f2fs: show extent tree, node stat info in debugfs
[GitHub/exynos8895/android_kernel_samsung_universal8895.git] / fs / f2fs / data.c
CommitLineData
0a8165d7 1/*
eb47b800
JK
2 * fs/f2fs/data.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11#include <linux/fs.h>
12#include <linux/f2fs_fs.h>
13#include <linux/buffer_head.h>
14#include <linux/mpage.h>
a27bb332 15#include <linux/aio.h>
eb47b800
JK
16#include <linux/writeback.h>
17#include <linux/backing-dev.h>
18#include <linux/blkdev.h>
19#include <linux/bio.h>
690e4a3e 20#include <linux/prefetch.h>
eb47b800
JK
21
22#include "f2fs.h"
23#include "node.h"
24#include "segment.h"
db9f7c1a 25#include "trace.h"
848753aa 26#include <trace/events/f2fs.h>
eb47b800 27
429511cd
CY
28static struct kmem_cache *extent_tree_slab;
29static struct kmem_cache *extent_node_slab;
30
93dfe2ac
JK
31static void f2fs_read_end_io(struct bio *bio, int err)
32{
f568849e
LT
33 struct bio_vec *bvec;
34 int i;
93dfe2ac 35
f568849e 36 bio_for_each_segment_all(bvec, bio, i) {
93dfe2ac
JK
37 struct page *page = bvec->bv_page;
38
f568849e
LT
39 if (!err) {
40 SetPageUptodate(page);
41 } else {
93dfe2ac
JK
42 ClearPageUptodate(page);
43 SetPageError(page);
44 }
45 unlock_page(page);
f568849e 46 }
93dfe2ac
JK
47 bio_put(bio);
48}
49
50static void f2fs_write_end_io(struct bio *bio, int err)
51{
1b1f559f 52 struct f2fs_sb_info *sbi = bio->bi_private;
f568849e
LT
53 struct bio_vec *bvec;
54 int i;
93dfe2ac 55
f568849e 56 bio_for_each_segment_all(bvec, bio, i) {
93dfe2ac
JK
57 struct page *page = bvec->bv_page;
58
f568849e 59 if (unlikely(err)) {
cf779cab 60 set_page_dirty(page);
93dfe2ac 61 set_bit(AS_EIO, &page->mapping->flags);
744602cf 62 f2fs_stop_checkpoint(sbi);
93dfe2ac
JK
63 }
64 end_page_writeback(page);
65 dec_page_count(sbi, F2FS_WRITEBACK);
f568849e 66 }
93dfe2ac 67
93dfe2ac
JK
68 if (!get_pages(sbi, F2FS_WRITEBACK) &&
69 !list_empty(&sbi->cp_wait.task_list))
70 wake_up(&sbi->cp_wait);
71
72 bio_put(bio);
73}
74
940a6d34
GZ
75/*
76 * Low-level block read/write IO operations.
77 */
78static struct bio *__bio_alloc(struct f2fs_sb_info *sbi, block_t blk_addr,
79 int npages, bool is_read)
80{
81 struct bio *bio;
82
83 /* No failure on bio allocation */
84 bio = bio_alloc(GFP_NOIO, npages);
85
86 bio->bi_bdev = sbi->sb->s_bdev;
55cf9cb6 87 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
940a6d34 88 bio->bi_end_io = is_read ? f2fs_read_end_io : f2fs_write_end_io;
1b1f559f 89 bio->bi_private = sbi;
940a6d34
GZ
90
91 return bio;
92}
93
458e6197 94static void __submit_merged_bio(struct f2fs_bio_info *io)
93dfe2ac 95{
458e6197 96 struct f2fs_io_info *fio = &io->fio;
93dfe2ac
JK
97
98 if (!io->bio)
99 return;
100
6a8f8ca5 101 if (is_read_io(fio->rw))
2ace38e0 102 trace_f2fs_submit_read_bio(io->sbi->sb, fio, io->bio);
6a8f8ca5 103 else
2ace38e0 104 trace_f2fs_submit_write_bio(io->sbi->sb, fio, io->bio);
940a6d34 105
6a8f8ca5 106 submit_bio(fio->rw, io->bio);
93dfe2ac
JK
107 io->bio = NULL;
108}
109
110void f2fs_submit_merged_bio(struct f2fs_sb_info *sbi,
458e6197 111 enum page_type type, int rw)
93dfe2ac
JK
112{
113 enum page_type btype = PAGE_TYPE_OF_BIO(type);
114 struct f2fs_bio_info *io;
115
116 io = is_read_io(rw) ? &sbi->read_io : &sbi->write_io[btype];
117
df0f8dc0 118 down_write(&io->io_rwsem);
458e6197
JK
119
120 /* change META to META_FLUSH in the checkpoint procedure */
121 if (type >= META_FLUSH) {
122 io->fio.type = META_FLUSH;
0f7b2abd
JK
123 if (test_opt(sbi, NOBARRIER))
124 io->fio.rw = WRITE_FLUSH | REQ_META | REQ_PRIO;
125 else
126 io->fio.rw = WRITE_FLUSH_FUA | REQ_META | REQ_PRIO;
458e6197
JK
127 }
128 __submit_merged_bio(io);
df0f8dc0 129 up_write(&io->io_rwsem);
93dfe2ac
JK
130}
131
132/*
133 * Fill the locked page with data located in the block address.
134 * Return unlocked page.
135 */
136int f2fs_submit_page_bio(struct f2fs_sb_info *sbi, struct page *page,
cf04e8eb 137 struct f2fs_io_info *fio)
93dfe2ac 138{
93dfe2ac
JK
139 struct bio *bio;
140
2ace38e0 141 trace_f2fs_submit_page_bio(page, fio);
db9f7c1a 142 f2fs_trace_ios(page, fio, 0);
93dfe2ac
JK
143
144 /* Allocate a new bio */
cf04e8eb 145 bio = __bio_alloc(sbi, fio->blk_addr, 1, is_read_io(fio->rw));
93dfe2ac
JK
146
147 if (bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) < PAGE_CACHE_SIZE) {
148 bio_put(bio);
149 f2fs_put_page(page, 1);
150 return -EFAULT;
151 }
152
cf04e8eb 153 submit_bio(fio->rw, bio);
93dfe2ac
JK
154 return 0;
155}
156
157void f2fs_submit_page_mbio(struct f2fs_sb_info *sbi, struct page *page,
cf04e8eb 158 struct f2fs_io_info *fio)
93dfe2ac 159{
458e6197 160 enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
93dfe2ac 161 struct f2fs_bio_info *io;
940a6d34 162 bool is_read = is_read_io(fio->rw);
93dfe2ac 163
940a6d34 164 io = is_read ? &sbi->read_io : &sbi->write_io[btype];
93dfe2ac 165
cf04e8eb 166 verify_block_addr(sbi, fio->blk_addr);
93dfe2ac 167
df0f8dc0 168 down_write(&io->io_rwsem);
93dfe2ac 169
940a6d34 170 if (!is_read)
93dfe2ac
JK
171 inc_page_count(sbi, F2FS_WRITEBACK);
172
cf04e8eb 173 if (io->bio && (io->last_block_in_bio != fio->blk_addr - 1 ||
458e6197
JK
174 io->fio.rw != fio->rw))
175 __submit_merged_bio(io);
93dfe2ac
JK
176alloc_new:
177 if (io->bio == NULL) {
90a893c7 178 int bio_blocks = MAX_BIO_BLOCKS(sbi);
940a6d34 179
cf04e8eb 180 io->bio = __bio_alloc(sbi, fio->blk_addr, bio_blocks, is_read);
458e6197 181 io->fio = *fio;
93dfe2ac
JK
182 }
183
184 if (bio_add_page(io->bio, page, PAGE_CACHE_SIZE, 0) <
185 PAGE_CACHE_SIZE) {
458e6197 186 __submit_merged_bio(io);
93dfe2ac
JK
187 goto alloc_new;
188 }
189
cf04e8eb 190 io->last_block_in_bio = fio->blk_addr;
db9f7c1a 191 f2fs_trace_ios(page, fio, 0);
93dfe2ac 192
df0f8dc0 193 up_write(&io->io_rwsem);
2ace38e0 194 trace_f2fs_submit_page_mbio(page, fio);
93dfe2ac
JK
195}
196
0a8165d7 197/*
eb47b800
JK
198 * Lock ordering for the change of data block address:
199 * ->data_page
200 * ->node_page
201 * update block addresses in the node page
202 */
e1509cf2 203static void __set_data_blkaddr(struct dnode_of_data *dn)
eb47b800
JK
204{
205 struct f2fs_node *rn;
206 __le32 *addr_array;
207 struct page *node_page = dn->node_page;
208 unsigned int ofs_in_node = dn->ofs_in_node;
