f2fs: initialize extent tree with on-disk extent info of inode
[GitHub/exynos8895/android_kernel_samsung_universal8895.git] / fs / f2fs / data.c
CommitLineData
0a8165d7 1/*
eb47b800
JK
2 * fs/f2fs/data.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11#include <linux/fs.h>
12#include <linux/f2fs_fs.h>
13#include <linux/buffer_head.h>
14#include <linux/mpage.h>
a27bb332 15#include <linux/aio.h>
eb47b800
JK
16#include <linux/writeback.h>
17#include <linux/backing-dev.h>
18#include <linux/blkdev.h>
19#include <linux/bio.h>
690e4a3e 20#include <linux/prefetch.h>
eb47b800
JK
21
22#include "f2fs.h"
23#include "node.h"
24#include "segment.h"
db9f7c1a 25#include "trace.h"
848753aa 26#include <trace/events/f2fs.h>
eb47b800 27
429511cd
CY
28static struct kmem_cache *extent_tree_slab;
29static struct kmem_cache *extent_node_slab;
30
93dfe2ac
JK
31static void f2fs_read_end_io(struct bio *bio, int err)
32{
f568849e
LT
33 struct bio_vec *bvec;
34 int i;
93dfe2ac 35
f568849e 36 bio_for_each_segment_all(bvec, bio, i) {
93dfe2ac
JK
37 struct page *page = bvec->bv_page;
38
f568849e
LT
39 if (!err) {
40 SetPageUptodate(page);
41 } else {
93dfe2ac
JK
42 ClearPageUptodate(page);
43 SetPageError(page);
44 }
45 unlock_page(page);
f568849e 46 }
93dfe2ac
JK
47 bio_put(bio);
48}
49
50static void f2fs_write_end_io(struct bio *bio, int err)
51{
1b1f559f 52 struct f2fs_sb_info *sbi = bio->bi_private;
f568849e
LT
53 struct bio_vec *bvec;
54 int i;
93dfe2ac 55
f568849e 56 bio_for_each_segment_all(bvec, bio, i) {
93dfe2ac
JK
57 struct page *page = bvec->bv_page;
58
f568849e 59 if (unlikely(err)) {
cf779cab 60 set_page_dirty(page);
93dfe2ac 61 set_bit(AS_EIO, &page->mapping->flags);
744602cf 62 f2fs_stop_checkpoint(sbi);
93dfe2ac
JK
63 }
64 end_page_writeback(page);
65 dec_page_count(sbi, F2FS_WRITEBACK);
f568849e 66 }
93dfe2ac 67
93dfe2ac
JK
68 if (!get_pages(sbi, F2FS_WRITEBACK) &&
69 !list_empty(&sbi->cp_wait.task_list))
70 wake_up(&sbi->cp_wait);
71
72 bio_put(bio);
73}
74
940a6d34
GZ
75/*
76 * Low-level block read/write IO operations.
77 */
78static struct bio *__bio_alloc(struct f2fs_sb_info *sbi, block_t blk_addr,
79 int npages, bool is_read)
80{
81 struct bio *bio;
82
83 /* No failure on bio allocation */
84 bio = bio_alloc(GFP_NOIO, npages);
85
86 bio->bi_bdev = sbi->sb->s_bdev;
55cf9cb6 87 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
940a6d34 88 bio->bi_end_io = is_read ? f2fs_read_end_io : f2fs_write_end_io;
1b1f559f 89 bio->bi_private = sbi;
940a6d34
GZ
90
91 return bio;
92}
93
458e6197 94static void __submit_merged_bio(struct f2fs_bio_info *io)
93dfe2ac 95{
458e6197 96 struct f2fs_io_info *fio = &io->fio;
93dfe2ac
JK
97
98 if (!io->bio)
99 return;
100
6a8f8ca5 101 if (is_read_io(fio->rw))
2ace38e0 102 trace_f2fs_submit_read_bio(io->sbi->sb, fio, io->bio);
6a8f8ca5 103 else
2ace38e0 104 trace_f2fs_submit_write_bio(io->sbi->sb, fio, io->bio);
940a6d34 105
6a8f8ca5 106 submit_bio(fio->rw, io->bio);
93dfe2ac
JK
107 io->bio = NULL;
108}
109
110void f2fs_submit_merged_bio(struct f2fs_sb_info *sbi,
458e6197 111 enum page_type type, int rw)
93dfe2ac
JK
112{
113 enum page_type btype = PAGE_TYPE_OF_BIO(type);
114 struct f2fs_bio_info *io;
115
116 io = is_read_io(rw) ? &sbi->read_io : &sbi->write_io[btype];
117
df0f8dc0 118 down_write(&io->io_rwsem);
458e6197
JK
119
120 /* change META to META_FLUSH in the checkpoint procedure */
121 if (type >= META_FLUSH) {
122 io->fio.type = META_FLUSH;
0f7b2abd
JK
123 if (test_opt(sbi, NOBARRIER))
124 io->fio.rw = WRITE_FLUSH | REQ_META | REQ_PRIO;
125 else
126 io->fio.rw = WRITE_FLUSH_FUA | REQ_META | REQ_PRIO;
458e6197
JK
127 }
128 __submit_merged_bio(io);
df0f8dc0 129 up_write(&io->io_rwsem);
93dfe2ac
JK
130}
131
132/*
133 * Fill the locked page with data located in the block address.
134 * Return unlocked page.
135 */
136int f2fs_submit_page_bio(struct f2fs_sb_info *sbi, struct page *page,
cf04e8eb 137 struct f2fs_io_info *fio)
93dfe2ac 138{
93dfe2ac
JK
139 struct bio *bio;
140
2ace38e0 141 trace_f2fs_submit_page_bio(page, fio);
db9f7c1a 142 f2fs_trace_ios(page, fio, 0);
93dfe2ac
JK
143
144 /* Allocate a new bio */
cf04e8eb 145 bio = __bio_alloc(sbi, fio->blk_addr, 1, is_read_io(fio->rw));
93dfe2ac
JK
146
147 if (bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) < PAGE_CACHE_SIZE) {
148 bio_put(bio);
149 f2fs_put_page(page, 1);
150 return -EFAULT;
151 }
152
cf04e8eb 153 submit_bio(fio->rw, bio);
93dfe2ac
JK
154 return 0;
155}
156
157void f2fs_submit_page_mbio(struct f2fs_sb_info *sbi, struct page *page,
cf04e8eb 158 struct f2fs_io_info *fio)
93dfe2ac 159{
458e6197 160 enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
93dfe2ac 161 struct f2fs_bio_info *io;
940a6d34 162 bool is_read = is_read_io(fio->rw);
93dfe2ac 163
940a6d34 164 io = is_read ? &sbi->read_io : &sbi->write_io[btype];
93dfe2ac 165
cf04e8eb 166 verify_block_addr(sbi, fio->blk_addr);
93dfe2ac 167
df0f8dc0 168 down_write(&io->io_rwsem);
93dfe2ac 169
940a6d34 170 if (!is_read)
93dfe2ac
JK
171 inc_page_count(sbi, F2FS_WRITEBACK);
172
cf04e8eb 173 if (io->bio && (io->last_block_in_bio != fio->blk_addr - 1 ||
458e6197
JK
174 io->fio.rw != fio->rw))
175 __submit_merged_bio(io);
93dfe2ac
JK
176alloc_new:
177 if (io->bio == NULL) {
90a893c7 178 int bio_blocks = MAX_BIO_BLOCKS(sbi);
940a6d34 179
cf04e8eb 180 io->bio = __bio_alloc(sbi, fio->blk_addr, bio_blocks, is_read);
458e6197 181 io->fio = *fio;
93dfe2ac
JK
182 }
183
184 if (bio_add_page(io->bio, page, PAGE_CACHE_SIZE, 0) <
185 PAGE_CACHE_SIZE) {
458e6197 186 __submit_merged_bio(io);
93dfe2ac
JK
187 goto alloc_new;
188 }
189
cf04e8eb 190 io->last_block_in_bio = fio->blk_addr;
db9f7c1a 191 f2fs_trace_ios(page, fio, 0);
93dfe2ac 192
df0f8dc0 193 up_write(&io->io_rwsem);
2ace38e0 194 trace_f2fs_submit_page_mbio(page, fio);
93dfe2ac
JK
195}
196
0a8165d7 197/*
eb47b800
JK
198 * Lock ordering for the change of data block address:
199 * ->data_page
200 * ->node_page
201 * update block addresses in the node page
202 */
216a620a 203void set_data_blkaddr(struct dnode_of_data *dn)
eb47b800
JK
204{
205 struct f2fs_node *rn;
206 __le32 *addr_array;
207 struct page *node_page = dn->node_page;
208 unsigned int ofs_in_node = dn->ofs_in_node;
209
5514f0aa 210 f2fs_wait_on_page_writeback(node_page, NODE);
eb47b800 211
45590710 212 rn = F2FS_NODE(node_page);
eb47b800
JK
213
214 /* Get physical address of data block */
215 addr_array = blkaddr_in_node(rn);
e1509cf2 216 addr_array[ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
eb47b800
JK
217 set_page_dirty(node_page);
218}
219
220int reserve_new_block(struct dnode_of_data *dn)
221{
4081363f 222 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
eb47b800 223
6bacf52f 224 if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
