f2fs: remove unneeded code in punch_hole
[GitHub/exynos8895/android_kernel_samsung_universal8895.git] / fs / f2fs / checkpoint.c
CommitLineData
0a8165d7 1/*
127e670a
JK
2 * fs/f2fs/checkpoint.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11#include <linux/fs.h>
12#include <linux/bio.h>
13#include <linux/mpage.h>
14#include <linux/writeback.h>
15#include <linux/blkdev.h>
16#include <linux/f2fs_fs.h>
17#include <linux/pagevec.h>
18#include <linux/swap.h>
19
20#include "f2fs.h"
21#include "node.h"
22#include "segment.h"
2af4bd6c 23#include <trace/events/f2fs.h>
127e670a
JK
24
25static struct kmem_cache *orphan_entry_slab;
26static struct kmem_cache *inode_entry_slab;
27
0a8165d7 28/*
127e670a
JK
29 * We guarantee no failure on the returned page.
30 */
31struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
32{
33 struct address_space *mapping = sbi->meta_inode->i_mapping;
34 struct page *page = NULL;
35repeat:
36 page = grab_cache_page(mapping, index);
37 if (!page) {
38 cond_resched();
39 goto repeat;
40 }
41
42 /* We wait writeback only inside grab_meta_page() */
43 wait_on_page_writeback(page);
44 SetPageUptodate(page);
45 return page;
46}
47
0a8165d7 48/*
127e670a
JK
49 * We guarantee no failure on the returned page.
50 */
51struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
52{
53 struct address_space *mapping = sbi->meta_inode->i_mapping;
54 struct page *page;
55repeat:
56 page = grab_cache_page(mapping, index);
57 if (!page) {
58 cond_resched();
59 goto repeat;
60 }
393ff91f
JK
61 if (PageUptodate(page))
62 goto out;
63
03232305 64 if (f2fs_readpage(sbi, page, index, READ_SYNC | REQ_META | REQ_PRIO))
127e670a 65 goto repeat;
127e670a 66
393ff91f 67 lock_page(page);
afcb7ca0
JK
68 if (page->mapping != mapping) {
69 f2fs_put_page(page, 1);
70 goto repeat;
71 }
393ff91f
JK
72out:
73 mark_page_accessed(page);
127e670a
JK
74 return page;
75}
76
77static int f2fs_write_meta_page(struct page *page,
78 struct writeback_control *wbc)
79{
80 struct inode *inode = page->mapping->host;
81 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
127e670a 82
577e3495 83 /* Should not write any meta pages, if any IO error was occurred */
87a9bd26 84 if (wbc->for_reclaim || sbi->por_doing ||
577e3495
JK
85 is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ERROR_FLAG)) {
86 dec_page_count(sbi, F2FS_DIRTY_META);
127e670a
JK
87 wbc->pages_skipped++;
88 set_page_dirty(page);
577e3495 89 return AOP_WRITEPAGE_ACTIVATE;
127e670a
JK
90 }
91
577e3495 92 wait_on_page_writeback(page);
127e670a 93
577e3495
JK
94 write_meta_page(sbi, page);
95 dec_page_count(sbi, F2FS_DIRTY_META);
96 unlock_page(page);
97 return 0;
127e670a
JK
98}
99
100static int f2fs_write_meta_pages(struct address_space *mapping,
101 struct writeback_control *wbc)
102{
103 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
104 struct block_device *bdev = sbi->sb->s_bdev;
105 long written;
106
107 if (wbc->for_kupdate)
108 return 0;
109
110 if (get_pages(sbi, F2FS_DIRTY_META) == 0)
111 return 0;
112
113 /* if mounting is failed, skip writing node pages */