209
5514f0aa 210 f2fs_wait_on_page_writeback(node_page, NODE);
eb47b800 211
45590710 212 rn = F2FS_NODE(node_page);
eb47b800
JK
213
214 /* Get physical address of data block */
215 addr_array = blkaddr_in_node(rn);
e1509cf2 216 addr_array[ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
eb47b800
JK
217 set_page_dirty(node_page);
218}
219
220int reserve_new_block(struct dnode_of_data *dn)
221{
4081363f 222 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
eb47b800 223
6bacf52f 224 if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
eb47b800 225 return -EPERM;
cfb271d4 226 if (unlikely(!inc_valid_block_count(sbi, dn->inode, 1)))
eb47b800
JK
227 return -ENOSPC;
228
c01e2853
NJ
229 trace_f2fs_reserve_new_block(dn->inode, dn->nid, dn->ofs_in_node);
230
eb47b800 231 dn->data_blkaddr = NEW_ADDR;
e1509cf2 232 __set_data_blkaddr(dn);
a18ff063 233 mark_inode_dirty(dn->inode);
eb47b800
JK
234 sync_inode_page(dn);
235 return 0;
236}
237
b600965c
HL
238int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
239{
240 bool need_put = dn->inode_page ? false : true;
241 int err;
242
243 err = get_dnode_of_data(dn, index, ALLOC_NODE);
244 if (err)
245 return err;
a8865372 246
b600965c
HL
247 if (dn->data_blkaddr == NULL_ADDR)
248 err = reserve_new_block(dn);
a8865372 249 if (err || need_put)
b600965c
HL
250 f2fs_put_dnode(dn);
251 return err;
252}
253
a2e7d1bf
CY
254static void f2fs_map_bh(struct super_block *sb, pgoff_t pgofs,
255 struct extent_info *ei, struct buffer_head *bh_result)
256{
257 unsigned int blkbits = sb->s_blocksize_bits;
258 size_t count;
259
260 set_buffer_new(bh_result);
261 map_bh(bh_result, sb, ei->blk + pgofs - ei->fofs);
262 count = ei->fofs + ei->len - pgofs;
263 if (count < (UINT_MAX >> blkbits))
264 bh_result->b_size = (count << blkbits);
265 else
266 bh_result->b_size = UINT_MAX;
267}
268
7e4dde79
CY
269static bool lookup_extent_info(struct inode *inode, pgoff_t pgofs,
270 struct extent_info *ei)
eb47b800
JK
271{
272 struct f2fs_inode_info *fi = F2FS_I(inode);
eb47b800
JK
273 pgoff_t start_fofs, end_fofs;
274 block_t start_blkaddr;
275
c11abd1a 276 if (is_inode_flag_set(fi, FI_NO_EXTENT))
7e4dde79 277 return false;
c11abd1a 278
0c872e2d 279 read_lock(&fi->ext_lock);
eb47b800 280 if (fi->ext.len == 0) {
0c872e2d 281 read_unlock(&fi->ext_lock);
7e4dde79 282 return false;
eb47b800
JK
283 }
284
dcdfff65
JK
285 stat_inc_total_hit(inode->i_sb);
286
eb47b800
JK
287 start_fofs = fi->ext.fofs;
288 end_fofs = fi->ext.fofs + fi->ext.len - 1;
4d0b0bd4 289 start_blkaddr = fi->ext.blk;
eb47b800
JK
290
291 if (pgofs >= start_fofs && pgofs <= end_fofs) {
a2e7d1bf 292 *ei = fi->ext;
dcdfff65 293 stat_inc_read_hit(inode->i_sb);
0c872e2d 294 read_unlock(&fi->ext_lock);
7e4dde79 295 return true;
eb47b800 296 }
0c872e2d 297 read_unlock(&fi->ext_lock);
7e4dde79 298 return false;
eb47b800
JK
299}
300
7e4dde79
CY
301static bool update_extent_info(struct inode *inode, pgoff_t fofs,
302 block_t blkaddr)
eb47b800 303{
7e4dde79
CY
304 struct f2fs_inode_info *fi = F2FS_I(inode);
305 pgoff_t start_fofs, end_fofs;
eb47b800 306 block_t start_blkaddr, end_blkaddr;
c11abd1a 307 int need_update = true;
eb47b800 308
c11abd1a 309 if (is_inode_flag_set(fi, FI_NO_EXTENT))
7e4dde79 310 return false;
3547ea96 311
0c872e2d 312 write_lock(&fi->ext_lock);
eb47b800
JK
313
314 start_fofs = fi->ext.fofs;
315 end_fofs = fi->ext.fofs + fi->ext.len - 1;
4d0b0bd4
CY
316 start_blkaddr = fi->ext.blk;
317 end_blkaddr = fi->ext.blk + fi->ext.len - 1;
eb47b800
JK
318
319 /* Drop and initialize the matched extent */
320 if (fi->ext.len == 1 && fofs == start_fofs)
321 fi->ext.len = 0;
322
323 /* Initial extent */
324 if (fi->ext.len == 0) {
7e4dde79 325 if (blkaddr != NULL_ADDR) {
eb47b800 326 fi->ext.fofs = fofs;
7e4dde79 327 fi->ext.blk = blkaddr;
eb47b800
JK
328 fi->ext.len = 1;
329 }
330 goto end_update;
331 }
332
6224da87 333 /* Front merge */
7e4dde79 334 if (fofs == start_fofs - 1 && blkaddr == start_blkaddr - 1) {
eb47b800 335 fi->ext.fofs--;
4d0b0bd4 336 fi->ext.blk--;
eb47b800
JK
337 fi->ext.len++;
338 goto end_update;
339 }
340
341 /* Back merge */
7e4dde79 342 if (fofs == end_fofs + 1 && blkaddr == end_blkaddr + 1) {
eb47b800
JK
343 fi->ext.len++;
344 goto end_update;
345 }
346
347 /* Split the existing extent */
348 if (fi->ext.len > 1 &&
349 fofs >= start_fofs && fofs <= end_fofs) {
350 if ((end_fofs - fofs) < (fi->ext.len >> 1)) {
351 fi->ext.len = fofs - start_fofs;
352 } else {
353 fi->ext.fofs = fofs + 1;
4d0b0bd4 354 fi->ext.blk = start_blkaddr + fofs - start_fofs + 1;
eb47b800
JK
355 fi->ext.len -= fofs - start_fofs + 1;
356 }
c11abd1a
JK
357 } else {
358 need_update = false;
eb47b800 359 }
eb47b800 360
c11abd1a
JK
361 /* Finally, if the extent is very fragmented, let's drop the cache. */
362 if (fi->ext.len < F2FS_MIN_EXTENT_LEN) {
363 fi->ext.len = 0;
364 set_inode_flag(fi, FI_NO_EXTENT);
365 need_update = true;
366 }
eb47b800 367end_update:
0c872e2d 368 write_unlock(&fi->ext_lock);
7e4dde79
CY
369 return need_update;
370}
371
429511cd
CY
372static struct extent_node *__attach_extent_node(struct f2fs_sb_info *sbi,
373 struct extent_tree *et, struct extent_info *ei,
374 struct rb_node *parent, struct rb_node **p)
375{
376 struct extent_node *en;
377
378 en = kmem_cache_alloc(extent_node_slab, GFP_ATOMIC);
379 if (!en)
380 return NULL;
381
382 en->ei = *ei;
383 INIT_LIST_HEAD(&en->list);
384
385 rb_link_node(&en->rb_node, parent, p);
386 rb_insert_color(&en->rb_node, &et->root);
387 et->count++;
388 atomic_inc(&sbi->total_ext_node);
389 return en;
390}
391
392static void __detach_extent_node(struct f2fs_sb_info *sbi,
393 struct extent_tree *et, struct extent_node *en)
394{
395 rb_erase(&en->rb_node, &et->root);
396 et->count--;
397 atomic_dec(&sbi->total_ext_node);
398}
399
400static struct extent_node *__lookup_extent_tree(struct extent_tree *et,
401 unsigned int fofs)
402{
403 struct rb_node *node = et->root.rb_node;
404 struct extent_node *en;
405
406 while (node) {
407 en = rb_entry(node, struct extent_node, rb_node);
408
409 if (fofs < en->ei.fofs)
410 node = node->rb_left;
411 else if (fofs >= en->ei.fofs + en->ei.len)
412 node = node->rb_right;
