jbd: Fix a race between checkpointing code and journal_get_write_access()
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / ext3 / inode.c
CommitLineData
1da177e4
LT
1/*
2 * linux/fs/ext3/inode.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Goal-directed block allocation by Stephen Tweedie
e9ad5620 16 * (sct@redhat.com), 1993, 1998
1da177e4
LT
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
e9ad5620 20 * (jj@sunsite.ms.mff.cuni.cz)
1da177e4
LT
21 *
22 * Assorted race fixes, rewrite of ext3_get_block() by Al Viro, 2000
23 */
24
25#include <linux/module.h>
26#include <linux/fs.h>
27#include <linux/time.h>
28#include <linux/ext3_jbd.h>
29#include <linux/jbd.h>
1da177e4
LT
30#include <linux/highuid.h>
31#include <linux/pagemap.h>
32#include <linux/quotaops.h>
33#include <linux/string.h>
34#include <linux/buffer_head.h>
35#include <linux/writeback.h>
36#include <linux/mpage.h>
37#include <linux/uio.h>
caa38fb0 38#include <linux/bio.h>
68c9d702 39#include <linux/fiemap.h>
b5ed3112 40#include <linux/namei.h>
1da177e4
LT
41#include "xattr.h"
42#include "acl.h"
43
44static int ext3_writepage_trans_blocks(struct inode *inode);
45
46/*
47 * Test whether an inode is a fast symlink.
48 */
d6859bfc 49static int ext3_inode_is_fast_symlink(struct inode *inode)
1da177e4
LT
50{
51 int ea_blocks = EXT3_I(inode)->i_file_acl ?
52 (inode->i_sb->s_blocksize >> 9) : 0;
53
d6859bfc 54 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
1da177e4
LT
55}
56
d6859bfc
AM
57/*
58 * The ext3 forget function must perform a revoke if we are freeing data
1da177e4 59 * which has been journaled. Metadata (eg. indirect blocks) must be
ae6ddcc5 60 * revoked in all cases.
1da177e4
LT
61 *
62 * "bh" may be NULL: a metadata block may have been freed from memory
63 * but there may still be a record of it in the journal, and that record
64 * still needs to be revoked.
65 */
d6859bfc 66int ext3_forget(handle_t *handle, int is_metadata, struct inode *inode,
1c2bf374 67 struct buffer_head *bh, ext3_fsblk_t blocknr)
1da177e4
LT
68{
69 int err;
70
71 might_sleep();
72
73 BUFFER_TRACE(bh, "enter");
74
75 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
76 "data mode %lx\n",
77 bh, is_metadata, inode->i_mode,
78 test_opt(inode->i_sb, DATA_FLAGS));
79
80 /* Never use the revoke function if we are doing full data
81 * journaling: there is no need to, and a V1 superblock won't
82 * support it. Otherwise, only skip the revoke on un-journaled
83 * data blocks. */
84
85 if (test_opt(inode->i_sb, DATA_FLAGS) == EXT3_MOUNT_JOURNAL_DATA ||
86 (!is_metadata && !ext3_should_journal_data(inode))) {
87 if (bh) {
88 BUFFER_TRACE(bh, "call journal_forget");
89 return ext3_journal_forget(handle, bh);
90 }
91 return 0;
92 }
93
94 /*
95 * data!=journal && (is_metadata || should_journal_data(inode))
96 */
97 BUFFER_TRACE(bh, "call ext3_journal_revoke");
98 err = ext3_journal_revoke(handle, blocknr, bh);
99 if (err)
e05b6b52 100 ext3_abort(inode->i_sb, __func__,
1da177e4
LT
101 "error %d when attempting revoke", err);
102 BUFFER_TRACE(bh, "exit");
103 return err;
104}
105
106/*
d6859bfc 107 * Work out how many blocks we need to proceed with the next chunk of a
1da177e4
LT
108 * truncate transaction.
109 */
ae6ddcc5 110static unsigned long blocks_for_truncate(struct inode *inode)
1da177e4
LT
111{
112 unsigned long needed;
113
114 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
115
116 /* Give ourselves just enough room to cope with inodes in which
117 * i_blocks is corrupt: we've seen disk corruptions in the past
118 * which resulted in random data in an inode which looked enough
119 * like a regular file for ext3 to try to delete it. Things
120 * will go a bit crazy if that happens, but at least we should
121 * try not to panic the whole kernel. */
122 if (needed < 2)
123 needed = 2;
124
125 /* But we need to bound the transaction so we don't overflow the
126 * journal. */
ae6ddcc5 127 if (needed > EXT3_MAX_TRANS_DATA)
1da177e4
LT
128 needed = EXT3_MAX_TRANS_DATA;
129
1f54587b 130 return EXT3_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
1da177e4
LT
131}
132
ae6ddcc5 133/*
1da177e4
LT
134 * Truncate transactions can be complex and absolutely huge. So we need to
135 * be able to restart the transaction at a conventient checkpoint to make
136 * sure we don't overflow the journal.
137 *
138 * start_transaction gets us a new handle for a truncate transaction,
139 * and extend_transaction tries to extend the existing one a bit. If
140 * extend fails, we need to propagate the failure up and restart the
ae6ddcc5 141 * transaction in the top-level truncate loop. --sct
1da177e4 142 */
ae6ddcc5 143static handle_t *start_transaction(struct inode *inode)
1da177e4
LT
144{
145 handle_t *result;
146
147 result = ext3_journal_start(inode, blocks_for_truncate(inode));
148 if (!IS_ERR(result))
149 return result;
150
151 ext3_std_error(inode->i_sb, PTR_ERR(result));
152 return result;
153}
154
155/*
156 * Try to extend this transaction for the purposes of truncation.
157 *
158 * Returns 0 if we managed to create more room. If we can't create more
159 * room, and the transaction must be restarted we return 1.
160 */
161static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
162{
163 if (handle->h_buffer_credits > EXT3_RESERVE_TRANS_BLOCKS)
164 return 0;
165 if (!ext3_journal_extend(handle, blocks_for_truncate(inode)))
166 return 0;
167 return 1;
168}
169
170/*
171 * Restart the transaction associated with *handle. This does a commit,
172 * so before we call here everything must be consistently dirtied against
173 * this transaction.
174 */
175static int ext3_journal_test_restart(handle_t *handle, struct inode *inode)
176{
177 jbd_debug(2, "restarting handle %p\n", handle);
178 return ext3_journal_restart(handle, blocks_for_truncate(inode));
179}
180
181/*
182 * Called at the last iput() if i_nlink is zero.
183 */
184void ext3_delete_inode (struct inode * inode)
185{
186 handle_t *handle;
187
fef26658
MF
188 truncate_inode_pages(&inode->i_data, 0);
189
1da177e4
LT
190 if (is_bad_inode(inode))
191 goto no_delete;
192
193 handle = start_transaction(inode);
194 if (IS_ERR(handle)) {
d6859bfc
AM
195 /*
196 * If we're going to skip the normal cleanup, we still need to
197 * make sure that the in-core orphan linked list is properly
198 * cleaned up.
199 */
1da177e4
LT
200 ext3_orphan_del(NULL, inode);
201 goto no_delete;
202 }
203
204 if (IS_SYNC(inode))
205 handle->h_sync = 1;
206 inode->i_size = 0;
207 if (inode->i_blocks)
208 ext3_truncate(inode);
209 /*
210 * Kill off the orphan record which ext3_truncate created.
211 * AKPM: I think this can be inside the above `if'.
212 * Note that ext3_orphan_del() has to be able to cope with the
213 * deletion of a non-existent orphan - this is because we don't
214 * know if ext3_truncate() actually created an orphan record.
215 * (Well, we could do this if we need to, but heck - it works)
216 */
217 ext3_orphan_del(handle, inode);
218 EXT3_I(inode)->i_dtime = get_seconds();
219
ae6ddcc5 220 /*
1da177e4
LT
221 * One subtle ordering requirement: if anything has gone wrong
222 * (transaction abort, IO errors, whatever), then we can still
223 * do these next steps (the fs will already have been marked as
224 * having errors), but we can't free the inode if the mark_dirty
ae6ddcc5 225 * fails.
1da177e4
LT
226 */
227 if (ext3_mark_inode_dirty(handle, inode))
228 /* If that failed, just do the required in-core inode clear. */
229 clear_inode(inode);
230 else
231 ext3_free_inode(handle, inode);
232 ext3_journal_stop(handle);
233 return;
234no_delete:
235 clear_inode(inode); /* We must guarantee clearing of inode... */
236}
237
1da177e4
LT
238typedef struct {
239 __le32 *p;
240 __le32 key;
241 struct buffer_head *bh;
242} Indirect;
243
244static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
245{
246 p->key = *(p->p = v);
247 p->bh = bh;
248}
249
d6859bfc 250static int verify_chain(Indirect *from, Indirect *to)
1da177e4
LT
251{
252 while (from <= to && from->key == *from->p)
253 from++;
254 return (from > to);
255}
256
257/**
258 * ext3_block_to_path - parse the block number into array of offsets
259 * @inode: inode in question (we are only interested in its superblock)
260 * @i_block: block number to be parsed
261 * @offsets: array to store the offsets in
262 * @boundary: set this non-zero if the referred-to block is likely to be
263 * followed (on disk) by an indirect block.
264 *
265 * To store the locations of file's data ext3 uses a data structure common
266 * for UNIX filesystems - tree of pointers anchored in the inode, with
267 * data blocks at leaves and indirect blocks in intermediate nodes.
268 * This function translates the block number into path in that tree -
269 * return value is the path length and @offsets[n] is the offset of
270 * pointer to (n+1)th node in the nth one. If @block is out of range
271 * (negative or too large) warning is printed and zero returned.
272 *
273 * Note: function doesn't find node addresses, so no IO is needed. All
274 * we need to know is the capacity of indirect blocks (taken from the
275 * inode->i_sb).
276 */
277
278/*
279 * Portability note: the last comparison (check that we fit into triple
280 * indirect block) is spelled differently, because otherwise on an
281 * architecture with 32-bit longs and 8Kb pages we might get into trouble
282 * if our filesystem had 8Kb blocks. We might use long long, but that would
283 * kill us on x86. Oh, well, at least the sign propagation does not matter -
284 * i_block would have to be negative in the very beginning, so we would not
285 * get there at all.
286 */
287
288static int ext3_block_to_path(struct inode *inode,
289 long i_block, int offsets[4], int *boundary)
290{
291 int ptrs = EXT3_ADDR_PER_BLOCK(inode->i_sb);
292 int ptrs_bits = EXT3_ADDR_PER_BLOCK_BITS(inode->i_sb);
293 const long direct_blocks = EXT3_NDIR_BLOCKS,
294 indirect_blocks = ptrs,
295 double_blocks = (1 << (ptrs_bits * 2));
296 int n = 0;
297 int final = 0;
298
299 if (i_block < 0) {
300 ext3_warning (inode->i_sb, "ext3_block_to_path", "block < 0");
301 } else if (i_block < direct_blocks) {
302 offsets[n++] = i_block;
303 final = direct_blocks;
304 } else if ( (i_block -= direct_blocks) < indirect_blocks) {
305 offsets[n++] = EXT3_IND_BLOCK;
306 offsets[n++] = i_block;
307 final = ptrs;
308 } else if ((i_block -= indirect_blocks) < double_blocks) {
309 offsets[n++] = EXT3_DIND_BLOCK;
310 offsets[n++] = i_block >> ptrs_bits;
311 offsets[n++] = i_block & (ptrs - 1);
312 final = ptrs;
313 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
314 offsets[n++] = EXT3_TIND_BLOCK;
315 offsets[n++] = i_block >> (ptrs_bits * 2);
316 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
317 offsets[n++] = i_block & (ptrs - 1);
318 final = ptrs;
319 } else {
d6859bfc 320 ext3_warning(inode->i_sb, "ext3_block_to_path", "block > big");
1da177e4
LT
321 }
322 if (boundary)
89747d36 323 *boundary = final - 1 - (i_block & (ptrs - 1));
1da177e4
LT
324 return n;
325}
326
327/**
328 * ext3_get_branch - read the chain of indirect blocks leading to data
329 * @inode: inode in question
330 * @depth: depth of the chain (1 - direct pointer, etc.)
331 * @offsets: offsets of pointers in inode/indirect blocks
332 * @chain: place to store the result
333 * @err: here we store the error value
334 *
335 * Function fills the array of triples <key, p, bh> and returns %NULL
336 * if everything went OK or the pointer to the last filled triple
337 * (incomplete one) otherwise. Upon the return chain[i].key contains
338 * the number of (i+1)-th block in the chain (as it is stored in memory,
339 * i.e. little-endian 32-bit), chain[i].p contains the address of that
340 * number (it points into struct inode for i==0 and into the bh->b_data
341 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
342 * block for i>0 and NULL for i==0. In other words, it holds the block
343 * numbers of the chain, addresses they were taken from (and where we can
344 * verify that chain did not change) and buffer_heads hosting these
345 * numbers.
346 *
347 * Function stops when it stumbles upon zero pointer (absent block)
348 * (pointer to last triple returned, *@err == 0)
349 * or when it gets an IO error reading an indirect block
350 * (ditto, *@err == -EIO)
351 * or when it notices that chain had been changed while it was reading
352 * (ditto, *@err == -EAGAIN)
353 * or when it reads all @depth-1 indirect blocks successfully and finds
354 * the whole chain, all way to the data (returns %NULL, *err == 0).
355 */
356static Indirect *ext3_get_branch(struct inode *inode, int depth, int *offsets,
357 Indirect chain[4], int *err)
358{
359 struct super_block *sb = inode->i_sb;
360 Indirect *p = chain;
361 struct buffer_head *bh;
362
363 *err = 0;
364 /* i_data is not going away, no lock needed */
365 add_chain (chain, NULL, EXT3_I(inode)->i_data + *offsets);
366 if (!p->key)
367 goto no_block;
368 while (--depth) {
369 bh = sb_bread(sb, le32_to_cpu(p->key));
370 if (!bh)
371 goto failure;
372 /* Reader: pointers */
373 if (!verify_chain(chain, p))
374 goto changed;
375 add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
376 /* Reader: end */
377 if (!p->key)
378 goto no_block;
379 }
380 return NULL;
381
382changed:
383 brelse(bh);
384 *err = -EAGAIN;
385 goto no_block;
386failure:
387 *err = -EIO;
388no_block:
389 return p;
390}
391
392/**
393 * ext3_find_near - find a place for allocation with sufficient locality
394 * @inode: owner
395 * @ind: descriptor of indirect block.
396 *
1cc8dcf5 397 * This function returns the preferred place for block allocation.
1da177e4
LT
398 * It is used when heuristic for sequential allocation fails.
399 * Rules are:
400 * + if there is a block to the left of our position - allocate near it.
401 * + if pointer will live in indirect block - allocate near that block.
402 * + if pointer will live in inode - allocate in the same
ae6ddcc5 403 * cylinder group.
1da177e4
LT
404 *
405 * In the latter case we colour the starting block by the callers PID to
406 * prevent it from clashing with concurrent allocations for a different inode
407 * in the same block group. The PID is used here so that functionally related
408 * files will be close-by on-disk.
409 *
410 * Caller must make sure that @ind is valid and will stay that way.
411 */
43d23f90 412static ext3_fsblk_t ext3_find_near(struct inode *inode, Indirect *ind)
1da177e4
LT
413{
414 struct ext3_inode_info *ei = EXT3_I(inode);
415 __le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data;
416 __le32 *p;
43d23f90
MC
417 ext3_fsblk_t bg_start;
418 ext3_grpblk_t colour;
1da177e4
LT
419
420 /* Try to find previous block */
d6859bfc 421 for (p = ind->p - 1; p >= start; p--) {
1da177e4
LT
422 if (*p)
423 return le32_to_cpu(*p);
d6859bfc 424 }
1da177e4
LT
425
426 /* No such thing, so let's try location of indirect block */
427 if (ind->bh)
428 return ind->bh->b_blocknr;
429
430 /*
d6859bfc
AM
431 * It is going to be referred to from the inode itself? OK, just put it
432 * into the same cylinder group then.
1da177e4 433 */
43d23f90 434 bg_start = ext3_group_first_block_no(inode->i_sb, ei->i_block_group);
1da177e4
LT
435 colour = (current->pid % 16) *
436 (EXT3_BLOCKS_PER_GROUP(inode->i_sb) / 16);
437 return bg_start + colour;
438}
439
440/**
1cc8dcf5 441 * ext3_find_goal - find a preferred place for allocation.
1da177e4
LT
442 * @inode: owner
443 * @block: block we want
1da177e4 444 * @partial: pointer to the last triple within a chain
1da177e4 445 *
1cc8dcf5 446 * Normally this function find the preferred place for block allocation,
fb01bfda 447 * returns it.