114 mutex_lock(&sbi->cp_mutex);
115 written = sync_meta_pages(sbi, META, bio_get_nr_vecs(bdev));
116 mutex_unlock(&sbi->cp_mutex);
117 wbc->nr_to_write -= written;
118 return 0;
119}
120
121long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
122 long nr_to_write)
123{
124 struct address_space *mapping = sbi->meta_inode->i_mapping;
125 pgoff_t index = 0, end = LONG_MAX;
126 struct pagevec pvec;
127 long nwritten = 0;
128 struct writeback_control wbc = {
129 .for_reclaim = 0,
130 };
131
132 pagevec_init(&pvec, 0);
133
134 while (index <= end) {
135 int i, nr_pages;
136 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
137 PAGECACHE_TAG_DIRTY,
138 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
139 if (nr_pages == 0)
140 break;
141
142 for (i = 0; i < nr_pages; i++) {
143 struct page *page = pvec.pages[i];
144 lock_page(page);
5d56b671
JK
145 f2fs_bug_on(page->mapping != mapping);
146 f2fs_bug_on(!PageDirty(page));
127e670a 147 clear_page_dirty_for_io(page);
577e3495
JK
148 if (f2fs_write_meta_page(page, &wbc)) {
149 unlock_page(page);
150 break;
151 }
127e670a
JK
152 if (nwritten++ >= nr_to_write)
153 break;
154 }
155 pagevec_release(&pvec);
156 cond_resched();
157 }
158
159 if (nwritten)
160 f2fs_submit_bio(sbi, type, nr_to_write == LONG_MAX);
161
162 return nwritten;
163}
164
165static int f2fs_set_meta_page_dirty(struct page *page)
166{
167 struct address_space *mapping = page->mapping;
168 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
169
26c6b887
JK
170 trace_f2fs_set_page_dirty(page, META);
171
127e670a
JK
172 SetPageUptodate(page);
173 if (!PageDirty(page)) {
174 __set_page_dirty_nobuffers(page);
175 inc_page_count(sbi, F2FS_DIRTY_META);
127e670a
JK
176 return 1;
177 }
178 return 0;
179}
180
181const struct address_space_operations f2fs_meta_aops = {
182 .writepage = f2fs_write_meta_page,
183 .writepages = f2fs_write_meta_pages,
184 .set_page_dirty = f2fs_set_meta_page_dirty,
185};
186
cbd56e7d 187int acquire_orphan_inode(struct f2fs_sb_info *sbi)
127e670a
JK
188{
189 unsigned int max_orphans;
190 int err = 0;
191
192 /*
193 * considering 512 blocks in a segment 5 blocks are needed for cp
194 * and log segment summaries. Remaining blocks are used to keep
195 * orphan entries with the limitation one reserved segment
196 * for cp pack we can have max 1020*507 orphan entries
197 */
198 max_orphans = (sbi->blocks_per_seg - 5) * F2FS_ORPHANS_PER_BLOCK;
199 mutex_lock(&sbi->orphan_inode_mutex);
200 if (sbi->n_orphans >= max_orphans)
201 err = -ENOSPC;
cbd56e7d
JK
202 else
203 sbi->n_orphans++;
127e670a
JK
204 mutex_unlock(&sbi->orphan_inode_mutex);
205 return err;
206}
207
cbd56e7d
JK
208void release_orphan_inode(struct f2fs_sb_info *sbi)
209{
210 mutex_lock(&sbi->orphan_inode_mutex);
5d56b671 211 f2fs_bug_on(sbi->n_orphans == 0);
cbd56e7d
JK
212 sbi->n_orphans--;
213 mutex_unlock(&sbi->orphan_inode_mutex);
214}
215
127e670a
JK
216void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
217{
218 struct list_head *head, *this;
219 struct orphan_inode_entry *new = NULL, *orphan = NULL;
220
221 mutex_lock(&sbi->orphan_inode_mutex);