413 else
414 return en;
415 }
416 return NULL;
417}
418
419static struct extent_node *__try_back_merge(struct f2fs_sb_info *sbi,
420 struct extent_tree *et, struct extent_node *en)
421{
422 struct extent_node *prev;
423 struct rb_node *node;
424
425 node = rb_prev(&en->rb_node);
426 if (!node)
427 return NULL;
428
429 prev = rb_entry(node, struct extent_node, rb_node);
430 if (__is_back_mergeable(&en->ei, &prev->ei)) {
431 en->ei.fofs = prev->ei.fofs;
432 en->ei.blk = prev->ei.blk;
433 en->ei.len += prev->ei.len;
434 __detach_extent_node(sbi, et, prev);
435 return prev;
436 }
437 return NULL;
438}
439
440static struct extent_node *__try_front_merge(struct f2fs_sb_info *sbi,
441 struct extent_tree *et, struct extent_node *en)
442{
443 struct extent_node *next;
444 struct rb_node *node;
445
446 node = rb_next(&en->rb_node);
447 if (!node)
448 return NULL;
449
450 next = rb_entry(node, struct extent_node, rb_node);
451 if (__is_front_mergeable(&en->ei, &next->ei)) {
452 en->ei.len += next->ei.len;
453 __detach_extent_node(sbi, et, next);
454 return next;
455 }
456 return NULL;
457}
458
459static struct extent_node *__insert_extent_tree(struct f2fs_sb_info *sbi,
460 struct extent_tree *et, struct extent_info *ei,
461 struct extent_node **den)
462{
463 struct rb_node **p = &et->root.rb_node;
464 struct rb_node *parent = NULL;
465 struct extent_node *en;
466
467 while (*p) {
468 parent = *p;
469 en = rb_entry(parent, struct extent_node, rb_node);
470
471 if (ei->fofs < en->ei.fofs) {
472 if (__is_front_mergeable(ei, &en->ei)) {
473 f2fs_bug_on(sbi, !den);
474 en->ei.fofs = ei->fofs;
475 en->ei.blk = ei->blk;
476 en->ei.len += ei->len;
477 *den = __try_back_merge(sbi, et, en);
478 return en;
479 }
480 p = &(*p)->rb_left;
481 } else if (ei->fofs >= en->ei.fofs + en->ei.len) {
482 if (__is_back_mergeable(ei, &en->ei)) {
483 f2fs_bug_on(sbi, !den);
484 en->ei.len += ei->len;
485 *den = __try_front_merge(sbi, et, en);
486 return en;
487 }
488 p = &(*p)->rb_right;
489 } else {
490 f2fs_bug_on(sbi, 1);
491 }
492 }
493
494 return __attach_extent_node(sbi, et, ei, parent, p);
495}
496
497static unsigned int __free_extent_tree(struct f2fs_sb_info *sbi,
498 struct extent_tree *et, bool free_all)
499{
500 struct rb_node *node, *next;
501 struct extent_node *en;
502 unsigned int count = et->count;
503
504 node = rb_first(&et->root);
505 while (node) {
506 next = rb_next(node);
507 en = rb_entry(node, struct extent_node, rb_node);
508
509 if (free_all) {
510 spin_lock(&sbi->extent_lock);
511 if (!list_empty(&en->list))
512 list_del_init(&en->list);
513 spin_unlock(&sbi->extent_lock);
514 }
515
516 if (free_all || list_empty(&en->list)) {
517 __detach_extent_node(sbi, et, en);
518 kmem_cache_free(extent_node_slab, en);
519 }
520 node = next;
521 }
522
523 return count - et->count;
524}
525
526static bool f2fs_lookup_extent_tree(struct inode *inode, pgoff_t pgofs,
527 struct extent_info *ei)
528{
529 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
530 struct extent_tree *et;
531 struct extent_node *en;
532
533 if (is_inode_flag_set(F2FS_I(inode), FI_NO_EXTENT))
534 return false;
535
536 down_read(&sbi->extent_tree_lock);
537 et = radix_tree_lookup(&sbi->extent_tree_root, inode->i_ino);
538 if (!et) {
539 up_read(&sbi->extent_tree_lock);
540 return false;
541 }
542 atomic_inc(&et->refcount);
543 up_read(&sbi->extent_tree_lock);
544
545 read_lock(&et->lock);
546 en = __lookup_extent_tree(et, pgofs);
547 if (en) {
548 *ei = en->ei;
549 spin_lock(&sbi->extent_lock);
550 if (!list_empty(&en->list))
551 list_move_tail(&en->list, &sbi->extent_list);
552 spin_unlock(&sbi->extent_lock);
553 stat_inc_read_hit(sbi->sb);
554 }
555 stat_inc_total_hit(sbi->sb);
556 read_unlock(&et->lock);
557
558 atomic_dec(&et->refcount);
559 return en ? true : false;
560}
561
562static void f2fs_update_extent_tree(struct inode *inode, pgoff_t fofs,
563 block_t blkaddr)
564{
565 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
566 nid_t ino = inode->i_ino;
567 struct extent_tree *et;
568 struct extent_node *en = NULL, *en1 = NULL, *en2 = NULL, *en3 = NULL;
569 struct extent_node *den = NULL;
570 struct extent_info ei, dei;
571 unsigned int endofs;
572
573 if (is_inode_flag_set(F2FS_I(inode), FI_NO_EXTENT))
574 return;
575
576 down_write(&sbi->extent_tree_lock);
577 et = radix_tree_lookup(&sbi->extent_tree_root, ino);
578 if (!et) {
579 et = f2fs_kmem_cache_alloc(extent_tree_slab, GFP_NOFS);
580 f2fs_radix_tree_insert(&sbi->extent_tree_root, ino, et);
581 memset(et, 0, sizeof(struct extent_tree));
582 et->ino = ino;
583 et->root = RB_ROOT;
584 rwlock_init(&et->lock);
585 atomic_set(&et->refcount, 0);
586 et->count = 0;
587 sbi->total_ext_tree++;
588 }
589 atomic_inc(&et->refcount);
590 up_write(&sbi->extent_tree_lock);
591
592 write_lock(&et->lock);
593
594 /* 1. lookup and remove existing extent info in cache */
595 en = __lookup_extent_tree(et, fofs);
596 if (!en)
597 goto update_extent;
598
599 dei = en->ei;
600 __detach_extent_node(sbi, et, en);
601
602 /* 2. if extent can be split more, split and insert the left part */
603 if (dei.len > 1) {
604 /* insert left part of split extent into cache */
605 if (fofs - dei.fofs >= F2FS_MIN_EXTENT_LEN) {
606 set_extent_info(&ei, dei.fofs, dei.blk,
607 fofs - dei.fofs);
608 en1 = __insert_extent_tree(sbi, et, &ei, NULL);
609 }
610
611 /* insert right part of split extent into cache */
612 endofs = dei.fofs + dei.len - 1;
613 if (endofs - fofs >= F2FS_MIN_EXTENT_LEN) {
614 set_extent_info(&ei, fofs + 1,
615 fofs - dei.fofs + dei.blk, endofs - fofs);
616 en2 = __insert_extent_tree(sbi, et, &ei, NULL);
617 }
618 }
619
620update_extent:
621 /* 3. update extent in extent cache */
622 if (blkaddr) {
623 set_extent_info(&ei, fofs, blkaddr, 1);
624 en3 = __insert_extent_tree(sbi, et, &ei, &den);
625 }
626
627 /* 4. update in global extent list */
628 spin_lock(&sbi->extent_lock);
629 if (en && !list_empty(&en->list))
630 list_del(&en->list);
631 /*
632 * en1 and en2 split from en, they will become more and more smaller
633 * fragments after splitting several times. So if the length is smaller
634 * than F2FS_MIN_EXTENT_LEN, we will not add them into extent tree.