1da177e4
LT
448 */
449
43d23f90 450static ext3_fsblk_t ext3_find_goal(struct inode *inode, long block,
fb01bfda 451 Indirect *partial)
1da177e4 452{
d6859bfc
AM
453 struct ext3_block_alloc_info *block_i;
454
455 block_i = EXT3_I(inode)->i_block_alloc_info;
1da177e4
LT
456
457 /*
458 * try the heuristic for sequential allocation,
459 * failing that at least try to get decent locality.
460 */
461 if (block_i && (block == block_i->last_alloc_logical_block + 1)
462 && (block_i->last_alloc_physical_block != 0)) {
fe55c452 463 return block_i->last_alloc_physical_block + 1;
1da177e4
LT
464 }
465
fe55c452 466 return ext3_find_near(inode, partial);
1da177e4 467}
d6859bfc 468
b47b2478
MC
469/**
470 * ext3_blks_to_allocate: Look up the block map and count the number
471 * of direct blocks need to be allocated for the given branch.
472 *
e9ad5620 473 * @branch: chain of indirect blocks
b47b2478
MC
474 * @k: number of blocks need for indirect blocks
475 * @blks: number of data blocks to be mapped.
476 * @blocks_to_boundary: the offset in the indirect block
477 *
478 * return the total number of blocks to be allocate, including the
479 * direct and indirect blocks.
480 */
d6859bfc 481static int ext3_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
b47b2478
MC
482 int blocks_to_boundary)
483{
484 unsigned long count = 0;
485
486 /*
487 * Simple case, [t,d]Indirect block(s) has not allocated yet
488 * then it's clear blocks on that path have not allocated
489 */
490 if (k > 0) {
d6859bfc 491 /* right now we don't handle cross boundary allocation */
b47b2478
MC
492 if (blks < blocks_to_boundary + 1)
493 count += blks;
494 else
495 count += blocks_to_boundary + 1;
496 return count;
497 }
498
499 count++;
500 while (count < blks && count <= blocks_to_boundary &&
501 le32_to_cpu(*(branch[0].p + count)) == 0) {
502 count++;
503 }
504 return count;
505}
506
507/**
508 * ext3_alloc_blocks: multiple allocate blocks needed for a branch
509 * @indirect_blks: the number of blocks need to allocate for indirect
510 * blocks
511 *
512 * @new_blocks: on return it will store the new block numbers for
513 * the indirect blocks(if needed) and the first direct block,
514 * @blks: on return it will store the total number of allocated
515 * direct blocks
516 */
517static int ext3_alloc_blocks(handle_t *handle, struct inode *inode,
43d23f90
MC
518 ext3_fsblk_t goal, int indirect_blks, int blks,
519 ext3_fsblk_t new_blocks[4], int *err)
b47b2478
MC
520{
521 int target, i;
522 unsigned long count = 0;
523 int index = 0;
43d23f90 524 ext3_fsblk_t current_block = 0;
b47b2478
MC
525 int ret = 0;
526
527 /*
528 * Here we try to allocate the requested multiple blocks at once,
529 * on a best-effort basis.
530 * To build a branch, we should allocate blocks for
531 * the indirect blocks(if not allocated yet), and at least
532 * the first direct block of this branch. That's the
533 * minimum number of blocks need to allocate(required)
534 */
535 target = blks + indirect_blks;
536
537 while (1) {
538 count = target;
539 /* allocating blocks for indirect blocks and direct blocks */
d6859bfc 540 current_block = ext3_new_blocks(handle,inode,goal,&count,err);
b47b2478
MC
541 if (*err)
542 goto failed_out;
543
544 target -= count;
545 /* allocate blocks for indirect blocks */
546 while (index < indirect_blks && count) {
547 new_blocks[index++] = current_block++;
548 count--;
549 }
550
551 if (count > 0)
552 break;
553 }
554
555 /* save the new block number for the first direct block */
556 new_blocks[index] = current_block;
557
558 /* total number of blocks allocated for direct blocks */
559 ret = count;
560 *err = 0;
561 return ret;
562failed_out:
563 for (i = 0; i <index; i++)
564 ext3_free_blocks(handle, inode, new_blocks[i], 1);
565 return ret;
566}
1da177e4
LT
567
568/**
569 * ext3_alloc_branch - allocate and set up a chain of blocks.
570 * @inode: owner
b47b2478
MC
571 * @indirect_blks: number of allocated indirect blocks
572 * @blks: number of allocated direct blocks
1da177e4
LT
573 * @offsets: offsets (in the blocks) to store the pointers to next.
574 * @branch: place to store the chain in.
575 *
b47b2478 576 * This function allocates blocks, zeroes out all but the last one,
1da177e4
LT
577 * links them into chain and (if we are synchronous) writes them to disk.
578 * In other words, it prepares a branch that can be spliced onto the
579 * inode. It stores the information about that chain in the branch[], in
580 * the same format as ext3_get_branch() would do. We are calling it after
581 * we had read the existing part of chain and partial points to the last
582 * triple of that (one with zero ->key). Upon the exit we have the same
5b116879 583 * picture as after the successful ext3_get_block(), except that in one
1da177e4
LT
584 * place chain is disconnected - *branch->p is still zero (we did not
585 * set the last link), but branch->key contains the number that should
586 * be placed into *branch->p to fill that gap.
587 *
588 * If allocation fails we free all blocks we've allocated (and forget
589 * their buffer_heads) and return the error value the from failed
590 * ext3_alloc_block() (normally -ENOSPC). Otherwise we set the chain
591 * as described above and return 0.
592 */
1da177e4 593static int ext3_alloc_branch(handle_t *handle, struct inode *inode,
43d23f90 594 int indirect_blks, int *blks, ext3_fsblk_t goal,
b47b2478 595 int *offsets, Indirect *branch)
1da177e4
LT
596{
597 int blocksize = inode->i_sb->s_blocksize;
b47b2478 598 int i, n = 0;
1da177e4 599 int err = 0;
b47b2478
MC
600 struct buffer_head *bh;
601 int num;
43d23f90
MC
602 ext3_fsblk_t new_blocks[4];
603 ext3_fsblk_t current_block;
1da177e4 604
b47b2478
MC
605 num = ext3_alloc_blocks(handle, inode, goal, indirect_blks,
606 *blks, new_blocks, &err);
607 if (err)
608 return err;
1da177e4 609
b47b2478
MC
610 branch[0].key = cpu_to_le32(new_blocks[0]);
611 /*
612 * metadata blocks and data blocks are allocated.
613 */
614 for (n = 1; n <= indirect_blks; n++) {
615 /*
616 * Get buffer_head for parent block, zero it out
617 * and set the pointer to new one, then send
618 * parent to disk.
619 */
620 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
621 branch[n].bh = bh;
622 lock_buffer(bh);
623 BUFFER_TRACE(bh, "call get_create_access");
624 err = ext3_journal_get_create_access(handle, bh);
625 if (err) {
1da177e4 626 unlock_buffer(bh);
b47b2478
MC
627 brelse(bh);
628 goto failed;
629 }
1da177e4 630
b47b2478
MC
631 memset(bh->b_data, 0, blocksize);
632 branch[n].p = (__le32 *) bh->b_data + offsets[n];
633 branch[n].key = cpu_to_le32(new_blocks[n]);
634 *branch[n].p = branch[n].key;
635 if ( n == indirect_blks) {
636 current_block = new_blocks[n];
637 /*
638 * End of chain, update the last new metablock of
639 * the chain to point to the new allocated
640 * data blocks numbers
641 */
642 for (i=1; i < num; i++)
643 *(branch[n].p + i) = cpu_to_le32(++current_block);
1da177e4 644 }
b47b2478
MC
645 BUFFER_TRACE(bh, "marking uptodate");
646 set_buffer_uptodate(bh);
647 unlock_buffer(bh);
1da177e4 648
b47b2478
MC
649 BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
650 err = ext3_journal_dirty_metadata(handle, bh);
651 if (err)
652 goto failed;
653 }
654 *blks = num;
655 return err;
656failed:
1da177e4 657 /* Allocation failed, free what we already allocated */
b47b2478 658 for (i = 1; i <= n ; i++) {
1da177e4
LT
659 BUFFER_TRACE(branch[i].bh, "call journal_forget");
660 ext3_journal_forget(handle, branch[i].bh);
661 }
b47b2478
MC
662 for (i = 0; i <indirect_blks; i++)
663 ext3_free_blocks(handle, inode, new_blocks[i], 1);
664
665 ext3_free_blocks(handle, inode, new_blocks[i], num);
666
1da177e4
LT
667 return err;
668}
669
670/**
d6859bfc
AM
671 * ext3_splice_branch - splice the allocated branch onto inode.
672 * @inode: owner
673 * @block: (logical) number of block we are adding
674 * @chain: chain of indirect blocks (with a missing link - see
675 * ext3_alloc_branch)
676 * @where: location of missing link
677 * @num: number of indirect blocks we are adding
678 * @blks: number of direct blocks we are adding
679 *
680 * This function fills the missing link and does all housekeeping needed in
681 * inode (->i_blocks, etc.). In case of success we end up with the full
682 * chain to new block and return 0.
1da177e4 683 */
d6859bfc
AM
684static int ext3_splice_branch(handle_t *handle, struct inode *inode,
685 long block, Indirect *where, int num, int blks)
1da177e4
LT
686{
687 int i;
688 int err = 0;
d6859bfc 689 struct ext3_block_alloc_info *block_i;
43d23f90 690 ext3_fsblk_t current_block;
d6859bfc
AM
691
692 block_i = EXT3_I(inode)->i_block_alloc_info;
1da177e4
LT
693 /*
694 * If we're splicing into a [td]indirect block (as opposed to the
695 * inode) then we need to get write access to the [td]indirect block
696 * before the splice.
697 */
698 if (where->bh) {
699 BUFFER_TRACE(where->bh, "get_write_access");
700 err = ext3_journal_get_write_access(handle, where->bh);
701 if (err)
702 goto err_out;
703 }
1da177e4
LT
704 /* That's it */
705
706 *where->p = where->key;
d6859bfc
AM
707
708 /*
709 * Update the host buffer_head or inode to point to more just allocated
710 * direct blocks blocks
711 */
b47b2478 712 if (num == 0 && blks > 1) {
5dea5176 713 current_block = le32_to_cpu(where->key) + 1;
b47b2478
MC
714 for (i = 1; i < blks; i++)
715 *(where->p + i ) = cpu_to_le32(current_block++);
716 }
1da177e4
LT
717
718 /*
719 * update the most recently allocated logical & physical block
720 * in i_block_alloc_info, to assist find the proper goal block for next
721 * allocation
722 */
723 if (block_i) {
b47b2478 724 block_i->last_alloc_logical_block = block + blks - 1;
d6859bfc 725 block_i->last_alloc_physical_block =
5dea5176 726 le32_to_cpu(where[num].key) + blks - 1;
1da177e4
LT
727 }
728
729 /* We are done with atomic stuff, now do the rest of housekeeping */
730
731 inode->i_ctime = CURRENT_TIME_SEC;
732 ext3_mark_inode_dirty(handle, inode);
733
734 /* had we spliced it onto indirect block? */
735 if (where->bh) {
736 /*
d6859bfc 737 * If we spliced it onto an indirect block, we haven't
1da177e4
LT
738 * altered the inode. Note however that if it is being spliced
739 * onto an indirect block at the very end of the file (the
740 * file is growing) then we *will* alter the inode to reflect
741 * the new i_size. But that is not done here - it is done in
742 * generic_commit_write->__mark_inode_dirty->ext3_dirty_inode.
743 */
744 jbd_debug(5, "splicing indirect only\n");
745 BUFFER_TRACE(where->bh, "call ext3_journal_dirty_metadata");
746 err = ext3_journal_dirty_metadata(handle, where->bh);
ae6ddcc5 747 if (err)
1da177e4
LT
748 goto err_out;
749 } else {
750 /*
751 * OK, we spliced it into the inode itself on a direct block.
752 * Inode was dirtied above.
753 */
754 jbd_debug(5, "splicing direct\n");
755 }
756 return err;
757
1da177e4 758err_out:
b47b2478 759 for (i = 1; i <= num; i++) {
1da177e4
LT
760 BUFFER_TRACE(where[i].bh, "call journal_forget");
761 ext3_journal_forget(handle, where[i].bh);
d6859bfc 762 ext3_free_blocks(handle,inode,le32_to_cpu(where[i-1].key),1);
1da177e4 763 }
b47b2478
MC
764 ext3_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks);
765
1da177e4
LT
766 return err;
767}
768
769/*
770 * Allocation strategy is simple: if we have to allocate something, we will
771 * have to go the whole way to leaf. So let's do it before attaching anything
772 * to tree, set linkage between the newborn blocks, write them if sync is
773 * required, recheck the path, free and repeat if check fails, otherwise
774 * set the last missing link (that will protect us from any truncate-generated
775 * removals - all blocks on the path are immune now) and possibly force the
776 * write on the parent block.
777 * That has a nice additional property: no special recovery from the failed
778 * allocations is needed - we simply release blocks and do not touch anything
779 * reachable from inode.
780 *
d6859bfc 781 * `handle' can be NULL if create == 0.
1da177e4
LT
782 *
783 * The BKL may not be held on entry here. Be sure to take it early.
89747d36
MC
784 * return > 0, # of blocks mapped or allocated.
785 * return = 0, if plain lookup failed.
786 * return < 0, error case.
1da177e4 787 */
d6859bfc
AM
788int ext3_get_blocks_handle(handle_t *handle, struct inode *inode,
789 sector_t iblock, unsigned long maxblocks,
790 struct buffer_head *bh_result,
89747d36 791 int create, int extend_disksize)
1da177e4
LT
792{
793 int err = -EIO;
794 int offsets[4];
795 Indirect chain[4];
796 Indirect *partial;
43d23f90 797 ext3_fsblk_t goal;
b47b2478 798 int indirect_blks;
89747d36
MC
799 int blocks_to_boundary = 0;
800 int depth;
1da177e4 801 struct ext3_inode_info *ei = EXT3_I(inode);
89747d36 802 int count = 0;
43d23f90 803 ext3_fsblk_t first_block = 0;
89747d36 804
1da177e4
LT
805
806 J_ASSERT(handle != NULL || create == 0);
d6859bfc 807 depth = ext3_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
1da177e4
LT
808
809 if (depth == 0)
810 goto out;
811
1da177e4
LT
812 partial = ext3_get_branch(inode, depth, offsets, chain, &err);
813
814 /* Simplest case - block found, no allocation needed */
815 if (!partial) {
5dea5176 816 first_block = le32_to_cpu(chain[depth - 1].key);
1da177e4 817 clear_buffer_new(bh_result);
89747d36
MC
818 count++;
819 /*map more blocks*/
820 while (count < maxblocks && count <= blocks_to_boundary) {
43d23f90 821 ext3_fsblk_t blk;
5dea5176 822
e8ef7aae 823 if (!verify_chain(chain, chain + depth - 1)) {
89747d36
MC
824 /*
825 * Indirect block might be removed by
826 * truncate while we were reading it.
827 * Handling of that case: forget what we've
828 * got now. Flag the err as EAGAIN, so it
829 * will reread.
830 */
831 err = -EAGAIN;
832 count = 0;
833 break;
834 }
5dea5176
MC
835 blk = le32_to_cpu(*(chain[depth-1].p + count));
836
837 if (blk == first_block + count)
89747d36
MC
838 count++;
839 else
840 break;
841 }
842 if (err != -EAGAIN)
843 goto got_it;
1da177e4
LT
844 }
845
846 /* Next simple case - plain lookup or failed read of indirect block */
fe55c452
MC
847 if (!create || err == -EIO)
848 goto cleanup;
849
97461518 850 mutex_lock(&ei->truncate_mutex);
fe55c452
MC
851
852 /*
853 * If the indirect block is missing while we are reading
854 * the chain(ext3_get_branch() returns -EAGAIN err), or
855 * if the chain has been changed after we grab the semaphore,
856 * (either because another process truncated this branch, or
857 * another get_block allocated this branch) re-grab the chain to see if
858 * the request block has been allocated or not.
859 *
860 * Since we already block the truncate/other get_block
861 * at this point, we will have the current copy of the chain when we
862 * splice the branch into the tree.