222 head = &sbi->orphan_inode_list;
223 list_for_each(this, head) {
224 orphan = list_entry(this, struct orphan_inode_entry, list);
225 if (orphan->ino == ino)
226 goto out;
227 if (orphan->ino > ino)
228 break;
229 orphan = NULL;
230 }
7bd59381
GZ
231
232 new = f2fs_kmem_cache_alloc(orphan_entry_slab, GFP_ATOMIC);
127e670a 233 new->ino = ino;
127e670a
JK
234
235 /* add new_oentry into list which is sorted by inode number */
a2617dc6 236 if (orphan)
237 list_add(&new->list, this->prev);
238 else
127e670a 239 list_add_tail(&new->list, head);
127e670a
JK
240out:
241 mutex_unlock(&sbi->orphan_inode_mutex);
242}
243
244void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
245{
60ed9a0f 246 struct list_head *head;
127e670a
JK
247 struct orphan_inode_entry *orphan;
248
249 mutex_lock(&sbi->orphan_inode_mutex);
250 head = &sbi->orphan_inode_list;
60ed9a0f 251 list_for_each_entry(orphan, head, list) {
127e670a
JK
252 if (orphan->ino == ino) {
253 list_del(&orphan->list);
254 kmem_cache_free(orphan_entry_slab, orphan);
5d56b671 255 f2fs_bug_on(sbi->n_orphans == 0);
127e670a
JK
256 sbi->n_orphans--;
257 break;
258 }
259 }
260 mutex_unlock(&sbi->orphan_inode_mutex);
261}
262
263static void recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
264{
265 struct inode *inode = f2fs_iget(sbi->sb, ino);
5d56b671 266 f2fs_bug_on(IS_ERR(inode));
127e670a
JK
267 clear_nlink(inode);
268
269 /* truncate all the data during iput */
270 iput(inode);
271}
272
273int recover_orphan_inodes(struct f2fs_sb_info *sbi)
274{
275 block_t start_blk, orphan_blkaddr, i, j;
276
25ca923b 277 if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG))
127e670a
JK
278 return 0;
279
aabe5136 280 sbi->por_doing = true;
127e670a
JK
281 start_blk = __start_cp_addr(sbi) + 1;
282 orphan_blkaddr = __start_sum_addr(sbi) - 1;
283
284 for (i = 0; i < orphan_blkaddr; i++) {
285 struct page *page = get_meta_page(sbi, start_blk + i);
286 struct f2fs_orphan_block *orphan_blk;
287
288 orphan_blk = (struct f2fs_orphan_block *)page_address(page);
289 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
290 nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
291 recover_orphan_inode(sbi, ino);
292 }
293 f2fs_put_page(page, 1);
294 }
295 /* clear Orphan Flag */
25ca923b 296 clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG);
aabe5136 297 sbi->por_doing = false;
127e670a
JK
298 return 0;
299}
300
301static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
302{
502c6e0b 303 struct list_head *head;
127e670a
JK
304 struct f2fs_orphan_block *orphan_blk = NULL;
305 struct page *page = NULL;
306 unsigned int nentries = 0;
307 unsigned short index = 1;
308 unsigned short orphan_blocks;
502c6e0b 309 struct orphan_inode_entry *orphan = NULL;
127e670a
JK
310
311 orphan_blocks = (unsigned short)((sbi->n_orphans +
312 (F2FS_ORPHANS_PER_BLOCK - 1)) / F2FS_ORPHANS_PER_BLOCK);
313
314 mutex_lock(&sbi->orphan_inode_mutex);
315 head = &sbi->orphan_inode_list;
316
317 /* loop for each orphan inode entry and write them in Jornal block */
502c6e0b
GZ
318 list_for_each_entry(orphan, head, list) {