eb47b800 225 return -EPERM;
cfb271d4 226 if (unlikely(!inc_valid_block_count(sbi, dn->inode, 1)))
eb47b800
JK
227 return -ENOSPC;
228
c01e2853
NJ
229 trace_f2fs_reserve_new_block(dn->inode, dn->nid, dn->ofs_in_node);
230
eb47b800 231 dn->data_blkaddr = NEW_ADDR;
216a620a 232 set_data_blkaddr(dn);
a18ff063 233 mark_inode_dirty(dn->inode);
eb47b800
JK
234 sync_inode_page(dn);
235 return 0;
236}
237
b600965c
HL
238int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
239{
240 bool need_put = dn->inode_page ? false : true;
241 int err;
242
243 err = get_dnode_of_data(dn, index, ALLOC_NODE);
244 if (err)
245 return err;
a8865372 246
b600965c
HL
247 if (dn->data_blkaddr == NULL_ADDR)
248 err = reserve_new_block(dn);
a8865372 249 if (err || need_put)
b600965c
HL
250 f2fs_put_dnode(dn);
251 return err;
252}
253
a2e7d1bf
CY
254static void f2fs_map_bh(struct super_block *sb, pgoff_t pgofs,
255 struct extent_info *ei, struct buffer_head *bh_result)
256{
257 unsigned int blkbits = sb->s_blocksize_bits;
258 size_t count;
259
3402e87c 260 clear_buffer_new(bh_result);
a2e7d1bf
CY
261 map_bh(bh_result, sb, ei->blk + pgofs - ei->fofs);
262 count = ei->fofs + ei->len - pgofs;
263 if (count < (UINT_MAX >> blkbits))
264 bh_result->b_size = (count << blkbits);
265 else
266 bh_result->b_size = UINT_MAX;
267}
268
7e4dde79
CY
269static bool lookup_extent_info(struct inode *inode, pgoff_t pgofs,
270 struct extent_info *ei)
eb47b800
JK
271{
272 struct f2fs_inode_info *fi = F2FS_I(inode);
eb47b800
JK
273 pgoff_t start_fofs, end_fofs;
274 block_t start_blkaddr;
275
0c872e2d 276 read_lock(&fi->ext_lock);
eb47b800 277 if (fi->ext.len == 0) {
0c872e2d 278 read_unlock(&fi->ext_lock);
7e4dde79 279 return false;
eb47b800
JK
280 }
281
dcdfff65
JK
282 stat_inc_total_hit(inode->i_sb);
283
eb47b800
JK
284 start_fofs = fi->ext.fofs;
285 end_fofs = fi->ext.fofs + fi->ext.len - 1;
4d0b0bd4 286 start_blkaddr = fi->ext.blk;
eb47b800
JK
287
288 if (pgofs >= start_fofs && pgofs <= end_fofs) {
a2e7d1bf 289 *ei = fi->ext;
dcdfff65 290 stat_inc_read_hit(inode->i_sb);
0c872e2d 291 read_unlock(&fi->ext_lock);
7e4dde79 292 return true;
eb47b800 293 }
0c872e2d 294 read_unlock(&fi->ext_lock);
7e4dde79 295 return false;
eb47b800
JK
296}
297
7e4dde79
CY
298static bool update_extent_info(struct inode *inode, pgoff_t fofs,
299 block_t blkaddr)
eb47b800 300{
7e4dde79
CY
301 struct f2fs_inode_info *fi = F2FS_I(inode);
302 pgoff_t start_fofs, end_fofs;
eb47b800 303 block_t start_blkaddr, end_blkaddr;
c11abd1a 304 int need_update = true;
eb47b800 305
0c872e2d 306 write_lock(&fi->ext_lock);
eb47b800
JK
307
308 start_fofs = fi->ext.fofs;
309 end_fofs = fi->ext.fofs + fi->ext.len - 1;
4d0b0bd4
CY
310 start_blkaddr = fi->ext.blk;
311 end_blkaddr = fi->ext.blk + fi->ext.len - 1;
eb47b800
JK
312
313 /* Drop and initialize the matched extent */
314 if (fi->ext.len == 1 && fofs == start_fofs)
315 fi->ext.len = 0;
316
317 /* Initial extent */
318 if (fi->ext.len == 0) {
7e4dde79 319 if (blkaddr != NULL_ADDR) {
eb47b800 320 fi->ext.fofs = fofs;
7e4dde79 321 fi->ext.blk = blkaddr;
eb47b800
JK
322 fi->ext.len = 1;
323 }
324 goto end_update;
325 }
326
6224da87 327 /* Front merge */
7e4dde79 328 if (fofs == start_fofs - 1 && blkaddr == start_blkaddr - 1) {
eb47b800 329 fi->ext.fofs--;
4d0b0bd4 330 fi->ext.blk--;
eb47b800
JK
331 fi->ext.len++;
332 goto end_update;
333 }
334
335 /* Back merge */
7e4dde79 336 if (fofs == end_fofs + 1 && blkaddr == end_blkaddr + 1) {
eb47b800
JK
337 fi->ext.len++;
338 goto end_update;
339 }
340
341 /* Split the existing extent */
342 if (fi->ext.len > 1 &&
343 fofs >= start_fofs && fofs <= end_fofs) {
344 if ((end_fofs - fofs) < (fi->ext.len >> 1)) {
345 fi->ext.len = fofs - start_fofs;
346 } else {
347 fi->ext.fofs = fofs + 1;
4d0b0bd4 348 fi->ext.blk = start_blkaddr + fofs - start_fofs + 1;
eb47b800
JK
349 fi->ext.len -= fofs - start_fofs + 1;
350 }
c11abd1a
JK
351 } else {
352 need_update = false;
eb47b800 353 }
eb47b800 354
c11abd1a
JK
355 /* Finally, if the extent is very fragmented, let's drop the cache. */
356 if (fi->ext.len < F2FS_MIN_EXTENT_LEN) {
357 fi->ext.len = 0;
358 set_inode_flag(fi, FI_NO_EXTENT);
359 need_update = true;
360 }
eb47b800 361end_update:
0c872e2d 362 write_unlock(&fi->ext_lock);
7e4dde79
CY
363 return need_update;
364}
365
429511cd
CY
366static struct extent_node *__attach_extent_node(struct f2fs_sb_info *sbi,
367 struct extent_tree *et, struct extent_info *ei,
368 struct rb_node *parent, struct rb_node **p)
369{
370 struct extent_node *en;
371
372 en = kmem_cache_alloc(extent_node_slab, GFP_ATOMIC);
373 if (!en)
374 return NULL;
375
376 en->ei = *ei;
377 INIT_LIST_HEAD(&en->list);
378
379 rb_link_node(&en->rb_node, parent, p);
380 rb_insert_color(&en->rb_node, &et->root);
381 et->count++;
382 atomic_inc(&sbi->total_ext_node);
383 return en;
384}
385
386static void __detach_extent_node(struct f2fs_sb_info *sbi,
387 struct extent_tree *et, struct extent_node *en)
388{
389 rb_erase(&en->rb_node, &et->root);
390 et->count--;
391 atomic_dec(&sbi->total_ext_node);
62c8af65
CY
392
393 if (et->cached_en == en)
394 et->cached_en = NULL;
429511cd
CY
395}
396
93dfc526
CY
397static struct extent_tree *__find_extent_tree(struct f2fs_sb_info *sbi,
398 nid_t ino)
399{
400 struct extent_tree *et;
401
402 down_read(&sbi->extent_tree_lock);
403 et = radix_tree_lookup(&sbi->extent_tree_root, ino);
404 if (!et) {
405 up_read(&sbi->extent_tree_lock);
406 return NULL;
407 }
408 atomic_inc(&et->refcount);
409 up_read(&sbi->extent_tree_lock);
410
411 return et;
412}
413
414static struct extent_tree *__grab_extent_tree(struct inode *inode)
415{
416 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
417 struct extent_tree *et;
418 nid_t ino = inode->i_ino;
419
420 down_write(&sbi->extent_tree_lock);
421 et = radix_tree_lookup(&sbi->extent_tree_root, ino);
422 if (!et) {
423 et = f2fs_kmem_cache_alloc(extent_tree_slab, GFP_NOFS);
424 f2fs_radix_tree_insert(&sbi->extent_tree_root, ino, et);
425 memset(et, 0, sizeof(struct extent_tree));
426 et->ino = ino;
427 et->root = RB_ROOT;
428 et->cached_en = NULL;
429 rwlock_init(&et->lock);
430 atomic_set(&et->refcount, 0);
431 et->count = 0;
432 sbi->total_ext_tree++;
433 }
434 atomic_inc(&et->refcount);
435 up_write(&sbi->extent_tree_lock);
436
437 return et;
438}
439
429511cd
CY
440static struct extent_node *__lookup_extent_tree(struct extent_tree *et,
441 unsigned int fofs)
442{
443 struct rb_node *node = et->root.rb_node;
444 struct extent_node *en;
445
62c8af65
CY
446 if (et->cached_en) {
447 struct extent_info *cei = &et->cached_en->ei;
448
449 if (cei->fofs <= fofs && cei->fofs + cei->len > fofs)
450 return et->cached_en;
451 }
452
429511cd
CY
453 while (node) {
454 en = rb_entry(node, struct extent_node, rb_node);