863 */
864 if (err == -EAGAIN || !verify_chain(chain, partial)) {
1da177e4 865 while (partial > chain) {
1da177e4
LT
866 brelse(partial->bh);
867 partial--;
868 }
fe55c452
MC
869 partial = ext3_get_branch(inode, depth, offsets, chain, &err);
870 if (!partial) {
89747d36 871 count++;
97461518 872 mutex_unlock(&ei->truncate_mutex);
fe55c452
MC
873 if (err)
874 goto cleanup;
875 clear_buffer_new(bh_result);
876 goto got_it;
877 }
1da177e4
LT
878 }
879
880 /*
fe55c452
MC
881 * Okay, we need to do block allocation. Lazily initialize the block
882 * allocation info here if necessary
883 */
884 if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
1da177e4 885 ext3_init_block_alloc_info(inode);
1da177e4 886
fb01bfda 887 goal = ext3_find_goal(inode, iblock, partial);
1da177e4 888
b47b2478
MC
889 /* the number of blocks need to allocate for [d,t]indirect blocks */
890 indirect_blks = (chain + depth) - partial - 1;
1da177e4 891
b47b2478
MC
892 /*
893 * Next look up the indirect map to count the totoal number of
894 * direct blocks to allocate for this branch.
895 */
896 count = ext3_blks_to_allocate(partial, indirect_blks,
897 maxblocks, blocks_to_boundary);
1da177e4
LT
898 /*
899 * Block out ext3_truncate while we alter the tree
900 */
b47b2478 901 err = ext3_alloc_branch(handle, inode, indirect_blks, &count, goal,
fe55c452 902 offsets + (partial - chain), partial);
1da177e4 903
fe55c452
MC
904 /*
905 * The ext3_splice_branch call will free and forget any buffers
1da177e4
LT
906 * on the new chain if there is a failure, but that risks using
907 * up transaction credits, especially for bitmaps where the
908 * credits cannot be returned. Can we handle this somehow? We
fe55c452
MC
909 * may need to return -EAGAIN upwards in the worst case. --sct
910 */
1da177e4 911 if (!err)
b47b2478
MC
912 err = ext3_splice_branch(handle, inode, iblock,
913 partial, indirect_blks, count);
fe55c452 914 /*
97461518 915 * i_disksize growing is protected by truncate_mutex. Don't forget to
fe55c452
MC
916 * protect it if you're about to implement concurrent
917 * ext3_get_block() -bzzz
918 */
1da177e4
LT
919 if (!err && extend_disksize && inode->i_size > ei->i_disksize)
920 ei->i_disksize = inode->i_size;
97461518 921 mutex_unlock(&ei->truncate_mutex);
1da177e4
LT
922 if (err)
923 goto cleanup;
924
925 set_buffer_new(bh_result);
fe55c452
MC
926got_it:
927 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
20acaa18 928 if (count > blocks_to_boundary)
fe55c452 929 set_buffer_boundary(bh_result);
89747d36 930 err = count;
fe55c452
MC
931 /* Clean up and exit */
932 partial = chain + depth - 1; /* the whole chain */
933cleanup:
1da177e4 934 while (partial > chain) {
fe55c452 935 BUFFER_TRACE(partial->bh, "call brelse");
1da177e4
LT
936 brelse(partial->bh);
937 partial--;
938 }
fe55c452
MC
939 BUFFER_TRACE(bh_result, "returned");
940out:
941 return err;
1da177e4
LT
942}
943
bd1939de
JK
944/* Maximum number of blocks we map for direct IO at once. */
945#define DIO_MAX_BLOCKS 4096
946/*
947 * Number of credits we need for writing DIO_MAX_BLOCKS:
948 * We need sb + group descriptor + bitmap + inode -> 4
949 * For B blocks with A block pointers per block we need:
950 * 1 (triple ind.) + (B/A/A + 2) (doubly ind.) + (B/A + 2) (indirect).
951 * If we plug in 4096 for B and 256 for A (for 1KB block size), we get 25.
952 */
953#define DIO_CREDITS 25
1da177e4 954
f91a2ad2
BP
955static int ext3_get_block(struct inode *inode, sector_t iblock,
956 struct buffer_head *bh_result, int create)
1da177e4 957{
3e4fdaf8 958 handle_t *handle = ext3_journal_current_handle();
bd1939de 959 int ret = 0, started = 0;
1d8fa7a2 960 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1da177e4 961
bd1939de
JK
962 if (create && !handle) { /* Direct IO write... */
963 if (max_blocks > DIO_MAX_BLOCKS)
964 max_blocks = DIO_MAX_BLOCKS;
965 handle = ext3_journal_start(inode, DIO_CREDITS +
966 2 * EXT3_QUOTA_TRANS_BLOCKS(inode->i_sb));
967 if (IS_ERR(handle)) {
1da177e4 968 ret = PTR_ERR(handle);
bd1939de 969 goto out;
1da177e4 970 }
bd1939de 971 started = 1;
1da177e4
LT
972 }
973
bd1939de 974 ret = ext3_get_blocks_handle(handle, inode, iblock,
89747d36 975 max_blocks, bh_result, create, 0);
bd1939de
JK
976 if (ret > 0) {
977 bh_result->b_size = (ret << inode->i_blkbits);
978 ret = 0;
89747d36 979 }
bd1939de
JK
980 if (started)
981 ext3_journal_stop(handle);
982out:
1da177e4
LT
983 return ret;
984}
985
68c9d702
JB
986int ext3_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
987 u64 start, u64 len)
988{
989 return generic_block_fiemap(inode, fieinfo, start, len,
990 ext3_get_block);
991}
992
1da177e4
LT
993/*
994 * `handle' can be NULL if create is zero
995 */
d6859bfc
AM
996struct buffer_head *ext3_getblk(handle_t *handle, struct inode *inode,
997 long block, int create, int *errp)
1da177e4
LT
998{
999 struct buffer_head dummy;
1000 int fatal = 0, err;
1001
1002 J_ASSERT(handle != NULL || create == 0);
1003
1004 dummy.b_state = 0;
1005 dummy.b_blocknr = -1000;
1006 buffer_trace_init(&dummy.b_history);
89747d36
MC
1007 err = ext3_get_blocks_handle(handle, inode, block, 1,
1008 &dummy, create, 1);
3665d0e5
BP
1009 /*
1010 * ext3_get_blocks_handle() returns number of blocks
1011 * mapped. 0 in case of a HOLE.
1012 */
1013 if (err > 0) {
1014 if (err > 1)
1015 WARN_ON(1);
89747d36 1016 err = 0;
89747d36
MC
1017 }
1018 *errp = err;
1019 if (!err && buffer_mapped(&dummy)) {
1da177e4
LT
1020 struct buffer_head *bh;
1021 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
2973dfdb
GOC
1022 if (!bh) {
1023 *errp = -EIO;
1024 goto err;
1025 }
1da177e4
LT
1026 if (buffer_new(&dummy)) {
1027 J_ASSERT(create != 0);
c80544dc 1028 J_ASSERT(handle != NULL);
1da177e4 1029
d6859bfc
AM
1030 /*
1031 * Now that we do not always journal data, we should
1032 * keep in mind whether this should always journal the
1033 * new buffer as metadata. For now, regular file
1034 * writes use ext3_get_block instead, so it's not a
1035 * problem.
1036 */
1da177e4
LT
1037 lock_buffer(bh);
1038 BUFFER_TRACE(bh, "call get_create_access");
1039 fatal = ext3_journal_get_create_access(handle, bh);
1040 if (!fatal && !buffer_uptodate(bh)) {
d6859bfc 1041 memset(bh->b_data,0,inode->i_sb->s_blocksize);
1da177e4
LT
1042 set_buffer_uptodate(bh);
1043 }
1044 unlock_buffer(bh);
1045 BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
1046 err = ext3_journal_dirty_metadata(handle, bh);
1047 if (!fatal)
1048 fatal = err;
1049 } else {
1050 BUFFER_TRACE(bh, "not a new buffer");
1051 }
1052 if (fatal) {
1053 *errp = fatal;
1054 brelse(bh);
1055 bh = NULL;
1056 }
1057 return bh;
1058 }
2973dfdb 1059err:
1da177e4
LT
1060 return NULL;
1061}
1062
d6859bfc 1063struct buffer_head *ext3_bread(handle_t *handle, struct inode *inode,
1da177e4
LT
1064 int block, int create, int *err)
1065{
1066 struct buffer_head * bh;
1067
1068 bh = ext3_getblk(handle, inode, block, create, err);
1069 if (!bh)
1070 return bh;
1071 if (buffer_uptodate(bh))
1072 return bh;
caa38fb0 1073 ll_rw_block(READ_META, 1, &bh);
1da177e4
LT
1074 wait_on_buffer(bh);
1075 if (buffer_uptodate(bh))
1076 return bh;
1077 put_bh(bh);
1078 *err = -EIO;
1079 return NULL;
1080}
1081
1082static int walk_page_buffers( handle_t *handle,
1083 struct buffer_head *head,
1084 unsigned from,
1085 unsigned to,
1086 int *partial,
1087 int (*fn)( handle_t *handle,
1088 struct buffer_head *bh))
1089{
1090 struct buffer_head *bh;
1091 unsigned block_start, block_end;
1092 unsigned blocksize = head->b_size;
1093 int err, ret = 0;
1094 struct buffer_head *next;
1095
1096 for ( bh = head, block_start = 0;
1097 ret == 0 && (bh != head || !block_start);
e9ad5620 1098 block_start = block_end, bh = next)
1da177e4
LT
1099 {
1100 next = bh->b_this_page;
1101 block_end = block_start + blocksize;
1102 if (block_end <= from || block_start >= to) {
1103 if (partial && !buffer_uptodate(bh))
1104 *partial = 1;
1105 continue;
1106 }
1107 err = (*fn)(handle, bh);
1108 if (!ret)
1109 ret = err;
1110 }
1111 return ret;
1112}
1113
1114/*
1115 * To preserve ordering, it is essential that the hole instantiation and
1116 * the data write be encapsulated in a single transaction. We cannot
1117 * close off a transaction and start a new one between the ext3_get_block()
1118 * and the commit_write(). So doing the journal_start at the start of
1119 * prepare_write() is the right place.
1120 *
1121 * Also, this function can nest inside ext3_writepage() ->
1122 * block_write_full_page(). In that case, we *know* that ext3_writepage()
1123 * has generated enough buffer credits to do the whole page. So we won't
1124 * block on the journal in that case, which is good, because the caller may
1125 * be PF_MEMALLOC.
1126 *
1127 * By accident, ext3 can be reentered when a transaction is open via
1128 * quota file writes. If we were to commit the transaction while thus
1129 * reentered, there can be a deadlock - we would be holding a quota
1130 * lock, and the commit would never complete if another thread had a
1131 * transaction open and was blocking on the quota lock - a ranking
1132 * violation.
1133 *
1134 * So what we do is to rely on the fact that journal_stop/journal_start
1135 * will _not_ run commit under these circumstances because handle->h_ref
1136 * is elevated. We'll still have enough credits for the tiny quotafile
ae6ddcc5 1137 * write.
1da177e4 1138 */
d6859bfc
AM
1139static int do_journal_get_write_access(handle_t *handle,
1140 struct buffer_head *bh)
1da177e4
LT
1141{
1142 if (!buffer_mapped(bh) || buffer_freed(bh))
1143 return 0;
1144 return ext3_journal_get_write_access(handle, bh);
1145}
1146
f4fc66a8
NP
1147static int ext3_write_begin(struct file *file, struct address_space *mapping,
1148 loff_t pos, unsigned len, unsigned flags,
1149 struct page **pagep, void **fsdata)
1da177e4 1150{
f4fc66a8 1151 struct inode *inode = mapping->host;
695f6ae0 1152 int ret;
1da177e4
LT
1153 handle_t *handle;
1154 int retries = 0;
f4fc66a8
NP
1155 struct page *page;
1156 pgoff_t index;
1157 unsigned from, to;
695f6ae0
JK
1158 /* Reserve one block more for addition to orphan list in case
1159 * we allocate blocks but write fails for some reason */
1160 int needed_blocks = ext3_writepage_trans_blocks(inode) + 1;
f4fc66a8
NP
1161
1162 index = pos >> PAGE_CACHE_SHIFT;
1163 from = pos & (PAGE_CACHE_SIZE - 1);
1164 to = from + len;
1da177e4
LT
1165
1166retry:
54566b2c 1167 page = grab_cache_page_write_begin(mapping, index, flags);
f4fc66a8
NP
1168 if (!page)
1169 return -ENOMEM;
1170 *pagep = page;
1171
1da177e4 1172 handle = ext3_journal_start(inode, needed_blocks);
1aa9b4b9 1173 if (IS_ERR(handle)) {
f4fc66a8
NP
1174 unlock_page(page);
1175 page_cache_release(page);
1aa9b4b9
AM
1176 ret = PTR_ERR(handle);
1177 goto out;
1178 }
f4fc66a8
NP
1179 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1180 ext3_get_block);
1da177e4 1181 if (ret)
f4fc66a8 1182 goto write_begin_failed;
1da177e4
LT
1183
1184 if (ext3_should_journal_data(inode)) {
1185 ret = walk_page_buffers(handle, page_buffers(page),
1186 from, to, NULL, do_journal_get_write_access);
1187 }
f4fc66a8
NP
1188write_begin_failed:
1189 if (ret) {
5ec8b75e
AK
1190 /*
1191 * block_write_begin may have instantiated a few blocks
1192 * outside i_size. Trim these off again. Don't need
1193 * i_size_read because we hold i_mutex.
695f6ae0
JK
1194 *
1195 * Add inode to orphan list in case we crash before truncate
9eaaa2d5
JK
1196 * finishes. Do this only if ext3_can_truncate() agrees so
1197 * that orphan processing code is happy.
5ec8b75e 1198 */
9eaaa2d5 1199 if (pos + len > inode->i_size && ext3_can_truncate(inode))
695f6ae0
JK
1200 ext3_orphan_add(handle, inode);
1201 ext3_journal_stop(handle);
1202 unlock_page(page);
1203 page_cache_release(page);
5ec8b75e 1204 if (pos + len > inode->i_size)
9eaaa2d5 1205 ext3_truncate(inode);
f4fc66a8 1206 }
1da177e4
LT
1207 if (ret == -ENOSPC && ext3_should_retry_alloc(inode->i_sb, &retries))
1208 goto retry;
1aa9b4b9 1209out:
1da177e4
LT
1210 return ret;
1211}
1212
f4fc66a8 1213
d6859bfc 1214int ext3_journal_dirty_data(handle_t *handle, struct buffer_head *bh)
1da177e4
LT
1215{
1216 int err = journal_dirty_data(handle, bh);
1217 if (err)
e05b6b52 1218 ext3_journal_abort_handle(__func__, __func__,
f4fc66a8 1219 bh, handle, err);
1da177e4
LT
1220 return err;
1221}
1222
695f6ae0
JK
1223/* For ordered writepage and write_end functions */
1224static int journal_dirty_data_fn(handle_t *handle, struct buffer_head *bh)
1225{
1226 /*
1227 * Write could have mapped the buffer but it didn't copy the data in
1228 * yet. So avoid filing such buffer into a transaction.
1229 */
1230 if (buffer_mapped(bh) && buffer_uptodate(bh))
1231 return ext3_journal_dirty_data(handle, bh);
1232 return 0;
1233}
1234
f4fc66a8
NP
1235/* For write_end() in data=journal mode */
1236static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1da177e4
LT
1237{
1238 if (!buffer_mapped(bh) || buffer_freed(bh))
1239 return 0;
1240 set_buffer_uptodate(bh);
1241 return ext3_journal_dirty_metadata(handle, bh);
1242}
1243
f4fc66a8 1244/*
695f6ae0
JK
1245 * This is nasty and subtle: ext3_write_begin() could have allocated blocks
1246 * for the whole page but later we failed to copy the data in. Update inode
1247 * size according to what we managed to copy. The rest is going to be
1248 * truncated in write_end function.
f4fc66a8 1249 */
695f6ae0 1250static void update_file_sizes(struct inode *inode, loff_t pos, unsigned copied)
f4fc66a8 1251{
695f6ae0
JK
1252 /* What matters to us is i_disksize. We don't write i_size anywhere */
1253 if (pos + copied > inode->i_size)
1254 i_size_write(inode, pos + copied);
1255 if (pos + copied > EXT3_I(inode)->i_disksize) {
1256 EXT3_I(inode)->i_disksize = pos + copied;
f4fc66a8
NP
1257 mark_inode_dirty(inode);
1258 }
f4fc66a8
NP
1259}
1260
1da177e4
LT
1261/*
1262 * We need to pick up the new inode size which generic_commit_write gave us
1263 * `file' can be NULL - eg, when called from page_symlink().
1264 *
1265 * ext3 never places buffers on inode->i_mapping->private_list. metadata
1266 * buffers are managed internally.