319 if (!page) {
320 page = grab_meta_page(sbi, start_blk);
321 orphan_blk =
322 (struct f2fs_orphan_block *)page_address(page);
323 memset(orphan_blk, 0, sizeof(*orphan_blk));
324 }
127e670a 325
36795567 326 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
127e670a 327
36795567 328 if (nentries == F2FS_ORPHANS_PER_BLOCK) {
127e670a
JK
329 /*
330 * an orphan block is full of 1020 entries,
331 * then we need to flush current orphan blocks
332 * and bring another one in memory
333 */
334 orphan_blk->blk_addr = cpu_to_le16(index);
335 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
336 orphan_blk->entry_count = cpu_to_le32(nentries);
337 set_page_dirty(page);
338 f2fs_put_page(page, 1);
339 index++;
340 start_blk++;
341 nentries = 0;
342 page = NULL;
343 }
502c6e0b 344 }
127e670a 345
502c6e0b
GZ
346 if (page) {
347 orphan_blk->blk_addr = cpu_to_le16(index);
348 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
349 orphan_blk->entry_count = cpu_to_le32(nentries);
350 set_page_dirty(page);
351 f2fs_put_page(page, 1);
127e670a 352 }
502c6e0b 353
127e670a
JK
354 mutex_unlock(&sbi->orphan_inode_mutex);
355}
356
357static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
358 block_t cp_addr, unsigned long long *version)
359{
360 struct page *cp_page_1, *cp_page_2 = NULL;
361 unsigned long blk_size = sbi->blocksize;
362 struct f2fs_checkpoint *cp_block;
363 unsigned long long cur_version = 0, pre_version = 0;
127e670a 364 size_t crc_offset;
7e586fa0 365 __u32 crc = 0;
127e670a
JK
366
367 /* Read the 1st cp block in this CP pack */
368 cp_page_1 = get_meta_page(sbi, cp_addr);
369
370 /* get the version number */
371 cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1);
372 crc_offset = le32_to_cpu(cp_block->checksum_offset);
373 if (crc_offset >= blk_size)
374 goto invalid_cp1;
375
7e586fa0 376 crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset)));
127e670a
JK
377 if (!f2fs_crc_valid(crc, cp_block, crc_offset))
378 goto invalid_cp1;
379
d71b5564 380 pre_version = cur_cp_version(cp_block);
127e670a
JK
381
382 /* Read the 2nd cp block in this CP pack */
25ca923b 383 cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
127e670a
JK
384 cp_page_2 = get_meta_page(sbi, cp_addr);
385
386 cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2);
387 crc_offset = le32_to_cpu(cp_block->checksum_offset);
388 if (crc_offset >= blk_size)
389 goto invalid_cp2;
390
7e586fa0 391 crc = le32_to_cpu(*((__u32 *)((unsigned char *)cp_block + crc_offset)));
127e670a
JK
392 if (!f2fs_crc_valid(crc, cp_block, crc_offset))
393 goto invalid_cp2;
394
d71b5564 395 cur_version = cur_cp_version(cp_block);
127e670a
JK
396
397 if (cur_version == pre_version) {
398 *version = cur_version;
399 f2fs_put_page(cp_page_2, 1);
400 return cp_page_1;
401 }
402invalid_cp2:
403 f2fs_put_page(cp_page_2, 1);
404invalid_cp1:
405 f2fs_put_page(cp_page_1, 1);
406 return NULL;
407}
408
409int get_valid_checkpoint(struct f2fs_sb_info *sbi)
410{
411 struct f2fs_checkpoint *cp_block;
412 struct f2fs_super_block *fsb = sbi->raw_super;