635 */
636 if (en1)
637 list_add_tail(&en1->list, &sbi->extent_list);
638 if (en2)
639 list_add_tail(&en2->list, &sbi->extent_list);
640 if (en3) {
641 if (list_empty(&en3->list))
642 list_add_tail(&en3->list, &sbi->extent_list);
643 else
644 list_move_tail(&en3->list, &sbi->extent_list);
645 }
646 if (den && !list_empty(&den->list))
647 list_del(&den->list);
648 spin_unlock(&sbi->extent_lock);
649
650 /* 5. release extent node */
651 if (en)
652 kmem_cache_free(extent_node_slab, en);
653 if (den)
654 kmem_cache_free(extent_node_slab, den);
655
656 write_unlock(&et->lock);
657 atomic_dec(&et->refcount);
658}
659
660void f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink)
661{
662 struct extent_tree *treevec[EXT_TREE_VEC_SIZE];
663 struct extent_node *en, *tmp;
664 unsigned long ino = F2FS_ROOT_INO(sbi);
665 struct radix_tree_iter iter;
666 void **slot;
667 unsigned int found;
668
1dcc336b
CY
669 if (!test_opt(sbi, EXTENT_CACHE))
670 return;
671
429511cd
CY
672 if (available_free_memory(sbi, EXTENT_CACHE))
673 return;
674
675 spin_lock(&sbi->extent_lock);
676 list_for_each_entry_safe(en, tmp, &sbi->extent_list, list) {
677 if (!nr_shrink--)
678 break;
679 list_del_init(&en->list);
680 }
681 spin_unlock(&sbi->extent_lock);
682
683 down_read(&sbi->extent_tree_lock);
684 while ((found = radix_tree_gang_lookup(&sbi->extent_tree_root,
685 (void **)treevec, ino, EXT_TREE_VEC_SIZE))) {
686 unsigned i;
687
688 ino = treevec[found - 1]->ino + 1;
689 for (i = 0; i < found; i++) {
690 struct extent_tree *et = treevec[i];
691
692 atomic_inc(&et->refcount);
693 write_lock(&et->lock);
694 __free_extent_tree(sbi, et, false);
695 write_unlock(&et->lock);
696 atomic_dec(&et->refcount);
697 }
698 }
699 up_read(&sbi->extent_tree_lock);
700
701 down_write(&sbi->extent_tree_lock);
702 radix_tree_for_each_slot(slot, &sbi->extent_tree_root, &iter,
703 F2FS_ROOT_INO(sbi)) {
704 struct extent_tree *et = (struct extent_tree *)*slot;
705
706 if (!atomic_read(&et->refcount) && !et->count) {
707 radix_tree_delete(&sbi->extent_tree_root, et->ino);
708 kmem_cache_free(extent_tree_slab, et);
709 sbi->total_ext_tree--;
710 }
711 }
712 up_write(&sbi->extent_tree_lock);
713}
714
715void f2fs_destroy_extent_tree(struct inode *inode)
716{
717 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
718 struct extent_tree *et;
719
1dcc336b
CY
720 if (!test_opt(sbi, EXTENT_CACHE))
721 return;
722
429511cd
CY
723 down_read(&sbi->extent_tree_lock);
724 et = radix_tree_lookup(&sbi->extent_tree_root, inode->i_ino);
725 if (!et) {
726 up_read(&sbi->extent_tree_lock);
727 goto out;
728 }
729 atomic_inc(&et->refcount);
730 up_read(&sbi->extent_tree_lock);
731
732 /* free all extent info belong to this extent tree */
733 write_lock(&et->lock);
734 __free_extent_tree(sbi, et, true);
735 write_unlock(&et->lock);
736
737 atomic_dec(&et->refcount);
738
739 /* try to find and delete extent tree entry in radix tree */
740 down_write(&sbi->extent_tree_lock);
741 et = radix_tree_lookup(&sbi->extent_tree_root, inode->i_ino);
742 if (!et) {
743 up_write(&sbi->extent_tree_lock);
744 goto out;
745 }
746 f2fs_bug_on(sbi, atomic_read(&et->refcount) || et->count);
747 radix_tree_delete(&sbi->extent_tree_root, inode->i_ino);
748 kmem_cache_free(extent_tree_slab, et);
749 sbi->total_ext_tree--;
750 up_write(&sbi->extent_tree_lock);
751out:
752 return;
753}
754
7e4dde79
CY
755static bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
756 struct extent_info *ei)
757{
1dcc336b
CY
758 if (test_opt(F2FS_I_SB(inode), EXTENT_CACHE))
759 return f2fs_lookup_extent_tree(inode, pgofs, ei);
760
7e4dde79
CY
761 return lookup_extent_info(inode, pgofs, ei);
762}
763
764void f2fs_update_extent_cache(struct dnode_of_data *dn)
765{
766 struct f2fs_inode_info *fi = F2FS_I(dn->inode);
767 pgoff_t fofs;
768
769 f2fs_bug_on(F2FS_I_SB(dn->inode), dn->data_blkaddr == NEW_ADDR);
770
771 /* Update the page address in the parent node */
772 __set_data_blkaddr(dn);
773
774 fofs = start_bidx_of_node(ofs_of_node(dn->node_page), fi) +
775 dn->ofs_in_node;
776
1dcc336b
CY
777 if (test_opt(F2FS_I_SB(dn->inode), EXTENT_CACHE))
778 return f2fs_update_extent_tree(dn->inode, fofs,
779 dn->data_blkaddr);
780
7e4dde79 781 if (update_extent_info(dn->inode, fofs, dn->data_blkaddr))
c11abd1a 782 sync_inode_page(dn);
eb47b800
JK
783}
784
c718379b 785struct page *find_data_page(struct inode *inode, pgoff_t index, bool sync)
eb47b800 786{
eb47b800
JK
787 struct address_space *mapping = inode->i_mapping;
788 struct dnode_of_data dn;
789 struct page *page;
790 int err;
cf04e8eb
JK
791 struct f2fs_io_info fio = {
792 .type = DATA,
793 .rw = sync ? READ_SYNC : READA,
794 };
eb47b800
JK
795
796 page = find_get_page(mapping, index);
797 if (page && PageUptodate(page))
798 return page;
799 f2fs_put_page(page, 0);
800
801 set_new_dnode(&dn, inode, NULL, NULL, 0);
266e97a8 802 err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
eb47b800
JK
803 if (err)
804 return ERR_PTR(err);
805 f2fs_put_dnode(&dn);
806
807 if (dn.data_blkaddr == NULL_ADDR)
808 return ERR_PTR(-ENOENT);
809
810 /* By fallocate(), there is no cached page, but with NEW_ADDR */
6bacf52f 811 if (unlikely(dn.data_blkaddr == NEW_ADDR))
eb47b800
JK
812 return ERR_PTR(-EINVAL);
813
9ac1349a 814 page = grab_cache_page(mapping, index);
eb47b800
JK
815 if (!page)
816 return ERR_PTR(-ENOMEM);
817
393ff91f
JK
818 if (PageUptodate(page)) {
819 unlock_page(page);
820 return page;
821 }
822
cf04e8eb
JK
823 fio.blk_addr = dn.data_blkaddr;
824 err = f2fs_submit_page_bio(F2FS_I_SB(inode), page, &fio);
1069bbf7
CY
825 if (err)
826 return ERR_PTR(err);
827
c718379b
JK
828 if (sync) {
829 wait_on_page_locked(page);
6bacf52f 830 if (unlikely(!PageUptodate(page))) {
c718379b
JK
831 f2fs_put_page(page, 0);
832 return ERR_PTR(-EIO);
833 }
eb47b800 834 }
eb47b800
JK
835 return page;
836}
837
0a8165d7 838/*
eb47b800
JK
839 * If it tries to access a hole, return an error.
840 * Because, the callers, functions in dir.c and GC, should be able to know
841 * whether this page exists or not.
842 */
843struct page *get_lock_data_page(struct inode *inode, pgoff_t index)
844{
eb47b800
JK
845 struct address_space *mapping = inode->i_mapping;
846 struct dnode_of_data dn;
847 struct page *page;
848 int err;
cf04e8eb
JK
849 struct f2fs_io_info fio = {
850 .type = DATA,
851 .rw = READ_SYNC,
852 };
650495de 853repeat:
9ac1349a 854 page = grab_cache_page(mapping, index);
650495de
JK
855 if (!page)
856 return ERR_PTR(-ENOMEM);
857
eb47b800 858 set_new_dnode(&dn, inode, NULL, NULL, 0);
266e97a8 859 err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
650495de
JK
860 if (err) {
861 f2fs_put_page(page, 1);
eb47b800 862 return ERR_PTR(err);
650495de 863 }
eb47b800
JK
864 f2fs_put_dnode(&dn);
865
6bacf52f 866 if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
650495de 867 f2fs_put_page(page, 1);
eb47b800 868 return ERR_PTR(-ENOENT);
650495de 869 }
eb47b800
JK
870
871 if (PageUptodate(page))
872 return page;
873
d59ff4df
JK
874 /*
875 * A new dentry page is allocated but not able to be written, since its
876 * new inode page couldn't be allocated due to -ENOSPC.
877 * In such the case, its blkaddr can be remained as NEW_ADDR.
878 * see, f2fs_add_link -> get_new_data_page -> init_inode_metadata.