1267 */
f4fc66a8
NP
1268static int ext3_ordered_write_end(struct file *file,
1269 struct address_space *mapping,
1270 loff_t pos, unsigned len, unsigned copied,
1271 struct page *page, void *fsdata)
1da177e4
LT
1272{
1273 handle_t *handle = ext3_journal_current_handle();
f4fc66a8
NP
1274 struct inode *inode = file->f_mapping->host;
1275 unsigned from, to;
1da177e4
LT
1276 int ret = 0, ret2;
1277
695f6ae0 1278 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
f4fc66a8 1279
695f6ae0
JK
1280 from = pos & (PAGE_CACHE_SIZE - 1);
1281 to = from + copied;
1da177e4 1282 ret = walk_page_buffers(handle, page_buffers(page),
695f6ae0 1283 from, to, NULL, journal_dirty_data_fn);
1da177e4 1284
695f6ae0
JK
1285 if (ret == 0)
1286 update_file_sizes(inode, pos, copied);
1287 /*
1288 * There may be allocated blocks outside of i_size because
1289 * we failed to copy some data. Prepare for truncate.
1290 */
9eaaa2d5 1291 if (pos + len > inode->i_size && ext3_can_truncate(inode))
695f6ae0 1292 ext3_orphan_add(handle, inode);
1da177e4
LT
1293 ret2 = ext3_journal_stop(handle);
1294 if (!ret)
1295 ret = ret2;
f4fc66a8
NP
1296 unlock_page(page);
1297 page_cache_release(page);
1298
695f6ae0 1299 if (pos + len > inode->i_size)
9eaaa2d5 1300 ext3_truncate(inode);
f4fc66a8 1301 return ret ? ret : copied;
1da177e4
LT
1302}
1303
f4fc66a8
NP
1304static int ext3_writeback_write_end(struct file *file,
1305 struct address_space *mapping,
1306 loff_t pos, unsigned len, unsigned copied,
1307 struct page *page, void *fsdata)
1da177e4
LT
1308{
1309 handle_t *handle = ext3_journal_current_handle();
f4fc66a8 1310 struct inode *inode = file->f_mapping->host;
695f6ae0 1311 int ret;
1da177e4 1312
695f6ae0
JK
1313 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1314 update_file_sizes(inode, pos, copied);
1315 /*
1316 * There may be allocated blocks outside of i_size because
1317 * we failed to copy some data. Prepare for truncate.
1318 */
9eaaa2d5 1319 if (pos + len > inode->i_size && ext3_can_truncate(inode))
695f6ae0
JK
1320 ext3_orphan_add(handle, inode);
1321 ret = ext3_journal_stop(handle);
f4fc66a8
NP
1322 unlock_page(page);
1323 page_cache_release(page);
1324
695f6ae0 1325 if (pos + len > inode->i_size)
9eaaa2d5 1326 ext3_truncate(inode);
f4fc66a8 1327 return ret ? ret : copied;
1da177e4
LT
1328}
1329
f4fc66a8
NP
1330static int ext3_journalled_write_end(struct file *file,
1331 struct address_space *mapping,
1332 loff_t pos, unsigned len, unsigned copied,
1333 struct page *page, void *fsdata)
1da177e4
LT
1334{
1335 handle_t *handle = ext3_journal_current_handle();
f4fc66a8 1336 struct inode *inode = mapping->host;
1da177e4
LT
1337 int ret = 0, ret2;
1338 int partial = 0;
f4fc66a8 1339 unsigned from, to;
1da177e4 1340
f4fc66a8
NP
1341 from = pos & (PAGE_CACHE_SIZE - 1);
1342 to = from + len;
1343
1344 if (copied < len) {
1345 if (!PageUptodate(page))
1346 copied = 0;
695f6ae0
JK
1347 page_zero_new_buffers(page, from + copied, to);
1348 to = from + copied;
f4fc66a8 1349 }
1da177e4
LT
1350
1351 ret = walk_page_buffers(handle, page_buffers(page), from,
f4fc66a8 1352 to, &partial, write_end_fn);
1da177e4
LT
1353 if (!partial)
1354 SetPageUptodate(page);
695f6ae0
JK
1355
1356 if (pos + copied > inode->i_size)
1357 i_size_write(inode, pos + copied);
1358 /*
1359 * There may be allocated blocks outside of i_size because
1360 * we failed to copy some data. Prepare for truncate.
1361 */
9eaaa2d5 1362 if (pos + len > inode->i_size && ext3_can_truncate(inode))
695f6ae0 1363 ext3_orphan_add(handle, inode);
1da177e4
LT
1364 EXT3_I(inode)->i_state |= EXT3_STATE_JDATA;
1365 if (inode->i_size > EXT3_I(inode)->i_disksize) {
1366 EXT3_I(inode)->i_disksize = inode->i_size;
1367 ret2 = ext3_mark_inode_dirty(handle, inode);
ae6ddcc5 1368 if (!ret)
1da177e4
LT
1369 ret = ret2;
1370 }
f4fc66a8 1371
1da177e4
LT
1372 ret2 = ext3_journal_stop(handle);
1373 if (!ret)
1374 ret = ret2;
f4fc66a8
NP
1375 unlock_page(page);
1376 page_cache_release(page);
1377
695f6ae0 1378 if (pos + len > inode->i_size)
9eaaa2d5 1379 ext3_truncate(inode);
f4fc66a8 1380 return ret ? ret : copied;
1da177e4
LT
1381}
1382
ae6ddcc5 1383/*
1da177e4
LT
1384 * bmap() is special. It gets used by applications such as lilo and by
1385 * the swapper to find the on-disk block of a specific piece of data.
1386 *
1387 * Naturally, this is dangerous if the block concerned is still in the
1388 * journal. If somebody makes a swapfile on an ext3 data-journaling
1389 * filesystem and enables swap, then they may get a nasty shock when the
1390 * data getting swapped to that swapfile suddenly gets overwritten by
1391 * the original zero's written out previously to the journal and
ae6ddcc5 1392 * awaiting writeback in the kernel's buffer cache.
1da177e4
LT
1393 *
1394 * So, if we see any bmap calls here on a modified, data-journaled file,
ae6ddcc5 1395 * take extra steps to flush any blocks which might be in the cache.
1da177e4
LT
1396 */
1397static sector_t ext3_bmap(struct address_space *mapping, sector_t block)
1398{
1399 struct inode *inode = mapping->host;
1400 journal_t *journal;
1401 int err;
1402
1403 if (EXT3_I(inode)->i_state & EXT3_STATE_JDATA) {
ae6ddcc5 1404 /*
1da177e4
LT
1405 * This is a REALLY heavyweight approach, but the use of
1406 * bmap on dirty files is expected to be extremely rare:
1407 * only if we run lilo or swapon on a freshly made file
ae6ddcc5 1408 * do we expect this to happen.
1da177e4
LT
1409 *
1410 * (bmap requires CAP_SYS_RAWIO so this does not
1411 * represent an unprivileged user DOS attack --- we'd be
1412 * in trouble if mortal users could trigger this path at
ae6ddcc5 1413 * will.)
1da177e4
LT
1414 *
1415 * NB. EXT3_STATE_JDATA is not set on files other than
1416 * regular files. If somebody wants to bmap a directory
1417 * or symlink and gets confused because the buffer
1418 * hasn't yet been flushed to disk, they deserve
1419 * everything they get.
1420 */
1421
1422 EXT3_I(inode)->i_state &= ~EXT3_STATE_JDATA;
1423 journal = EXT3_JOURNAL(inode);
1424 journal_lock_updates(journal);
1425 err = journal_flush(journal);
1426 journal_unlock_updates(journal);
1427
1428 if (err)
1429 return 0;
1430 }
1431
1432 return generic_block_bmap(mapping,block,ext3_get_block);
1433}
1434
1435static int bget_one(handle_t *handle, struct buffer_head *bh)
1436{
1437 get_bh(bh);
1438 return 0;
1439}
1440
1441static int bput_one(handle_t *handle, struct buffer_head *bh)
1442{
1443 put_bh(bh);
1444 return 0;
1445}
1446
9e80d407
JK
1447static int buffer_unmapped(handle_t *handle, struct buffer_head *bh)
1448{
1449 return !buffer_mapped(bh);
1450}
695f6ae0 1451
1da177e4
LT
1452/*
1453 * Note that we always start a transaction even if we're not journalling
1454 * data. This is to preserve ordering: any hole instantiation within
1455 * __block_write_full_page -> ext3_get_block() should be journalled
1456 * along with the data so we don't crash and then get metadata which
1457 * refers to old data.
1458 *
1459 * In all journalling modes block_write_full_page() will start the I/O.
1460 *
1461 * Problem:
1462 *
1463 * ext3_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1464 * ext3_writepage()
1465 *
1466 * Similar for:
1467 *
1468 * ext3_file_write() -> generic_file_write() -> __alloc_pages() -> ...
1469 *
1470 * Same applies to ext3_get_block(). We will deadlock on various things like
97461518 1471 * lock_journal and i_truncate_mutex.
1da177e4
LT
1472 *
1473 * Setting PF_MEMALLOC here doesn't work - too many internal memory
1474 * allocations fail.
1475 *
1476 * 16May01: If we're reentered then journal_current_handle() will be
1477 * non-zero. We simply *return*.
1478 *
1479 * 1 July 2001: @@@ FIXME:
1480 * In journalled data mode, a data buffer may be metadata against the
1481 * current transaction. But the same file is part of a shared mapping
1482 * and someone does a writepage() on it.
1483 *
1484 * We will move the buffer onto the async_data list, but *after* it has
1485 * been dirtied. So there's a small window where we have dirty data on
1486 * BJ_Metadata.
1487 *
1488 * Note that this only applies to the last partial page in the file. The
1489 * bit which block_write_full_page() uses prepare/commit for. (That's
1490 * broken code anyway: it's wrong for msync()).
1491 *
1492 * It's a rare case: affects the final partial page, for journalled data
1493 * where the file is subject to bith write() and writepage() in the same
1494 * transction. To fix it we'll need a custom block_write_full_page().
1495 * We'll probably need that anyway for journalling writepage() output.
1496 *
1497 * We don't honour synchronous mounts for writepage(). That would be
1498 * disastrous. Any write() or metadata operation will sync the fs for
1499 * us.
1500 *
1501 * AKPM2: if all the page's buffers are mapped to disk and !data=journal,
1502 * we don't need to open a transaction here.
1503 */
1504static int ext3_ordered_writepage(struct page *page,
d6859bfc 1505 struct writeback_control *wbc)
1da177e4
LT
1506{
1507 struct inode *inode = page->mapping->host;
1508 struct buffer_head *page_bufs;
1509 handle_t *handle = NULL;
1510 int ret = 0;
1511 int err;
1512
1513 J_ASSERT(PageLocked(page));
1514
1515 /*
1516 * We give up here if we're reentered, because it might be for a
1517 * different filesystem.
1518 */
1519 if (ext3_journal_current_handle())
1520 goto out_fail;
1521
9e80d407
JK
1522 if (!page_has_buffers(page)) {
1523 create_empty_buffers(page, inode->i_sb->s_blocksize,
1524 (1 << BH_Dirty)|(1 << BH_Uptodate));
430db323
JK
1525 page_bufs = page_buffers(page);
1526 } else {
1527 page_bufs = page_buffers(page);
1528 if (!walk_page_buffers(NULL, page_bufs, 0, PAGE_CACHE_SIZE,
1529 NULL, buffer_unmapped)) {
1530 /* Provide NULL get_block() to catch bugs if buffers
1531 * weren't really mapped */
1532 return block_write_full_page(page, NULL, wbc);
1533 }
9e80d407 1534 }
1da177e4
LT
1535 handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1536
1537 if (IS_ERR(handle)) {
1538 ret = PTR_ERR(handle);
1539 goto out_fail;
1540 }
1541
1da177e4
LT
1542 walk_page_buffers(handle, page_bufs, 0,
1543 PAGE_CACHE_SIZE, NULL, bget_one);
1544
1545 ret = block_write_full_page(page, ext3_get_block, wbc);
1546
1547 /*
1548 * The page can become unlocked at any point now, and
1549 * truncate can then come in and change things. So we
1550 * can't touch *page from now on. But *page_bufs is
1551 * safe due to elevated refcount.
1552 */
1553
1554 /*
ae6ddcc5 1555 * And attach them to the current transaction. But only if
1da177e4
LT
1556 * block_write_full_page() succeeded. Otherwise they are unmapped,
1557 * and generally junk.
1558 */
1559 if (ret == 0) {
1560 err = walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE,
1561 NULL, journal_dirty_data_fn);
1562 if (!ret)
1563 ret = err;
1564 }
1565 walk_page_buffers(handle, page_bufs, 0,
1566 PAGE_CACHE_SIZE, NULL, bput_one);
1567 err = ext3_journal_stop(handle);
1568 if (!ret)
1569 ret = err;
1570 return ret;
1571
1572out_fail:
1573 redirty_page_for_writepage(wbc, page);
1574 unlock_page(page);
1575 return ret;
1576}
1577
1da177e4
LT
1578static int ext3_writeback_writepage(struct page *page,
1579 struct writeback_control *wbc)
1580{
1581 struct inode *inode = page->mapping->host;
1582 handle_t *handle = NULL;
1583 int ret = 0;
1584 int err;
1585
1586 if (ext3_journal_current_handle())
1587 goto out_fail;
1588
430db323
JK
1589 if (page_has_buffers(page)) {
1590 if (!walk_page_buffers(NULL, page_buffers(page), 0,
1591 PAGE_CACHE_SIZE, NULL, buffer_unmapped)) {
1592 /* Provide NULL get_block() to catch bugs if buffers
1593 * weren't really mapped */
1594 return block_write_full_page(page, NULL, wbc);
1595 }
1596 }
1597
1da177e4
LT
1598 handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1599 if (IS_ERR(handle)) {
1600 ret = PTR_ERR(handle);
1601 goto out_fail;
1602 }
1603
0e31f51d 1604 if (test_opt(inode->i_sb, NOBH) && ext3_should_writeback_data(inode))
1da177e4
LT
1605 ret = nobh_writepage(page, ext3_get_block, wbc);
1606 else
1607 ret = block_write_full_page(page, ext3_get_block, wbc);
1608
1609 err = ext3_journal_stop(handle);
1610 if (!ret)
1611 ret = err;
1612 return ret;
1613
1614out_fail:
1615 redirty_page_for_writepage(wbc, page);
1616 unlock_page(page);
1617 return ret;
1618}
1619
1620static int ext3_journalled_writepage(struct page *page,
1621 struct writeback_control *wbc)
1622{
1623 struct inode *inode = page->mapping->host;
1624 handle_t *handle = NULL;
1625 int ret = 0;
1626 int err;
1627
1628 if (ext3_journal_current_handle())
1629 goto no_write;
1630
1631 handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1632 if (IS_ERR(handle)) {
1633 ret = PTR_ERR(handle);
1634 goto no_write;
1635 }
1636
1637 if (!page_has_buffers(page) || PageChecked(page)) {
1638 /*
1639 * It's mmapped pagecache. Add buffers and journal it. There
1640 * doesn't seem much point in redirtying the page here.
1641 */
1642 ClearPageChecked(page);
1643 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
1644 ext3_get_block);
ab4eb43c
DL
1645 if (ret != 0) {
1646 ext3_journal_stop(handle);
1da177e4 1647 goto out_unlock;
ab4eb43c 1648 }
1da177e4
LT
1649 ret = walk_page_buffers(handle, page_buffers(page), 0,
1650 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
1651
1652 err = walk_page_buffers(handle, page_buffers(page), 0,
f4fc66a8 1653 PAGE_CACHE_SIZE, NULL, write_end_fn);
1da177e4
LT
1654 if (ret == 0)
1655 ret = err;
1656 EXT3_I(inode)->i_state |= EXT3_STATE_JDATA;
1657 unlock_page(page);
1658 } else {
1659 /*
1660 * It may be a page full of checkpoint-mode buffers. We don't
1661 * really know unless we go poke around in the buffer_heads.
1662 * But block_write_full_page will do the right thing.