413 struct page *cp1, *cp2, *cur_page;
414 unsigned long blk_size = sbi->blocksize;
415 unsigned long long cp1_version = 0, cp2_version = 0;
416 unsigned long long cp_start_blk_no;
417
418 sbi->ckpt = kzalloc(blk_size, GFP_KERNEL);
419 if (!sbi->ckpt)
420 return -ENOMEM;
421 /*
422 * Finding out valid cp block involves read both
423 * sets( cp pack1 and cp pack 2)
424 */
425 cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
426 cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
427
428 /* The second checkpoint pack should start at the next segment */
f9a4e6df
JK
429 cp_start_blk_no += ((unsigned long long)1) <<
430 le32_to_cpu(fsb->log_blocks_per_seg);
127e670a
JK
431 cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
432
433 if (cp1 && cp2) {
434 if (ver_after(cp2_version, cp1_version))
435 cur_page = cp2;
436 else
437 cur_page = cp1;
438 } else if (cp1) {
439 cur_page = cp1;
440 } else if (cp2) {
441 cur_page = cp2;
442 } else {
443 goto fail_no_cp;
444 }
445
446 cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
447 memcpy(sbi->ckpt, cp_block, blk_size);
448
449 f2fs_put_page(cp1, 1);
450 f2fs_put_page(cp2, 1);
451 return 0;
452
453fail_no_cp:
454 kfree(sbi->ckpt);
455 return -EINVAL;
456}
457
5deb8267 458static int __add_dirty_inode(struct inode *inode, struct dir_inode_entry *new)
127e670a
JK
459{
460 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
461 struct list_head *head = &sbi->dir_inode_list;
127e670a
JK
462 struct list_head *this;
463
5deb8267
JK
464 list_for_each(this, head) {
465 struct dir_inode_entry *entry;
466 entry = list_entry(this, struct dir_inode_entry, list);
467 if (entry->inode == inode)
468 return -EEXIST;
469 }
470 list_add_tail(&new->list, head);
dcdfff65 471 stat_inc_dirty_dir(sbi);
5deb8267
JK
472 return 0;
473}
474
475void set_dirty_dir_page(struct inode *inode, struct page *page)
476{
477 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
478 struct dir_inode_entry *new;
479
127e670a
JK
480 if (!S_ISDIR(inode->i_mode))
481 return;
7bd59381
GZ
482
483 new = f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
127e670a
JK
484 new->inode = inode;
485 INIT_LIST_HEAD(&new->list);
486
487 spin_lock(&sbi->dir_inode_lock);
5deb8267
JK
488 if (__add_dirty_inode(inode, new))
489 kmem_cache_free(inode_entry_slab, new);
127e670a 490
127e670a
JK
491 inc_page_count(sbi, F2FS_DIRTY_DENTS);
492 inode_inc_dirty_dents(inode);
493 SetPagePrivate(page);
5deb8267
JK
494 spin_unlock(&sbi->dir_inode_lock);
495}
496
497void add_dirty_dir_inode(struct inode *inode)
498{
499 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
7bd59381
GZ
500 struct dir_inode_entry *new =
501 f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
502
5deb8267
JK
503 new->inode = inode;
504 INIT_LIST_HEAD(&new->list);
127e670a 505
5deb8267
JK
506 spin_lock(&sbi->dir_inode_lock);
507 if (__add_dirty_inode(inode, new))
508 kmem_cache_free(inode_entry_slab, new);
127e670a
JK
509 spin_unlock(&sbi->dir_inode_lock);
510}
511
512void remove_dirty_dir_inode(struct inode *inode)
513{
514 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
