303 offset = i_size & (PAGE_CACHE_SIZE - 1);
76f60268 1304 if ((page->index >= end_index + 1) || !offset)
39936837 1305 goto out;
eb47b800
JK
1306
1307 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
39936837 1308write:
caf0047e 1309 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
eb47b800 1310 goto redirty_out;
1e84371f
JK
1311 if (f2fs_is_drop_cache(inode))
1312 goto out;
1313 if (f2fs_is_volatile_file(inode) && !wbc->for_reclaim &&
1314 available_free_memory(sbi, BASE_CHECK))
1315 goto redirty_out;
eb47b800 1316
39936837 1317 /* Dentry blocks are controlled by checkpoint */
eb47b800 1318 if (S_ISDIR(inode->i_mode)) {
cf779cab
JK
1319 if (unlikely(f2fs_cp_error(sbi)))
1320 goto redirty_out;
458e6197 1321 err = do_write_data_page(page, &fio);
8618b881
JK
1322 goto done;
1323 }
9ffe0fb5 1324
cf779cab
JK
1325 /* we should bypass data pages to proceed the kworkder jobs */
1326 if (unlikely(f2fs_cp_error(sbi))) {
1327 SetPageError(page);
a7ffdbe2 1328 goto out;
cf779cab
JK
1329 }
1330
8618b881 1331 if (!wbc->for_reclaim)
39936837 1332 need_balance_fs = true;
8618b881 1333 else if (has_not_enough_free_secs(sbi, 0))
39936837 1334 goto redirty_out;
eb47b800 1335
b3d208f9 1336 err = -EAGAIN;
8618b881 1337 f2fs_lock_op(sbi);
b3d208f9
JK
1338 if (f2fs_has_inline_data(inode))
1339 err = f2fs_write_inline_data(inode, page);
1340 if (err == -EAGAIN)
8618b881
JK
1341 err = do_write_data_page(page, &fio);
1342 f2fs_unlock_op(sbi);
1343done:
1344 if (err && err != -ENOENT)
1345 goto redirty_out;
eb47b800 1346
eb47b800 1347 clear_cold_data(page);
39936837 1348out:
a7ffdbe2 1349 inode_dec_dirty_pages(inode);
eb47b800 1350 unlock_page(page);
39936837 1351 if (need_balance_fs)
eb47b800 1352 f2fs_balance_fs(sbi);
2aea39ec
JK
1353 if (wbc->for_reclaim)
1354 f2fs_submit_merged_bio(sbi, DATA, WRITE);
eb47b800
JK
1355 return 0;
1356
eb47b800 1357redirty_out:
76f60268 1358 redirty_page_for_writepage(wbc, page);
8618b881 1359 return AOP_WRITEPAGE_ACTIVATE;
eb47b800
JK
1360}
1361
fa9150a8
NJ
1362static int __f2fs_writepage(struct page *page, struct writeback_control *wbc,
1363 void *data)
1364{
1365 struct address_space *mapping = data;
1366 int ret = mapping->a_ops->writepage(page, wbc);
1367 mapping_set_error(mapping, ret);
1368 return ret;
1369}
1370
25ca923b 1371static int f2fs_write_data_pages(struct address_space *mapping,
eb47b800
JK
1372 struct writeback_control *wbc)
1373{
1374 struct inode *inode = mapping->host;
4081363f 1375 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
531ad7d5 1376 bool locked = false;
eb47b800 1377 int ret;
50c8cdb3 1378 long diff;
eb47b800 1379
e5748434
CY
1380 trace_f2fs_writepages(mapping->host, wbc, DATA);
1381
cfb185a1 1382 /* deal with chardevs and other special file */
1383 if (!mapping->a_ops->writepage)
1384 return 0;
1385
87d6f890 1386 if (S_ISDIR(inode->i_mode) && wbc->sync_mode == WB_SYNC_NONE &&
a7ffdbe2 1387 get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
6fb03f3a 1388 available_free_memory(sbi, DIRTY_DENTS))
d3baf95d 1389 goto skip_write;
87d6f890 1390
50c8cdb3 1391 diff = nr_pages_to_write(sbi, DATA, wbc);
eb47b800 1392
531ad7d5 1393 if (!S_ISDIR(inode->i_mode)) {
eb47b800 1394 mutex_lock(&sbi->writepages);
531ad7d5
JK
1395 locked = true;
1396 }
fa9150a8 1397 ret = write_cache_pages(mapping, wbc, __f2fs_writepage, mapping);