455
62c8af65 456 if (fofs < en->ei.fofs) {
429511cd 457 node = node->rb_left;
62c8af65 458 } else if (fofs >= en->ei.fofs + en->ei.len) {
429511cd 459 node = node->rb_right;
62c8af65
CY
460 } else {
461 et->cached_en = en;
429511cd 462 return en;
62c8af65 463 }
429511cd
CY
464 }
465 return NULL;
466}
467
468static struct extent_node *__try_back_merge(struct f2fs_sb_info *sbi,
469 struct extent_tree *et, struct extent_node *en)
470{
471 struct extent_node *prev;
472 struct rb_node *node;
473
474 node = rb_prev(&en->rb_node);
475 if (!node)
476 return NULL;
477
478 prev = rb_entry(node, struct extent_node, rb_node);
479 if (__is_back_mergeable(&en->ei, &prev->ei)) {
480 en->ei.fofs = prev->ei.fofs;
481 en->ei.blk = prev->ei.blk;
482 en->ei.len += prev->ei.len;
483 __detach_extent_node(sbi, et, prev);
484 return prev;
485 }
486 return NULL;
487}
488
489static struct extent_node *__try_front_merge(struct f2fs_sb_info *sbi,
490 struct extent_tree *et, struct extent_node *en)
491{
492 struct extent_node *next;
493 struct rb_node *node;
494
495 node = rb_next(&en->rb_node);
496 if (!node)
497 return NULL;
498
499 next = rb_entry(node, struct extent_node, rb_node);
500 if (__is_front_mergeable(&en->ei, &next->ei)) {
501 en->ei.len += next->ei.len;
502 __detach_extent_node(sbi, et, next);
503 return next;
504 }
505 return NULL;
506}
507
508static struct extent_node *__insert_extent_tree(struct f2fs_sb_info *sbi,
509 struct extent_tree *et, struct extent_info *ei,
510 struct extent_node **den)
511{
512 struct rb_node **p = &et->root.rb_node;
513 struct rb_node *parent = NULL;
514 struct extent_node *en;
515
516 while (*p) {
517 parent = *p;
518 en = rb_entry(parent, struct extent_node, rb_node);
519
520 if (ei->fofs < en->ei.fofs) {
521 if (__is_front_mergeable(ei, &en->ei)) {
522 f2fs_bug_on(sbi, !den);
523 en->ei.fofs = ei->fofs;
524 en->ei.blk = ei->blk;
525 en->ei.len += ei->len;
526 *den = __try_back_merge(sbi, et, en);
527 return en;
528 }
529 p = &(*p)->rb_left;
530 } else if (ei->fofs >= en->ei.fofs + en->ei.len) {
531 if (__is_back_mergeable(ei, &en->ei)) {
532 f2fs_bug_on(sbi, !den);
533 en->ei.len += ei->len;
534 *den = __try_front_merge(sbi, et, en);
535 return en;
536 }
537 p = &(*p)->rb_right;
538 } else {
539 f2fs_bug_on(sbi, 1);
540 }
541 }
542
543 return __attach_extent_node(sbi, et, ei, parent, p);
544}
545
546static unsigned int __free_extent_tree(struct f2fs_sb_info *sbi,
547 struct extent_tree *et, bool free_all)
548{
549 struct rb_node *node, *next;
550 struct extent_node *en;
551 unsigned int count = et->count;
552
553 node = rb_first(&et->root);
554 while (node) {
555 next = rb_next(node);
556 en = rb_entry(node, struct extent_node, rb_node);
557
558 if (free_all) {
559 spin_lock(&sbi->extent_lock);
560 if (!list_empty(&en->list))
561 list_del_init(&en->list);
562 spin_unlock(&sbi->extent_lock);
563 }
564
565 if (free_all || list_empty(&en->list)) {
566 __detach_extent_node(sbi, et, en);
567 kmem_cache_free(extent_node_slab, en);
568 }
569 node = next;
570 }
571
572 return count - et->count;
573}
574
028a41e8
CY
575static void f2fs_init_extent_tree(struct inode *inode,
576 struct f2fs_extent *i_ext)
577{
578 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
579 struct extent_tree *et;
580 struct extent_node *en;
581 struct extent_info ei;
582
583 if (le32_to_cpu(i_ext->len) < F2FS_MIN_EXTENT_LEN)
584 return;
585
586 et = __grab_extent_tree(inode);
587
588 write_lock(&et->lock);
589 if (et->count)
590 goto out;
591
592 set_extent_info(&ei, le32_to_cpu(i_ext->fofs),
593 le32_to_cpu(i_ext->blk), le32_to_cpu(i_ext->len));
594
595 en = __insert_extent_tree(sbi, et, &ei, NULL);
596 if (en) {
597 et->cached_en = en;
598
599 spin_lock(&sbi->extent_lock);
600 list_add_tail(&en->list, &sbi->extent_list);
601 spin_unlock(&sbi->extent_lock);
602 }
603out:
604 write_unlock(&et->lock);
605 atomic_dec(&et->refcount);
606}
607
429511cd
CY
608static bool f2fs_lookup_extent_tree(struct inode *inode, pgoff_t pgofs,
609 struct extent_info *ei)
610{
611 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
612 struct extent_tree *et;
613 struct extent_node *en;
614
1ec4610c
CY
615 trace_f2fs_lookup_extent_tree_start(inode, pgofs);
616
93dfc526
CY
617 et = __find_extent_tree(sbi, inode->i_ino);
618 if (!et)
429511cd 619 return false;
429511cd
CY
620
621 read_lock(&et->lock);
622 en = __lookup_extent_tree(et, pgofs);
623 if (en) {
624 *ei = en->ei;
625 spin_lock(&sbi->extent_lock);
626 if (!list_empty(&en->list))
627 list_move_tail(&en->list, &sbi->extent_list);
628 spin_unlock(&sbi->extent_lock);
629 stat_inc_read_hit(sbi->sb);
630 }
631 stat_inc_total_hit(sbi->sb);
632 read_unlock(&et->lock);
633
1ec4610c
CY
634 trace_f2fs_lookup_extent_tree_end(inode, pgofs, en);
635
429511cd
CY
636 atomic_dec(&et->refcount);
637 return en ? true : false;
638}
639
640static void f2fs_update_extent_tree(struct inode *inode, pgoff_t fofs,
641 block_t blkaddr)
642{
643 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
429511cd
CY
644 struct extent_tree *et;
645 struct extent_node *en = NULL, *en1 = NULL, *en2 = NULL, *en3 = NULL;
646 struct extent_node *den = NULL;
647 struct extent_info ei, dei;
648 unsigned int endofs;
649
1ec4610c
CY
650 trace_f2fs_update_extent_tree(inode, fofs, blkaddr);
651
93dfc526 652 et = __grab_extent_tree(inode);
429511cd
CY
653
654 write_lock(&et->lock);
655
656 /* 1. lookup and remove existing extent info in cache */
657 en = __lookup_extent_tree(et, fofs);
658 if (!en)
659 goto update_extent;
660
661 dei = en->ei;
662 __detach_extent_node(sbi, et, en);
663
664 /* 2. if extent can be split more, split and insert the left part */
665 if (dei.len > 1) {
666 /* insert left part of split extent into cache */
667 if (fofs - dei.fofs >= F2FS_MIN_EXTENT_LEN) {
668 set_extent_info(&ei, dei.fofs, dei.blk,
669 fofs - dei.fofs);
670 en1 = __insert_extent_tree(sbi, et, &ei, NULL);
671 }
672
673 /* insert right part of split extent into cache */
674 endofs = dei.fofs + dei.len - 1;
675 if (endofs - fofs >= F2FS_MIN_EXTENT_LEN) {
676 set_extent_info(&ei, fofs + 1,
677 fofs - dei.fofs + dei.blk, endofs - fofs);
678 en2 = __insert_extent_tree(sbi, et, &ei, NULL);
679 }
680 }
681
682update_extent:
683 /* 3. update extent in extent cache */
684 if (blkaddr) {
685 set_extent_info(&ei, fofs, blkaddr, 1);
686 en3 = __insert_extent_tree(sbi, et, &ei, &den);
687 }
688
689 /* 4. update in global extent list */
690 spin_lock(&sbi->extent_lock);
691 if (en && !list_empty(&en->list))
692 list_del(&en->list);
693 /*
694 * en1 and en2 split from en, they will become more and more smaller
695 * fragments after splitting several times. So if the length is smaller
696 * than F2FS_MIN_EXTENT_LEN, we will not add them into extent tree.