ce3b7d80
GZ
515
516 struct list_head *this, *head;
127e670a
JK
517
518 if (!S_ISDIR(inode->i_mode))
519 return;
520
521 spin_lock(&sbi->dir_inode_lock);
3b10b1fd
JK
522 if (atomic_read(&F2FS_I(inode)->dirty_dents)) {
523 spin_unlock(&sbi->dir_inode_lock);
524 return;
525 }
127e670a 526
ce3b7d80 527 head = &sbi->dir_inode_list;
127e670a
JK
528 list_for_each(this, head) {
529 struct dir_inode_entry *entry;
530 entry = list_entry(this, struct dir_inode_entry, list);
531 if (entry->inode == inode) {
532 list_del(&entry->list);
533 kmem_cache_free(inode_entry_slab, entry);
dcdfff65 534 stat_dec_dirty_dir(sbi);
127e670a
JK
535 break;
536 }
537 }
127e670a 538 spin_unlock(&sbi->dir_inode_lock);
74d0b917
JK
539
540 /* Only from the recovery routine */
afc3eda2
JK
541 if (is_inode_flag_set(F2FS_I(inode), FI_DELAY_IPUT)) {
542 clear_inode_flag(F2FS_I(inode), FI_DELAY_IPUT);
74d0b917 543 iput(inode);
afc3eda2 544 }
74d0b917
JK
545}
546
547struct inode *check_dirty_dir_inode(struct f2fs_sb_info *sbi, nid_t ino)
548{
ce3b7d80
GZ
549
550 struct list_head *this, *head;
74d0b917
JK
551 struct inode *inode = NULL;
552
553 spin_lock(&sbi->dir_inode_lock);
ce3b7d80
GZ
554
555 head = &sbi->dir_inode_list;
74d0b917
JK
556 list_for_each(this, head) {
557 struct dir_inode_entry *entry;
558 entry = list_entry(this, struct dir_inode_entry, list);
559 if (entry->inode->i_ino == ino) {
560 inode = entry->inode;
561 break;
562 }
563 }
564 spin_unlock(&sbi->dir_inode_lock);
565 return inode;
127e670a
JK
566}
567
568void sync_dirty_dir_inodes(struct f2fs_sb_info *sbi)
569{
ce3b7d80 570 struct list_head *head;
127e670a
JK
571 struct dir_inode_entry *entry;
572 struct inode *inode;
573retry:
574 spin_lock(&sbi->dir_inode_lock);
ce3b7d80
GZ
575
576 head = &sbi->dir_inode_list;
127e670a
JK
577 if (list_empty(head)) {
578 spin_unlock(&sbi->dir_inode_lock);
579 return;
580 }
581 entry = list_entry(head->next, struct dir_inode_entry, list);
582 inode = igrab(entry->inode);
583 spin_unlock(&sbi->dir_inode_lock);
584 if (inode) {
585 filemap_flush(inode->i_mapping);
586 iput(inode);
587 } else {
588 /*
589 * We should submit bio, since it exists several
590 * wribacking dentry pages in the freeing inode.
591 */
592 f2fs_submit_bio(sbi, DATA, true);
593 }
594 goto retry;
595}
596
0a8165d7 597/*
127e670a
JK
598 * Freeze all the FS-operations for checkpoint.
599 */
43727527 600static void block_operations(struct f2fs_sb_info *sbi)
127e670a 601{
127e670a
JK
602 struct writeback_control wbc = {
603 .sync_mode = WB_SYNC_ALL,
604 .nr_to_write = LONG_MAX,
605 .for_reclaim = 0,
606 };
c718379b
JK
607 struct blk_plug plug;
608
609 blk_start_plug(&plug);
610
39936837 611retry_flush_dents:
e479556b 612 f2fs_lock_all(sbi);
127e670a 613 /* write all the dirty dentry pages */
127e670a 614 if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
e479556b 615 f2fs_unlock_all(sbi);
39936837
JK
616 sync_dirty_dir_inodes(sbi);
617 goto retry_flush_dents;
127e670a
JK
618 }
619
127e670a
JK
620 /*
621 * POR: we should ensure that there is no dirty node pages
622 * until finishing nat/sit flush.