531ad7d5 1398 if (locked)
eb47b800 1399 mutex_unlock(&sbi->writepages);
458e6197
JK
1400
1401 f2fs_submit_merged_bio(sbi, DATA, WRITE);
eb47b800
JK
1402
1403 remove_dirty_dir_inode(inode);
1404
50c8cdb3 1405 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
eb47b800 1406 return ret;
d3baf95d
JK
1407
1408skip_write:
a7ffdbe2 1409 wbc->pages_skipped += get_dirty_pages(inode);
d3baf95d 1410 return 0;
eb47b800
JK
1411}
1412
3aab8f82
CY
1413static void f2fs_write_failed(struct address_space *mapping, loff_t to)
1414{
1415 struct inode *inode = mapping->host;
1416
1417 if (to > inode->i_size) {
1418 truncate_pagecache(inode, inode->i_size);
764aa3e9 1419 truncate_blocks(inode, inode->i_size, true);
3aab8f82
CY
1420 }
1421}
1422
eb47b800
JK
1423static int f2fs_write_begin(struct file *file, struct address_space *mapping,
1424 loff_t pos, unsigned len, unsigned flags,
1425 struct page **pagep, void **fsdata)
1426{
1427 struct inode *inode = mapping->host;
4081363f 1428 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
9ba69cf9 1429 struct page *page, *ipage;
eb47b800
JK
1430 pgoff_t index = ((unsigned long long) pos) >> PAGE_CACHE_SHIFT;
1431 struct dnode_of_data dn;
1432 int err = 0;
1433
62aed044
CY
1434 trace_f2fs_write_begin(inode, pos, len, flags);
1435
eb47b800 1436 f2fs_balance_fs(sbi);
5f727395
JK
1437
1438 /*
1439 * We should check this at this moment to avoid deadlock on inode page
1440 * and #0 page. The locking rule for inline_data conversion should be:
1441 * lock_page(page #0) -> lock_page(inode_page)
1442 */
1443 if (index != 0) {
1444 err = f2fs_convert_inline_inode(inode);
1445 if (err)
1446 goto fail;
1447 }
afcb7ca0 1448repeat:
eb47b800 1449 page = grab_cache_page_write_begin(mapping, index, flags);
3aab8f82
CY
1450 if (!page) {
1451 err = -ENOMEM;
1452 goto fail;
1453 }
d5f66990 1454
eb47b800
JK
1455 *pagep = page;
1456
e479556b 1457 f2fs_lock_op(sbi);
9ba69cf9
JK
1458
1459 /* check inline_data */
1460 ipage = get_node_page(sbi, inode->i_ino);
cd34e296
CY
1461 if (IS_ERR(ipage)) {
1462 err = PTR_ERR(ipage);
9ba69cf9 1463 goto unlock_fail;
cd34e296 1464 }
9ba69cf9 1465
b3d208f9
JK
1466 set_new_dnode(&dn, inode, ipage, ipage, 0);
1467
9ba69cf9 1468 if (f2fs_has_inline_data(inode)) {
b3d208f9
JK
1469 if (pos + len <= MAX_INLINE_DATA) {
1470 read_inline_data(page, ipage);
1471 set_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
1472 sync_inode_page(&dn);
1473 goto put_next;
b3d208f9 1474 }
5f727395
JK
1475 err = f2fs_convert_inline_page(&dn, page);
1476 if (err)
1477 goto put_fail;
b600965c 1478 }
9ba69cf9
JK
1479 err = f2fs_reserve_block(&dn, index);
1480 if (err)
8cdcb713 1481 goto put_fail;
b3d208f9 1482put_next:
9ba69cf9
JK
1483 f2fs_put_dnode(&dn);
1484 f2fs_unlock_op(sbi);
1485
eb47b800
JK
1486 if ((len == PAGE_CACHE_SIZE) || PageUptodate(page))
1487 return 0;
1488
b3d208f9
JK
1489 f2fs_wait_on_page_writeback(page, DATA);
1490
eb47b800
JK
1491 if ((pos & PAGE_CACHE_MASK) >= i_size_read(inode)) {
1492 unsigned start = pos & (PAGE_CACHE_SIZE - 1);
1493 unsigned end = start + len;
1494
1495 /* Reading beyond i_size is simple: memset to zero */
1496 zero_user_segments(page, 0, start, end, PAGE_CACHE_SIZE);
393ff91f 1497 goto out;
eb47b800
JK
1498 }
1499
b3d208f9 1500 if (dn.data_blkaddr == NEW_ADDR) {
eb47b800
JK
1501 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