697 */
698 if (en1)
699 list_add_tail(&en1->list, &sbi->extent_list);
700 if (en2)
701 list_add_tail(&en2->list, &sbi->extent_list);
702 if (en3) {
703 if (list_empty(&en3->list))
704 list_add_tail(&en3->list, &sbi->extent_list);
705 else
706 list_move_tail(&en3->list, &sbi->extent_list);
707 }
708 if (den && !list_empty(&den->list))
709 list_del(&den->list);
710 spin_unlock(&sbi->extent_lock);
711
712 /* 5. release extent node */
713 if (en)
714 kmem_cache_free(extent_node_slab, en);
715 if (den)
716 kmem_cache_free(extent_node_slab, den);
717
718 write_unlock(&et->lock);
719 atomic_dec(&et->refcount);
720}
721
722void f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink)
723{
724 struct extent_tree *treevec[EXT_TREE_VEC_SIZE];
725 struct extent_node *en, *tmp;
726 unsigned long ino = F2FS_ROOT_INO(sbi);
727 struct radix_tree_iter iter;
728 void **slot;
729 unsigned int found;
1ec4610c 730 unsigned int node_cnt = 0, tree_cnt = 0;
429511cd 731
1dcc336b
CY
732 if (!test_opt(sbi, EXTENT_CACHE))
733 return;
734
429511cd
CY
735 if (available_free_memory(sbi, EXTENT_CACHE))
736 return;
737
738 spin_lock(&sbi->extent_lock);
739 list_for_each_entry_safe(en, tmp, &sbi->extent_list, list) {
740 if (!nr_shrink--)
741 break;
742 list_del_init(&en->list);
743 }
744 spin_unlock(&sbi->extent_lock);
745
746 down_read(&sbi->extent_tree_lock);
747 while ((found = radix_tree_gang_lookup(&sbi->extent_tree_root,
748 (void **)treevec, ino, EXT_TREE_VEC_SIZE))) {
749 unsigned i;
750
751 ino = treevec[found - 1]->ino + 1;
752 for (i = 0; i < found; i++) {
753 struct extent_tree *et = treevec[i];
754
755 atomic_inc(&et->refcount);
756 write_lock(&et->lock);
1ec4610c 757 node_cnt += __free_extent_tree(sbi, et, false);
429511cd
CY
758 write_unlock(&et->lock);
759 atomic_dec(&et->refcount);
760 }
761 }
762 up_read(&sbi->extent_tree_lock);
763
764 down_write(&sbi->extent_tree_lock);
765 radix_tree_for_each_slot(slot, &sbi->extent_tree_root, &iter,
766 F2FS_ROOT_INO(sbi)) {
767 struct extent_tree *et = (struct extent_tree *)*slot;
768
769 if (!atomic_read(&et->refcount) && !et->count) {
770 radix_tree_delete(&sbi->extent_tree_root, et->ino);
771 kmem_cache_free(extent_tree_slab, et);
772 sbi->total_ext_tree--;
1ec4610c 773 tree_cnt++;
429511cd
CY
774 }
775 }
776 up_write(&sbi->extent_tree_lock);
1ec4610c
CY
777
778 trace_f2fs_shrink_extent_tree(sbi, node_cnt, tree_cnt);
429511cd
CY
779}
780
781void f2fs_destroy_extent_tree(struct inode *inode)
782{
783 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
784 struct extent_tree *et;
1ec4610c 785 unsigned int node_cnt = 0;
429511cd 786
1dcc336b
CY
787 if (!test_opt(sbi, EXTENT_CACHE))
788 return;
789
93dfc526
CY
790 et = __find_extent_tree(sbi, inode->i_ino);
791 if (!et)
429511cd 792 goto out;
429511cd
CY
793
794 /* free all extent info belong to this extent tree */
795 write_lock(&et->lock);
1ec4610c 796 node_cnt = __free_extent_tree(sbi, et, true);
429511cd
CY
797 write_unlock(&et->lock);
798
799 atomic_dec(&et->refcount);
800
801 /* try to find and delete extent tree entry in radix tree */
802 down_write(&sbi->extent_tree_lock);
803 et = radix_tree_lookup(&sbi->extent_tree_root, inode->i_ino);
804 if (!et) {
805 up_write(&sbi->extent_tree_lock);
806 goto out;
807 }
808 f2fs_bug_on(sbi, atomic_read(&et->refcount) || et->count);
809 radix_tree_delete(&sbi->extent_tree_root, inode->i_ino);
810 kmem_cache_free(extent_tree_slab, et);
811 sbi->total_ext_tree--;
812 up_write(&sbi->extent_tree_lock);
813out:
1ec4610c 814 trace_f2fs_destroy_extent_tree(inode, node_cnt);
429511cd
CY
815 return;
816}
817
028a41e8
CY
818void f2fs_init_extent_cache(struct inode *inode, struct f2fs_extent *i_ext)
819{
820 if (test_opt(F2FS_I_SB(inode), EXTENT_CACHE))
821 f2fs_init_extent_tree(inode, i_ext);
822
823 write_lock(&F2FS_I(inode)->ext_lock);
824 get_extent_info(&F2FS_I(inode)->ext, *i_ext);
825 write_unlock(&F2FS_I(inode)->ext_lock);
826}
827
7e4dde79
CY
828static bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
829 struct extent_info *ei)
830{
91c5d9bc
CY
831 if (is_inode_flag_set(F2FS_I(inode), FI_NO_EXTENT))
832 return false;
833
1dcc336b
CY
834 if (test_opt(F2FS_I_SB(inode), EXTENT_CACHE))
835 return f2fs_lookup_extent_tree(inode, pgofs, ei);
836
7e4dde79
CY
837 return lookup_extent_info(inode, pgofs, ei);
838}
839
840void f2fs_update_extent_cache(struct dnode_of_data *dn)
841{
842 struct f2fs_inode_info *fi = F2FS_I(dn->inode);
843 pgoff_t fofs;
844
845 f2fs_bug_on(F2FS_I_SB(dn->inode), dn->data_blkaddr == NEW_ADDR);
846
91c5d9bc
CY
847 if (is_inode_flag_set(fi, FI_NO_EXTENT))
848 return;
849
7e4dde79
CY
850 fofs = start_bidx_of_node(ofs_of_node(dn->node_page), fi) +
851 dn->ofs_in_node;
852
1dcc336b
CY
853 if (test_opt(F2FS_I_SB(dn->inode), EXTENT_CACHE))
854 return f2fs_update_extent_tree(dn->inode, fofs,
855 dn->data_blkaddr);
856
7e4dde79 857 if (update_extent_info(dn->inode, fofs, dn->data_blkaddr))
c11abd1a 858 sync_inode_page(dn);
eb47b800
JK
859}
860
c718379b 861struct page *find_data_page(struct inode *inode, pgoff_t index, bool sync)
eb47b800 862{
eb47b800
JK
863 struct address_space *mapping = inode->i_mapping;
864 struct dnode_of_data dn;
865 struct page *page;
cb3bc9ee 866 struct extent_info ei;
eb47b800 867 int err;
cf04e8eb
JK
868 struct f2fs_io_info fio = {
869 .type = DATA,
870 .rw = sync ? READ_SYNC : READA,
871 };
eb47b800 872
b7f204cc
JK
873 /*
874 * If sync is false, it needs to check its block allocation.
875 * This is need and triggered by two flows:
876 * gc and truncate_partial_data_page.
877 */
878 if (!sync)
879 goto search;
880
eb47b800
JK
881 page = find_get_page(mapping, index);
882 if (page && PageUptodate(page))
883 return page;
884 f2fs_put_page(page, 0);
b7f204cc 885search:
cb3bc9ee
CY
886 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
887 dn.data_blkaddr = ei.blk + index - ei.fofs;
888 goto got_it;
889 }
890
eb47b800 891 set_new_dnode(&dn, inode, NULL, NULL, 0);
266e97a8 892 err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
eb47b800
JK
893 if (err)
894 return ERR_PTR(err);
895 f2fs_put_dnode(&dn);
896
897 if (dn.data_blkaddr == NULL_ADDR)
898 return ERR_PTR(-ENOENT);
899
900 /* By fallocate(), there is no cached page, but with NEW_ADDR */
6bacf52f 901 if (unlikely(dn.data_blkaddr == NEW_ADDR))
eb47b800
JK
902 return ERR_PTR(-EINVAL);
903
cb3bc9ee 904got_it:
9ac1349a 905 page = grab_cache_page(mapping, index);
eb47b800
JK
906 if (!page)
907 return ERR_PTR(-ENOMEM);
908
393ff91f
JK
909 if (PageUptodate(page)) {
910 unlock_page(page);
911 return page;
912 }
913
cf04e8eb
JK
914 fio.blk_addr = dn.data_blkaddr;
915 err = f2fs_submit_page_bio(F2FS_I_SB(inode), page, &fio);
1069bbf7
CY
916 if (err)
917 return ERR_PTR(err);
918
c718379b
JK
919 if (sync) {
920 wait_on_page_locked(page);
6bacf52f 921 if (unlikely(!PageUptodate(page))) {
c718379b
JK
922 f2fs_put_page(page, 0);
923 return ERR_PTR(-EIO);
924 }
eb47b800 925 }
eb47b800
JK
926 return page;
927}
928
0a8165d7 929/*
eb47b800
JK
930 * If it tries to access a hole, return an error.
931 * Because, the callers, functions in dir.c and GC, should be able to know
932 * whether this page exists or not.