879 */
880 if (dn.data_blkaddr == NEW_ADDR) {
881 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
882 SetPageUptodate(page);
883 return page;
884 }
eb47b800 885
cf04e8eb
JK
886 fio.blk_addr = dn.data_blkaddr;
887 err = f2fs_submit_page_bio(F2FS_I_SB(inode), page, &fio);
393ff91f 888 if (err)
eb47b800 889 return ERR_PTR(err);
393ff91f
JK
890
891 lock_page(page);
6bacf52f 892 if (unlikely(!PageUptodate(page))) {
393ff91f
JK
893 f2fs_put_page(page, 1);
894 return ERR_PTR(-EIO);
eb47b800 895 }
6bacf52f 896 if (unlikely(page->mapping != mapping)) {
afcb7ca0
JK
897 f2fs_put_page(page, 1);
898 goto repeat;
eb47b800
JK
899 }
900 return page;
901}
902
0a8165d7 903/*
eb47b800
JK
904 * Caller ensures that this data page is never allocated.
905 * A new zero-filled data page is allocated in the page cache.
39936837 906 *
4f4124d0
CY
907 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
908 * f2fs_unlock_op().
a8865372 909 * Note that, ipage is set only by make_empty_dir.
eb47b800 910 */
64aa7ed9 911struct page *get_new_data_page(struct inode *inode,
a8865372 912 struct page *ipage, pgoff_t index, bool new_i_size)
eb47b800 913{
eb47b800
JK
914 struct address_space *mapping = inode->i_mapping;
915 struct page *page;
916 struct dnode_of_data dn;
917 int err;
918
a8865372 919 set_new_dnode(&dn, inode, ipage, NULL, 0);
b600965c 920 err = f2fs_reserve_block(&dn, index);
eb47b800
JK
921 if (err)
922 return ERR_PTR(err);
afcb7ca0 923repeat:
eb47b800 924 page = grab_cache_page(mapping, index);
a8865372
JK
925 if (!page) {
926 err = -ENOMEM;
927 goto put_err;
928 }
eb47b800
JK
929
930 if (PageUptodate(page))
931 return page;
932
933 if (dn.data_blkaddr == NEW_ADDR) {
934 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
393ff91f 935 SetPageUptodate(page);
eb47b800 936 } else {
cf04e8eb
JK
937 struct f2fs_io_info fio = {
938 .type = DATA,
939 .rw = READ_SYNC,
940 .blk_addr = dn.data_blkaddr,
941 };
942 err = f2fs_submit_page_bio(F2FS_I_SB(inode), page, &fio);
393ff91f 943 if (err)
a8865372
JK
944 goto put_err;
945
393ff91f 946 lock_page(page);
6bacf52f 947 if (unlikely(!PageUptodate(page))) {
393ff91f 948 f2fs_put_page(page, 1);
a8865372
JK
949 err = -EIO;
950 goto put_err;
eb47b800 951 }
6bacf52f 952 if (unlikely(page->mapping != mapping)) {
afcb7ca0
JK
953 f2fs_put_page(page, 1);
954 goto repeat;
eb47b800
JK
955 }
956 }
eb47b800
JK
957
958 if (new_i_size &&
959 i_size_read(inode) < ((index + 1) << PAGE_CACHE_SHIFT)) {
960 i_size_write(inode, ((index + 1) << PAGE_CACHE_SHIFT));
699489bb
JK
961 /* Only the directory inode sets new_i_size */
962 set_inode_flag(F2FS_I(inode), FI_UPDATE_DIR);
eb47b800
JK
963 }
964 return page;
a8865372
JK
965
966put_err:
967 f2fs_put_dnode(&dn);
968 return ERR_PTR(err);
eb47b800
JK
969}
970
bfad7c2d
JK
971static int __allocate_data_block(struct dnode_of_data *dn)
972{
4081363f 973 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
976e4c50 974 struct f2fs_inode_info *fi = F2FS_I(dn->inode);
bfad7c2d 975 struct f2fs_summary sum;
bfad7c2d 976 struct node_info ni;
38aa0889 977 int seg = CURSEG_WARM_DATA;
976e4c50 978 pgoff_t fofs;
bfad7c2d
JK
979
980 if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
981 return -EPERM;
982 if (unlikely(!inc_valid_block_count(sbi, dn->inode, 1)))
983 return -ENOSPC;
984
bfad7c2d
JK
985 get_node_info(sbi, dn->nid, &ni);
986 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
987
38aa0889
JK
988 if (dn->ofs_in_node == 0 && dn->inode_page == dn->node_page)
989 seg = CURSEG_DIRECT_IO;
990
991 allocate_data_block(sbi, NULL, NULL_ADDR, &dn->data_blkaddr, &sum, seg);
bfad7c2d
JK
992
993 /* direct IO doesn't use extent cache to maximize the performance */
41ef94b3 994 __set_data_blkaddr(dn);
bfad7c2d 995
976e4c50
JK
996 /* update i_size */
997 fofs = start_bidx_of_node(ofs_of_node(dn->node_page), fi) +
998 dn->ofs_in_node;
999 if (i_size_read(dn->inode) < ((fofs + 1) << PAGE_CACHE_SHIFT))
1000 i_size_write(dn->inode, ((fofs + 1) << PAGE_CACHE_SHIFT));
1001
bfad7c2d
JK
1002 return 0;
1003}
1004
59b802e5
JK
1005static void __allocate_data_blocks(struct inode *inode, loff_t offset,
1006 size_t count)
1007{
1008 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1009 struct dnode_of_data dn;
1010 u64 start = F2FS_BYTES_TO_BLK(offset);
1011 u64 len = F2FS_BYTES_TO_BLK(count);
1012 bool allocated;
1013 u64 end_offset;
1014
1015 while (len) {
1016 f2fs_balance_fs(sbi);
1017 f2fs_lock_op(sbi);
1018
1019 /* When reading holes, we need its node page */
1020 set_new_dnode(&dn, inode, NULL, NULL, 0);
1021 if (get_dnode_of_data(&dn, start, ALLOC_NODE))
1022 goto out;
1023
1024 allocated = false;
1025 end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
1026
1027 while (dn.ofs_in_node < end_offset && len) {
1028 if (dn.data_blkaddr == NULL_ADDR) {
1029 if (__allocate_data_block(&dn))
1030 goto sync_out;
1031 allocated = true;
1032 }
1033 len--;
1034 start++;
1035 dn.ofs_in_node++;
1036 }
1037
1038 if (allocated)
1039 sync_inode_page(&dn);
1040
1041 f2fs_put_dnode(&dn);
1042 f2fs_unlock_op(sbi);
1043 }
1044 return;
1045
1046sync_out:
1047 if (allocated)
1048 sync_inode_page(&dn);
1049 f2fs_put_dnode(&dn);
1050out:
1051 f2fs_unlock_op(sbi);
1052 return;
1053}
1054
0a8165d7 1055/*
4f4124d0
CY
1056 * get_data_block() now supported readahead/bmap/rw direct_IO with mapped bh.
1057 * If original data blocks are allocated, then give them to blockdev.