1663 */
1664 ret = block_write_full_page(page, ext3_get_block, wbc);
1665 }
1666 err = ext3_journal_stop(handle);
1667 if (!ret)
1668 ret = err;
1669out:
1670 return ret;
1671
1672no_write:
1673 redirty_page_for_writepage(wbc, page);
1674out_unlock:
1675 unlock_page(page);
1676 goto out;
1677}
1678
1679static int ext3_readpage(struct file *file, struct page *page)
1680{
1681 return mpage_readpage(page, ext3_get_block);
1682}
1683
1684static int
1685ext3_readpages(struct file *file, struct address_space *mapping,
1686 struct list_head *pages, unsigned nr_pages)
1687{
1688 return mpage_readpages(mapping, pages, nr_pages, ext3_get_block);
1689}
1690
2ff28e22 1691static void ext3_invalidatepage(struct page *page, unsigned long offset)
1da177e4
LT
1692{
1693 journal_t *journal = EXT3_JOURNAL(page->mapping->host);
1694
1695 /*
1696 * If it's a full truncate we just forget about the pending dirtying
1697 */
1698 if (offset == 0)
1699 ClearPageChecked(page);
1700
2ff28e22 1701 journal_invalidatepage(journal, page, offset);
1da177e4
LT
1702}
1703
27496a8c 1704static int ext3_releasepage(struct page *page, gfp_t wait)
1da177e4
LT
1705{
1706 journal_t *journal = EXT3_JOURNAL(page->mapping->host);
1707
1708 WARN_ON(PageChecked(page));
1709 if (!page_has_buffers(page))
1710 return 0;
1711 return journal_try_to_free_buffers(journal, page, wait);
1712}
1713
1714/*
1715 * If the O_DIRECT write will extend the file then add this inode to the
1716 * orphan list. So recovery will truncate it back to the original size
1717 * if the machine crashes during the write.
1718 *
1719 * If the O_DIRECT write is intantiating holes inside i_size and the machine
bd1939de
JK
1720 * crashes then stale disk data _may_ be exposed inside the file. But current
1721 * VFS code falls back into buffered path in that case so we are safe.
1da177e4
LT
1722 */
1723static ssize_t ext3_direct_IO(int rw, struct kiocb *iocb,
1724 const struct iovec *iov, loff_t offset,
1725 unsigned long nr_segs)
1726{
1727 struct file *file = iocb->ki_filp;
1728 struct inode *inode = file->f_mapping->host;
1729 struct ext3_inode_info *ei = EXT3_I(inode);
bd1939de 1730 handle_t *handle;
1da177e4
LT
1731 ssize_t ret;
1732 int orphan = 0;
1733 size_t count = iov_length(iov, nr_segs);
1734
1735 if (rw == WRITE) {
1736 loff_t final_size = offset + count;
1737
1da177e4 1738 if (final_size > inode->i_size) {
bd1939de
JK
1739 /* Credits for sb + inode write */
1740 handle = ext3_journal_start(inode, 2);
1741 if (IS_ERR(handle)) {
1742 ret = PTR_ERR(handle);
1743 goto out;
1744 }
1da177e4 1745 ret = ext3_orphan_add(handle, inode);
bd1939de
JK
1746 if (ret) {
1747 ext3_journal_stop(handle);
1748 goto out;
1749 }
1da177e4
LT
1750 orphan = 1;
1751 ei->i_disksize = inode->i_size;
bd1939de 1752 ext3_journal_stop(handle);
1da177e4
LT
1753 }
1754 }
1755
ae6ddcc5 1756 ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
1da177e4 1757 offset, nr_segs,
f91a2ad2 1758 ext3_get_block, NULL);
1da177e4 1759
bd1939de 1760 if (orphan) {
1da177e4
LT
1761 int err;
1762
bd1939de
JK
1763 /* Credits for sb + inode write */
1764 handle = ext3_journal_start(inode, 2);
1765 if (IS_ERR(handle)) {
1766 /* This is really bad luck. We've written the data
1767 * but cannot extend i_size. Bail out and pretend
1768 * the write failed... */
1769 ret = PTR_ERR(handle);
1770 goto out;
1771 }
1772 if (inode->i_nlink)
1da177e4 1773 ext3_orphan_del(handle, inode);
bd1939de 1774 if (ret > 0) {
1da177e4
LT
1775 loff_t end = offset + ret;
1776 if (end > inode->i_size) {
1777 ei->i_disksize = end;
1778 i_size_write(inode, end);
1779 /*
1780 * We're going to return a positive `ret'
1781 * here due to non-zero-length I/O, so there's
1782 * no way of reporting error returns from
1783 * ext3_mark_inode_dirty() to userspace. So
1784 * ignore it.
1785 */
1786 ext3_mark_inode_dirty(handle, inode);
1787 }
1788 }
1789 err = ext3_journal_stop(handle);
1790 if (ret == 0)
1791 ret = err;
1792 }
1793out:
1794 return ret;
1795}
1796
1797/*
1798 * Pages can be marked dirty completely asynchronously from ext3's journalling
1799 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
1800 * much here because ->set_page_dirty is called under VFS locks. The page is
1801 * not necessarily locked.
1802 *
1803 * We cannot just dirty the page and leave attached buffers clean, because the
1804 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
1805 * or jbddirty because all the journalling code will explode.
1806 *
1807 * So what we do is to mark the page "pending dirty" and next time writepage
1808 * is called, propagate that into the buffers appropriately.
1809 */
1810static int ext3_journalled_set_page_dirty(struct page *page)
1811{
1812 SetPageChecked(page);
1813 return __set_page_dirty_nobuffers(page);
1814}
1815
f5e54d6e 1816static const struct address_space_operations ext3_ordered_aops = {
8ab22b9a
HH
1817 .readpage = ext3_readpage,
1818 .readpages = ext3_readpages,
1819 .writepage = ext3_ordered_writepage,
1820 .sync_page = block_sync_page,
1821 .write_begin = ext3_write_begin,
1822 .write_end = ext3_ordered_write_end,
1823 .bmap = ext3_bmap,
1824 .invalidatepage = ext3_invalidatepage,
1825 .releasepage = ext3_releasepage,
1826 .direct_IO = ext3_direct_IO,
1827 .migratepage = buffer_migrate_page,
1828 .is_partially_uptodate = block_is_partially_uptodate,
1da177e4
LT
1829};
1830
f5e54d6e 1831static const struct address_space_operations ext3_writeback_aops = {
8ab22b9a
HH
1832 .readpage = ext3_readpage,
1833 .readpages = ext3_readpages,
1834 .writepage = ext3_writeback_writepage,
1835 .sync_page = block_sync_page,
1836 .write_begin = ext3_write_begin,
1837 .write_end = ext3_writeback_write_end,
1838 .bmap = ext3_bmap,
1839 .invalidatepage = ext3_invalidatepage,
1840 .releasepage = ext3_releasepage,
1841 .direct_IO = ext3_direct_IO,
1842 .migratepage = buffer_migrate_page,
1843 .is_partially_uptodate = block_is_partially_uptodate,
1da177e4
LT
1844};
1845
f5e54d6e 1846static const struct address_space_operations ext3_journalled_aops = {
8ab22b9a
HH
1847 .readpage = ext3_readpage,
1848 .readpages = ext3_readpages,
1849 .writepage = ext3_journalled_writepage,
1850 .sync_page = block_sync_page,
1851 .write_begin = ext3_write_begin,
1852 .write_end = ext3_journalled_write_end,
1853 .set_page_dirty = ext3_journalled_set_page_dirty,
1854 .bmap = ext3_bmap,
1855 .invalidatepage = ext3_invalidatepage,
1856 .releasepage = ext3_releasepage,
1857 .is_partially_uptodate = block_is_partially_uptodate,
1da177e4
LT
1858};
1859
1860void ext3_set_aops(struct inode *inode)
1861{
1862 if (ext3_should_order_data(inode))
1863 inode->i_mapping->a_ops = &ext3_ordered_aops;
1864 else if (ext3_should_writeback_data(inode))
1865 inode->i_mapping->a_ops = &ext3_writeback_aops;
1866 else
1867 inode->i_mapping->a_ops = &ext3_journalled_aops;
1868}
1869
1870/*
1871 * ext3_block_truncate_page() zeroes out a mapping from file offset `from'
1872 * up to the end of the block which corresponds to `from'.
1873 * This required during truncate. We need to physically zero the tail end
1874 * of that block so it doesn't yield old data if the file is later grown.
1875 */
1876static int ext3_block_truncate_page(handle_t *handle, struct page *page,
1877 struct address_space *mapping, loff_t from)
1878{
43d23f90 1879 ext3_fsblk_t index = from >> PAGE_CACHE_SHIFT;
1da177e4
LT
1880 unsigned offset = from & (PAGE_CACHE_SIZE-1);
1881 unsigned blocksize, iblock, length, pos;
1882 struct inode *inode = mapping->host;
1883 struct buffer_head *bh;
1884 int err = 0;
1da177e4
LT
1885
1886 blocksize = inode->i_sb->s_blocksize;
1887 length = blocksize - (offset & (blocksize - 1));
1888 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
1889
1890 /*
1891 * For "nobh" option, we can only work if we don't need to
1892 * read-in the page - otherwise we create buffers to do the IO.
1893 */
cd6ef84e
BP
1894 if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
1895 ext3_should_writeback_data(inode) && PageUptodate(page)) {
eebd2aa3 1896 zero_user(page, offset, length);
cd6ef84e
BP
1897 set_page_dirty(page);
1898 goto unlock;
1da177e4
LT
1899 }
1900
1901 if (!page_has_buffers(page))
1902 create_empty_buffers(page, blocksize, 0);
1903
1904 /* Find the buffer that contains "offset" */
1905 bh = page_buffers(page);
1906 pos = blocksize;
1907 while (offset >= pos) {
1908 bh = bh->b_this_page;
1909 iblock++;
1910 pos += blocksize;
1911 }
1912
1913 err = 0;
1914 if (buffer_freed(bh)) {
1915 BUFFER_TRACE(bh, "freed: skip");
1916 goto unlock;
1917 }
1918
1919 if (!buffer_mapped(bh)) {
1920 BUFFER_TRACE(bh, "unmapped");
1921 ext3_get_block(inode, iblock, bh, 0);
1922 /* unmapped? It's a hole - nothing to do */
1923 if (!buffer_mapped(bh)) {
1924 BUFFER_TRACE(bh, "still unmapped");
1925 goto unlock;
1926 }
1927 }
1928
1929 /* Ok, it's mapped. Make sure it's up-to-date */
1930 if (PageUptodate(page))
1931 set_buffer_uptodate(bh);
1932
1933 if (!buffer_uptodate(bh)) {
1934 err = -EIO;
1935 ll_rw_block(READ, 1, &bh);
1936 wait_on_buffer(bh);
1937 /* Uhhuh. Read error. Complain and punt. */
1938 if (!buffer_uptodate(bh))
1939 goto unlock;
1940 }
1941
1942 if (ext3_should_journal_data(inode)) {
1943 BUFFER_TRACE(bh, "get write access");
1944 err = ext3_journal_get_write_access(handle, bh);
1945 if (err)
1946 goto unlock;
1947 }
1948
eebd2aa3 1949 zero_user(page, offset, length);
1da177e4
LT
1950 BUFFER_TRACE(bh, "zeroed end of block");
1951
1952 err = 0;
1953 if (ext3_should_journal_data(inode)) {
1954 err = ext3_journal_dirty_metadata(handle, bh);
1955 } else {
1956 if (ext3_should_order_data(inode))
1957 err = ext3_journal_dirty_data(handle, bh);
1958 mark_buffer_dirty(bh);
1959 }
1960
1961unlock:
1962 unlock_page(page);
1963 page_cache_release(page);
1964 return err;
1965}
1966
1967/*
1968 * Probably it should be a library function... search for first non-zero word
1969 * or memcmp with zero_page, whatever is better for particular architecture.
1970 * Linus?
1971 */
1972static inline int all_zeroes(__le32 *p, __le32 *q)
1973{
1974 while (p < q)
1975 if (*p++)
1976 return 0;
1977 return 1;
1978}
1979
1980/**
1981 * ext3_find_shared - find the indirect blocks for partial truncation.
1982 * @inode: inode in question
1983 * @depth: depth of the affected branch
1984 * @offsets: offsets of pointers in that branch (see ext3_block_to_path)
1985 * @chain: place to store the pointers to partial indirect blocks
1986 * @top: place to the (detached) top of branch
1987 *
1988 * This is a helper function used by ext3_truncate().
1989 *
1990 * When we do truncate() we may have to clean the ends of several
1991 * indirect blocks but leave the blocks themselves alive. Block is
1992 * partially truncated if some data below the new i_size is refered
1993 * from it (and it is on the path to the first completely truncated
1994 * data block, indeed). We have to free the top of that path along
1995 * with everything to the right of the path. Since no allocation
1996 * past the truncation point is possible until ext3_truncate()
1997 * finishes, we may safely do the latter, but top of branch may
1998 * require special attention - pageout below the truncation point
1999 * might try to populate it.
2000 *
2001 * We atomically detach the top of branch from the tree, store the
2002 * block number of its root in *@top, pointers to buffer_heads of
2003 * partially truncated blocks - in @chain[].bh and pointers to
2004 * their last elements that should not be removed - in
2005 * @chain[].p. Return value is the pointer to last filled element
2006 * of @chain.
2007 *
2008 * The work left to caller to do the actual freeing of subtrees:
2009 * a) free the subtree starting from *@top
2010 * b) free the subtrees whose roots are stored in
2011 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
2012 * c) free the subtrees growing from the inode past the @chain[0].
2013 * (no partially truncated stuff there). */
2014
d6859bfc
AM
2015static Indirect *ext3_find_shared(struct inode *inode, int depth,
2016 int offsets[4], Indirect chain[4], __le32 *top)
1da177e4
LT
2017{
2018 Indirect *partial, *p;
2019 int k, err;
2020
2021 *top = 0;
2022 /* Make k index the deepest non-null offest + 1 */
2023 for (k = depth; k > 1 && !offsets[k-1]; k--)
2024 ;
2025 partial = ext3_get_branch(inode, k, offsets, chain, &err);
2026 /* Writer: pointers */
2027 if (!partial)
2028 partial = chain + k-1;
2029 /*
2030 * If the branch acquired continuation since we've looked at it -
2031 * fine, it should all survive and (new) top doesn't belong to us.
2032 */
2033 if (!partial->key && *partial->p)
2034 /* Writer: end */
2035 goto no_top;
2036 for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
2037 ;
2038 /*
2039 * OK, we've found the last block that must survive. The rest of our
2040 * branch should be detached before unlocking. However, if that rest
2041 * of branch is all ours and does not grow immediately from the inode
2042 * it's easier to cheat and just decrement partial->p.
2043 */
2044 if (p == chain + k - 1 && p > chain) {
2045 p->p--;
2046 } else {
2047 *top = *p->p;
2048 /* Nope, don't do this in ext3. Must leave the tree intact */
2049#if 0
2050 *p->p = 0;
2051#endif
2052 }
2053 /* Writer: end */
2054
d6859bfc 2055 while(partial > p) {
1da177e4
LT
2056 brelse(partial->bh);
2057 partial--;
2058 }
2059no_top:
2060 return partial;
2061}
2062
2063/*
2064 * Zero a number of block pointers in either an inode or an indirect block.
2065 * If we restart the transaction we must again get write access to the
2066 * indirect block for further modification.
2067 *
2068 * We release `count' blocks on disk, but (last - first) may be greater
2069 * than `count' because there can be holes in there.
2070 */
d6859bfc 2071static void ext3_clear_blocks(handle_t *handle, struct inode *inode,
43d23f90 2072 struct buffer_head *bh, ext3_fsblk_t block_to_free,
d6859bfc 2073 unsigned long count, __le32 *first, __le32 *last)
1da177e4
LT
2074{
2075 __le32 *p;
2076 if (try_to_extend_transaction(handle, inode)) {
2077 if (bh) {
2078 BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
2079 ext3_journal_dirty_metadata(handle, bh);
2080 }
2081 ext3_mark_inode_dirty(handle, inode);
2082 ext3_journal_test_restart(handle, inode);
2083 if (bh) {
2084 BUFFER_TRACE(bh, "retaking write access");
2085 ext3_journal_get_write_access(handle, bh);
2086 }
2087 }
2088
2089 /*
2090 * Any buffers which are on the journal will be in memory. We find
2091 * them on the hash table so journal_revoke() will run journal_forget()
2092 * on them. We've already detached each block from the file, so
2093 * bforget() in journal_forget() should be safe.
2094 *
2095 * AKPM: turn on bforget in journal_forget()!!!
2096 */
2097 for (p = first; p < last; p++) {
2098 u32 nr = le32_to_cpu(*p);
2099 if (nr) {
2100 struct buffer_head *bh;
2101
2102 *p = 0;
2103 bh = sb_find_get_block(inode->i_sb, nr);
2104 ext3_forget(handle, 0, inode, bh, nr);
2105 }
2106 }
2107
2108 ext3_free_blocks(handle, inode, block_to_free, count);
2109}
2110
2111/**
2112 * ext3_free_data - free a list of data blocks
2113 * @handle: handle for this transaction
2114 * @inode: inode we are dealing with
2115 * @this_bh: indirect buffer_head which contains *@first and *@last
2116 * @first: array of block numbers
2117 * @last: points immediately past the end of array
2118 *
2119 * We are freeing all blocks refered from that array (numbers are stored as
2120 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
2121 *
2122 * We accumulate contiguous runs of blocks to free. Conveniently, if these
2123 * blocks are contiguous then releasing them at one time will only affect one
2124 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
2125 * actually use a lot of journal space.