933 */
934struct page *get_lock_data_page(struct inode *inode, pgoff_t index)
935{
eb47b800
JK
936 struct address_space *mapping = inode->i_mapping;
937 struct dnode_of_data dn;
938 struct page *page;
cb3bc9ee 939 struct extent_info ei;
eb47b800 940 int err;
cf04e8eb
JK
941 struct f2fs_io_info fio = {
942 .type = DATA,
943 .rw = READ_SYNC,
944 };
650495de 945repeat:
9ac1349a 946 page = grab_cache_page(mapping, index);
650495de
JK
947 if (!page)
948 return ERR_PTR(-ENOMEM);
949
cb3bc9ee
CY
950 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
951 dn.data_blkaddr = ei.blk + index - ei.fofs;
952 goto got_it;
953 }
954
eb47b800 955 set_new_dnode(&dn, inode, NULL, NULL, 0);
266e97a8 956 err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
650495de
JK
957 if (err) {
958 f2fs_put_page(page, 1);
eb47b800 959 return ERR_PTR(err);
650495de 960 }
eb47b800
JK
961 f2fs_put_dnode(&dn);
962
6bacf52f 963 if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
650495de 964 f2fs_put_page(page, 1);
eb47b800 965 return ERR_PTR(-ENOENT);
650495de 966 }
eb47b800 967
cb3bc9ee 968got_it:
eb47b800
JK
969 if (PageUptodate(page))
970 return page;
971
d59ff4df
JK
972 /*
973 * A new dentry page is allocated but not able to be written, since its
974 * new inode page couldn't be allocated due to -ENOSPC.
975 * In such the case, its blkaddr can be remained as NEW_ADDR.
976 * see, f2fs_add_link -> get_new_data_page -> init_inode_metadata.
977 */
978 if (dn.data_blkaddr == NEW_ADDR) {
979 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
980 SetPageUptodate(page);
981 return page;
982 }
eb47b800 983
cf04e8eb
JK
984 fio.blk_addr = dn.data_blkaddr;
985 err = f2fs_submit_page_bio(F2FS_I_SB(inode), page, &fio);
393ff91f 986 if (err)
eb47b800 987 return ERR_PTR(err);
393ff91f
JK
988
989 lock_page(page);
6bacf52f 990 if (unlikely(!PageUptodate(page))) {
393ff91f
JK
991 f2fs_put_page(page, 1);
992 return ERR_PTR(-EIO);
eb47b800 993 }
6bacf52f 994 if (unlikely(page->mapping != mapping)) {
afcb7ca0
JK
995 f2fs_put_page(page, 1);
996 goto repeat;
eb47b800
JK
997 }
998 return page;
999}
1000
0a8165d7 1001/*
eb47b800
JK
1002 * Caller ensures that this data page is never allocated.
1003 * A new zero-filled data page is allocated in the page cache.
39936837 1004 *
4f4124d0
CY
1005 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
1006 * f2fs_unlock_op().
a8865372 1007 * Note that, ipage is set only by make_empty_dir.
eb47b800 1008 */
64aa7ed9 1009struct page *get_new_data_page(struct inode *inode,
a8865372 1010 struct page *ipage, pgoff_t index, bool new_i_size)
eb47b800 1011{
eb47b800
JK
1012 struct address_space *mapping = inode->i_mapping;
1013 struct page *page;
1014 struct dnode_of_data dn;
1015 int err;
1016
a8865372 1017 set_new_dnode(&dn, inode, ipage, NULL, 0);
b600965c 1018 err = f2fs_reserve_block(&dn, index);
eb47b800
JK
1019 if (err)
1020 return ERR_PTR(err);
afcb7ca0 1021repeat:
eb47b800 1022 page = grab_cache_page(mapping, index);
a8865372
JK
1023 if (!page) {
1024 err = -ENOMEM;
1025 goto put_err;
1026 }
eb47b800
JK
1027
1028 if (PageUptodate(page))
1029 return page;
1030
1031 if (dn.data_blkaddr == NEW_ADDR) {
1032 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
393ff91f 1033 SetPageUptodate(page);
eb47b800 1034 } else {
cf04e8eb
JK
1035 struct f2fs_io_info fio = {
1036 .type = DATA,
1037 .rw = READ_SYNC,
1038 .blk_addr = dn.data_blkaddr,
1039 };
1040 err = f2fs_submit_page_bio(F2FS_I_SB(inode), page, &fio);
393ff91f 1041 if (err)
a8865372
JK
1042 goto put_err;
1043
393ff91f 1044 lock_page(page);
6bacf52f 1045 if (unlikely(!PageUptodate(page))) {
393ff91f 1046 f2fs_put_page(page, 1);
a8865372
JK
1047 err = -EIO;
1048 goto put_err;
eb47b800 1049 }
6bacf52f 1050 if (unlikely(page->mapping != mapping)) {
afcb7ca0
JK
1051 f2fs_put_page(page, 1);
1052 goto repeat;
eb47b800
JK
1053 }
1054 }
eb47b800
JK
1055
1056 if (new_i_size &&
1057 i_size_read(inode) < ((index + 1) << PAGE_CACHE_SHIFT)) {
1058 i_size_write(inode, ((index + 1) << PAGE_CACHE_SHIFT));
699489bb
JK
1059 /* Only the directory inode sets new_i_size */
1060 set_inode_flag(F2FS_I(inode), FI_UPDATE_DIR);
eb47b800
JK
1061 }
1062 return page;
a8865372
JK
1063
1064put_err:
1065 f2fs_put_dnode(&dn);
1066 return ERR_PTR(err);
eb47b800
JK
1067}
1068
bfad7c2d
JK
1069static int __allocate_data_block(struct dnode_of_data *dn)
1070{
4081363f 1071 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
976e4c50 1072 struct f2fs_inode_info *fi = F2FS_I(dn->inode);
bfad7c2d 1073 struct f2fs_summary sum;
bfad7c2d 1074 struct node_info ni;
38aa0889 1075 int seg = CURSEG_WARM_DATA;
976e4c50 1076 pgoff_t fofs;
bfad7c2d
JK
1077
1078 if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
1079 return -EPERM;
1080 if (unlikely(!inc_valid_block_count(sbi, dn->inode, 1)))
1081 return -ENOSPC;
1082
bfad7c2d
JK
1083 get_node_info(sbi, dn->nid, &ni);
1084 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1085
38aa0889
JK
1086 if (dn->ofs_in_node == 0 && dn->inode_page == dn->node_page)
1087 seg = CURSEG_DIRECT_IO;
1088
1089 allocate_data_block(sbi, NULL, NULL_ADDR, &dn->data_blkaddr, &sum, seg);
bfad7c2d
JK
1090
1091 /* direct IO doesn't use extent cache to maximize the performance */
216a620a 1092 set_data_blkaddr(dn);
bfad7c2d 1093
976e4c50
JK
1094 /* update i_size */
1095 fofs = start_bidx_of_node(ofs_of_node(dn->node_page), fi) +
1096 dn->ofs_in_node;
1097 if (i_size_read(dn->inode) < ((fofs + 1) << PAGE_CACHE_SHIFT))
1098 i_size_write(dn->inode, ((fofs + 1) << PAGE_CACHE_SHIFT));
1099
bfad7c2d
JK
1100 return 0;
1101}
1102
59b802e5
JK
1103static void __allocate_data_blocks(struct inode *inode, loff_t offset,
1104 size_t count)
1105{
1106 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1107 struct dnode_of_data dn;
1108 u64 start = F2FS_BYTES_TO_BLK(offset);
1109 u64 len = F2FS_BYTES_TO_BLK(count);
1110 bool allocated;
1111 u64 end_offset;
1112
1113 while (len) {
1114 f2fs_balance_fs(sbi);
1115 f2fs_lock_op(sbi);
1116
1117 /* When reading holes, we need its node page */
1118 set_new_dnode(&dn, inode, NULL, NULL, 0);
1119 if (get_dnode_of_data(&dn, start, ALLOC_NODE))
1120 goto out;
1121
1122 allocated = false;
1123 end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
1124
1125 while (dn.ofs_in_node < end_offset && len) {
d6d4f1cb
CY
1126 block_t blkaddr;
1127
1128 blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
1129 if (blkaddr == NULL_ADDR) {
59b802e5
JK
1130 if (__allocate_data_block(&dn))
1131 goto sync_out;
1132 allocated = true;
1133 }
1134 len--;
1135 start++;
1136 dn.ofs_in_node++;
1137 }
1138
1139 if (allocated)
1140 sync_inode_page(&dn);
1141
1142 f2fs_put_dnode(&dn);
1143 f2fs_unlock_op(sbi);
1144 }
1145 return;
1146
1147sync_out:
1148 if (allocated)
1149 sync_inode_page(&dn);
1150 f2fs_put_dnode(&dn);
1151out:
1152 f2fs_unlock_op(sbi);
1153 return;
1154}
1155
0a8165d7 1156/*
4f4124d0
CY
1157 * get_data_block() now supported readahead/bmap/rw direct_IO with mapped bh.
1158 * If original data blocks are allocated, then give them to blockdev.