1058 * Otherwise,
1059 * a. preallocate requested block addresses
1060 * b. do not use extent cache for better performance
1061 * c. give the block addresses to blockdev
eb47b800 1062 */
ccfb3000
JK
1063static int __get_data_block(struct inode *inode, sector_t iblock,
1064 struct buffer_head *bh_result, int create, bool fiemap)
eb47b800
JK
1065{
1066 unsigned int blkbits = inode->i_sb->s_blocksize_bits;
1067 unsigned maxblocks = bh_result->b_size >> blkbits;
1068 struct dnode_of_data dn;
bfad7c2d
JK
1069 int mode = create ? ALLOC_NODE : LOOKUP_NODE_RA;
1070 pgoff_t pgofs, end_offset;
1071 int err = 0, ofs = 1;
a2e7d1bf 1072 struct extent_info ei;
bfad7c2d 1073 bool allocated = false;
eb47b800
JK
1074
1075 /* Get the page offset from the block offset(iblock) */
1076 pgofs = (pgoff_t)(iblock >> (PAGE_CACHE_SHIFT - blkbits));
1077
7e4dde79 1078 if (f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
a2e7d1bf 1079 f2fs_map_bh(inode->i_sb, pgofs, &ei, bh_result);
bfad7c2d 1080 goto out;
a2e7d1bf 1081 }
bfad7c2d 1082
59b802e5 1083 if (create)
4081363f 1084 f2fs_lock_op(F2FS_I_SB(inode));
eb47b800
JK
1085
1086 /* When reading holes, we need its node page */
1087 set_new_dnode(&dn, inode, NULL, NULL, 0);
bfad7c2d 1088 err = get_dnode_of_data(&dn, pgofs, mode);
1ec79083 1089 if (err) {
bfad7c2d
JK
1090 if (err == -ENOENT)
1091 err = 0;
1092 goto unlock_out;
848753aa 1093 }
ccfb3000 1094 if (dn.data_blkaddr == NEW_ADDR && !fiemap)
1ec79083 1095 goto put_out;
eb47b800 1096
bfad7c2d 1097 if (dn.data_blkaddr != NULL_ADDR) {
da17eece 1098 set_buffer_new(bh_result);
bfad7c2d
JK
1099 map_bh(bh_result, inode->i_sb, dn.data_blkaddr);
1100 } else if (create) {
1101 err = __allocate_data_block(&dn);
1102 if (err)
1103 goto put_out;
1104 allocated = true;
da17eece 1105 set_buffer_new(bh_result);
bfad7c2d
JK
1106 map_bh(bh_result, inode->i_sb, dn.data_blkaddr);
1107 } else {
1108 goto put_out;
1109 }
1110
6403eb1f 1111 end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
bfad7c2d
JK
1112 bh_result->b_size = (((size_t)1) << blkbits);
1113 dn.ofs_in_node++;
1114 pgofs++;
1115
1116get_next:
1117 if (dn.ofs_in_node >= end_offset) {
1118 if (allocated)
1119 sync_inode_page(&dn);
1120 allocated = false;
1121 f2fs_put_dnode(&dn);
1122
1123 set_new_dnode(&dn, inode, NULL, NULL, 0);
1124 err = get_dnode_of_data(&dn, pgofs, mode);
1ec79083 1125 if (err) {
bfad7c2d
JK
1126 if (err == -ENOENT)
1127 err = 0;
1128 goto unlock_out;
1129 }
ccfb3000 1130 if (dn.data_blkaddr == NEW_ADDR && !fiemap)
1ec79083
JK
1131 goto put_out;
1132
6403eb1f 1133 end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
bfad7c2d 1134 }
eb47b800 1135
bfad7c2d
JK
1136 if (maxblocks > (bh_result->b_size >> blkbits)) {
1137 block_t blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
1138 if (blkaddr == NULL_ADDR && create) {
1139 err = __allocate_data_block(&dn);
1140 if (err)
1141 goto sync_out;
1142 allocated = true;
1143 blkaddr = dn.data_blkaddr;
1144 }
e1c42045 1145 /* Give more consecutive addresses for the readahead */
bfad7c2d
JK
1146 if (blkaddr == (bh_result->b_blocknr + ofs)) {
1147 ofs++;
1148 dn.ofs_in_node++;
1149 pgofs++;
1150 bh_result->b_size += (((size_t)1) << blkbits);
1151 goto get_next;
1152 }
eb47b800 1153 }
bfad7c2d
JK
1154sync_out:
1155 if (allocated)
1156 sync_inode_page(&dn);
1157put_out:
eb47b800 1158 f2fs_put_dnode(&dn);
bfad7c2d
JK
1159unlock_out:
1160 if (create)
4081363f 1161 f2fs_unlock_op(F2FS_I_SB(inode));
bfad7c2d
JK
1162out:
1163 trace_f2fs_get_data_block(inode, iblock, bh_result, err);
1164 return err;
eb47b800
JK
1165}
1166
ccfb3000
JK
1167static int get_data_block(struct inode *inode, sector_t iblock,
1168 struct buffer_head *bh_result, int create)
1169{
1170 return __get_data_block(inode, iblock, bh_result, create, false);
1171}
1172
1173static int get_data_block_fiemap(struct inode *inode, sector_t iblock,
1174 struct buffer_head *bh_result, int create)
1175{
1176 return __get_data_block(inode, iblock, bh_result, create, true);
1177}
1178
9ab70134
JK
1179int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1180 u64 start, u64 len)
1181{
ccfb3000
JK
1182 return generic_block_fiemap(inode, fieinfo,
1183 start, len, get_data_block_fiemap);
9ab70134
JK
1184}
1185
eb47b800
JK
1186static int f2fs_read_data_page(struct file *file, struct page *page)
1187{
9ffe0fb5 1188 struct inode *inode = page->mapping->host;
b3d208f9 1189 int ret = -EAGAIN;
9ffe0fb5 1190
c20e89cd
CY
1191 trace_f2fs_readpage(page, DATA);
1192
e1c42045 1193 /* If the file has inline data, try to read it directly */
9ffe0fb5
HL
1194 if (f2fs_has_inline_data(inode))
1195 ret = f2fs_read_inline_data(inode, page);
b3d208f9 1196 if (ret == -EAGAIN)
9ffe0fb5
HL
1197 ret = mpage_readpage(page, get_data_block);
1198
1199 return ret;
eb47b800
JK
1200}
1201
1202static int f2fs_read_data_pages(struct file *file,
1203 struct address_space *mapping,
1204 struct list_head *pages, unsigned nr_pages)
1205{
9ffe0fb5
HL
1206 struct inode *inode = file->f_mapping->host;
1207
1208 /* If the file has inline data, skip readpages */
1209 if (f2fs_has_inline_data(inode))
1210 return 0;
1211
bfad7c2d 1212 return mpage_readpages(mapping, pages, nr_pages, get_data_block);
eb47b800
JK
1213}
1214
458e6197 1215int do_write_data_page(struct page *page, struct f2fs_io_info *fio)
eb47b800
JK
1216{
1217 struct inode *inode = page->mapping->host;
eb47b800
JK
1218 struct dnode_of_data dn;
1219 int err = 0;
1220
1221 set_new_dnode(&dn, inode, NULL, NULL, 0);
266e97a8 1222 err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
eb47b800
JK
1223 if (err)
1224 return err;
1225
cf04e8eb 1226 fio->blk_addr = dn.data_blkaddr;
eb47b800
JK
1227
1228 /* This page is already truncated */
cf04e8eb 1229 if (fio->blk_addr == NULL_ADDR)
eb47b800
JK
1230 goto out_writepage;
1231
1232 set_page_writeback(page);
1233
1234 /*
1235 * If current allocation needs SSR,
1236 * it had better in-place writes for updated data.
1237 */
cf04e8eb 1238 if (unlikely(fio->blk_addr != NEW_ADDR &&
b25958b6
HL
1239 !is_cold_data(page) &&
1240 need_inplace_update(inode))) {
cf04e8eb 1241 rewrite_data_page(page, fio);
fff04f90 1242 set_inode_flag(F2FS_I(inode), FI_UPDATE_WRITE);
eb47b800 1243 } else {
cf04e8eb 1244 write_data_page(page, &dn, fio);
7e4dde79 1245 f2fs_update_extent_cache(&dn);
fff04f90 1246 set_inode_flag(F2FS_I(inode), FI_APPEND_WRITE);
eb47b800
JK
1247 }
1248out_writepage:
1249 f2fs_put_dnode(&dn);
1250 return err;
1251}
1252
1253static int f2fs_write_data_page(struct page *page,
1254 struct writeback_control *wbc)
1255{
1256 struct inode *inode = page->mapping->host;
4081363f 1257 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
eb47b800
JK
1258 loff_t i_size = i_size_read(inode);
1259 const pgoff_t end_index = ((unsigned long long) i_size)
1260 >> PAGE_CACHE_SHIFT;
9ffe0fb5 1261 unsigned offset = 0;
39936837 1262 bool need_balance_fs = false;
eb47b800 1263 int err = 0;
458e6197
JK
1264 struct f2fs_io_info fio = {
1265 .type = DATA,
6c311ec6 1266 .rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE,
458e6197 1267 };
eb47b800 1268
ecda0de3
CY
1269 trace_f2fs_writepage(page, DATA);
1270
eb47b800 1271 if (page->index < end_index)
39936837 1272 goto write;
eb47b800
JK
1273
1274 /*
1275 * If the offset is out-of-range of file size,
1276 * this page does not have to be written to disk.