623 */
39936837
JK
624retry_flush_nodes:
625 mutex_lock(&sbi->node_write);
127e670a
JK
626
627 if (get_pages(sbi, F2FS_DIRTY_NODES)) {
39936837
JK
628 mutex_unlock(&sbi->node_write);
629 sync_node_pages(sbi, 0, &wbc);
630 goto retry_flush_nodes;
127e670a 631 }
c718379b 632 blk_finish_plug(&plug);
127e670a
JK
633}
634
635static void unblock_operations(struct f2fs_sb_info *sbi)
636{
39936837 637 mutex_unlock(&sbi->node_write);
e479556b 638 f2fs_unlock_all(sbi);
127e670a
JK
639}
640
fb51b5ef
CL
641static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
642{
643 DEFINE_WAIT(wait);
644
645 for (;;) {
646 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
647
648 if (!get_pages(sbi, F2FS_WRITEBACK))
649 break;
650
651 io_schedule();
652 }
653 finish_wait(&sbi->cp_wait, &wait);
654}
655
127e670a
JK
656static void do_checkpoint(struct f2fs_sb_info *sbi, bool is_umount)
657{
658 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
659 nid_t last_nid = 0;
660 block_t start_blk;
661 struct page *cp_page;
662 unsigned int data_sum_blocks, orphan_blocks;
7e586fa0 663 __u32 crc32 = 0;
127e670a 664 void *kaddr;
127e670a
JK
665 int i;
666
667 /* Flush all the NAT/SIT pages */
668 while (get_pages(sbi, F2FS_DIRTY_META))
669 sync_meta_pages(sbi, META, LONG_MAX);
670
671 next_free_nid(sbi, &last_nid);
672
673 /*
674 * modify checkpoint
675 * version number is already updated
676 */
677 ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
678 ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
679 ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
680 for (i = 0; i < 3; i++) {
681 ckpt->cur_node_segno[i] =
682 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
683 ckpt->cur_node_blkoff[i] =
684 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
685 ckpt->alloc_type[i + CURSEG_HOT_NODE] =
686 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
687 }
688 for (i = 0; i < 3; i++) {
689 ckpt->cur_data_segno[i] =
690 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
691 ckpt->cur_data_blkoff[i] =
692 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
693 ckpt->alloc_type[i + CURSEG_HOT_DATA] =
694 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
695 }
696
697 ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
698 ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
699 ckpt->next_free_nid = cpu_to_le32(last_nid);
700
701 /* 2 cp + n data seg summary + orphan inode blocks */
702 data_sum_blocks = npages_for_summary_flush(sbi);
703 if (data_sum_blocks < 3)
25ca923b 704 set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
127e670a 705 else
25ca923b 706 clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
127e670a
JK
707
708 orphan_blocks = (sbi->n_orphans + F2FS_ORPHANS_PER_BLOCK - 1)
709 / F2FS_ORPHANS_PER_BLOCK;
25ca923b 710 ckpt->cp_pack_start_sum = cpu_to_le32(1 + orphan_blocks);
127e670a
JK
711
712 if (is_umount) {
25ca923b
JK
713 set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
714 ckpt->cp_pack_total_block_count = cpu_to_le32(2 +
715 data_sum_blocks + orphan_blocks + NR_CURSEG_NODE_TYPE);
127e670a 716 } else {
25ca923b
JK
717 clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
718 ckpt->cp_pack_total_block_count = cpu_to_le32(2 +
719 data_sum_blocks + orphan_blocks);
127e670a
JK
720 }
721
722 if (sbi->n_orphans)
25ca923b 723 set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
127e670a 724 else
25ca923b 725 clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
127e670a
JK
726
727 /* update SIT/NAT bitmap */
728 get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
729 get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
730
731 crc32 = f2fs_crc32(ckpt, le32_to_cpu(ckpt->checksum_offset));
7e586fa0
JK
732 *((__le32 *)((unsigned char *)ckpt +