1159 * Otherwise,
1160 * a. preallocate requested block addresses
1161 * b. do not use extent cache for better performance
1162 * c. give the block addresses to blockdev
eb47b800 1163 */
ccfb3000
JK
1164static int __get_data_block(struct inode *inode, sector_t iblock,
1165 struct buffer_head *bh_result, int create, bool fiemap)
eb47b800
JK
1166{
1167 unsigned int blkbits = inode->i_sb->s_blocksize_bits;
1168 unsigned maxblocks = bh_result->b_size >> blkbits;
1169 struct dnode_of_data dn;
bfad7c2d
JK
1170 int mode = create ? ALLOC_NODE : LOOKUP_NODE_RA;
1171 pgoff_t pgofs, end_offset;
1172 int err = 0, ofs = 1;
a2e7d1bf 1173 struct extent_info ei;
bfad7c2d 1174 bool allocated = false;
eb47b800
JK
1175
1176 /* Get the page offset from the block offset(iblock) */
1177 pgofs = (pgoff_t)(iblock >> (PAGE_CACHE_SHIFT - blkbits));
1178
7e4dde79 1179 if (f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
a2e7d1bf 1180 f2fs_map_bh(inode->i_sb, pgofs, &ei, bh_result);
bfad7c2d 1181 goto out;
a2e7d1bf 1182 }
bfad7c2d 1183
59b802e5 1184 if (create)
4081363f 1185 f2fs_lock_op(F2FS_I_SB(inode));
eb47b800
JK
1186
1187 /* When reading holes, we need its node page */
1188 set_new_dnode(&dn, inode, NULL, NULL, 0);
bfad7c2d 1189 err = get_dnode_of_data(&dn, pgofs, mode);
1ec79083 1190 if (err) {
bfad7c2d
JK
1191 if (err == -ENOENT)
1192 err = 0;
1193 goto unlock_out;
848753aa 1194 }
ccfb3000 1195 if (dn.data_blkaddr == NEW_ADDR && !fiemap)
1ec79083 1196 goto put_out;
eb47b800 1197
bfad7c2d 1198 if (dn.data_blkaddr != NULL_ADDR) {
3402e87c 1199 clear_buffer_new(bh_result);
bfad7c2d
JK
1200 map_bh(bh_result, inode->i_sb, dn.data_blkaddr);
1201 } else if (create) {
1202 err = __allocate_data_block(&dn);
1203 if (err)
1204 goto put_out;
1205 allocated = true;
da17eece 1206 set_buffer_new(bh_result);
bfad7c2d
JK
1207 map_bh(bh_result, inode->i_sb, dn.data_blkaddr);
1208 } else {
1209 goto put_out;
1210 }
1211
6403eb1f 1212 end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
bfad7c2d
JK
1213 bh_result->b_size = (((size_t)1) << blkbits);
1214 dn.ofs_in_node++;
1215 pgofs++;
1216
1217get_next:
1218 if (dn.ofs_in_node >= end_offset) {
1219 if (allocated)
1220 sync_inode_page(&dn);
1221 allocated = false;
1222 f2fs_put_dnode(&dn);
1223
1224 set_new_dnode(&dn, inode, NULL, NULL, 0);
1225 err = get_dnode_of_data(&dn, pgofs, mode);
1ec79083 1226 if (err) {
bfad7c2d
JK
1227 if (err == -ENOENT)
1228 err = 0;
1229 goto unlock_out;
1230 }
ccfb3000 1231 if (dn.data_blkaddr == NEW_ADDR && !fiemap)
1ec79083
JK
1232 goto put_out;
1233
6403eb1f 1234 end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
bfad7c2d 1235 }
eb47b800 1236
bfad7c2d
JK
1237 if (maxblocks > (bh_result->b_size >> blkbits)) {
1238 block_t blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
1239 if (blkaddr == NULL_ADDR && create) {
1240 err = __allocate_data_block(&dn);
1241 if (err)
1242 goto sync_out;
1243 allocated = true;
3402e87c 1244 set_buffer_new(bh_result);
bfad7c2d
JK
1245 blkaddr = dn.data_blkaddr;
1246 }
e1c42045 1247 /* Give more consecutive addresses for the readahead */
bfad7c2d
JK
1248 if (blkaddr == (bh_result->b_blocknr + ofs)) {
1249 ofs++;
1250 dn.ofs_in_node++;
1251 pgofs++;
1252 bh_result->b_size += (((size_t)1) << blkbits);
1253 goto get_next;
1254 }
eb47b800 1255 }
bfad7c2d
JK
1256sync_out:
1257 if (allocated)
1258 sync_inode_page(&dn);
1259put_out:
eb47b800 1260 f2fs_put_dnode(&dn);
bfad7c2d
JK
1261unlock_out:
1262 if (create)
4081363f 1263 f2fs_unlock_op(F2FS_I_SB(inode));
bfad7c2d
JK
1264out:
1265 trace_f2fs_get_data_block(inode, iblock, bh_result, err);
1266 return err;
eb47b800
JK
1267}
1268
ccfb3000
JK
1269static int get_data_block(struct inode *inode, sector_t iblock,
1270 struct buffer_head *bh_result, int create)
1271{
1272 return __get_data_block(inode, iblock, bh_result, create, false);
1273}
1274
1275static int get_data_block_fiemap(struct inode *inode, sector_t iblock,
1276 struct buffer_head *bh_result, int create)
1277{
1278 return __get_data_block(inode, iblock, bh_result, create, true);
1279}
1280
9ab70134
JK
1281int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1282 u64 start, u64 len)
1283{
ccfb3000
JK
1284 return generic_block_fiemap(inode, fieinfo,
1285 start, len, get_data_block_fiemap);
9ab70134
JK
1286}
1287
eb47b800
JK
1288static int f2fs_read_data_page(struct file *file, struct page *page)
1289{
9ffe0fb5 1290 struct inode *inode = page->mapping->host;
b3d208f9 1291 int ret = -EAGAIN;
9ffe0fb5 1292
c20e89cd
CY
1293 trace_f2fs_readpage(page, DATA);
1294
e1c42045 1295 /* If the file has inline data, try to read it directly */
9ffe0fb5
HL
1296 if (f2fs_has_inline_data(inode))
1297 ret = f2fs_read_inline_data(inode, page);
b3d208f9 1298 if (ret == -EAGAIN)
9ffe0fb5
HL
1299 ret = mpage_readpage(page, get_data_block);
1300
1301 return ret;
eb47b800
JK
1302}
1303
1304static int f2fs_read_data_pages(struct file *file,
1305 struct address_space *mapping,
1306 struct list_head *pages, unsigned nr_pages)
1307{
9ffe0fb5
HL
1308 struct inode *inode = file->f_mapping->host;
1309
1310 /* If the file has inline data, skip readpages */
1311 if (f2fs_has_inline_data(inode))
1312 return 0;
1313
bfad7c2d 1314 return mpage_readpages(mapping, pages, nr_pages, get_data_block);
eb47b800
JK
1315}
1316
458e6197 1317int do_write_data_page(struct page *page, struct f2fs_io_info *fio)
eb47b800
JK
1318{
1319 struct inode *inode = page->mapping->host;
eb47b800
JK
1320 struct dnode_of_data dn;
1321 int err = 0;
1322
1323 set_new_dnode(&dn, inode, NULL, NULL, 0);
266e97a8 1324 err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
eb47b800
JK
1325 if (err)
1326 return err;
1327
cf04e8eb 1328 fio->blk_addr = dn.data_blkaddr;
eb47b800
JK
1329
1330 /* This page is already truncated */
2bca1e23
JK
1331 if (fio->blk_addr == NULL_ADDR) {
1332 ClearPageUptodate(page);
eb47b800 1333 goto out_writepage;
2bca1e23 1334 }
eb47b800
JK
1335
1336 set_page_writeback(page);
1337
1338 /*
1339 * If current allocation needs SSR,
1340 * it had better in-place writes for updated data.
1341 */
cf04e8eb 1342 if (unlikely(fio->blk_addr != NEW_ADDR &&
b25958b6
HL
1343 !is_cold_data(page) &&
1344 need_inplace_update(inode))) {
cf04e8eb 1345 rewrite_data_page(page, fio);
fff04f90 1346 set_inode_flag(F2FS_I(inode), FI_UPDATE_WRITE);
8ce67cb0 1347 trace_f2fs_do_write_data_page(page, IPU);
eb47b800 1348 } else {
cf04e8eb 1349 write_data_page(page, &dn, fio);
216a620a 1350 set_data_blkaddr(&dn);
7e4dde79 1351 f2fs_update_extent_cache(&dn);
8ce67cb0 1352 trace_f2fs_do_write_data_page(page, OPU);
fff04f90 1353 set_inode_flag(F2FS_I(inode), FI_APPEND_WRITE);
3c6c2beb
JK
1354 if (page->index == 0)
1355 set_inode_flag(F2FS_I(inode), FI_FIRST_BLOCK_WRITTEN);
eb47b800
JK
1356 }
1357out_writepage:
1358 f2fs_put_dnode(&dn);
1359 return err;
1360}
1361
1362static int f2fs_write_data_page(struct page *page,
1363 struct writeback_control *wbc)
1364{
1365 struct inode *inode = page->mapping->host;
4081363f 1366 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
eb47b800
JK
1367 loff_t i_size = i_size_read(inode);
1368 const pgoff_t end_index = ((unsigned long long) i_size)
1369 >> PAGE_CACHE_SHIFT;
9ffe0fb5 1370 unsigned offset = 0;
39936837 1371 bool need_balance_fs = false;
eb47b800 1372 int err = 0;
458e6197
JK
1373 struct f2fs_io_info fio = {
1374 .type = DATA,
6c311ec6 1375 .rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE,
458e6197 1376 };
eb47b800 1377
ecda0de3
CY
1378 trace_f2fs_writepage(page, DATA);
1379
eb47b800 1380 if (page->index < end_index)
39936837 1381 goto write;
eb47b800
JK
1382
1383 /*
1384 * If the offset is out-of-range of file size,
1385 * this page does not have to be written to disk.