1277 */
1278 offset = i_size & (PAGE_CACHE_SIZE - 1);
76f60268 1279 if ((page->index >= end_index + 1) || !offset)
39936837 1280 goto out;
eb47b800
JK
1281
1282 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
39936837 1283write:
caf0047e 1284 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
eb47b800 1285 goto redirty_out;
1e84371f
JK
1286 if (f2fs_is_drop_cache(inode))
1287 goto out;
1288 if (f2fs_is_volatile_file(inode) && !wbc->for_reclaim &&
1289 available_free_memory(sbi, BASE_CHECK))
1290 goto redirty_out;
eb47b800 1291
39936837 1292 /* Dentry blocks are controlled by checkpoint */
eb47b800 1293 if (S_ISDIR(inode->i_mode)) {
cf779cab
JK
1294 if (unlikely(f2fs_cp_error(sbi)))
1295 goto redirty_out;
458e6197 1296 err = do_write_data_page(page, &fio);
8618b881
JK
1297 goto done;
1298 }
9ffe0fb5 1299
cf779cab
JK
1300 /* we should bypass data pages to proceed the kworkder jobs */
1301 if (unlikely(f2fs_cp_error(sbi))) {
1302 SetPageError(page);
a7ffdbe2 1303 goto out;
cf779cab
JK
1304 }
1305
8618b881 1306 if (!wbc->for_reclaim)
39936837 1307 need_balance_fs = true;
8618b881 1308 else if (has_not_enough_free_secs(sbi, 0))
39936837 1309 goto redirty_out;
eb47b800 1310
b3d208f9 1311 err = -EAGAIN;
8618b881 1312 f2fs_lock_op(sbi);
b3d208f9
JK
1313 if (f2fs_has_inline_data(inode))
1314 err = f2fs_write_inline_data(inode, page);
1315 if (err == -EAGAIN)
8618b881
JK
1316 err = do_write_data_page(page, &fio);
1317 f2fs_unlock_op(sbi);
1318done:
1319 if (err && err != -ENOENT)
1320 goto redirty_out;
eb47b800 1321
eb47b800 1322 clear_cold_data(page);
39936837 1323out:
a7ffdbe2 1324 inode_dec_dirty_pages(inode);
eb47b800 1325 unlock_page(page);
39936837 1326 if (need_balance_fs)
eb47b800 1327 f2fs_balance_fs(sbi);
2aea39ec
JK
1328 if (wbc->for_reclaim)
1329 f2fs_submit_merged_bio(sbi, DATA, WRITE);
eb47b800
JK
1330 return 0;
1331
eb47b800 1332redirty_out:
76f60268 1333 redirty_page_for_writepage(wbc, page);
8618b881 1334 return AOP_WRITEPAGE_ACTIVATE;
eb47b800
JK
1335}
1336
fa9150a8
NJ
1337static int __f2fs_writepage(struct page *page, struct writeback_control *wbc,
1338 void *data)
1339{
1340 struct address_space *mapping = data;
1341 int ret = mapping->a_ops->writepage(page, wbc);
1342 mapping_set_error(mapping, ret);
1343 return ret;
1344}
1345
25ca923b 1346static int f2fs_write_data_pages(struct address_space *mapping,
eb47b800
JK
1347 struct writeback_control *wbc)
1348{
1349 struct inode *inode = mapping->host;
4081363f 1350 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
531ad7d5 1351 bool locked = false;
eb47b800 1352 int ret;
50c8cdb3 1353 long diff;
eb47b800 1354
e5748434
CY
1355 trace_f2fs_writepages(mapping->host, wbc, DATA);
1356
cfb185a1 1357 /* deal with chardevs and other special file */
1358 if (!mapping->a_ops->writepage)
1359 return 0;
1360
87d6f890 1361 if (S_ISDIR(inode->i_mode) && wbc->sync_mode == WB_SYNC_NONE &&
a7ffdbe2 1362 get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
6fb03f3a 1363 available_free_memory(sbi, DIRTY_DENTS))
d3baf95d 1364 goto skip_write;
87d6f890 1365
50c8cdb3 1366 diff = nr_pages_to_write(sbi, DATA, wbc);
eb47b800 1367
531ad7d5 1368 if (!S_ISDIR(inode->i_mode)) {
eb47b800 1369 mutex_lock(&sbi->writepages);
531ad7d5
JK
1370 locked = true;
1371 }
fa9150a8 1372 ret = write_cache_pages(mapping, wbc, __f2fs_writepage, mapping);
531ad7d5 1373 if (locked)
eb47b800 1374 mutex_unlock(&sbi->writepages);
458e6197
JK
1375
1376 f2fs_submit_merged_bio(sbi, DATA, WRITE);
eb47b800
JK
1377
1378 remove_dirty_dir_inode(inode);
1379
50c8cdb3 1380 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
eb47b800 1381 return ret;
d3baf95d
JK
1382
1383skip_write:
a7ffdbe2 1384 wbc->pages_skipped += get_dirty_pages(inode);
d3baf95d 1385 return 0;
eb47b800
JK
1386}
1387
3aab8f82
CY
1388static void f2fs_write_failed(struct address_space *mapping, loff_t to)
1389{
1390 struct inode *inode = mapping->host;
1391
1392 if (to > inode->i_size) {
1393 truncate_pagecache(inode, inode->i_size);
764aa3e9 1394 truncate_blocks(inode, inode->i_size, true);
3aab8f82
CY
1395 }
1396}
1397
eb47b800
JK
1398static int f2fs_write_begin(struct file *file, struct address_space *mapping,
1399 loff_t pos, unsigned len, unsigned flags,
1400 struct page **pagep, void **fsdata)
1401{
1402 struct inode *inode = mapping->host;
4081363f 1403 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
9ba69cf9 1404 struct page *page, *ipage;
eb47b800
JK
1405 pgoff_t index = ((unsigned long long) pos) >> PAGE_CACHE_SHIFT;
1406 struct dnode_of_data dn;
1407 int err = 0;
1408
62aed044
CY
1409 trace_f2fs_write_begin(inode, pos, len, flags);
1410
eb47b800 1411 f2fs_balance_fs(sbi);
5f727395
JK
1412
1413 /*
1414 * We should check this at this moment to avoid deadlock on inode page
1415 * and #0 page. The locking rule for inline_data conversion should be:
1416 * lock_page(page #0) -> lock_page(inode_page)
1417 */
1418 if (index != 0) {
1419 err = f2fs_convert_inline_inode(inode);
1420 if (err)
1421 goto fail;
1422 }
afcb7ca0 1423repeat:
eb47b800 1424 page = grab_cache_page_write_begin(mapping, index, flags);
3aab8f82
CY
1425 if (!page) {
1426 err = -ENOMEM;
1427 goto fail;
1428 }
d5f66990 1429
eb47b800
JK
1430 *pagep = page;
1431
e479556b 1432 f2fs_lock_op(sbi);
9ba69cf9
JK
1433
1434 /* check inline_data */
1435 ipage = get_node_page(sbi, inode->i_ino);
cd34e296
CY
1436 if (IS_ERR(ipage)) {
1437 err = PTR_ERR(ipage);
9ba69cf9 1438 goto unlock_fail;
cd34e296 1439 }
9ba69cf9 1440
b3d208f9
JK
1441 set_new_dnode(&dn, inode, ipage, ipage, 0);
1442
9ba69cf9 1443 if (f2fs_has_inline_data(inode)) {
b3d208f9
JK
1444 if (pos + len <= MAX_INLINE_DATA) {
1445 read_inline_data(page, ipage);
1446 set_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
1447 sync_inode_page(&dn);
1448 goto put_next;
b3d208f9 1449 }
5f727395
JK
1450 err = f2fs_convert_inline_page(&dn, page);
1451 if (err)
1452 goto put_fail;
b600965c 1453 }
9ba69cf9
JK
1454 err = f2fs_reserve_block(&dn, index);
1455 if (err)
8cdcb713 1456 goto put_fail;
b3d208f9 1457put_next:
9ba69cf9
JK
1458 f2fs_put_dnode(&dn);
1459 f2fs_unlock_op(sbi);
1460
eb47b800
JK
1461 if ((len == PAGE_CACHE_SIZE) || PageUptodate(page))
1462 return 0;
1463
b3d208f9
JK
1464 f2fs_wait_on_page_writeback(page, DATA);
1465
eb47b800
JK
1466 if ((pos & PAGE_CACHE_MASK) >= i_size_read(inode)) {
1467 unsigned start = pos & (PAGE_CACHE_SIZE - 1);
1468 unsigned end = start + len;
1469
1470 /* Reading beyond i_size is simple: memset to zero */
1471 zero_user_segments(page, 0, start, end, PAGE_CACHE_SIZE);
393ff91f 1472 goto out;
eb47b800
JK
1473 }
1474
b3d208f9 1475 if (dn.data_blkaddr == NEW_ADDR) {
eb47b800
JK
1476 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