733 le32_to_cpu(ckpt->checksum_offset)))
127e670a
JK
734 = cpu_to_le32(crc32);
735
736 start_blk = __start_cp_addr(sbi);
737
738 /* write out checkpoint buffer at block 0 */
739 cp_page = grab_meta_page(sbi, start_blk++);
740 kaddr = page_address(cp_page);
741 memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
742 set_page_dirty(cp_page);
743 f2fs_put_page(cp_page, 1);
744
745 if (sbi->n_orphans) {
746 write_orphan_inodes(sbi, start_blk);
747 start_blk += orphan_blocks;
748 }
749
750 write_data_summaries(sbi, start_blk);
751 start_blk += data_sum_blocks;
752 if (is_umount) {
753 write_node_summaries(sbi, start_blk);
754 start_blk += NR_CURSEG_NODE_TYPE;
755 }
756
757 /* writeout checkpoint block */
758 cp_page = grab_meta_page(sbi, start_blk);
759 kaddr = page_address(cp_page);
760 memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
761 set_page_dirty(cp_page);
762 f2fs_put_page(cp_page, 1);
763
764 /* wait for previous submitted node/meta pages writeback */
fb51b5ef 765 wait_on_all_pages_writeback(sbi);
127e670a
JK
766
767 filemap_fdatawait_range(sbi->node_inode->i_mapping, 0, LONG_MAX);
768 filemap_fdatawait_range(sbi->meta_inode->i_mapping, 0, LONG_MAX);
769
770 /* update user_block_counts */
771 sbi->last_valid_block_count = sbi->total_valid_block_count;
772 sbi->alloc_valid_block_count = 0;
773
774 /* Here, we only have one bio having CP pack */
577e3495 775 sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
127e670a 776
577e3495
JK
777 if (!is_set_ckpt_flags(ckpt, CP_ERROR_FLAG)) {
778 clear_prefree_segments(sbi);
779 F2FS_RESET_SB_DIRT(sbi);
780 }
127e670a
JK
781}
782
0a8165d7 783/*
127e670a
JK
784 * We guarantee that this checkpoint procedure should not fail.
785 */
43727527 786void write_checkpoint(struct f2fs_sb_info *sbi, bool is_umount)
127e670a
JK
787{
788 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
789 unsigned long long ckpt_ver;
790
2af4bd6c
NJ
791 trace_f2fs_write_checkpoint(sbi->sb, is_umount, "start block_ops");
792
43727527
JK
793 mutex_lock(&sbi->cp_mutex);
794 block_operations(sbi);
127e670a 795
2af4bd6c
NJ
796 trace_f2fs_write_checkpoint(sbi->sb, is_umount, "finish block_ops");
797
127e670a
JK
798 f2fs_submit_bio(sbi, DATA, true);
799 f2fs_submit_bio(sbi, NODE, true);
800 f2fs_submit_bio(sbi, META, true);
801
802 /*
803 * update checkpoint pack index
804 * Increase the version number so that
805 * SIT entries and seg summaries are written at correct place
806 */
d71b5564 807 ckpt_ver = cur_cp_version(ckpt);
127e670a
JK
808 ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
809
810 /* write cached NAT/SIT entries to NAT/SIT area */
811 flush_nat_entries(sbi);
812 flush_sit_entries(sbi);
813
127e670a
JK
814 /* unlock all the fs_lock[] in do_checkpoint() */
815 do_checkpoint(sbi, is_umount);
816
817 unblock_operations(sbi);
818 mutex_unlock(&sbi->cp_mutex);
2af4bd6c
NJ
819
820 trace_f2fs_write_checkpoint(sbi->sb, is_umount, "finish checkpoint");
127e670a
JK
821}
822
823void init_orphan_info(struct f2fs_sb_info *sbi)
824{
825 mutex_init(&sbi->orphan_inode_mutex);
826 INIT_LIST_HEAD(&sbi->orphan_inode_list);
827 sbi->n_orphans = 0;
828}
829
6e6093a8 830int __init create_checkpoint_caches(void)
127e670a
JK
831{
832 orphan_entry_slab = f2fs_kmem_cache_create("f2fs_orphan_entry",
833 sizeof(struct orphan_inode_entry), NULL);
834 if (unlikely(!orphan_entry_slab))
835 return -ENOMEM;
836 inode_entry_slab = f2fs_kmem_cache_create("f2fs_dirty_dir_entry",
837 sizeof(struct dir_inode_entry), NULL);
838 if (unlikely(!inode_entry_slab)) {
839 kmem_cache_destroy(orphan_entry_slab);
840 return -ENOMEM;
841 }
842 return 0;
843}
844
845void destroy_checkpoint_caches(void)
846{
847 kmem_cache_destroy(orphan_entry_slab);
848 kmem_cache_destroy(inode_entry_slab);
849}