1502 } else {
cf04e8eb
JK
1503 struct f2fs_io_info fio = {
1504 .type = DATA,
1505 .rw = READ_SYNC,
1506 .blk_addr = dn.data_blkaddr,
1507 };
1508 err = f2fs_submit_page_bio(sbi, page, &fio);
9234f319
JK
1509 if (err)
1510 goto fail;
d54c795b 1511
393ff91f 1512 lock_page(page);
6bacf52f 1513 if (unlikely(!PageUptodate(page))) {
393ff91f 1514 f2fs_put_page(page, 1);
3aab8f82
CY
1515 err = -EIO;
1516 goto fail;
eb47b800 1517 }
6bacf52f 1518 if (unlikely(page->mapping != mapping)) {
afcb7ca0
JK
1519 f2fs_put_page(page, 1);
1520 goto repeat;
eb47b800
JK
1521 }
1522 }
393ff91f 1523out:
eb47b800
JK
1524 SetPageUptodate(page);
1525 clear_cold_data(page);
1526 return 0;
9ba69cf9 1527
8cdcb713
JK
1528put_fail:
1529 f2fs_put_dnode(&dn);
9ba69cf9
JK
1530unlock_fail:
1531 f2fs_unlock_op(sbi);
b3d208f9 1532 f2fs_put_page(page, 1);
3aab8f82
CY
1533fail:
1534 f2fs_write_failed(mapping, pos + len);
1535 return err;
eb47b800
JK
1536}
1537
a1dd3c13
JK
1538static int f2fs_write_end(struct file *file,
1539 struct address_space *mapping,
1540 loff_t pos, unsigned len, unsigned copied,
1541 struct page *page, void *fsdata)
1542{
1543 struct inode *inode = page->mapping->host;
1544
dfb2bf38
CY
1545 trace_f2fs_write_end(inode, pos, len, copied);
1546
34ba94ba 1547 set_page_dirty(page);
a1dd3c13
JK
1548
1549 if (pos + copied > i_size_read(inode)) {
1550 i_size_write(inode, pos + copied);
1551 mark_inode_dirty(inode);
1552 update_inode_page(inode);
1553 }
1554
75c3c8bc 1555 f2fs_put_page(page, 1);
a1dd3c13
JK
1556 return copied;
1557}
1558
944fcfc1 1559static int check_direct_IO(struct inode *inode, int rw,
5b46f25d 1560 struct iov_iter *iter, loff_t offset)
944fcfc1
JK
1561{
1562 unsigned blocksize_mask = inode->i_sb->s_blocksize - 1;
944fcfc1
JK
1563
1564 if (rw == READ)
1565 return 0;
1566
1567 if (offset & blocksize_mask)
1568 return -EINVAL;
1569
5b46f25d
AV
1570 if (iov_iter_alignment(iter) & blocksize_mask)
1571 return -EINVAL;
1572
944fcfc1
JK
1573 return 0;
1574}
1575
eb47b800 1576static ssize_t f2fs_direct_IO(int rw, struct kiocb *iocb,
d8d3d94b 1577 struct iov_iter *iter, loff_t offset)
eb47b800
JK
1578{
1579 struct file *file = iocb->ki_filp;
3aab8f82
CY
1580 struct address_space *mapping = file->f_mapping;
1581 struct inode *inode = mapping->host;
1582 size_t count = iov_iter_count(iter);
1583 int err;
944fcfc1 1584
b3d208f9
JK
1585 /* we don't need to use inline_data strictly */
1586 if (f2fs_has_inline_data(inode)) {
1587 err = f2fs_convert_inline_inode(inode);
1588 if (err)
1589 return err;
1590 }
9ffe0fb5 1591
5b46f25d 1592 if (check_direct_IO(inode, rw, iter, offset))
944fcfc1
JK
1593 return 0;
1594
70407fad
CY
1595 trace_f2fs_direct_IO_enter(inode, offset, count, rw);
1596
59b802e5
JK
1597 if (rw & WRITE)
1598 __allocate_data_blocks(inode, offset, count);
1599
3aab8f82
CY
1600 err = blockdev_direct_IO(rw, iocb, inode, iter, offset, get_data_block);
1601 if (err < 0 && (rw & WRITE))
1602 f2fs_write_failed(mapping, offset + count);
70407fad
CY
1603
1604 trace_f2fs_direct_IO_exit(inode, offset, count, rw, err);
1605
3aab8f82 1606 return err;
eb47b800
JK
1607}
1608
487261f3
CY
1609void f2fs_invalidate_page(struct page *page, unsigned int offset,
1610 unsigned int length)
eb47b800
JK
1611{
1612 struct inode *inode = page->mapping->host;
487261f3 1613 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