1386 */
1387 offset = i_size & (PAGE_CACHE_SIZE - 1);
76f60268 1388 if ((page->index >= end_index + 1) || !offset)
39936837 1389 goto out;
eb47b800
JK
1390
1391 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
39936837 1392write:
caf0047e 1393 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
eb47b800 1394 goto redirty_out;
1e84371f
JK
1395 if (f2fs_is_drop_cache(inode))
1396 goto out;
1397 if (f2fs_is_volatile_file(inode) && !wbc->for_reclaim &&
1398 available_free_memory(sbi, BASE_CHECK))
1399 goto redirty_out;
eb47b800 1400
39936837 1401 /* Dentry blocks are controlled by checkpoint */
eb47b800 1402 if (S_ISDIR(inode->i_mode)) {
cf779cab
JK
1403 if (unlikely(f2fs_cp_error(sbi)))
1404 goto redirty_out;
458e6197 1405 err = do_write_data_page(page, &fio);
8618b881
JK
1406 goto done;
1407 }
9ffe0fb5 1408
cf779cab
JK
1409 /* we should bypass data pages to proceed the kworkder jobs */
1410 if (unlikely(f2fs_cp_error(sbi))) {
1411 SetPageError(page);
a7ffdbe2 1412 goto out;
cf779cab
JK
1413 }
1414
8618b881 1415 if (!wbc->for_reclaim)
39936837 1416 need_balance_fs = true;
8618b881 1417 else if (has_not_enough_free_secs(sbi, 0))
39936837 1418 goto redirty_out;
eb47b800 1419
b3d208f9 1420 err = -EAGAIN;
8618b881 1421 f2fs_lock_op(sbi);
b3d208f9
JK
1422 if (f2fs_has_inline_data(inode))
1423 err = f2fs_write_inline_data(inode, page);
1424 if (err == -EAGAIN)
8618b881
JK
1425 err = do_write_data_page(page, &fio);
1426 f2fs_unlock_op(sbi);
1427done:
1428 if (err && err != -ENOENT)
1429 goto redirty_out;
eb47b800 1430
eb47b800 1431 clear_cold_data(page);
39936837 1432out:
a7ffdbe2 1433 inode_dec_dirty_pages(inode);
2bca1e23
JK
1434 if (err)
1435 ClearPageUptodate(page);
eb47b800 1436 unlock_page(page);
39936837 1437 if (need_balance_fs)
eb47b800 1438 f2fs_balance_fs(sbi);
2aea39ec
JK
1439 if (wbc->for_reclaim)
1440 f2fs_submit_merged_bio(sbi, DATA, WRITE);
eb47b800
JK
1441 return 0;
1442
eb47b800 1443redirty_out:
76f60268 1444 redirty_page_for_writepage(wbc, page);
8618b881 1445 return AOP_WRITEPAGE_ACTIVATE;
eb47b800
JK
1446}
1447
fa9150a8
NJ
1448static int __f2fs_writepage(struct page *page, struct writeback_control *wbc,
1449 void *data)
1450{
1451 struct address_space *mapping = data;
1452 int ret = mapping->a_ops->writepage(page, wbc);
1453 mapping_set_error(mapping, ret);
1454 return ret;
1455}
1456
25ca923b 1457static int f2fs_write_data_pages(struct address_space *mapping,
eb47b800
JK
1458 struct writeback_control *wbc)
1459{
1460 struct inode *inode = mapping->host;
4081363f 1461 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
eb47b800 1462 int ret;
50c8cdb3 1463 long diff;
eb47b800 1464
e5748434
CY
1465 trace_f2fs_writepages(mapping->host, wbc, DATA);
1466
cfb185a1 1467 /* deal with chardevs and other special file */
1468 if (!mapping->a_ops->writepage)
1469 return 0;
1470
87d6f890 1471 if (S_ISDIR(inode->i_mode) && wbc->sync_mode == WB_SYNC_NONE &&
a7ffdbe2 1472 get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
6fb03f3a 1473 available_free_memory(sbi, DIRTY_DENTS))
d3baf95d 1474 goto skip_write;
87d6f890 1475
d5669f7b
JK
1476 /* during POR, we don't need to trigger writepage at all. */
1477 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1478 goto skip_write;
1479
50c8cdb3 1480 diff = nr_pages_to_write(sbi, DATA, wbc);
eb47b800 1481
fa9150a8 1482 ret = write_cache_pages(mapping, wbc, __f2fs_writepage, mapping);
458e6197
JK
1483
1484 f2fs_submit_merged_bio(sbi, DATA, WRITE);
eb47b800
JK
1485
1486 remove_dirty_dir_inode(inode);
1487
50c8cdb3 1488 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
eb47b800 1489 return ret;
d3baf95d
JK
1490
1491skip_write:
a7ffdbe2 1492 wbc->pages_skipped += get_dirty_pages(inode);
d3baf95d 1493 return 0;
eb47b800
JK
1494}
1495
3aab8f82
CY
1496static void f2fs_write_failed(struct address_space *mapping, loff_t to)
1497{
1498 struct inode *inode = mapping->host;
1499
1500 if (to > inode->i_size) {
1501 truncate_pagecache(inode, inode->i_size);
764aa3e9 1502 truncate_blocks(inode, inode->i_size, true);
3aab8f82
CY
1503 }
1504}
1505
eb47b800
JK
1506static int f2fs_write_begin(struct file *file, struct address_space *mapping,
1507 loff_t pos, unsigned len, unsigned flags,
1508 struct page **pagep, void **fsdata)
1509{
1510 struct inode *inode = mapping->host;
4081363f 1511 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
9ba69cf9 1512 struct page *page, *ipage;
eb47b800
JK
1513 pgoff_t index = ((unsigned long long) pos) >> PAGE_CACHE_SHIFT;
1514 struct dnode_of_data dn;
1515 int err = 0;
1516
62aed044
CY
1517 trace_f2fs_write_begin(inode, pos, len, flags);
1518
eb47b800 1519 f2fs_balance_fs(sbi);
5f727395
JK
1520
1521 /*
1522 * We should check this at this moment to avoid deadlock on inode page
1523 * and #0 page. The locking rule for inline_data conversion should be:
1524 * lock_page(page #0) -> lock_page(inode_page)
1525 */
1526 if (index != 0) {
1527 err = f2fs_convert_inline_inode(inode);
1528 if (err)
1529 goto fail;
1530 }
afcb7ca0 1531repeat:
eb47b800 1532 page = grab_cache_page_write_begin(mapping, index, flags);
3aab8f82
CY
1533 if (!page) {
1534 err = -ENOMEM;
1535 goto fail;
1536 }
d5f66990 1537
eb47b800
JK
1538 *pagep = page;
1539
e479556b 1540 f2fs_lock_op(sbi);
9ba69cf9
JK
1541
1542 /* check inline_data */
1543 ipage = get_node_page(sbi, inode->i_ino);
cd34e296
CY
1544 if (IS_ERR(ipage)) {
1545 err = PTR_ERR(ipage);
9ba69cf9 1546 goto unlock_fail;
cd34e296 1547 }
9ba69cf9 1548
b3d208f9
JK
1549 set_new_dnode(&dn, inode, ipage, ipage, 0);
1550
9ba69cf9 1551 if (f2fs_has_inline_data(inode)) {
b3d208f9
JK
1552 if (pos + len <= MAX_INLINE_DATA) {
1553 read_inline_data(page, ipage);
1554 set_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
1555 sync_inode_page(&dn);
1556 goto put_next;
b3d208f9 1557 }
5f727395
JK
1558 err = f2fs_convert_inline_page(&dn, page);
1559 if (err)
1560 goto put_fail;
b600965c 1561 }
9ba69cf9
JK
1562 err = f2fs_reserve_block(&dn, index);
1563 if (err)
8cdcb713 1564 goto put_fail;
b3d208f9 1565put_next:
9ba69cf9
JK
1566 f2fs_put_dnode(&dn);
1567 f2fs_unlock_op(sbi);
1568
eb47b800
JK
1569 if ((len == PAGE_CACHE_SIZE) || PageUptodate(page))
1570 return 0;
1571
b3d208f9
JK
1572 f2fs_wait_on_page_writeback(page, DATA);
1573
eb47b800
JK
1574 if ((pos & PAGE_CACHE_MASK) >= i_size_read(inode)) {
1575 unsigned start = pos & (PAGE_CACHE_SIZE - 1);
1576 unsigned end = start + len;
1577
1578 /* Reading beyond i_size is simple: memset to zero */
1579 zero_user_segments(page, 0, start, end, PAGE_CACHE_SIZE);
393ff91f 1580 goto out;
eb47b800
JK
1581 }
1582
b3d208f9 1583 if (dn.data_blkaddr == NEW_ADDR) {
eb47b800
JK
1584 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