1477 } else {
cf04e8eb
JK
1478 struct f2fs_io_info fio = {
1479 .type = DATA,
1480 .rw = READ_SYNC,
1481 .blk_addr = dn.data_blkaddr,
1482 };
1483 err = f2fs_submit_page_bio(sbi, page, &fio);
9234f319
JK
1484 if (err)
1485 goto fail;
d54c795b 1486
393ff91f 1487 lock_page(page);
6bacf52f 1488 if (unlikely(!PageUptodate(page))) {
393ff91f 1489 f2fs_put_page(page, 1);
3aab8f82
CY
1490 err = -EIO;
1491 goto fail;
eb47b800 1492 }
6bacf52f 1493 if (unlikely(page->mapping != mapping)) {
afcb7ca0
JK
1494 f2fs_put_page(page, 1);
1495 goto repeat;
eb47b800
JK
1496 }
1497 }
393ff91f 1498out:
eb47b800
JK
1499 SetPageUptodate(page);
1500 clear_cold_data(page);
1501 return 0;
9ba69cf9 1502
8cdcb713
JK
1503put_fail:
1504 f2fs_put_dnode(&dn);
9ba69cf9
JK
1505unlock_fail:
1506 f2fs_unlock_op(sbi);
b3d208f9 1507 f2fs_put_page(page, 1);
3aab8f82
CY
1508fail:
1509 f2fs_write_failed(mapping, pos + len);
1510 return err;
eb47b800
JK
1511}
1512
a1dd3c13
JK
1513static int f2fs_write_end(struct file *file,
1514 struct address_space *mapping,
1515 loff_t pos, unsigned len, unsigned copied,
1516 struct page *page, void *fsdata)
1517{
1518 struct inode *inode = page->mapping->host;
1519
dfb2bf38
CY
1520 trace_f2fs_write_end(inode, pos, len, copied);
1521
34ba94ba 1522 set_page_dirty(page);
a1dd3c13
JK
1523
1524 if (pos + copied > i_size_read(inode)) {
1525 i_size_write(inode, pos + copied);
1526 mark_inode_dirty(inode);
1527 update_inode_page(inode);
1528 }
1529
75c3c8bc 1530 f2fs_put_page(page, 1);
a1dd3c13
JK
1531 return copied;
1532}
1533
944fcfc1 1534static int check_direct_IO(struct inode *inode, int rw,
5b46f25d 1535 struct iov_iter *iter, loff_t offset)
944fcfc1
JK
1536{
1537 unsigned blocksize_mask = inode->i_sb->s_blocksize - 1;
944fcfc1
JK
1538
1539 if (rw == READ)
1540 return 0;
1541
1542 if (offset & blocksize_mask)
1543 return -EINVAL;
1544
5b46f25d
AV
1545 if (iov_iter_alignment(iter) & blocksize_mask)
1546 return -EINVAL;
1547
944fcfc1
JK
1548 return 0;
1549}
1550
eb47b800 1551static ssize_t f2fs_direct_IO(int rw, struct kiocb *iocb,
d8d3d94b 1552 struct iov_iter *iter, loff_t offset)
eb47b800
JK
1553{
1554 struct file *file = iocb->ki_filp;
3aab8f82
CY
1555 struct address_space *mapping = file->f_mapping;
1556 struct inode *inode = mapping->host;
1557 size_t count = iov_iter_count(iter);
1558 int err;
944fcfc1 1559
b3d208f9
JK
1560 /* we don't need to use inline_data strictly */
1561 if (f2fs_has_inline_data(inode)) {
1562 err = f2fs_convert_inline_inode(inode);
1563 if (err)
1564 return err;
1565 }
9ffe0fb5 1566
5b46f25d 1567 if (check_direct_IO(inode, rw, iter, offset))
944fcfc1
JK
1568 return 0;
1569
70407fad
CY
1570 trace_f2fs_direct_IO_enter(inode, offset, count, rw);
1571
59b802e5
JK
1572 if (rw & WRITE)
1573 __allocate_data_blocks(inode, offset, count);
1574
3aab8f82
CY
1575 err = blockdev_direct_IO(rw, iocb, inode, iter, offset, get_data_block);
1576 if (err < 0 && (rw & WRITE))
1577 f2fs_write_failed(mapping, offset + count);
70407fad
CY
1578
1579 trace_f2fs_direct_IO_exit(inode, offset, count, rw, err);
1580
3aab8f82 1581 return err;
eb47b800
JK
1582}
1583
487261f3
CY
1584void f2fs_invalidate_page(struct page *page, unsigned int offset,
1585 unsigned int length)
eb47b800
JK
1586{
1587 struct inode *inode = page->mapping->host;
487261f3 1588 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
a7ffdbe2 1589
487261f3
CY
1590 if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
1591 (offset % PAGE_CACHE_SIZE || length != PAGE_CACHE_SIZE))
a7ffdbe2
JK
1592 return;
1593
487261f3
CY
1594 if (PageDirty(page)) {
1595 if (inode->i_ino == F2FS_META_INO(sbi))
1596 dec_page_count(sbi, F2FS_DIRTY_META);
1597 else if (inode->i_ino == F2FS_NODE_INO(sbi))
1598 dec_page_count(sbi, F2FS_DIRTY_NODES);
1599 else
1600 inode_dec_dirty_pages(inode);
1601 }
eb47b800
JK
1602 ClearPagePrivate(page);
1603}
1604
487261f3 1605int f2fs_release_page(struct page *page, gfp_t wait)
eb47b800 1606{
f68daeeb
JK
1607 /* If this is dirty page, keep PagePrivate */
1608 if (PageDirty(page))
1609 return 0;
1610
eb47b800 1611 ClearPagePrivate(page);
c3850aa1 1612 return 1;
eb47b800
JK
1613}
1614
1615static int f2fs_set_data_page_dirty(struct page *page)
1616{
1617 struct address_space *mapping = page->mapping;
1618 struct inode *inode = mapping->host;
1619
26c6b887
JK
1620 trace_f2fs_set_page_dirty(page, DATA);
1621
eb47b800 1622 SetPageUptodate(page);
34ba94ba 1623
1e84371f 1624 if (f2fs_is_atomic_file(inode)) {
34ba94ba
JK
1625 register_inmem_page(inode, page);
1626 return 1;
1627 }
1628
a18ff063
JK
1629 mark_inode_dirty(inode);
1630
eb47b800
JK
1631 if (!PageDirty(page)) {
1632 __set_page_dirty_nobuffers(page);
a7ffdbe2 1633 update_dirty_page(inode, page);
eb47b800
JK
1634 return 1;
1635 }
1636 return 0;
1637}
1638
c01e54b7
JK
1639static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
1640{
454ae7e5
CY
1641 struct inode *inode = mapping->host;
1642
b3d208f9
JK
1643 /* we don't need to use inline_data strictly */
1644 if (f2fs_has_inline_data(inode)) {
1645 int err = f2fs_convert_inline_inode(inode);
1646 if (err)
1647 return err;
1648 }
bfad7c2d 1649 return generic_block_bmap(mapping, block, get_data_block);
c01e54b7
JK
1650}
1651
429511cd
CY
1652void init_extent_cache_info(struct f2fs_sb_info *sbi)
1653{
1654 INIT_RADIX_TREE(&sbi->extent_tree_root, GFP_NOIO);
1655 init_rwsem(&sbi->extent_tree_lock);
1656 INIT_LIST_HEAD(&sbi->extent_list);
1657 spin_lock_init(&sbi->extent_lock);
1658 sbi->total_ext_tree = 0;
1659 atomic_set(&sbi->total_ext_node, 0);
1660}
1661
1662int __init create_extent_cache(void)
1663{
1664 extent_tree_slab = f2fs_kmem_cache_create("f2fs_extent_tree",
1665 sizeof(struct extent_tree));
1666 if (!extent_tree_slab)
1667 return -ENOMEM;
1668 extent_node_slab = f2fs_kmem_cache_create("f2fs_extent_node",
1669 sizeof(struct extent_node));
1670 if (!extent_node_slab) {
1671 kmem_cache_destroy(extent_tree_slab);
1672 return -ENOMEM;
1673 }
1674 return 0;
1675}
1676
1677void destroy_extent_cache(void)
1678{
1679 kmem_cache_destroy(extent_node_slab);
1680 kmem_cache_destroy(extent_tree_slab);
1681}
1682
eb47b800
JK
1683const struct address_space_operations f2fs_dblock_aops = {
1684 .readpage = f2fs_read_data_page,
1685 .readpages = f2fs_read_data_pages,
1686 .writepage = f2fs_write_data_page,
1687 .writepages = f2fs_write_data_pages,
1688 .write_begin = f2fs_write_begin,
a1dd3c13 1689 .write_end = f2fs_write_end,
eb47b800 1690 .set_page_dirty = f2fs_set_data_page_dirty,
487261f3
CY
1691 .invalidatepage = f2fs_invalidate_page,
1692 .releasepage = f2fs_release_page,
eb47b800 1693 .direct_IO = f2fs_direct_IO,
c01e54b7 1694 .bmap = f2fs_bmap,
eb47b800 1695};