2126 *
2127 * @this_bh will be %NULL if @first and @last point into the inode's direct
2128 * block pointers.
2129 */
2130static void ext3_free_data(handle_t *handle, struct inode *inode,
2131 struct buffer_head *this_bh,
2132 __le32 *first, __le32 *last)
2133{
43d23f90 2134 ext3_fsblk_t block_to_free = 0; /* Starting block # of a run */
ae6ddcc5 2135 unsigned long count = 0; /* Number of blocks in the run */
1da177e4
LT
2136 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
2137 corresponding to
2138 block_to_free */
43d23f90 2139 ext3_fsblk_t nr; /* Current block # */
1da177e4
LT
2140 __le32 *p; /* Pointer into inode/ind
2141 for current block */
2142 int err;
2143
2144 if (this_bh) { /* For indirect block */
2145 BUFFER_TRACE(this_bh, "get_write_access");
2146 err = ext3_journal_get_write_access(handle, this_bh);
2147 /* Important: if we can't update the indirect pointers
2148 * to the blocks, we can't free them. */
2149 if (err)
2150 return;
2151 }
2152
2153 for (p = first; p < last; p++) {
2154 nr = le32_to_cpu(*p);
2155 if (nr) {
2156 /* accumulate blocks to free if they're contiguous */
2157 if (count == 0) {
2158 block_to_free = nr;
2159 block_to_free_p = p;
2160 count = 1;
2161 } else if (nr == block_to_free + count) {
2162 count++;
2163 } else {
ae6ddcc5 2164 ext3_clear_blocks(handle, inode, this_bh,
1da177e4
LT
2165 block_to_free,
2166 count, block_to_free_p, p);
2167 block_to_free = nr;
2168 block_to_free_p = p;
2169 count = 1;
2170 }
2171 }
2172 }
2173
2174 if (count > 0)
2175 ext3_clear_blocks(handle, inode, this_bh, block_to_free,
2176 count, block_to_free_p, p);
2177
2178 if (this_bh) {
2179 BUFFER_TRACE(this_bh, "call ext3_journal_dirty_metadata");
3ccc3167
DG
2180
2181 /*
2182 * The buffer head should have an attached journal head at this
2183 * point. However, if the data is corrupted and an indirect
2184 * block pointed to itself, it would have been detached when
2185 * the block was cleared. Check for this instead of OOPSing.
2186 */
2187 if (bh2jh(this_bh))
2188 ext3_journal_dirty_metadata(handle, this_bh);
2189 else
2190 ext3_error(inode->i_sb, "ext3_free_data",
2191 "circular indirect block detected, "
2192 "inode=%lu, block=%llu",
2193 inode->i_ino,
2194 (unsigned long long)this_bh->b_blocknr);
1da177e4
LT
2195 }
2196}
2197
2198/**
2199 * ext3_free_branches - free an array of branches
2200 * @handle: JBD handle for this transaction
2201 * @inode: inode we are dealing with
2202 * @parent_bh: the buffer_head which contains *@first and *@last
2203 * @first: array of block numbers
2204 * @last: pointer immediately past the end of array
2205 * @depth: depth of the branches to free
2206 *
2207 * We are freeing all blocks refered from these branches (numbers are
2208 * stored as little-endian 32-bit) and updating @inode->i_blocks
2209 * appropriately.
2210 */
2211static void ext3_free_branches(handle_t *handle, struct inode *inode,
2212 struct buffer_head *parent_bh,
2213 __le32 *first, __le32 *last, int depth)
2214{
43d23f90 2215 ext3_fsblk_t nr;
1da177e4
LT
2216 __le32 *p;
2217
2218 if (is_handle_aborted(handle))
2219 return;
2220
2221 if (depth--) {
2222 struct buffer_head *bh;
2223 int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
2224 p = last;
2225 while (--p >= first) {
2226 nr = le32_to_cpu(*p);
2227 if (!nr)
2228 continue; /* A hole */
2229
2230 /* Go read the buffer for the next level down */
2231 bh = sb_bread(inode->i_sb, nr);
2232
2233 /*
2234 * A read failure? Report error and clear slot
2235 * (should be rare).
2236 */
2237 if (!bh) {
2238 ext3_error(inode->i_sb, "ext3_free_branches",
eee194e7 2239 "Read failure, inode=%lu, block="E3FSBLK,
1da177e4
LT
2240 inode->i_ino, nr);
2241 continue;
2242 }
2243
2244 /* This zaps the entire block. Bottom up. */
2245 BUFFER_TRACE(bh, "free child branches");
2246 ext3_free_branches(handle, inode, bh,
2247 (__le32*)bh->b_data,
2248 (__le32*)bh->b_data + addr_per_block,
2249 depth);
2250
2251 /*
2252 * We've probably journalled the indirect block several
2253 * times during the truncate. But it's no longer
2254 * needed and we now drop it from the transaction via
2255 * journal_revoke().
2256 *
2257 * That's easy if it's exclusively part of this
2258 * transaction. But if it's part of the committing
2259 * transaction then journal_forget() will simply
2260 * brelse() it. That means that if the underlying
2261 * block is reallocated in ext3_get_block(),
2262 * unmap_underlying_metadata() will find this block
2263 * and will try to get rid of it. damn, damn.
2264 *
2265 * If this block has already been committed to the
2266 * journal, a revoke record will be written. And
2267 * revoke records must be emitted *before* clearing
2268 * this block's bit in the bitmaps.
2269 */
2270 ext3_forget(handle, 1, inode, bh, bh->b_blocknr);
2271
2272 /*
2273 * Everything below this this pointer has been
2274 * released. Now let this top-of-subtree go.
2275 *
2276 * We want the freeing of this indirect block to be
2277 * atomic in the journal with the updating of the
2278 * bitmap block which owns it. So make some room in
2279 * the journal.
2280 *
2281 * We zero the parent pointer *after* freeing its
2282 * pointee in the bitmaps, so if extend_transaction()
2283 * for some reason fails to put the bitmap changes and
2284 * the release into the same transaction, recovery
2285 * will merely complain about releasing a free block,
2286 * rather than leaking blocks.
2287 */
2288 if (is_handle_aborted(handle))
2289 return;
2290 if (try_to_extend_transaction(handle, inode)) {
2291 ext3_mark_inode_dirty(handle, inode);
2292 ext3_journal_test_restart(handle, inode);
2293 }
2294
2295 ext3_free_blocks(handle, inode, nr, 1);
2296
2297 if (parent_bh) {
2298 /*
2299 * The block which we have just freed is
2300 * pointed to by an indirect block: journal it
2301 */
2302 BUFFER_TRACE(parent_bh, "get_write_access");
2303 if (!ext3_journal_get_write_access(handle,
2304 parent_bh)){
2305 *p = 0;
2306 BUFFER_TRACE(parent_bh,
2307 "call ext3_journal_dirty_metadata");
ae6ddcc5 2308 ext3_journal_dirty_metadata(handle,
1da177e4
LT
2309 parent_bh);
2310 }
2311 }
2312 }
2313 } else {
2314 /* We have reached the bottom of the tree. */
2315 BUFFER_TRACE(parent_bh, "free data blocks");
2316 ext3_free_data(handle, inode, parent_bh, first, last);
2317 }
2318}
2319
ae76dd9a
DG
2320int ext3_can_truncate(struct inode *inode)
2321{
2322 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2323 return 0;
2324 if (S_ISREG(inode->i_mode))
2325 return 1;
2326 if (S_ISDIR(inode->i_mode))
2327 return 1;
2328 if (S_ISLNK(inode->i_mode))
2329 return !ext3_inode_is_fast_symlink(inode);
2330 return 0;
2331}
2332
1da177e4
LT
2333/*
2334 * ext3_truncate()
2335 *
2336 * We block out ext3_get_block() block instantiations across the entire
2337 * transaction, and VFS/VM ensures that ext3_truncate() cannot run
2338 * simultaneously on behalf of the same inode.
2339 *
2340 * As we work through the truncate and commmit bits of it to the journal there
2341 * is one core, guiding principle: the file's tree must always be consistent on
2342 * disk. We must be able to restart the truncate after a crash.
2343 *
2344 * The file's tree may be transiently inconsistent in memory (although it
2345 * probably isn't), but whenever we close off and commit a journal transaction,
2346 * the contents of (the filesystem + the journal) must be consistent and
2347 * restartable. It's pretty simple, really: bottom up, right to left (although
2348 * left-to-right works OK too).
2349 *
2350 * Note that at recovery time, journal replay occurs *before* the restart of
2351 * truncate against the orphan inode list.
2352 *
2353 * The committed inode has the new, desired i_size (which is the same as
2354 * i_disksize in this case). After a crash, ext3_orphan_cleanup() will see
2355 * that this inode's truncate did not complete and it will again call
2356 * ext3_truncate() to have another go. So there will be instantiated blocks
2357 * to the right of the truncation point in a crashed ext3 filesystem. But
2358 * that's fine - as long as they are linked from the inode, the post-crash
2359 * ext3_truncate() run will find them and release them.
2360 */
d6859bfc 2361void ext3_truncate(struct inode *inode)
1da177e4
LT
2362{
2363 handle_t *handle;
2364 struct ext3_inode_info *ei = EXT3_I(inode);
2365 __le32 *i_data = ei->i_data;
2366 int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
2367 struct address_space *mapping = inode->i_mapping;
2368 int offsets[4];
2369 Indirect chain[4];
2370 Indirect *partial;
2371 __le32 nr = 0;
2372 int n;
2373 long last_block;
2374 unsigned blocksize = inode->i_sb->s_blocksize;
2375 struct page *page;
2376
ae76dd9a 2377 if (!ext3_can_truncate(inode))
ef43618a 2378 goto out_notrans;
1da177e4 2379
f7ab34ea
TT
2380 if (inode->i_size == 0 && ext3_should_writeback_data(inode))
2381 ei->i_state |= EXT3_STATE_FLUSH_ON_CLOSE;
2382
1da177e4
LT
2383 /*
2384 * We have to lock the EOF page here, because lock_page() nests
2385 * outside journal_start().
2386 */
2387 if ((inode->i_size & (blocksize - 1)) == 0) {
2388 /* Block boundary? Nothing to do */
2389 page = NULL;
2390 } else {
2391 page = grab_cache_page(mapping,
2392 inode->i_size >> PAGE_CACHE_SHIFT);
2393 if (!page)
ef43618a 2394 goto out_notrans;
1da177e4
LT
2395 }
2396
2397 handle = start_transaction(inode);
2398 if (IS_ERR(handle)) {
2399 if (page) {
2400 clear_highpage(page);
2401 flush_dcache_page(page);
2402 unlock_page(page);
2403 page_cache_release(page);
2404 }
ef43618a 2405 goto out_notrans;
1da177e4
LT
2406 }
2407
2408 last_block = (inode->i_size + blocksize-1)
2409 >> EXT3_BLOCK_SIZE_BITS(inode->i_sb);
2410
2411 if (page)
2412 ext3_block_truncate_page(handle, page, mapping, inode->i_size);
2413
2414 n = ext3_block_to_path(inode, last_block, offsets, NULL);
2415 if (n == 0)
2416 goto out_stop; /* error */
2417
2418 /*
2419 * OK. This truncate is going to happen. We add the inode to the
2420 * orphan list, so that if this truncate spans multiple transactions,
2421 * and we crash, we will resume the truncate when the filesystem
2422 * recovers. It also marks the inode dirty, to catch the new size.
2423 *
2424 * Implication: the file must always be in a sane, consistent
2425 * truncatable state while each transaction commits.
2426 */
2427 if (ext3_orphan_add(handle, inode))
2428 goto out_stop;
2429
2430 /*
2431 * The orphan list entry will now protect us from any crash which
2432 * occurs before the truncate completes, so it is now safe to propagate
2433 * the new, shorter inode size (held for now in i_size) into the
2434 * on-disk inode. We do this via i_disksize, which is the value which
2435 * ext3 *really* writes onto the disk inode.
2436 */
2437 ei->i_disksize = inode->i_size;
2438
2439 /*
2440 * From here we block out all ext3_get_block() callers who want to
2441 * modify the block allocation tree.
2442 */
97461518 2443 mutex_lock(&ei->truncate_mutex);
1da177e4
LT
2444
2445 if (n == 1) { /* direct blocks */
2446 ext3_free_data(handle, inode, NULL, i_data+offsets[0],
2447 i_data + EXT3_NDIR_BLOCKS);
2448 goto do_indirects;
2449 }
2450
2451 partial = ext3_find_shared(inode, n, offsets, chain, &nr);
2452 /* Kill the top of shared branch (not detached) */
2453 if (nr) {
2454 if (partial == chain) {
2455 /* Shared branch grows from the inode */
2456 ext3_free_branches(handle, inode, NULL,
2457 &nr, &nr+1, (chain+n-1) - partial);
2458 *partial->p = 0;
2459 /*
2460 * We mark the inode dirty prior to restart,
2461 * and prior to stop. No need for it here.
2462 */
2463 } else {
2464 /* Shared branch grows from an indirect block */
2465 BUFFER_TRACE(partial->bh, "get_write_access");
2466 ext3_free_branches(handle, inode, partial->bh,
2467 partial->p,
2468 partial->p+1, (chain+n-1) - partial);
2469 }
2470 }
2471 /* Clear the ends of indirect blocks on the shared branch */
2472 while (partial > chain) {
2473 ext3_free_branches(handle, inode, partial->bh, partial->p + 1,
2474 (__le32*)partial->bh->b_data+addr_per_block,
2475 (chain+n-1) - partial);
2476 BUFFER_TRACE(partial->bh, "call brelse");
2477 brelse (partial->bh);
2478 partial--;
2479 }
2480do_indirects:
2481 /* Kill the remaining (whole) subtrees */
2482 switch (offsets[0]) {
d6859bfc
AM
2483 default:
2484 nr = i_data[EXT3_IND_BLOCK];
2485 if (nr) {
2486 ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
2487 i_data[EXT3_IND_BLOCK] = 0;
2488 }
2489 case EXT3_IND_BLOCK:
2490 nr = i_data[EXT3_DIND_BLOCK];
2491 if (nr) {
2492 ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
2493 i_data[EXT3_DIND_BLOCK] = 0;
2494 }
2495 case EXT3_DIND_BLOCK:
2496 nr = i_data[EXT3_TIND_BLOCK];
2497 if (nr) {
2498 ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
2499 i_data[EXT3_TIND_BLOCK] = 0;
2500 }
2501 case EXT3_TIND_BLOCK:
2502 ;
1da177e4
LT
2503 }
2504
2505 ext3_discard_reservation(inode);
2506
97461518 2507 mutex_unlock(&ei->truncate_mutex);
1da177e4
LT
2508 inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC;
2509 ext3_mark_inode_dirty(handle, inode);
2510
d6859bfc
AM
2511 /*
2512 * In a multi-transaction truncate, we only make the final transaction
2513 * synchronous
2514 */
1da177e4
LT
2515 if (IS_SYNC(inode))
2516 handle->h_sync = 1;
2517out_stop:
2518 /*
2519 * If this was a simple ftruncate(), and the file will remain alive
2520 * then we need to clear up the orphan record which we created above.
2521 * However, if this was a real unlink then we were called by
2522 * ext3_delete_inode(), and we allow that function to clean up the
2523 * orphan info for us.
2524 */
2525 if (inode->i_nlink)
2526 ext3_orphan_del(handle, inode);
2527
2528 ext3_journal_stop(handle);
ef43618a
JK
2529 return;
2530out_notrans:
2531 /*
2532 * Delete the inode from orphan list so that it doesn't stay there
2533 * forever and trigger assertion on umount.