1585 } else {
cf04e8eb
JK
1586 struct f2fs_io_info fio = {
1587 .type = DATA,
1588 .rw = READ_SYNC,
1589 .blk_addr = dn.data_blkaddr,
1590 };
1591 err = f2fs_submit_page_bio(sbi, page, &fio);
9234f319
JK
1592 if (err)
1593 goto fail;
d54c795b 1594
393ff91f 1595 lock_page(page);
6bacf52f 1596 if (unlikely(!PageUptodate(page))) {
393ff91f 1597 f2fs_put_page(page, 1);
3aab8f82
CY
1598 err = -EIO;
1599 goto fail;
eb47b800 1600 }
6bacf52f 1601 if (unlikely(page->mapping != mapping)) {
afcb7ca0
JK
1602 f2fs_put_page(page, 1);
1603 goto repeat;
eb47b800
JK
1604 }
1605 }
393ff91f 1606out:
eb47b800
JK
1607 SetPageUptodate(page);
1608 clear_cold_data(page);
1609 return 0;
9ba69cf9 1610
8cdcb713
JK
1611put_fail:
1612 f2fs_put_dnode(&dn);
9ba69cf9
JK
1613unlock_fail:
1614 f2fs_unlock_op(sbi);
b3d208f9 1615 f2fs_put_page(page, 1);
3aab8f82
CY
1616fail:
1617 f2fs_write_failed(mapping, pos + len);
1618 return err;
eb47b800
JK
1619}
1620
a1dd3c13
JK
1621static int f2fs_write_end(struct file *file,
1622 struct address_space *mapping,
1623 loff_t pos, unsigned len, unsigned copied,
1624 struct page *page, void *fsdata)
1625{
1626 struct inode *inode = page->mapping->host;
1627
dfb2bf38
CY
1628 trace_f2fs_write_end(inode, pos, len, copied);
1629
34ba94ba 1630 set_page_dirty(page);
a1dd3c13
JK
1631
1632 if (pos + copied > i_size_read(inode)) {
1633 i_size_write(inode, pos + copied);
1634 mark_inode_dirty(inode);
1635 update_inode_page(inode);
1636 }
1637
75c3c8bc 1638 f2fs_put_page(page, 1);
a1dd3c13
JK
1639 return copied;
1640}
1641
944fcfc1 1642static int check_direct_IO(struct inode *inode, int rw,
5b46f25d 1643 struct iov_iter *iter, loff_t offset)
944fcfc1
JK
1644{
1645 unsigned blocksize_mask = inode->i_sb->s_blocksize - 1;
944fcfc1
JK
1646
1647 if (rw == READ)
1648 return 0;
1649
1650 if (offset & blocksize_mask)
1651 return -EINVAL;
1652
5b46f25d
AV
1653 if (iov_iter_alignment(iter) & blocksize_mask)
1654 return -EINVAL;
1655
944fcfc1
JK
1656 return 0;
1657}
1658
eb47b800 1659static ssize_t f2fs_direct_IO(int rw, struct kiocb *iocb,
d8d3d94b 1660 struct iov_iter *iter, loff_t offset)
eb47b800
JK
1661{
1662 struct file *file = iocb->ki_filp;
3aab8f82
CY
1663 struct address_space *mapping = file->f_mapping;
1664 struct inode *inode = mapping->host;
1665 size_t count = iov_iter_count(iter);
1666 int err;
944fcfc1 1667
b3d208f9
JK
1668 /* we don't need to use inline_data strictly */
1669 if (f2fs_has_inline_data(inode)) {
1670 err = f2fs_convert_inline_inode(inode);
1671 if (err)
1672 return err;
1673 }
9ffe0fb5 1674
5b46f25d 1675 if (check_direct_IO(inode, rw, iter, offset))
944fcfc1
JK
1676 return 0;
1677
70407fad
CY
1678 trace_f2fs_direct_IO_enter(inode, offset, count, rw);
1679
59b802e5
JK
1680 if (rw & WRITE)
1681 __allocate_data_blocks(inode, offset, count);
1682
3aab8f82
CY
1683 err = blockdev_direct_IO(rw, iocb, inode, iter, offset, get_data_block);
1684 if (err < 0 && (rw & WRITE))
1685 f2fs_write_failed(mapping, offset + count);
70407fad
CY
1686
1687 trace_f2fs_direct_IO_exit(inode, offset, count, rw, err);
1688
3aab8f82 1689 return err;
eb47b800
JK
1690}
1691
487261f3
CY
1692void f2fs_invalidate_page(struct page *page, unsigned int offset,
1693 unsigned int length)
eb47b800
JK
1694{
1695 struct inode *inode = page->mapping->host;
487261f3 1696 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
a7ffdbe2 1697
487261f3
CY
1698 if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
1699 (offset % PAGE_CACHE_SIZE || length != PAGE_CACHE_SIZE))
a7ffdbe2
JK
1700 return;
1701
487261f3
CY
1702 if (PageDirty(page)) {
1703 if (inode->i_ino == F2FS_META_INO(sbi))
1704 dec_page_count(sbi, F2FS_DIRTY_META);
1705 else if (inode->i_ino == F2FS_NODE_INO(sbi))
1706 dec_page_count(sbi, F2FS_DIRTY_NODES);
1707 else
1708 inode_dec_dirty_pages(inode);
1709 }
eb47b800
JK
1710 ClearPagePrivate(page);
1711}
1712
487261f3 1713int f2fs_release_page(struct page *page, gfp_t wait)
eb47b800 1714{
f68daeeb
JK
1715 /* If this is dirty page, keep PagePrivate */
1716 if (PageDirty(page))
1717 return 0;
1718
eb47b800 1719 ClearPagePrivate(page);
c3850aa1 1720 return 1;
eb47b800
JK
1721}
1722
1723static int f2fs_set_data_page_dirty(struct page *page)
1724{
1725 struct address_space *mapping = page->mapping;
1726 struct inode *inode = mapping->host;
1727
26c6b887
JK
1728 trace_f2fs_set_page_dirty(page, DATA);
1729
eb47b800 1730 SetPageUptodate(page);
34ba94ba 1731
1e84371f 1732 if (f2fs_is_atomic_file(inode)) {
34ba94ba
JK
1733 register_inmem_page(inode, page);
1734 return 1;
1735 }
1736
a18ff063
JK
1737 mark_inode_dirty(inode);
1738
eb47b800
JK
1739 if (!PageDirty(page)) {
1740 __set_page_dirty_nobuffers(page);
a7ffdbe2 1741 update_dirty_page(inode, page);
eb47b800
JK
1742 return 1;
1743 }
1744 return 0;
1745}
1746
c01e54b7
JK
1747static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
1748{
454ae7e5
CY
1749 struct inode *inode = mapping->host;
1750
b3d208f9
JK
1751 /* we don't need to use inline_data strictly */
1752 if (f2fs_has_inline_data(inode)) {
1753 int err = f2fs_convert_inline_inode(inode);
1754 if (err)
1755 return err;
1756 }
bfad7c2d 1757 return generic_block_bmap(mapping, block, get_data_block);
c01e54b7
JK
1758}
1759
429511cd
CY
1760void init_extent_cache_info(struct f2fs_sb_info *sbi)
1761{
1762 INIT_RADIX_TREE(&sbi->extent_tree_root, GFP_NOIO);
1763 init_rwsem(&sbi->extent_tree_lock);
1764 INIT_LIST_HEAD(&sbi->extent_list);
1765 spin_lock_init(&sbi->extent_lock);
1766 sbi->total_ext_tree = 0;
1767 atomic_set(&sbi->total_ext_node, 0);
1768}
1769
1770int __init create_extent_cache(void)
1771{
1772 extent_tree_slab = f2fs_kmem_cache_create("f2fs_extent_tree",
1773 sizeof(struct extent_tree));
1774 if (!extent_tree_slab)
1775 return -ENOMEM;
1776 extent_node_slab = f2fs_kmem_cache_create("f2fs_extent_node",
1777 sizeof(struct extent_node));
1778 if (!extent_node_slab) {
1779 kmem_cache_destroy(extent_tree_slab);
1780 return -ENOMEM;
1781 }
1782 return 0;
1783}
1784
1785void destroy_extent_cache(void)
1786{
1787 kmem_cache_destroy(extent_node_slab);
1788 kmem_cache_destroy(extent_tree_slab);
1789}
1790
eb47b800
JK
1791const struct address_space_operations f2fs_dblock_aops = {
1792 .readpage = f2fs_read_data_page,
1793 .readpages = f2fs_read_data_pages,
1794 .writepage = f2fs_write_data_page,
1795 .writepages = f2fs_write_data_pages,
1796 .write_begin = f2fs_write_begin,
a1dd3c13 1797 .write_end = f2fs_write_end,
eb47b800 1798 .set_page_dirty = f2fs_set_data_page_dirty,
487261f3
CY
1799 .invalidatepage = f2fs_invalidate_page,
1800 .releasepage = f2fs_release_page,
eb47b800 1801 .direct_IO = f2fs_direct_IO,
c01e54b7 1802 .bmap = f2fs_bmap,
eb47b800 1803};