a7ffdbe2 1614
487261f3
CY
1615 if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
1616 (offset % PAGE_CACHE_SIZE || length != PAGE_CACHE_SIZE))
a7ffdbe2
JK
1617 return;
1618
487261f3
CY
1619 if (PageDirty(page)) {
1620 if (inode->i_ino == F2FS_META_INO(sbi))
1621 dec_page_count(sbi, F2FS_DIRTY_META);
1622 else if (inode->i_ino == F2FS_NODE_INO(sbi))
1623 dec_page_count(sbi, F2FS_DIRTY_NODES);
1624 else
1625 inode_dec_dirty_pages(inode);
1626 }
eb47b800
JK
1627 ClearPagePrivate(page);
1628}
1629
487261f3 1630int f2fs_release_page(struct page *page, gfp_t wait)
eb47b800 1631{
f68daeeb
JK
1632 /* If this is dirty page, keep PagePrivate */
1633 if (PageDirty(page))
1634 return 0;
1635
eb47b800 1636 ClearPagePrivate(page);
c3850aa1 1637 return 1;
eb47b800
JK
1638}
1639
1640static int f2fs_set_data_page_dirty(struct page *page)
1641{
1642 struct address_space *mapping = page->mapping;
1643 struct inode *inode = mapping->host;
1644
26c6b887
JK
1645 trace_f2fs_set_page_dirty(page, DATA);
1646
eb47b800 1647 SetPageUptodate(page);
34ba94ba 1648
1e84371f 1649 if (f2fs_is_atomic_file(inode)) {
34ba94ba
JK
1650 register_inmem_page(inode, page);
1651 return 1;
1652 }
1653
a18ff063
JK
1654 mark_inode_dirty(inode);
1655
eb47b800
JK
1656 if (!PageDirty(page)) {
1657 __set_page_dirty_nobuffers(page);
a7ffdbe2 1658 update_dirty_page(inode, page);
eb47b800
JK
1659 return 1;
1660 }
1661 return 0;
1662}
1663
c01e54b7
JK
1664static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
1665{
454ae7e5
CY
1666 struct inode *inode = mapping->host;
1667
b3d208f9
JK
1668 /* we don't need to use inline_data strictly */
1669 if (f2fs_has_inline_data(inode)) {
1670 int err = f2fs_convert_inline_inode(inode);
1671 if (err)
1672 return err;
1673 }
bfad7c2d 1674 return generic_block_bmap(mapping, block, get_data_block);
c01e54b7
JK
1675}
1676
429511cd
CY
1677void init_extent_cache_info(struct f2fs_sb_info *sbi)
1678{
1679 INIT_RADIX_TREE(&sbi->extent_tree_root, GFP_NOIO);
1680 init_rwsem(&sbi->extent_tree_lock);
1681 INIT_LIST_HEAD(&sbi->extent_list);
1682 spin_lock_init(&sbi->extent_lock);
1683 sbi->total_ext_tree = 0;
1684 atomic_set(&sbi->total_ext_node, 0);
1685}
1686
1687int __init create_extent_cache(void)
1688{
1689 extent_tree_slab = f2fs_kmem_cache_create("f2fs_extent_tree",
1690 sizeof(struct extent_tree));
1691 if (!extent_tree_slab)
1692 return -ENOMEM;
1693 extent_node_slab = f2fs_kmem_cache_create("f2fs_extent_node",
1694 sizeof(struct extent_node));
1695 if (!extent_node_slab) {
1696 kmem_cache_destroy(extent_tree_slab);
1697 return -ENOMEM;
1698 }
1699 return 0;
1700}
1701
1702void destroy_extent_cache(void)
1703{
1704 kmem_cache_destroy(extent_node_slab);
1705 kmem_cache_destroy(extent_tree_slab);
1706}
1707
eb47b800
JK
1708const struct address_space_operations f2fs_dblock_aops = {
1709 .readpage = f2fs_read_data_page,
1710 .readpages = f2fs_read_data_pages,
1711 .writepage = f2fs_write_data_page,
1712 .writepages = f2fs_write_data_pages,
1713 .write_begin = f2fs_write_begin,
a1dd3c13 1714 .write_end = f2fs_write_end,
eb47b800 1715 .set_page_dirty = f2fs_set_data_page_dirty,
487261f3
CY
1716 .invalidatepage = f2fs_invalidate_page,
1717 .releasepage = f2fs_release_page,
eb47b800 1718 .direct_IO = f2fs_direct_IO,
c01e54b7 1719 .bmap = f2fs_bmap,
eb47b800 1720};