2534 */
2535 if (inode->i_nlink)
2536 ext3_orphan_del(NULL, inode);
1da177e4
LT
2537}
2538
43d23f90 2539static ext3_fsblk_t ext3_get_inode_block(struct super_block *sb,
1da177e4
LT
2540 unsigned long ino, struct ext3_iloc *iloc)
2541{
e0e369a7 2542 unsigned long block_group;
43d23f90
MC
2543 unsigned long offset;
2544 ext3_fsblk_t block;
e0e369a7 2545 struct ext3_group_desc *gdp;
1da177e4 2546
2ccb48eb
NB
2547 if (!ext3_valid_inum(sb, ino)) {
2548 /*
2549 * This error is already checked for in namei.c unless we are
2550 * looking at an NFS filehandle, in which case no error
2551 * report is needed
2552 */
1da177e4
LT
2553 return 0;
2554 }
2ccb48eb 2555
1da177e4 2556 block_group = (ino - 1) / EXT3_INODES_PER_GROUP(sb);
e0e369a7
AM
2557 gdp = ext3_get_group_desc(sb, block_group, NULL);
2558 if (!gdp)
1da177e4 2559 return 0;
1da177e4
LT
2560 /*
2561 * Figure out the offset within the block group inode table
2562 */
2563 offset = ((ino - 1) % EXT3_INODES_PER_GROUP(sb)) *
2564 EXT3_INODE_SIZE(sb);
e0e369a7 2565 block = le32_to_cpu(gdp->bg_inode_table) +
1da177e4
LT
2566 (offset >> EXT3_BLOCK_SIZE_BITS(sb));
2567
2568 iloc->block_group = block_group;
2569 iloc->offset = offset & (EXT3_BLOCK_SIZE(sb) - 1);
2570 return block;
2571}
2572
2573/*
2574 * ext3_get_inode_loc returns with an extra refcount against the inode's
2575 * underlying buffer_head on success. If 'in_mem' is true, we have all
2576 * data in memory that is needed to recreate the on-disk version of this
2577 * inode.
2578 */
2579static int __ext3_get_inode_loc(struct inode *inode,
2580 struct ext3_iloc *iloc, int in_mem)
2581{
43d23f90 2582 ext3_fsblk_t block;
1da177e4
LT
2583 struct buffer_head *bh;
2584
2585 block = ext3_get_inode_block(inode->i_sb, inode->i_ino, iloc);
2586 if (!block)
2587 return -EIO;
2588
2589 bh = sb_getblk(inode->i_sb, block);
2590 if (!bh) {
2591 ext3_error (inode->i_sb, "ext3_get_inode_loc",
2592 "unable to read inode block - "
43d23f90
MC
2593 "inode=%lu, block="E3FSBLK,
2594 inode->i_ino, block);
1da177e4
LT
2595 return -EIO;
2596 }
2597 if (!buffer_uptodate(bh)) {
2598 lock_buffer(bh);
95450f5a
HK
2599
2600 /*
2601 * If the buffer has the write error flag, we have failed
2602 * to write out another inode in the same block. In this
2603 * case, we don't have to read the block because we may
2604 * read the old inode data successfully.
2605 */
2606 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
2607 set_buffer_uptodate(bh);
2608
1da177e4
LT
2609 if (buffer_uptodate(bh)) {
2610 /* someone brought it uptodate while we waited */
2611 unlock_buffer(bh);
2612 goto has_buffer;
2613 }
2614
2615 /*
2616 * If we have all information of the inode in memory and this
2617 * is the only valid inode in the block, we need not read the
2618 * block.
2619 */
2620 if (in_mem) {
2621 struct buffer_head *bitmap_bh;
2622 struct ext3_group_desc *desc;
2623 int inodes_per_buffer;
2624 int inode_offset, i;
2625 int block_group;
2626 int start;
2627
2628 block_group = (inode->i_ino - 1) /
2629 EXT3_INODES_PER_GROUP(inode->i_sb);
2630 inodes_per_buffer = bh->b_size /
2631 EXT3_INODE_SIZE(inode->i_sb);
2632 inode_offset = ((inode->i_ino - 1) %
2633 EXT3_INODES_PER_GROUP(inode->i_sb));
2634 start = inode_offset & ~(inodes_per_buffer - 1);
2635
2636 /* Is the inode bitmap in cache? */
2637 desc = ext3_get_group_desc(inode->i_sb,
2638 block_group, NULL);
2639 if (!desc)
2640 goto make_io;
2641
2642 bitmap_bh = sb_getblk(inode->i_sb,
2643 le32_to_cpu(desc->bg_inode_bitmap));
2644 if (!bitmap_bh)
2645 goto make_io;
2646
2647 /*
2648 * If the inode bitmap isn't in cache then the
2649 * optimisation may end up performing two reads instead
2650 * of one, so skip it.
2651 */
2652 if (!buffer_uptodate(bitmap_bh)) {
2653 brelse(bitmap_bh);
2654 goto make_io;
2655 }
2656 for (i = start; i < start + inodes_per_buffer; i++) {
2657 if (i == inode_offset)
2658 continue;
2659 if (ext3_test_bit(i, bitmap_bh->b_data))
2660 break;
2661 }
2662 brelse(bitmap_bh);
2663 if (i == start + inodes_per_buffer) {
2664 /* all other inodes are free, so skip I/O */
2665 memset(bh->b_data, 0, bh->b_size);
2666 set_buffer_uptodate(bh);
2667 unlock_buffer(bh);
2668 goto has_buffer;
2669 }
2670 }
2671
2672make_io:
2673 /*
2674 * There are other valid inodes in the buffer, this inode
2675 * has in-inode xattrs, or we don't have this inode in memory.
2676 * Read the block from disk.
2677 */
2678 get_bh(bh);
2679 bh->b_end_io = end_buffer_read_sync;
caa38fb0 2680 submit_bh(READ_META, bh);
1da177e4
LT
2681 wait_on_buffer(bh);
2682 if (!buffer_uptodate(bh)) {
2683 ext3_error(inode->i_sb, "ext3_get_inode_loc",
2684 "unable to read inode block - "
43d23f90 2685 "inode=%lu, block="E3FSBLK,
1da177e4
LT
2686 inode->i_ino, block);
2687 brelse(bh);
2688 return -EIO;
2689 }
2690 }
2691has_buffer:
2692 iloc->bh = bh;
2693 return 0;
2694}
2695
2696int ext3_get_inode_loc(struct inode *inode, struct ext3_iloc *iloc)
2697{
2698 /* We have all inode data except xattrs in memory here. */
2699 return __ext3_get_inode_loc(inode, iloc,
2700 !(EXT3_I(inode)->i_state & EXT3_STATE_XATTR));
2701}
2702
2703void ext3_set_inode_flags(struct inode *inode)
2704{
2705 unsigned int flags = EXT3_I(inode)->i_flags;
2706
2707 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
2708 if (flags & EXT3_SYNC_FL)
2709 inode->i_flags |= S_SYNC;
2710 if (flags & EXT3_APPEND_FL)
2711 inode->i_flags |= S_APPEND;
2712 if (flags & EXT3_IMMUTABLE_FL)
2713 inode->i_flags |= S_IMMUTABLE;
2714 if (flags & EXT3_NOATIME_FL)
2715 inode->i_flags |= S_NOATIME;
2716 if (flags & EXT3_DIRSYNC_FL)
2717 inode->i_flags |= S_DIRSYNC;
2718}
2719
28be5abb
JK
2720/* Propagate flags from i_flags to EXT3_I(inode)->i_flags */
2721void ext3_get_inode_flags(struct ext3_inode_info *ei)
2722{
2723 unsigned int flags = ei->vfs_inode.i_flags;
2724
2725 ei->i_flags &= ~(EXT3_SYNC_FL|EXT3_APPEND_FL|
2726 EXT3_IMMUTABLE_FL|EXT3_NOATIME_FL|EXT3_DIRSYNC_FL);
2727 if (flags & S_SYNC)
2728 ei->i_flags |= EXT3_SYNC_FL;
2729 if (flags & S_APPEND)
2730 ei->i_flags |= EXT3_APPEND_FL;
2731 if (flags & S_IMMUTABLE)
2732 ei->i_flags |= EXT3_IMMUTABLE_FL;
2733 if (flags & S_NOATIME)
2734 ei->i_flags |= EXT3_NOATIME_FL;
2735 if (flags & S_DIRSYNC)
2736 ei->i_flags |= EXT3_DIRSYNC_FL;
2737}
2738
473043dc 2739struct inode *ext3_iget(struct super_block *sb, unsigned long ino)
1da177e4
LT
2740{
2741 struct ext3_iloc iloc;
2742 struct ext3_inode *raw_inode;
473043dc 2743 struct ext3_inode_info *ei;
1da177e4 2744 struct buffer_head *bh;
473043dc
DH
2745 struct inode *inode;
2746 long ret;
1da177e4
LT
2747 int block;
2748
473043dc
DH
2749 inode = iget_locked(sb, ino);
2750 if (!inode)
2751 return ERR_PTR(-ENOMEM);
2752 if (!(inode->i_state & I_NEW))
2753 return inode;
2754
2755 ei = EXT3_I(inode);
1da177e4
LT
2756 ei->i_block_alloc_info = NULL;
2757
473043dc
DH
2758 ret = __ext3_get_inode_loc(inode, &iloc, 0);
2759 if (ret < 0)
1da177e4
LT
2760 goto bad_inode;
2761 bh = iloc.bh;
2762 raw_inode = ext3_raw_inode(&iloc);
2763 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
2764 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
2765 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
2766 if(!(test_opt (inode->i_sb, NO_UID32))) {
2767 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
2768 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
2769 }
2770 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
2771 inode->i_size = le32_to_cpu(raw_inode->i_size);
4d7bf11d
MR
2772 inode->i_atime.tv_sec = (signed)le32_to_cpu(raw_inode->i_atime);
2773 inode->i_ctime.tv_sec = (signed)le32_to_cpu(raw_inode->i_ctime);
2774 inode->i_mtime.tv_sec = (signed)le32_to_cpu(raw_inode->i_mtime);
1da177e4
LT
2775 inode->i_atime.tv_nsec = inode->i_ctime.tv_nsec = inode->i_mtime.tv_nsec = 0;
2776
2777 ei->i_state = 0;
2778 ei->i_dir_start_lookup = 0;
2779 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
2780 /* We now have enough fields to check if the inode was active or not.
2781 * This is needed because nfsd might try to access dead inodes
2782 * the test is that same one that e2fsck uses
2783 * NeilBrown 1999oct15
2784 */
2785 if (inode->i_nlink == 0) {
2786 if (inode->i_mode == 0 ||
2787 !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ORPHAN_FS)) {
2788 /* this inode is deleted */
2789 brelse (bh);
473043dc 2790 ret = -ESTALE;
1da177e4
LT
2791 goto bad_inode;
2792 }
2793 /* The only unlinked inodes we let through here have
2794 * valid i_mode and are being read by the orphan
2795 * recovery code: that's fine, we're about to complete
2796 * the process of deleting those. */
2797 }
1da177e4
LT
2798 inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
2799 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
2800#ifdef EXT3_FRAGMENTS
2801 ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
2802 ei->i_frag_no = raw_inode->i_frag;
2803 ei->i_frag_size = raw_inode->i_fsize;
2804#endif
2805 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
2806 if (!S_ISREG(inode->i_mode)) {
2807 ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
2808 } else {
2809 inode->i_size |=
2810 ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
2811 }
2812 ei->i_disksize = inode->i_size;
2813 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
2814 ei->i_block_group = iloc.block_group;
2815 /*
2816 * NOTE! The in-memory inode i_data array is in little-endian order
2817 * even on big-endian machines: we do NOT byteswap the block numbers!
2818 */
2819 for (block = 0; block < EXT3_N_BLOCKS; block++)
2820 ei->i_data[block] = raw_inode->i_block[block];
2821 INIT_LIST_HEAD(&ei->i_orphan);
2822
2823 if (inode->i_ino >= EXT3_FIRST_INO(inode->i_sb) + 1 &&
2824 EXT3_INODE_SIZE(inode->i_sb) > EXT3_GOOD_OLD_INODE_SIZE) {
2825 /*
2826 * When mke2fs creates big inodes it does not zero out
2827 * the unused bytes above EXT3_GOOD_OLD_INODE_SIZE,
2828 * so ignore those first few inodes.
2829 */
2830 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
2831 if (EXT3_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
e4a10a36
KK
2832 EXT3_INODE_SIZE(inode->i_sb)) {
2833 brelse (bh);
473043dc 2834 ret = -EIO;
1da177e4 2835 goto bad_inode;
e4a10a36 2836 }
1da177e4
LT
2837 if (ei->i_extra_isize == 0) {
2838 /* The extra space is currently unused. Use it. */
2839 ei->i_extra_isize = sizeof(struct ext3_inode) -
2840 EXT3_GOOD_OLD_INODE_SIZE;
2841 } else {
2842 __le32 *magic = (void *)raw_inode +
2843 EXT3_GOOD_OLD_INODE_SIZE +
2844 ei->i_extra_isize;
2845 if (*magic == cpu_to_le32(EXT3_XATTR_MAGIC))
2846 ei->i_state |= EXT3_STATE_XATTR;
2847 }
2848 } else
2849 ei->i_extra_isize = 0;
2850
2851 if (S_ISREG(inode->i_mode)) {
2852 inode->i_op = &ext3_file_inode_operations;
2853 inode->i_fop = &ext3_file_operations;
2854 ext3_set_aops(inode);
2855 } else if (S_ISDIR(inode->i_mode)) {
2856 inode->i_op = &ext3_dir_inode_operations;
2857 inode->i_fop = &ext3_dir_operations;
2858 } else if (S_ISLNK(inode->i_mode)) {
b5ed3112 2859 if (ext3_inode_is_fast_symlink(inode)) {
1da177e4 2860 inode->i_op = &ext3_fast_symlink_inode_operations;
b5ed3112
DG
2861 nd_terminate_link(ei->i_data, inode->i_size,
2862 sizeof(ei->i_data) - 1);
2863 } else {
1da177e4
LT
2864 inode->i_op = &ext3_symlink_inode_operations;
2865 ext3_set_aops(inode);
2866 }
2867 } else {
2868 inode->i_op = &ext3_special_inode_operations;
2869 if (raw_inode->i_block[0])
2870 init_special_inode(inode, inode->i_mode,
2871 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
ae6ddcc5 2872 else
1da177e4
LT
2873 init_special_inode(inode, inode->i_mode,
2874 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
2875 }
2876 brelse (iloc.bh);
2877 ext3_set_inode_flags(inode);
473043dc
DH
2878 unlock_new_inode(inode);
2879 return inode;
1da177e4
LT
2880
2881bad_inode:
473043dc
DH
2882 iget_failed(inode);
2883 return ERR_PTR(ret);
1da177e4
LT
2884}
2885
2886/*
2887 * Post the struct inode info into an on-disk inode location in the
2888 * buffer-cache. This gobbles the caller's reference to the
2889 * buffer_head in the inode location struct.
2890 *
2891 * The caller must have write access to iloc->bh.
2892 */
ae6ddcc5
MC
2893static int ext3_do_update_inode(handle_t *handle,
2894 struct inode *inode,
1da177e4
LT
2895 struct ext3_iloc *iloc)
2896{
2897 struct ext3_inode *raw_inode = ext3_raw_inode(iloc);
2898 struct ext3_inode_info *ei = EXT3_I(inode);
2899 struct buffer_head *bh = iloc->bh;
2900 int err = 0, rc, block;
2901
2902 /* For fields not not tracking in the in-memory inode,
2903 * initialise them to zero for new inodes. */
2904 if (ei->i_state & EXT3_STATE_NEW)
2905 memset(raw_inode, 0, EXT3_SB(inode->i_sb)->s_inode_size);
2906
28be5abb 2907 ext3_get_inode_flags(ei);
1da177e4
LT
2908 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
2909 if(!(test_opt(inode->i_sb, NO_UID32))) {
2910 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
2911 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
2912/*
2913 * Fix up interoperability with old kernels. Otherwise, old inodes get
2914 * re-used with the upper 16 bits of the uid/gid intact
2915 */
2916 if(!ei->i_dtime) {
2917 raw_inode->i_uid_high =
2918 cpu_to_le16(high_16_bits(inode->i_uid));
2919 raw_inode->i_gid_high =
2920 cpu_to_le16(high_16_bits(inode->i_gid));
2921 } else {
2922 raw_inode->i_uid_high = 0;
2923 raw_inode->i_gid_high = 0;
2924 }
2925 } else {
2926 raw_inode->i_uid_low =
2927 cpu_to_le16(fs_high2lowuid(inode->i_uid));
2928 raw_inode->i_gid_low =
2929 cpu_to_le16(fs_high2lowgid(inode->i_gid));
2930 raw_inode->i_uid_high = 0;
2931 raw_inode->i_gid_high = 0;
2932 }
2933 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
2934 raw_inode->i_size = cpu_to_le32(ei->i_disksize);
2935 raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
2936 raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
2937 raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
2938 raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
2939 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
2940 raw_inode->i_flags = cpu_to_le32(ei->i_flags);
2941#ifdef EXT3_FRAGMENTS
2942 raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
2943 raw_inode->i_frag = ei->i_frag_no;
2944 raw_inode->i_fsize = ei->i_frag_size;
2945#endif
2946 raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
2947 if (!S_ISREG(inode->i_mode)) {
2948 raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
2949 } else {
2950 raw_inode->i_size_high =
2951 cpu_to_le32(ei->i_disksize >> 32);
2952 if (ei->i_disksize > 0x7fffffffULL) {
2953 struct super_block *sb = inode->i_sb;
2954 if (!EXT3_HAS_RO_COMPAT_FEATURE(sb,
2955 EXT3_FEATURE_RO_COMPAT_LARGE_FILE) ||
2956 EXT3_SB(sb)->s_es->s_rev_level ==
2957 cpu_to_le32(EXT3_GOOD_OLD_REV)) {
2958 /* If this is the first large file
2959 * created, add a flag to the superblock.
2960 */
2961 err = ext3_journal_get_write_access(handle,
2962 EXT3_SB(sb)->s_sbh);
2963 if (err)
2964 goto out_brelse;
2965 ext3_update_dynamic_rev(sb);
2966 EXT3_SET_RO_COMPAT_FEATURE(sb,
2967 EXT3_FEATURE_RO_COMPAT_LARGE_FILE);
1da177e4
LT
2968 handle->h_sync = 1;
2969 err = ext3_journal_dirty_metadata(handle,
2970 EXT3_SB(sb)->s_sbh);
2971 }
2972 }
2973 }
2974 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
2975 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
2976 if (old_valid_dev(inode->i_rdev)) {
2977 raw_inode->i_block[0] =
2978 cpu_to_le32(old_encode_dev(inode->i_rdev));
2979 raw_inode->i_block[1] = 0;
2980 } else {
2981 raw_inode->i_block[0] = 0;
2982 raw_inode->i_block[1] =
2983 cpu_to_le32(new_encode_dev(inode->i_rdev));
2984 raw_inode->i_block[2] = 0;
2985 }
2986 } else for (block = 0; block < EXT3_N_BLOCKS; block++)
2987 raw_inode->i_block[block] = ei->i_data[block];
2988
ff87b37d 2989 if (ei->i_extra_isize)
1da177e4
LT
2990 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
2991
2992 BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
2993 rc = ext3_journal_dirty_metadata(handle, bh);
2994 if (!err)
2995 err = rc;
2996 ei->i_state &= ~EXT3_STATE_NEW;
2997
2998out_brelse:
2999 brelse (bh);
3000 ext3_std_error(inode->i_sb, err);
3001 return err;
3002}
3003
3004/*
3005 * ext3_write_inode()
3006 *
3007 * We are called from a few places:
3008 *
3009 * - Within generic_file_write() for O_SYNC files.
3010 * Here, there will be no transaction running. We wait for any running
3011 * trasnaction to commit.
3012 *
3013 * - Within sys_sync(), kupdate and such.
3014 * We wait on commit, if tol to.
3015 *
3016 * - Within prune_icache() (PF_MEMALLOC == true)
3017 * Here we simply return. We can't afford to block kswapd on the
3018 * journal commit.
3019 *
3020 * In all cases it is actually safe for us to return without doing anything,
3021 * because the inode has been copied into a raw inode buffer in
3022 * ext3_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
3023 * knfsd.
3024 *
3025 * Note that we are absolutely dependent upon all inode dirtiers doing the
3026 * right thing: they *must* call mark_inode_dirty() after dirtying info in
3027 * which we are interested.
3028 *
3029 * It would be a bug for them to not do this. The code:
3030 *
3031 * mark_inode_dirty(inode)
3032 * stuff();
3033 * inode->i_size = expr;
3034 *
3035 * is in error because a kswapd-driven write_inode() could occur while
3036 * `stuff()' is running, and the new i_size will be lost. Plus the inode
3037 * will no longer be on the superblock's dirty inode list.
3038 */
3039int ext3_write_inode(struct inode *inode, int wait)
3040{
3041 if (current->flags & PF_MEMALLOC)
3042 return 0;
3043
3044 if (ext3_journal_current_handle()) {
9ad163ae 3045 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
1da177e4
LT
3046 dump_stack();
3047 return -EIO;
3048 }
3049
3050 if (!wait)
3051 return 0;
3052
3053 return ext3_force_commit(inode->i_sb);
3054}
3055
3056/*
3057 * ext3_setattr()
3058 *
3059 * Called from notify_change.
3060 *
3061 * We want to trap VFS attempts to truncate the file as soon as
3062 * possible. In particular, we want to make sure that when the VFS
3063 * shrinks i_size, we put the inode on the orphan list and modify
3064 * i_disksize immediately, so that during the subsequent flushing of
3065 * dirty pages and freeing of disk blocks, we can guarantee that any
3066 * commit will leave the blocks being flushed in an unused state on
3067 * disk. (On recovery, the inode will get truncated and the blocks will
3068 * be freed, so we have a strong guarantee that no future commit will
ae6ddcc5 3069 * leave these blocks visible to the user.)
1da177e4
LT
3070 *
3071 * Called with inode->sem down.
3072 */
3073int ext3_setattr(struct dentry *dentry, struct iattr *attr)
3074{
3075 struct inode *inode = dentry->d_inode;
3076 int error, rc = 0;
3077 const unsigned int ia_valid = attr->ia_valid;
3078
3079 error = inode_change_ok(inode, attr);
3080 if (error)
3081 return error;
3082
3083 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
3084 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
3085 handle_t *handle;
3086
3087 /* (user+group)*(old+new) structure, inode write (sb,
3088 * inode block, ? - but truncate inode update has it) */
1f54587b
JK
3089 handle = ext3_journal_start(inode, 2*(EXT3_QUOTA_INIT_BLOCKS(inode->i_sb)+
3090 EXT3_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
1da177e4
LT
3091 if (IS_ERR(handle)) {
3092 error = PTR_ERR(handle);
3093 goto err_out;
3094 }
81a05227 3095 error = vfs_dq_transfer(inode, attr) ? -EDQUOT : 0;
1da177e4
LT
3096 if (error) {
3097 ext3_journal_stop(handle);
3098 return error;
3099 }
3100 /* Update corresponding info in inode so that everything is in
3101 * one transaction */
3102 if (attr->ia_valid & ATTR_UID)
3103 inode->i_uid = attr->ia_uid;
3104 if (attr->ia_valid & ATTR_GID)
3105 inode->i_gid = attr->ia_gid;
3106 error = ext3_mark_inode_dirty(handle, inode);
3107 ext3_journal_stop(handle);
3108 }
3109
3110 if (S_ISREG(inode->i_mode) &&
3111 attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
3112 handle_t *handle;
3113
3114 handle = ext3_journal_start(inode, 3);
3115 if (IS_ERR(handle)) {
3116 error = PTR_ERR(handle);
3117 goto err_out;
3118 }
3119
3120 error = ext3_orphan_add(handle, inode);
3121 EXT3_I(inode)->i_disksize = attr->ia_size;
3122 rc = ext3_mark_inode_dirty(handle, inode);
3123 if (!error)
3124 error = rc;
3125 ext3_journal_stop(handle);
3126 }
3127
3128 rc = inode_setattr(inode, attr);
3129
1da177e4
LT
3130 if (!rc && (ia_valid & ATTR_MODE))
3131 rc = ext3_acl_chmod(inode);
3132
3133err_out:
3134 ext3_std_error(inode->i_sb, error);
3135 if (!error)
3136 error = rc;
3137 return error;
3138}
3139
3140
3141/*
d6859bfc 3142 * How many blocks doth make a writepage()?
1da177e4
LT
3143 *
3144 * With N blocks per page, it may be:
3145 * N data blocks
3146 * 2 indirect block
3147 * 2 dindirect
3148 * 1 tindirect
3149 * N+5 bitmap blocks (from the above)
3150 * N+5 group descriptor summary blocks
3151 * 1 inode block
3152 * 1 superblock.
3153 * 2 * EXT3_SINGLEDATA_TRANS_BLOCKS for the quote files
3154 *
3155 * 3 * (N + 5) + 2 + 2 * EXT3_SINGLEDATA_TRANS_BLOCKS
3156 *
3157 * With ordered or writeback data it's the same, less the N data blocks.
3158 *
3159 * If the inode's direct blocks can hold an integral number of pages then a
3160 * page cannot straddle two indirect blocks, and we can only touch one indirect
3161 * and dindirect block, and the "5" above becomes "3".
3162 *
3163 * This still overestimates under most circumstances. If we were to pass the
3164 * start and end offsets in here as well we could do block_to_path() on each
3165 * block and work out the exact number of indirects which are touched. Pah.
3166 */
3167
3168static int ext3_writepage_trans_blocks(struct inode *inode)
3169{
3170 int bpp = ext3_journal_blocks_per_page(inode);
3171 int indirects = (EXT3_NDIR_BLOCKS % bpp) ? 5 : 3;
3172 int ret;
3173
3174 if (ext3_should_journal_data(inode))
3175 ret = 3 * (bpp + indirects) + 2;
3176 else
3177 ret = 2 * (bpp + indirects) + 2;
3178
3179#ifdef CONFIG_QUOTA
81a05227 3180 /* We know that structure was already allocated during vfs_dq_init so
1da177e4 3181 * we will be updating only the data blocks + inodes */
1f54587b 3182 ret += 2*EXT3_QUOTA_TRANS_BLOCKS(inode->i_sb);
1da177e4
LT
3183#endif
3184
3185 return ret;
3186}
3187
3188/*
3189 * The caller must have previously called ext3_reserve_inode_write().
3190 * Give this, we know that the caller already has write access to iloc->bh.
3191 */
3192int ext3_mark_iloc_dirty(handle_t *handle,
3193 struct inode *inode, struct ext3_iloc *iloc)
3194{
3195 int err = 0;
3196
3197 /* the do_update_inode consumes one bh->b_count */
3198 get_bh(iloc->bh);
3199
3200 /* ext3_do_update_inode() does journal_dirty_metadata */
3201 err = ext3_do_update_inode(handle, inode, iloc);
3202 put_bh(iloc->bh);
3203 return err;
3204}
3205
ae6ddcc5 3206/*
1da177e4 3207 * On success, We end up with an outstanding reference count against
ae6ddcc5 3208 * iloc->bh. This _must_ be cleaned up later.
1da177e4
LT
3209 */
3210
3211int
ae6ddcc5 3212ext3_reserve_inode_write(handle_t *handle, struct inode *inode,
1da177e4
LT
3213 struct ext3_iloc *iloc)
3214{
3215 int err = 0;
3216 if (handle) {
3217 err = ext3_get_inode_loc(inode, iloc);
3218 if (!err) {
3219 BUFFER_TRACE(iloc->bh, "get_write_access");
3220 err = ext3_journal_get_write_access(handle, iloc->bh);
3221 if (err) {
3222 brelse(iloc->bh);
3223 iloc->bh = NULL;
3224 }
3225 }
3226 }
3227 ext3_std_error(inode->i_sb, err);
3228 return err;
3229}
3230
3231/*
d6859bfc
AM
3232 * What we do here is to mark the in-core inode as clean with respect to inode
3233 * dirtiness (it may still be data-dirty).
1da177e4
LT
3234 * This means that the in-core inode may be reaped by prune_icache
3235 * without having to perform any I/O. This is a very good thing,
3236 * because *any* task may call prune_icache - even ones which
3237 * have a transaction open against a different journal.
3238 *
3239 * Is this cheating? Not really. Sure, we haven't written the
3240 * inode out, but prune_icache isn't a user-visible syncing function.
3241 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
3242 * we start and wait on commits.
3243 *
3244 * Is this efficient/effective? Well, we're being nice to the system
3245 * by cleaning up our inodes proactively so they can be reaped
3246 * without I/O. But we are potentially leaving up to five seconds'
3247 * worth of inodes floating about which prune_icache wants us to
3248 * write out. One way to fix that would be to get prune_icache()
3249 * to do a write_super() to free up some memory. It has the desired
3250 * effect.
3251 */
3252int ext3_mark_inode_dirty(handle_t *handle, struct inode *inode)
3253{
3254 struct ext3_iloc iloc;
3255 int err;
3256
3257 might_sleep();
3258 err = ext3_reserve_inode_write(handle, inode, &iloc);
3259 if (!err)
3260 err = ext3_mark_iloc_dirty(handle, inode, &iloc);
3261 return err;
3262}
3263
3264/*
d6859bfc 3265 * ext3_dirty_inode() is called from __mark_inode_dirty()
1da177e4
LT
3266 *
3267 * We're really interested in the case where a file is being extended.
3268 * i_size has been changed by generic_commit_write() and we thus need
3269 * to include the updated inode in the current transaction.
3270 *
81a05227 3271 * Also, vfs_dq_alloc_space() will always dirty the inode when blocks
1da177e4
LT
3272 * are allocated to the file.
3273 *
3274 * If the inode is marked synchronous, we don't honour that here - doing
3275 * so would cause a commit on atime updates, which we don't bother doing.
3276 * We handle synchronous inodes at the highest possible level.
3277 */
3278void ext3_dirty_inode(struct inode *inode)
3279{
3280 handle_t *current_handle = ext3_journal_current_handle();
3281 handle_t *handle;
3282
3283 handle = ext3_journal_start(inode, 2);
3284 if (IS_ERR(handle))
3285 goto out;
3286 if (current_handle &&
3287 current_handle->h_transaction != handle->h_transaction) {
3288 /* This task has a transaction open against a different fs */
3289 printk(KERN_EMERG "%s: transactions do not match!\n",
e05b6b52 3290 __func__);
1da177e4
LT
3291 } else {
3292 jbd_debug(5, "marking dirty. outer handle=%p\n",
3293 current_handle);
3294 ext3_mark_inode_dirty(handle, inode);
3295 }
3296 ext3_journal_stop(handle);
3297out:
3298 return;
3299}
3300
d6859bfc 3301#if 0
ae6ddcc5 3302/*
1da177e4
LT
3303 * Bind an inode's backing buffer_head into this transaction, to prevent
3304 * it from being flushed to disk early. Unlike
3305 * ext3_reserve_inode_write, this leaves behind no bh reference and
3306 * returns no iloc structure, so the caller needs to repeat the iloc
3307 * lookup to mark the inode dirty later.
3308 */
d6859bfc 3309static int ext3_pin_inode(handle_t *handle, struct inode *inode)
1da177e4
LT
3310{
3311 struct ext3_iloc iloc;
3312
3313 int err = 0;
3314 if (handle) {
3315 err = ext3_get_inode_loc(inode, &iloc);
3316 if (!err) {
3317 BUFFER_TRACE(iloc.bh, "get_write_access");
3318 err = journal_get_write_access(handle, iloc.bh);
3319 if (!err)
ae6ddcc5 3320 err = ext3_journal_dirty_metadata(handle,
1da177e4
LT
3321 iloc.bh);
3322 brelse(iloc.bh);
3323 }
3324 }
3325 ext3_std_error(inode->i_sb, err);
3326 return err;
3327}
3328#endif
3329
3330int ext3_change_inode_journal_flag(struct inode *inode, int val)
3331{
3332 journal_t *journal;
3333 handle_t *handle;
3334 int err;
3335
3336 /*
3337 * We have to be very careful here: changing a data block's
3338 * journaling status dynamically is dangerous. If we write a
3339 * data block to the journal, change the status and then delete
3340 * that block, we risk forgetting to revoke the old log record
3341 * from the journal and so a subsequent replay can corrupt data.
3342 * So, first we make sure that the journal is empty and that
3343 * nobody is changing anything.
3344 */
3345
3346 journal = EXT3_JOURNAL(inode);
e3a68e30 3347 if (is_journal_aborted(journal))
1da177e4
LT
3348 return -EROFS;
3349
3350 journal_lock_updates(journal);
3351 journal_flush(journal);
3352
3353 /*
3354 * OK, there are no updates running now, and all cached data is
3355 * synced to disk. We are now in a completely consistent state
3356 * which doesn't have anything in the journal, and we know that
3357 * no filesystem updates are running, so it is safe to modify
3358 * the inode's in-core data-journaling state flag now.
3359 */
3360
3361 if (val)
3362 EXT3_I(inode)->i_flags |= EXT3_JOURNAL_DATA_FL;
3363 else
3364 EXT3_I(inode)->i_flags &= ~EXT3_JOURNAL_DATA_FL;
3365 ext3_set_aops(inode);
3366
3367 journal_unlock_updates(journal);
3368
3369 /* Finally we can mark the inode as dirty. */
3370
3371 handle = ext3_journal_start(inode, 1);
3372 if (IS_ERR(handle))
3373 return PTR_ERR(handle);
3374
3375 err = ext3_mark_inode_dirty(handle, inode);
3376 handle->h_sync = 1;
3377 ext3_journal_stop(handle);
3378 ext3_std_error(inode->i_sb, err);
3379
3380 return err;
3381}